1 //===-- SIFormMemoryClauses.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This pass extends the live ranges of registers used as pointers in 10 /// sequences of adjacent SMEM and VMEM instructions if XNACK is enabled. A 11 /// load that would overwrite a pointer would require breaking the soft clause. 12 /// Artificially extend the live ranges of the pointer operands by adding 13 /// implicit-def early-clobber operands throughout the soft clause. 14 /// 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPU.h" 18 #include "GCNRegPressure.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "llvm/InitializePasses.h" 21 22 using namespace llvm; 23 24 #define DEBUG_TYPE "si-form-memory-clauses" 25 26 // Clauses longer then 15 instructions would overflow one of the counters 27 // and stall. They can stall even earlier if there are outstanding counters. 28 static cl::opt<unsigned> 29 MaxClause("amdgpu-max-memory-clause", cl::Hidden, cl::init(15), 30 cl::desc("Maximum length of a memory clause, instructions")); 31 32 namespace { 33 34 class SIFormMemoryClauses : public MachineFunctionPass { 35 typedef DenseMap<unsigned, std::pair<unsigned, LaneBitmask>> RegUse; 36 37 public: 38 static char ID; 39 40 public: 41 SIFormMemoryClauses() : MachineFunctionPass(ID) { 42 initializeSIFormMemoryClausesPass(*PassRegistry::getPassRegistry()); 43 } 44 45 bool runOnMachineFunction(MachineFunction &MF) override; 46 47 StringRef getPassName() const override { 48 return "SI Form memory clauses"; 49 } 50 51 void getAnalysisUsage(AnalysisUsage &AU) const override { 52 AU.addRequired<LiveIntervals>(); 53 AU.setPreservesAll(); 54 MachineFunctionPass::getAnalysisUsage(AU); 55 } 56 57 MachineFunctionProperties getClearedProperties() const override { 58 return MachineFunctionProperties().set( 59 MachineFunctionProperties::Property::IsSSA); 60 } 61 62 private: 63 bool canBundle(const MachineInstr &MI, const RegUse &Defs, 64 const RegUse &Uses) const; 65 bool checkPressure(const MachineInstr &MI, GCNDownwardRPTracker &RPT); 66 void collectRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const; 67 bool processRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses, 68 GCNDownwardRPTracker &RPT); 69 70 const GCNSubtarget *ST; 71 const SIRegisterInfo *TRI; 72 const MachineRegisterInfo *MRI; 73 SIMachineFunctionInfo *MFI; 74 75 unsigned LastRecordedOccupancy; 76 unsigned MaxVGPRs; 77 unsigned MaxSGPRs; 78 }; 79 80 } // End anonymous namespace. 81 82 INITIALIZE_PASS_BEGIN(SIFormMemoryClauses, DEBUG_TYPE, 83 "SI Form memory clauses", false, false) 84 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 85 INITIALIZE_PASS_END(SIFormMemoryClauses, DEBUG_TYPE, 86 "SI Form memory clauses", false, false) 87 88 89 char SIFormMemoryClauses::ID = 0; 90 91 char &llvm::SIFormMemoryClausesID = SIFormMemoryClauses::ID; 92 93 FunctionPass *llvm::createSIFormMemoryClausesPass() { 94 return new SIFormMemoryClauses(); 95 } 96 97 static bool isVMEMClauseInst(const MachineInstr &MI) { 98 return SIInstrInfo::isFLAT(MI) || SIInstrInfo::isVMEM(MI); 99 } 100 101 static bool isSMEMClauseInst(const MachineInstr &MI) { 102 return SIInstrInfo::isSMRD(MI); 103 } 104 105 // There no sense to create store clauses, they do not define anything, 106 // thus there is nothing to set early-clobber. 107 static bool isValidClauseInst(const MachineInstr &MI, bool IsVMEMClause) { 108 assert(!MI.isDebugInstr() && "debug instructions should not reach here"); 109 if (MI.isBundled()) 110 return false; 111 if (!MI.mayLoad() || MI.mayStore()) 112 return false; 113 if (SIInstrInfo::isAtomic(MI)) 114 return false; 115 if (IsVMEMClause && !isVMEMClauseInst(MI)) 116 return false; 117 if (!IsVMEMClause && !isSMEMClauseInst(MI)) 118 return false; 119 // If this is a load instruction where the result has been coalesced with an operand, then we cannot clause it. 120 for (const MachineOperand &ResMO : MI.defs()) { 121 Register ResReg = ResMO.getReg(); 122 for (const MachineOperand &MO : MI.uses()) { 123 if (!MO.isReg() || MO.isDef()) 124 continue; 125 if (MO.getReg() == ResReg) 126 return false; 127 } 128 break; // Only check the first def. 129 } 130 return true; 131 } 132 133 static unsigned getMopState(const MachineOperand &MO) { 134 unsigned S = 0; 135 if (MO.isImplicit()) 136 S |= RegState::Implicit; 137 if (MO.isDead()) 138 S |= RegState::Dead; 139 if (MO.isUndef()) 140 S |= RegState::Undef; 141 if (MO.isKill()) 142 S |= RegState::Kill; 143 if (MO.isEarlyClobber()) 144 S |= RegState::EarlyClobber; 145 if (MO.getReg().isPhysical() && MO.isRenamable()) 146 S |= RegState::Renamable; 147 return S; 148 } 149 150 // Returns false if there is a use of a def already in the map. 151 // In this case we must break the clause. 152 bool SIFormMemoryClauses::canBundle(const MachineInstr &MI, const RegUse &Defs, 153 const RegUse &Uses) const { 154 // Check interference with defs. 155 for (const MachineOperand &MO : MI.operands()) { 156 // TODO: Prologue/Epilogue Insertion pass does not process bundled 157 // instructions. 158 if (MO.isFI()) 159 return false; 160 161 if (!MO.isReg()) 162 continue; 163 164 Register Reg = MO.getReg(); 165 166 // If it is tied we will need to write same register as we read. 167 if (MO.isTied()) 168 return false; 169 170 const RegUse &Map = MO.isDef() ? Uses : Defs; 171 auto Conflict = Map.find(Reg); 172 if (Conflict == Map.end()) 173 continue; 174 175 if (Reg.isPhysical()) 176 return false; 177 178 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 179 if ((Conflict->second.second & Mask).any()) 180 return false; 181 } 182 183 return true; 184 } 185 186 // Since all defs in the clause are early clobber we can run out of registers. 187 // Function returns false if pressure would hit the limit if instruction is 188 // bundled into a memory clause. 189 bool SIFormMemoryClauses::checkPressure(const MachineInstr &MI, 190 GCNDownwardRPTracker &RPT) { 191 // NB: skip advanceBeforeNext() call. Since all defs will be marked 192 // early-clobber they will all stay alive at least to the end of the 193 // clause. Therefor we should not decrease pressure even if load 194 // pointer becomes dead and could otherwise be reused for destination. 195 RPT.advanceToNext(); 196 GCNRegPressure MaxPressure = RPT.moveMaxPressure(); 197 unsigned Occupancy = MaxPressure.getOccupancy(*ST); 198 199 // Don't push over half the register budget. We don't want to introduce 200 // spilling just to form a soft clause. 201 // 202 // FIXME: This pressure check is fundamentally broken. First, this is checking 203 // the global pressure, not the pressure at this specific point in the 204 // program. Second, it's not accounting for the increased liveness of the use 205 // operands due to the early clobber we will introduce. Third, the pressure 206 // tracking does not account for the alignment requirements for SGPRs, or the 207 // fragmentation of registers the allocator will need to satisfy. 208 if (Occupancy >= MFI->getMinAllowedOccupancy() && 209 MaxPressure.getVGPRNum(ST->hasGFX90AInsts()) <= MaxVGPRs / 2 && 210 MaxPressure.getSGPRNum() <= MaxSGPRs / 2) { 211 LastRecordedOccupancy = Occupancy; 212 return true; 213 } 214 return false; 215 } 216 217 // Collect register defs and uses along with their lane masks and states. 218 void SIFormMemoryClauses::collectRegUses(const MachineInstr &MI, 219 RegUse &Defs, RegUse &Uses) const { 220 for (const MachineOperand &MO : MI.operands()) { 221 if (!MO.isReg()) 222 continue; 223 Register Reg = MO.getReg(); 224 if (!Reg) 225 continue; 226 227 LaneBitmask Mask = Reg.isVirtual() 228 ? TRI->getSubRegIndexLaneMask(MO.getSubReg()) 229 : LaneBitmask::getAll(); 230 RegUse &Map = MO.isDef() ? Defs : Uses; 231 232 auto Loc = Map.find(Reg); 233 unsigned State = getMopState(MO); 234 if (Loc == Map.end()) { 235 Map[Reg] = std::pair(State, Mask); 236 } else { 237 Loc->second.first |= State; 238 Loc->second.second |= Mask; 239 } 240 } 241 } 242 243 // Check register def/use conflicts, occupancy limits and collect def/use maps. 244 // Return true if instruction can be bundled with previous. If it cannot 245 // def/use maps are not updated. 246 bool SIFormMemoryClauses::processRegUses(const MachineInstr &MI, 247 RegUse &Defs, RegUse &Uses, 248 GCNDownwardRPTracker &RPT) { 249 if (!canBundle(MI, Defs, Uses)) 250 return false; 251 252 if (!checkPressure(MI, RPT)) 253 return false; 254 255 collectRegUses(MI, Defs, Uses); 256 return true; 257 } 258 259 bool SIFormMemoryClauses::runOnMachineFunction(MachineFunction &MF) { 260 if (skipFunction(MF.getFunction())) 261 return false; 262 263 ST = &MF.getSubtarget<GCNSubtarget>(); 264 if (!ST->isXNACKEnabled()) 265 return false; 266 267 const SIInstrInfo *TII = ST->getInstrInfo(); 268 TRI = ST->getRegisterInfo(); 269 MRI = &MF.getRegInfo(); 270 MFI = MF.getInfo<SIMachineFunctionInfo>(); 271 LiveIntervals *LIS = &getAnalysis<LiveIntervals>(); 272 SlotIndexes *Ind = LIS->getSlotIndexes(); 273 bool Changed = false; 274 275 MaxVGPRs = TRI->getAllocatableSet(MF, &AMDGPU::VGPR_32RegClass).count(); 276 MaxSGPRs = TRI->getAllocatableSet(MF, &AMDGPU::SGPR_32RegClass).count(); 277 unsigned FuncMaxClause = MF.getFunction().getFnAttributeAsParsedInteger( 278 "amdgpu-max-memory-clause", MaxClause); 279 280 for (MachineBasicBlock &MBB : MF) { 281 GCNDownwardRPTracker RPT(*LIS); 282 MachineBasicBlock::instr_iterator Next; 283 for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; I = Next) { 284 MachineInstr &MI = *I; 285 Next = std::next(I); 286 287 if (MI.isMetaInstruction()) 288 continue; 289 290 bool IsVMEM = isVMEMClauseInst(MI); 291 292 if (!isValidClauseInst(MI, IsVMEM)) 293 continue; 294 295 if (!RPT.getNext().isValid()) 296 RPT.reset(MI); 297 else { // Advance the state to the current MI. 298 RPT.advance(MachineBasicBlock::const_iterator(MI)); 299 RPT.advanceBeforeNext(); 300 } 301 302 const GCNRPTracker::LiveRegSet LiveRegsCopy(RPT.getLiveRegs()); 303 RegUse Defs, Uses; 304 if (!processRegUses(MI, Defs, Uses, RPT)) { 305 RPT.reset(MI, &LiveRegsCopy); 306 continue; 307 } 308 309 MachineBasicBlock::iterator LastClauseInst = Next; 310 unsigned Length = 1; 311 for ( ; Next != E && Length < FuncMaxClause; ++Next) { 312 // Debug instructions should not change the kill insertion. 313 if (Next->isMetaInstruction()) 314 continue; 315 316 if (!isValidClauseInst(*Next, IsVMEM)) 317 break; 318 319 // A load from pointer which was loaded inside the same bundle is an 320 // impossible clause because we will need to write and read the same 321 // register inside. In this case processRegUses will return false. 322 if (!processRegUses(*Next, Defs, Uses, RPT)) 323 break; 324 325 LastClauseInst = Next; 326 ++Length; 327 } 328 if (Length < 2) { 329 RPT.reset(MI, &LiveRegsCopy); 330 continue; 331 } 332 333 Changed = true; 334 MFI->limitOccupancy(LastRecordedOccupancy); 335 336 assert(!LastClauseInst->isMetaInstruction()); 337 338 SlotIndex ClauseLiveInIdx = LIS->getInstructionIndex(MI); 339 SlotIndex ClauseLiveOutIdx = 340 LIS->getInstructionIndex(*LastClauseInst).getNextIndex(); 341 342 // Track the last inserted kill. 343 MachineInstrBuilder Kill; 344 345 // Insert one kill per register, with operands covering all necessary 346 // subregisters. 347 for (auto &&R : Uses) { 348 Register Reg = R.first; 349 if (Reg.isPhysical()) 350 continue; 351 352 // Collect the register operands we should extend the live ranges of. 353 SmallVector<std::tuple<unsigned, unsigned>> KillOps; 354 const LiveInterval &LI = LIS->getInterval(R.first); 355 356 if (!LI.hasSubRanges()) { 357 if (!LI.liveAt(ClauseLiveOutIdx)) { 358 KillOps.emplace_back(R.second.first | RegState::Kill, 359 AMDGPU::NoSubRegister); 360 } 361 } else { 362 LaneBitmask KilledMask; 363 for (const LiveInterval::SubRange &SR : LI.subranges()) { 364 if (SR.liveAt(ClauseLiveInIdx) && !SR.liveAt(ClauseLiveOutIdx)) 365 KilledMask |= SR.LaneMask; 366 } 367 368 if (KilledMask.none()) 369 continue; 370 371 SmallVector<unsigned> KilledIndexes; 372 bool Success = TRI->getCoveringSubRegIndexes( 373 *MRI, MRI->getRegClass(Reg), KilledMask, KilledIndexes); 374 (void)Success; 375 assert(Success && "Failed to find subregister mask to cover lanes"); 376 for (unsigned SubReg : KilledIndexes) { 377 KillOps.emplace_back(R.second.first | RegState::Kill, SubReg); 378 } 379 } 380 381 if (KillOps.empty()) 382 continue; 383 384 // We only want to extend the live ranges of used registers. If they 385 // already have existing uses beyond the bundle, we don't need the kill. 386 // 387 // It's possible all of the use registers were already live past the 388 // bundle. 389 Kill = BuildMI(*MI.getParent(), std::next(LastClauseInst), 390 DebugLoc(), TII->get(AMDGPU::KILL)); 391 for (auto &Op : KillOps) 392 Kill.addUse(Reg, std::get<0>(Op), std::get<1>(Op)); 393 Ind->insertMachineInstrInMaps(*Kill); 394 } 395 396 // Restore the state after processing the end of the bundle. 397 RPT.reset(MI, &LiveRegsCopy); 398 399 if (!Kill) 400 continue; 401 402 for (auto &&R : Defs) { 403 Register Reg = R.first; 404 Uses.erase(Reg); 405 if (Reg.isPhysical()) 406 continue; 407 LIS->removeInterval(Reg); 408 LIS->createAndComputeVirtRegInterval(Reg); 409 } 410 411 for (auto &&R : Uses) { 412 Register Reg = R.first; 413 if (Reg.isPhysical()) 414 continue; 415 LIS->removeInterval(Reg); 416 LIS->createAndComputeVirtRegInterval(Reg); 417 } 418 } 419 } 420 421 return Changed; 422 } 423