xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFormMemoryClauses.cpp (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 //===-- SIFormMemoryClauses.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This pass extends the live ranges of registers used as pointers in
10 /// sequences of adjacent SMEM and VMEM instructions if XNACK is enabled. A
11 /// load that would overwrite a pointer would require breaking the soft clause.
12 /// Artificially extend the live ranges of the pointer operands by adding
13 /// implicit-def early-clobber operands throughout the soft clause.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPU.h"
18 #include "GCNRegPressure.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "llvm/InitializePasses.h"
21 
22 using namespace llvm;
23 
24 #define DEBUG_TYPE "si-form-memory-clauses"
25 
26 // Clauses longer then 15 instructions would overflow one of the counters
27 // and stall. They can stall even earlier if there are outstanding counters.
28 static cl::opt<unsigned>
29 MaxClause("amdgpu-max-memory-clause", cl::Hidden, cl::init(15),
30           cl::desc("Maximum length of a memory clause, instructions"));
31 
32 namespace {
33 
34 class SIFormMemoryClauses : public MachineFunctionPass {
35   using RegUse = DenseMap<unsigned, std::pair<unsigned, LaneBitmask>>;
36 
37 public:
38   static char ID;
39 
40 public:
41   SIFormMemoryClauses() : MachineFunctionPass(ID) {
42     initializeSIFormMemoryClausesPass(*PassRegistry::getPassRegistry());
43   }
44 
45   bool runOnMachineFunction(MachineFunction &MF) override;
46 
47   StringRef getPassName() const override {
48     return "SI Form memory clauses";
49   }
50 
51   void getAnalysisUsage(AnalysisUsage &AU) const override {
52     AU.addRequired<LiveIntervalsWrapperPass>();
53     AU.setPreservesAll();
54     MachineFunctionPass::getAnalysisUsage(AU);
55   }
56 
57   MachineFunctionProperties getClearedProperties() const override {
58     return MachineFunctionProperties().set(
59         MachineFunctionProperties::Property::IsSSA);
60   }
61 
62 private:
63   bool canBundle(const MachineInstr &MI, const RegUse &Defs,
64                  const RegUse &Uses) const;
65   bool checkPressure(const MachineInstr &MI, GCNDownwardRPTracker &RPT);
66   void collectRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const;
67   bool processRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses,
68                       GCNDownwardRPTracker &RPT);
69 
70   const GCNSubtarget *ST;
71   const SIRegisterInfo *TRI;
72   const MachineRegisterInfo *MRI;
73   SIMachineFunctionInfo *MFI;
74 
75   unsigned LastRecordedOccupancy;
76   unsigned MaxVGPRs;
77   unsigned MaxSGPRs;
78 };
79 
80 } // End anonymous namespace.
81 
82 INITIALIZE_PASS_BEGIN(SIFormMemoryClauses, DEBUG_TYPE,
83                       "SI Form memory clauses", false, false)
84 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
85 INITIALIZE_PASS_END(SIFormMemoryClauses, DEBUG_TYPE,
86                     "SI Form memory clauses", false, false)
87 
88 
89 char SIFormMemoryClauses::ID = 0;
90 
91 char &llvm::SIFormMemoryClausesID = SIFormMemoryClauses::ID;
92 
93 FunctionPass *llvm::createSIFormMemoryClausesPass() {
94   return new SIFormMemoryClauses();
95 }
96 
97 static bool isVMEMClauseInst(const MachineInstr &MI) {
98   return SIInstrInfo::isFLAT(MI) || SIInstrInfo::isVMEM(MI);
99 }
100 
101 static bool isSMEMClauseInst(const MachineInstr &MI) {
102   return SIInstrInfo::isSMRD(MI);
103 }
104 
105 // There no sense to create store clauses, they do not define anything,
106 // thus there is nothing to set early-clobber.
107 static bool isValidClauseInst(const MachineInstr &MI, bool IsVMEMClause) {
108   assert(!MI.isDebugInstr() && "debug instructions should not reach here");
109   if (MI.isBundled())
110     return false;
111   if (!MI.mayLoad() || MI.mayStore())
112     return false;
113   if (SIInstrInfo::isAtomic(MI))
114     return false;
115   if (IsVMEMClause && !isVMEMClauseInst(MI))
116     return false;
117   if (!IsVMEMClause && !isSMEMClauseInst(MI))
118     return false;
119   // If this is a load instruction where the result has been coalesced with an operand, then we cannot clause it.
120   for (const MachineOperand &ResMO : MI.defs()) {
121     Register ResReg = ResMO.getReg();
122     for (const MachineOperand &MO : MI.all_uses()) {
123       if (MO.getReg() == ResReg)
124         return false;
125     }
126     break; // Only check the first def.
127   }
128   return true;
129 }
130 
131 static unsigned getMopState(const MachineOperand &MO) {
132   unsigned S = 0;
133   if (MO.isImplicit())
134     S |= RegState::Implicit;
135   if (MO.isDead())
136     S |= RegState::Dead;
137   if (MO.isUndef())
138     S |= RegState::Undef;
139   if (MO.isKill())
140     S |= RegState::Kill;
141   if (MO.isEarlyClobber())
142     S |= RegState::EarlyClobber;
143   if (MO.getReg().isPhysical() && MO.isRenamable())
144     S |= RegState::Renamable;
145   return S;
146 }
147 
148 // Returns false if there is a use of a def already in the map.
149 // In this case we must break the clause.
150 bool SIFormMemoryClauses::canBundle(const MachineInstr &MI, const RegUse &Defs,
151                                     const RegUse &Uses) const {
152   // Check interference with defs.
153   for (const MachineOperand &MO : MI.operands()) {
154     // TODO: Prologue/Epilogue Insertion pass does not process bundled
155     //       instructions.
156     if (MO.isFI())
157       return false;
158 
159     if (!MO.isReg())
160       continue;
161 
162     Register Reg = MO.getReg();
163 
164     // If it is tied we will need to write same register as we read.
165     if (MO.isTied())
166       return false;
167 
168     const RegUse &Map = MO.isDef() ? Uses : Defs;
169     auto Conflict = Map.find(Reg);
170     if (Conflict == Map.end())
171       continue;
172 
173     if (Reg.isPhysical())
174       return false;
175 
176     LaneBitmask Mask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
177     if ((Conflict->second.second & Mask).any())
178       return false;
179   }
180 
181   return true;
182 }
183 
184 // Since all defs in the clause are early clobber we can run out of registers.
185 // Function returns false if pressure would hit the limit if instruction is
186 // bundled into a memory clause.
187 bool SIFormMemoryClauses::checkPressure(const MachineInstr &MI,
188                                         GCNDownwardRPTracker &RPT) {
189   // NB: skip advanceBeforeNext() call. Since all defs will be marked
190   // early-clobber they will all stay alive at least to the end of the
191   // clause. Therefor we should not decrease pressure even if load
192   // pointer becomes dead and could otherwise be reused for destination.
193   RPT.advanceToNext();
194   GCNRegPressure MaxPressure = RPT.moveMaxPressure();
195   unsigned Occupancy = MaxPressure.getOccupancy(*ST);
196 
197   // Don't push over half the register budget. We don't want to introduce
198   // spilling just to form a soft clause.
199   //
200   // FIXME: This pressure check is fundamentally broken. First, this is checking
201   // the global pressure, not the pressure at this specific point in the
202   // program. Second, it's not accounting for the increased liveness of the use
203   // operands due to the early clobber we will introduce. Third, the pressure
204   // tracking does not account for the alignment requirements for SGPRs, or the
205   // fragmentation of registers the allocator will need to satisfy.
206   if (Occupancy >= MFI->getMinAllowedOccupancy() &&
207       MaxPressure.getVGPRNum(ST->hasGFX90AInsts()) <= MaxVGPRs / 2 &&
208       MaxPressure.getSGPRNum() <= MaxSGPRs / 2) {
209     LastRecordedOccupancy = Occupancy;
210     return true;
211   }
212   return false;
213 }
214 
215 // Collect register defs and uses along with their lane masks and states.
216 void SIFormMemoryClauses::collectRegUses(const MachineInstr &MI,
217                                          RegUse &Defs, RegUse &Uses) const {
218   for (const MachineOperand &MO : MI.operands()) {
219     if (!MO.isReg())
220       continue;
221     Register Reg = MO.getReg();
222     if (!Reg)
223       continue;
224 
225     LaneBitmask Mask = Reg.isVirtual()
226                            ? TRI->getSubRegIndexLaneMask(MO.getSubReg())
227                            : LaneBitmask::getAll();
228     RegUse &Map = MO.isDef() ? Defs : Uses;
229 
230     auto Loc = Map.find(Reg);
231     unsigned State = getMopState(MO);
232     if (Loc == Map.end()) {
233       Map[Reg] = std::pair(State, Mask);
234     } else {
235       Loc->second.first |= State;
236       Loc->second.second |= Mask;
237     }
238   }
239 }
240 
241 // Check register def/use conflicts, occupancy limits and collect def/use maps.
242 // Return true if instruction can be bundled with previous. If it cannot
243 // def/use maps are not updated.
244 bool SIFormMemoryClauses::processRegUses(const MachineInstr &MI,
245                                          RegUse &Defs, RegUse &Uses,
246                                          GCNDownwardRPTracker &RPT) {
247   if (!canBundle(MI, Defs, Uses))
248     return false;
249 
250   if (!checkPressure(MI, RPT))
251     return false;
252 
253   collectRegUses(MI, Defs, Uses);
254   return true;
255 }
256 
257 bool SIFormMemoryClauses::runOnMachineFunction(MachineFunction &MF) {
258   if (skipFunction(MF.getFunction()))
259     return false;
260 
261   ST = &MF.getSubtarget<GCNSubtarget>();
262   if (!ST->isXNACKEnabled())
263     return false;
264 
265   const SIInstrInfo *TII = ST->getInstrInfo();
266   TRI = ST->getRegisterInfo();
267   MRI = &MF.getRegInfo();
268   MFI = MF.getInfo<SIMachineFunctionInfo>();
269   LiveIntervals *LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS();
270   SlotIndexes *Ind = LIS->getSlotIndexes();
271   bool Changed = false;
272 
273   MaxVGPRs = TRI->getAllocatableSet(MF, &AMDGPU::VGPR_32RegClass).count();
274   MaxSGPRs = TRI->getAllocatableSet(MF, &AMDGPU::SGPR_32RegClass).count();
275   unsigned FuncMaxClause = MF.getFunction().getFnAttributeAsParsedInteger(
276       "amdgpu-max-memory-clause", MaxClause);
277 
278   for (MachineBasicBlock &MBB : MF) {
279     GCNDownwardRPTracker RPT(*LIS);
280     MachineBasicBlock::instr_iterator Next;
281     for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; I = Next) {
282       MachineInstr &MI = *I;
283       Next = std::next(I);
284 
285       if (MI.isMetaInstruction())
286         continue;
287 
288       bool IsVMEM = isVMEMClauseInst(MI);
289 
290       if (!isValidClauseInst(MI, IsVMEM))
291         continue;
292 
293       if (!RPT.getNext().isValid())
294         RPT.reset(MI);
295       else { // Advance the state to the current MI.
296         RPT.advance(MachineBasicBlock::const_iterator(MI));
297         RPT.advanceBeforeNext();
298       }
299 
300       const GCNRPTracker::LiveRegSet LiveRegsCopy(RPT.getLiveRegs());
301       RegUse Defs, Uses;
302       if (!processRegUses(MI, Defs, Uses, RPT)) {
303         RPT.reset(MI, &LiveRegsCopy);
304         continue;
305       }
306 
307       MachineBasicBlock::iterator LastClauseInst = Next;
308       unsigned Length = 1;
309       for ( ; Next != E && Length < FuncMaxClause; ++Next) {
310         // Debug instructions should not change the kill insertion.
311         if (Next->isMetaInstruction())
312           continue;
313 
314         if (!isValidClauseInst(*Next, IsVMEM))
315           break;
316 
317         // A load from pointer which was loaded inside the same bundle is an
318         // impossible clause because we will need to write and read the same
319         // register inside. In this case processRegUses will return false.
320         if (!processRegUses(*Next, Defs, Uses, RPT))
321           break;
322 
323         LastClauseInst = Next;
324         ++Length;
325       }
326       if (Length < 2) {
327         RPT.reset(MI, &LiveRegsCopy);
328         continue;
329       }
330 
331       Changed = true;
332       MFI->limitOccupancy(LastRecordedOccupancy);
333 
334       assert(!LastClauseInst->isMetaInstruction());
335 
336       SlotIndex ClauseLiveInIdx = LIS->getInstructionIndex(MI);
337       SlotIndex ClauseLiveOutIdx =
338           LIS->getInstructionIndex(*LastClauseInst).getNextIndex();
339 
340       // Track the last inserted kill.
341       MachineInstrBuilder Kill;
342 
343       // Insert one kill per register, with operands covering all necessary
344       // subregisters.
345       for (auto &&R : Uses) {
346         Register Reg = R.first;
347         if (Reg.isPhysical())
348           continue;
349 
350         // Collect the register operands we should extend the live ranges of.
351         SmallVector<std::tuple<unsigned, unsigned>> KillOps;
352         const LiveInterval &LI = LIS->getInterval(R.first);
353 
354         if (!LI.hasSubRanges()) {
355           if (!LI.liveAt(ClauseLiveOutIdx)) {
356             KillOps.emplace_back(R.second.first | RegState::Kill,
357                                  AMDGPU::NoSubRegister);
358           }
359         } else {
360           LaneBitmask KilledMask;
361           for (const LiveInterval::SubRange &SR : LI.subranges()) {
362             if (SR.liveAt(ClauseLiveInIdx) && !SR.liveAt(ClauseLiveOutIdx))
363               KilledMask |= SR.LaneMask;
364           }
365 
366           if (KilledMask.none())
367             continue;
368 
369           SmallVector<unsigned> KilledIndexes;
370           bool Success = TRI->getCoveringSubRegIndexes(
371               *MRI, MRI->getRegClass(Reg), KilledMask, KilledIndexes);
372           (void)Success;
373           assert(Success && "Failed to find subregister mask to cover lanes");
374           for (unsigned SubReg : KilledIndexes) {
375             KillOps.emplace_back(R.second.first | RegState::Kill, SubReg);
376           }
377         }
378 
379         if (KillOps.empty())
380           continue;
381 
382         // We only want to extend the live ranges of used registers. If they
383         // already have existing uses beyond the bundle, we don't need the kill.
384         //
385         // It's possible all of the use registers were already live past the
386         // bundle.
387         Kill = BuildMI(*MI.getParent(), std::next(LastClauseInst),
388                        DebugLoc(), TII->get(AMDGPU::KILL));
389         for (auto &Op : KillOps)
390           Kill.addUse(Reg, std::get<0>(Op), std::get<1>(Op));
391         Ind->insertMachineInstrInMaps(*Kill);
392       }
393 
394       // Restore the state after processing the end of the bundle.
395       RPT.reset(MI, &LiveRegsCopy);
396 
397       if (!Kill)
398         continue;
399 
400       for (auto &&R : Defs) {
401         Register Reg = R.first;
402         Uses.erase(Reg);
403         if (Reg.isPhysical())
404           continue;
405         LIS->removeInterval(Reg);
406         LIS->createAndComputeVirtRegInterval(Reg);
407       }
408 
409       for (auto &&R : Uses) {
410         Register Reg = R.first;
411         if (Reg.isPhysical())
412           continue;
413         LIS->removeInterval(Reg);
414         LIS->createAndComputeVirtRegInterval(Reg);
415       }
416     }
417   }
418 
419   return Changed;
420 }
421