xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp (revision ba3c1f5972d7b90feb6e6da47905ff2757e0fe57)
1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 //===----------------------------------------------------------------------===//
9 //
10 
11 #include "AMDGPU.h"
12 #include "GCNSubtarget.h"
13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/CodeGen/MachineFunctionPass.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 
19 #define DEBUG_TYPE "si-fold-operands"
20 using namespace llvm;
21 
22 namespace {
23 
24 struct FoldCandidate {
25   MachineInstr *UseMI;
26   union {
27     MachineOperand *OpToFold;
28     uint64_t ImmToFold;
29     int FrameIndexToFold;
30   };
31   int ShrinkOpcode;
32   unsigned UseOpNo;
33   MachineOperand::MachineOperandType Kind;
34   bool Commuted;
35 
36   FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
37                 bool Commuted_ = false,
38                 int ShrinkOp = -1) :
39     UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
40     Kind(FoldOp->getType()),
41     Commuted(Commuted_) {
42     if (FoldOp->isImm()) {
43       ImmToFold = FoldOp->getImm();
44     } else if (FoldOp->isFI()) {
45       FrameIndexToFold = FoldOp->getIndex();
46     } else {
47       assert(FoldOp->isReg() || FoldOp->isGlobal());
48       OpToFold = FoldOp;
49     }
50   }
51 
52   bool isFI() const {
53     return Kind == MachineOperand::MO_FrameIndex;
54   }
55 
56   bool isImm() const {
57     return Kind == MachineOperand::MO_Immediate;
58   }
59 
60   bool isReg() const {
61     return Kind == MachineOperand::MO_Register;
62   }
63 
64   bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
65 
66   bool needsShrink() const { return ShrinkOpcode != -1; }
67 };
68 
69 class SIFoldOperands : public MachineFunctionPass {
70 public:
71   static char ID;
72   MachineRegisterInfo *MRI;
73   const SIInstrInfo *TII;
74   const SIRegisterInfo *TRI;
75   const GCNSubtarget *ST;
76   const SIMachineFunctionInfo *MFI;
77 
78   bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo,
79                          const MachineOperand &OpToFold) const;
80 
81   bool updateOperand(FoldCandidate &Fold) const;
82 
83   bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
84                         MachineInstr *MI, unsigned OpNo,
85                         MachineOperand *OpToFold) const;
86   bool isUseSafeToFold(const MachineInstr &MI,
87                        const MachineOperand &UseMO) const;
88   bool
89   getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs,
90                 Register UseReg, uint8_t OpTy) const;
91   bool tryToFoldACImm(const MachineOperand &OpToFold, MachineInstr *UseMI,
92                       unsigned UseOpIdx,
93                       SmallVectorImpl<FoldCandidate> &FoldList) const;
94   void foldOperand(MachineOperand &OpToFold,
95                    MachineInstr *UseMI,
96                    int UseOpIdx,
97                    SmallVectorImpl<FoldCandidate> &FoldList,
98                    SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
99 
100   MachineOperand *getImmOrMaterializedImm(MachineOperand &Op) const;
101   bool tryConstantFoldOp(MachineInstr *MI) const;
102   bool tryFoldCndMask(MachineInstr &MI) const;
103   bool tryFoldZeroHighBits(MachineInstr &MI) const;
104   bool foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
105   bool tryFoldFoldableCopy(MachineInstr &MI,
106                            MachineOperand *&CurrentKnownM0Val) const;
107 
108   const MachineOperand *isClamp(const MachineInstr &MI) const;
109   bool tryFoldClamp(MachineInstr &MI);
110 
111   std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
112   bool tryFoldOMod(MachineInstr &MI);
113   bool tryFoldRegSequence(MachineInstr &MI);
114   bool tryFoldLCSSAPhi(MachineInstr &MI);
115   bool tryFoldLoad(MachineInstr &MI);
116 
117 public:
118   SIFoldOperands() : MachineFunctionPass(ID) {
119     initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
120   }
121 
122   bool runOnMachineFunction(MachineFunction &MF) override;
123 
124   StringRef getPassName() const override { return "SI Fold Operands"; }
125 
126   void getAnalysisUsage(AnalysisUsage &AU) const override {
127     AU.setPreservesCFG();
128     MachineFunctionPass::getAnalysisUsage(AU);
129   }
130 };
131 
132 } // End anonymous namespace.
133 
134 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
135                 "SI Fold Operands", false, false)
136 
137 char SIFoldOperands::ID = 0;
138 
139 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
140 
141 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any.
142 static unsigned macToMad(unsigned Opc) {
143   switch (Opc) {
144   case AMDGPU::V_MAC_F32_e64:
145     return AMDGPU::V_MAD_F32_e64;
146   case AMDGPU::V_MAC_F16_e64:
147     return AMDGPU::V_MAD_F16_e64;
148   case AMDGPU::V_FMAC_F32_e64:
149     return AMDGPU::V_FMA_F32_e64;
150   case AMDGPU::V_FMAC_F16_e64:
151     return AMDGPU::V_FMA_F16_gfx9_e64;
152   case AMDGPU::V_FMAC_F16_t16_e64:
153     return AMDGPU::V_FMA_F16_gfx9_e64;
154   case AMDGPU::V_FMAC_LEGACY_F32_e64:
155     return AMDGPU::V_FMA_LEGACY_F32_e64;
156   case AMDGPU::V_FMAC_F64_e64:
157     return AMDGPU::V_FMA_F64_e64;
158   }
159   return AMDGPU::INSTRUCTION_LIST_END;
160 }
161 
162 // TODO: Add heuristic that the frame index might not fit in the addressing mode
163 // immediate offset to avoid materializing in loops.
164 bool SIFoldOperands::frameIndexMayFold(const MachineInstr &UseMI, int OpNo,
165                                        const MachineOperand &OpToFold) const {
166   if (!OpToFold.isFI())
167     return false;
168 
169   const unsigned Opc = UseMI.getOpcode();
170   if (TII->isMUBUF(UseMI))
171     return OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
172   if (!TII->isFLATScratch(UseMI))
173     return false;
174 
175   int SIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr);
176   if (OpNo == SIdx)
177     return true;
178 
179   int VIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
180   return OpNo == VIdx && SIdx == -1;
181 }
182 
183 FunctionPass *llvm::createSIFoldOperandsPass() {
184   return new SIFoldOperands();
185 }
186 
187 bool SIFoldOperands::updateOperand(FoldCandidate &Fold) const {
188   MachineInstr *MI = Fold.UseMI;
189   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
190   assert(Old.isReg());
191 
192 
193   const uint64_t TSFlags = MI->getDesc().TSFlags;
194   if (Fold.isImm()) {
195     if (TSFlags & SIInstrFlags::IsPacked && !(TSFlags & SIInstrFlags::IsMAI) &&
196         (!ST->hasDOTOpSelHazard() || !(TSFlags & SIInstrFlags::IsDOT)) &&
197         AMDGPU::isFoldableLiteralV216(Fold.ImmToFold,
198                                       ST->hasInv2PiInlineImm())) {
199       // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
200       // already set.
201       unsigned Opcode = MI->getOpcode();
202       int OpNo = MI->getOperandNo(&Old);
203       int ModIdx = -1;
204       if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
205         ModIdx = AMDGPU::OpName::src0_modifiers;
206       else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
207         ModIdx = AMDGPU::OpName::src1_modifiers;
208       else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
209         ModIdx = AMDGPU::OpName::src2_modifiers;
210       assert(ModIdx != -1);
211       ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
212       MachineOperand &Mod = MI->getOperand(ModIdx);
213       unsigned Val = Mod.getImm();
214       if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) {
215         // Only apply the following transformation if that operand requires
216         // a packed immediate.
217         switch (TII->get(Opcode).operands()[OpNo].OperandType) {
218         case AMDGPU::OPERAND_REG_IMM_V2FP16:
219         case AMDGPU::OPERAND_REG_IMM_V2INT16:
220         case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
221         case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
222           // If upper part is all zero we do not need op_sel_hi.
223           if (!isUInt<16>(Fold.ImmToFold)) {
224             if (!(Fold.ImmToFold & 0xffff)) {
225               Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
226               Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
227               Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
228               return true;
229             }
230             Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
231             Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
232             return true;
233           }
234           break;
235         default:
236           break;
237         }
238       }
239     }
240   }
241 
242   if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
243     MachineBasicBlock *MBB = MI->getParent();
244     auto Liveness = MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, MI, 16);
245     if (Liveness != MachineBasicBlock::LQR_Dead) {
246       LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
247       return false;
248     }
249 
250     int Op32 = Fold.ShrinkOpcode;
251     MachineOperand &Dst0 = MI->getOperand(0);
252     MachineOperand &Dst1 = MI->getOperand(1);
253     assert(Dst0.isDef() && Dst1.isDef());
254 
255     bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(Dst1.getReg());
256 
257     const TargetRegisterClass *Dst0RC = MRI->getRegClass(Dst0.getReg());
258     Register NewReg0 = MRI->createVirtualRegister(Dst0RC);
259 
260     MachineInstr *Inst32 = TII->buildShrunkInst(*MI, Op32);
261 
262     if (HaveNonDbgCarryUse) {
263       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(AMDGPU::COPY),
264               Dst1.getReg())
265         .addReg(AMDGPU::VCC, RegState::Kill);
266     }
267 
268     // Keep the old instruction around to avoid breaking iterators, but
269     // replace it with a dummy instruction to remove uses.
270     //
271     // FIXME: We should not invert how this pass looks at operands to avoid
272     // this. Should track set of foldable movs instead of looking for uses
273     // when looking at a use.
274     Dst0.setReg(NewReg0);
275     for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
276       MI->removeOperand(I);
277     MI->setDesc(TII->get(AMDGPU::IMPLICIT_DEF));
278 
279     if (Fold.Commuted)
280       TII->commuteInstruction(*Inst32, false);
281     return true;
282   }
283 
284   assert(!Fold.needsShrink() && "not handled");
285 
286   if (Fold.isImm()) {
287     if (Old.isTied()) {
288       int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(MI->getOpcode());
289       if (NewMFMAOpc == -1)
290         return false;
291       MI->setDesc(TII->get(NewMFMAOpc));
292       MI->untieRegOperand(0);
293     }
294     Old.ChangeToImmediate(Fold.ImmToFold);
295     return true;
296   }
297 
298   if (Fold.isGlobal()) {
299     Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
300                    Fold.OpToFold->getTargetFlags());
301     return true;
302   }
303 
304   if (Fold.isFI()) {
305     Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
306     return true;
307   }
308 
309   MachineOperand *New = Fold.OpToFold;
310   Old.substVirtReg(New->getReg(), New->getSubReg(), *TRI);
311   Old.setIsUndef(New->isUndef());
312   return true;
313 }
314 
315 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
316                               const MachineInstr *MI) {
317   return any_of(FoldList, [&](const auto &C) { return C.UseMI == MI; });
318 }
319 
320 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList,
321                                 MachineInstr *MI, unsigned OpNo,
322                                 MachineOperand *FoldOp, bool Commuted = false,
323                                 int ShrinkOp = -1) {
324   // Skip additional folding on the same operand.
325   for (FoldCandidate &Fold : FoldList)
326     if (Fold.UseMI == MI && Fold.UseOpNo == OpNo)
327       return;
328   LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal")
329                     << " operand " << OpNo << "\n  " << *MI);
330   FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp);
331 }
332 
333 bool SIFoldOperands::tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
334                                       MachineInstr *MI, unsigned OpNo,
335                                       MachineOperand *OpToFold) const {
336   if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
337     // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
338     unsigned Opc = MI->getOpcode();
339     unsigned NewOpc = macToMad(Opc);
340     if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) {
341       // Check if changing this to a v_mad_{f16, f32} instruction will allow us
342       // to fold the operand.
343       MI->setDesc(TII->get(NewOpc));
344       if (!AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel) &&
345           AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel))
346         MI->addOperand(MachineOperand::CreateImm(0));
347       bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold);
348       if (FoldAsMAD) {
349         MI->untieRegOperand(OpNo);
350         return true;
351       }
352       MI->setDesc(TII->get(Opc));
353     }
354 
355     // Special case for s_setreg_b32
356     if (OpToFold->isImm()) {
357       unsigned ImmOpc = 0;
358       if (Opc == AMDGPU::S_SETREG_B32)
359         ImmOpc = AMDGPU::S_SETREG_IMM32_B32;
360       else if (Opc == AMDGPU::S_SETREG_B32_mode)
361         ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode;
362       if (ImmOpc) {
363         MI->setDesc(TII->get(ImmOpc));
364         appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
365         return true;
366       }
367     }
368 
369     // If we are already folding into another operand of MI, then
370     // we can't commute the instruction, otherwise we risk making the
371     // other fold illegal.
372     if (isUseMIInFoldList(FoldList, MI))
373       return false;
374 
375     unsigned CommuteOpNo = OpNo;
376 
377     // Operand is not legal, so try to commute the instruction to
378     // see if this makes it possible to fold.
379     unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
380     unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
381     bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
382 
383     if (CanCommute) {
384       if (CommuteIdx0 == OpNo)
385         CommuteOpNo = CommuteIdx1;
386       else if (CommuteIdx1 == OpNo)
387         CommuteOpNo = CommuteIdx0;
388     }
389 
390 
391     // One of operands might be an Imm operand, and OpNo may refer to it after
392     // the call of commuteInstruction() below. Such situations are avoided
393     // here explicitly as OpNo must be a register operand to be a candidate
394     // for memory folding.
395     if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
396                        !MI->getOperand(CommuteIdx1).isReg()))
397       return false;
398 
399     if (!CanCommute ||
400         !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
401       return false;
402 
403     if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
404       if ((Opc == AMDGPU::V_ADD_CO_U32_e64 ||
405            Opc == AMDGPU::V_SUB_CO_U32_e64 ||
406            Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME
407           (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) {
408 
409         // Verify the other operand is a VGPR, otherwise we would violate the
410         // constant bus restriction.
411         unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
412         MachineOperand &OtherOp = MI->getOperand(OtherIdx);
413         if (!OtherOp.isReg() ||
414             !TII->getRegisterInfo().isVGPR(*MRI, OtherOp.getReg()))
415           return false;
416 
417         assert(MI->getOperand(1).isDef());
418 
419         // Make sure to get the 32-bit version of the commuted opcode.
420         unsigned MaybeCommutedOpc = MI->getOpcode();
421         int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
422 
423         appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32);
424         return true;
425       }
426 
427       TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
428       return false;
429     }
430 
431     appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true);
432     return true;
433   }
434 
435   // Check the case where we might introduce a second constant operand to a
436   // scalar instruction
437   if (TII->isSALU(MI->getOpcode())) {
438     const MCInstrDesc &InstDesc = MI->getDesc();
439     const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo];
440 
441     // Fine if the operand can be encoded as an inline constant
442     if (!OpToFold->isReg() && !TII->isInlineConstant(*OpToFold, OpInfo)) {
443       // Otherwise check for another constant
444       for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) {
445         auto &Op = MI->getOperand(i);
446         if (OpNo != i && !Op.isReg() && !TII->isInlineConstant(Op, OpInfo))
447           return false;
448       }
449     }
450   }
451 
452   appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
453   return true;
454 }
455 
456 bool SIFoldOperands::isUseSafeToFold(const MachineInstr &MI,
457                                      const MachineOperand &UseMO) const {
458   // Operands of SDWA instructions must be registers.
459   return !TII->isSDWA(MI);
460 }
461 
462 // Find a def of the UseReg, check if it is a reg_sequence and find initializers
463 // for each subreg, tracking it to foldable inline immediate if possible.
464 // Returns true on success.
465 bool SIFoldOperands::getRegSeqInit(
466     SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs,
467     Register UseReg, uint8_t OpTy) const {
468   MachineInstr *Def = MRI->getVRegDef(UseReg);
469   if (!Def || !Def->isRegSequence())
470     return false;
471 
472   for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
473     MachineOperand *Sub = &Def->getOperand(I);
474     assert(Sub->isReg());
475 
476     for (MachineInstr *SubDef = MRI->getVRegDef(Sub->getReg());
477          SubDef && Sub->isReg() && Sub->getReg().isVirtual() &&
478          !Sub->getSubReg() && TII->isFoldableCopy(*SubDef);
479          SubDef = MRI->getVRegDef(Sub->getReg())) {
480       MachineOperand *Op = &SubDef->getOperand(1);
481       if (Op->isImm()) {
482         if (TII->isInlineConstant(*Op, OpTy))
483           Sub = Op;
484         break;
485       }
486       if (!Op->isReg() || Op->getReg().isPhysical())
487         break;
488       Sub = Op;
489     }
490 
491     Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm());
492   }
493 
494   return true;
495 }
496 
497 bool SIFoldOperands::tryToFoldACImm(
498     const MachineOperand &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx,
499     SmallVectorImpl<FoldCandidate> &FoldList) const {
500   const MCInstrDesc &Desc = UseMI->getDesc();
501   if (UseOpIdx >= Desc.getNumOperands())
502     return false;
503 
504   uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType;
505   if ((OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST ||
506        OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) &&
507       (OpTy < AMDGPU::OPERAND_REG_INLINE_C_FIRST ||
508        OpTy > AMDGPU::OPERAND_REG_INLINE_C_LAST))
509     return false;
510 
511   if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
512       TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
513     UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
514     return true;
515   }
516 
517   if (!OpToFold.isReg())
518     return false;
519 
520   Register UseReg = OpToFold.getReg();
521   if (!UseReg.isVirtual())
522     return false;
523 
524   if (isUseMIInFoldList(FoldList, UseMI))
525     return false;
526 
527   // Maybe it is just a COPY of an immediate itself.
528   MachineInstr *Def = MRI->getVRegDef(UseReg);
529   MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
530   if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) {
531     MachineOperand &DefOp = Def->getOperand(1);
532     if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) &&
533         TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) {
534       UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm());
535       return true;
536     }
537   }
538 
539   SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
540   if (!getRegSeqInit(Defs, UseReg, OpTy))
541     return false;
542 
543   int32_t Imm;
544   for (unsigned I = 0, E = Defs.size(); I != E; ++I) {
545     const MachineOperand *Op = Defs[I].first;
546     if (!Op->isImm())
547       return false;
548 
549     auto SubImm = Op->getImm();
550     if (!I) {
551       Imm = SubImm;
552       if (!TII->isInlineConstant(*Op, OpTy) ||
553           !TII->isOperandLegal(*UseMI, UseOpIdx, Op))
554         return false;
555 
556       continue;
557     }
558     if (Imm != SubImm)
559       return false; // Can only fold splat constants
560   }
561 
562   appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first);
563   return true;
564 }
565 
566 void SIFoldOperands::foldOperand(
567   MachineOperand &OpToFold,
568   MachineInstr *UseMI,
569   int UseOpIdx,
570   SmallVectorImpl<FoldCandidate> &FoldList,
571   SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
572   const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
573 
574   if (!isUseSafeToFold(*UseMI, UseOp))
575     return;
576 
577   // FIXME: Fold operands with subregs.
578   if (UseOp.isReg() && OpToFold.isReg() &&
579       (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister))
580     return;
581 
582   // Special case for REG_SEQUENCE: We can't fold literals into
583   // REG_SEQUENCE instructions, so we have to fold them into the
584   // uses of REG_SEQUENCE.
585   if (UseMI->isRegSequence()) {
586     Register RegSeqDstReg = UseMI->getOperand(0).getReg();
587     unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
588 
589     for (auto &RSUse : make_early_inc_range(MRI->use_nodbg_operands(RegSeqDstReg))) {
590       MachineInstr *RSUseMI = RSUse.getParent();
591 
592       if (tryToFoldACImm(UseMI->getOperand(0), RSUseMI,
593                          RSUseMI->getOperandNo(&RSUse), FoldList))
594         continue;
595 
596       if (RSUse.getSubReg() != RegSeqDstSubReg)
597         continue;
598 
599       foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(&RSUse), FoldList,
600                   CopiesToReplace);
601     }
602 
603     return;
604   }
605 
606   if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList))
607     return;
608 
609   if (frameIndexMayFold(*UseMI, UseOpIdx, OpToFold)) {
610     // Verify that this is a stack access.
611     // FIXME: Should probably use stack pseudos before frame lowering.
612 
613     if (TII->isMUBUF(*UseMI)) {
614       if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
615           MFI->getScratchRSrcReg())
616         return;
617 
618       // Ensure this is either relative to the current frame or the current
619       // wave.
620       MachineOperand &SOff =
621           *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
622       if (!SOff.isImm() || SOff.getImm() != 0)
623         return;
624     }
625 
626     // A frame index will resolve to a positive constant, so it should always be
627     // safe to fold the addressing mode, even pre-GFX9.
628     UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
629 
630     const unsigned Opc = UseMI->getOpcode();
631     if (TII->isFLATScratch(*UseMI) &&
632         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr) &&
633         !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::saddr)) {
634       unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opc);
635       UseMI->setDesc(TII->get(NewOpc));
636     }
637 
638     return;
639   }
640 
641   bool FoldingImmLike =
642       OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
643 
644   if (FoldingImmLike && UseMI->isCopy()) {
645     Register DestReg = UseMI->getOperand(0).getReg();
646     Register SrcReg = UseMI->getOperand(1).getReg();
647     assert(SrcReg.isVirtual());
648 
649     const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg);
650 
651     // Don't fold into a copy to a physical register with the same class. Doing
652     // so would interfere with the register coalescer's logic which would avoid
653     // redundant initializations.
654     if (DestReg.isPhysical() && SrcRC->contains(DestReg))
655       return;
656 
657     const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg);
658     if (!DestReg.isPhysical()) {
659       if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) {
660         SmallVector<FoldCandidate, 4> CopyUses;
661         for (auto &Use : MRI->use_nodbg_operands(DestReg)) {
662           // There's no point trying to fold into an implicit operand.
663           if (Use.isImplicit())
664             continue;
665 
666           CopyUses.emplace_back(Use.getParent(),
667                                 Use.getParent()->getOperandNo(&Use),
668                                 &UseMI->getOperand(1));
669         }
670 
671         for (auto &F : CopyUses) {
672           foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList,
673                       CopiesToReplace);
674         }
675       }
676 
677       if (DestRC == &AMDGPU::AGPR_32RegClass &&
678           TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
679         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
680         UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
681         CopiesToReplace.push_back(UseMI);
682         return;
683       }
684     }
685 
686     // In order to fold immediates into copies, we need to change the
687     // copy to a MOV.
688 
689     unsigned MovOp = TII->getMovOpcode(DestRC);
690     if (MovOp == AMDGPU::COPY)
691       return;
692 
693     UseMI->setDesc(TII->get(MovOp));
694     MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
695     MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
696     while (ImpOpI != ImpOpE) {
697       MachineInstr::mop_iterator Tmp = ImpOpI;
698       ImpOpI++;
699       UseMI->removeOperand(UseMI->getOperandNo(Tmp));
700     }
701     CopiesToReplace.push_back(UseMI);
702   } else {
703     if (UseMI->isCopy() && OpToFold.isReg() &&
704         UseMI->getOperand(0).getReg().isVirtual() &&
705         !UseMI->getOperand(1).getSubReg()) {
706       LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI);
707       unsigned Size = TII->getOpSize(*UseMI, 1);
708       Register UseReg = OpToFold.getReg();
709       UseMI->getOperand(1).setReg(UseReg);
710       UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
711       UseMI->getOperand(1).setIsKill(false);
712       CopiesToReplace.push_back(UseMI);
713       OpToFold.setIsKill(false);
714 
715       // Remove kill flags as kills may now be out of order with uses.
716       MRI->clearKillFlags(OpToFold.getReg());
717 
718       // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32
719       // can only accept VGPR or inline immediate. Recreate a reg_sequence with
720       // its initializers right here, so we will rematerialize immediates and
721       // avoid copies via different reg classes.
722       SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
723       if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
724           getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
725         const DebugLoc &DL = UseMI->getDebugLoc();
726         MachineBasicBlock &MBB = *UseMI->getParent();
727 
728         UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE));
729         for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I)
730           UseMI->removeOperand(I);
731 
732         MachineInstrBuilder B(*MBB.getParent(), UseMI);
733         DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies;
734         SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs;
735         for (unsigned I = 0; I < Size / 4; ++I) {
736           MachineOperand *Def = Defs[I].first;
737           TargetInstrInfo::RegSubRegPair CopyToVGPR;
738           if (Def->isImm() &&
739               TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
740             int64_t Imm = Def->getImm();
741 
742             auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
743             BuildMI(MBB, UseMI, DL,
744                     TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm);
745             B.addReg(Tmp);
746           } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) {
747             auto Src = getRegSubRegPair(*Def);
748             Def->setIsKill(false);
749             if (!SeenAGPRs.insert(Src)) {
750               // We cannot build a reg_sequence out of the same registers, they
751               // must be copied. Better do it here before copyPhysReg() created
752               // several reads to do the AGPR->VGPR->AGPR copy.
753               CopyToVGPR = Src;
754             } else {
755               B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0,
756                        Src.SubReg);
757             }
758           } else {
759             assert(Def->isReg());
760             Def->setIsKill(false);
761             auto Src = getRegSubRegPair(*Def);
762 
763             // Direct copy from SGPR to AGPR is not possible. To avoid creation
764             // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later,
765             // create a copy here and track if we already have such a copy.
766             if (TRI->isSGPRReg(*MRI, Src.Reg)) {
767               CopyToVGPR = Src;
768             } else {
769               auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
770               BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def);
771               B.addReg(Tmp);
772             }
773           }
774 
775           if (CopyToVGPR.Reg) {
776             Register Vgpr;
777             if (VGPRCopies.count(CopyToVGPR)) {
778               Vgpr = VGPRCopies[CopyToVGPR];
779             } else {
780               Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
781               BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def);
782               VGPRCopies[CopyToVGPR] = Vgpr;
783             }
784             auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
785             BuildMI(MBB, UseMI, DL,
786                     TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr);
787             B.addReg(Tmp);
788           }
789 
790           B.addImm(Defs[I].second);
791         }
792         LLVM_DEBUG(dbgs() << "Folded " << *UseMI);
793         return;
794       }
795 
796       if (Size != 4)
797         return;
798 
799       Register Reg0 = UseMI->getOperand(0).getReg();
800       Register Reg1 = UseMI->getOperand(1).getReg();
801       if (TRI->isAGPR(*MRI, Reg0) && TRI->isVGPR(*MRI, Reg1))
802         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
803       else if (TRI->isVGPR(*MRI, Reg0) && TRI->isAGPR(*MRI, Reg1))
804         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64));
805       else if (ST->hasGFX90AInsts() && TRI->isAGPR(*MRI, Reg0) &&
806                TRI->isAGPR(*MRI, Reg1))
807         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32));
808       return;
809     }
810 
811     unsigned UseOpc = UseMI->getOpcode();
812     if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
813         (UseOpc == AMDGPU::V_READLANE_B32 &&
814          (int)UseOpIdx ==
815          AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
816       // %vgpr = V_MOV_B32 imm
817       // %sgpr = V_READFIRSTLANE_B32 %vgpr
818       // =>
819       // %sgpr = S_MOV_B32 imm
820       if (FoldingImmLike) {
821         if (execMayBeModifiedBeforeUse(*MRI,
822                                        UseMI->getOperand(UseOpIdx).getReg(),
823                                        *OpToFold.getParent(),
824                                        *UseMI))
825           return;
826 
827         UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
828 
829         if (OpToFold.isImm())
830           UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
831         else
832           UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
833         UseMI->removeOperand(2); // Remove exec read (or src1 for readlane)
834         return;
835       }
836 
837       if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
838         if (execMayBeModifiedBeforeUse(*MRI,
839                                        UseMI->getOperand(UseOpIdx).getReg(),
840                                        *OpToFold.getParent(),
841                                        *UseMI))
842           return;
843 
844         // %vgpr = COPY %sgpr0
845         // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
846         // =>
847         // %sgpr1 = COPY %sgpr0
848         UseMI->setDesc(TII->get(AMDGPU::COPY));
849         UseMI->getOperand(1).setReg(OpToFold.getReg());
850         UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
851         UseMI->getOperand(1).setIsKill(false);
852         UseMI->removeOperand(2); // Remove exec read (or src1 for readlane)
853         return;
854       }
855     }
856 
857     const MCInstrDesc &UseDesc = UseMI->getDesc();
858 
859     // Don't fold into target independent nodes.  Target independent opcodes
860     // don't have defined register classes.
861     if (UseDesc.isVariadic() || UseOp.isImplicit() ||
862         UseDesc.operands()[UseOpIdx].RegClass == -1)
863       return;
864   }
865 
866   if (!FoldingImmLike) {
867     if (OpToFold.isReg() && ST->needsAlignedVGPRs()) {
868       // Don't fold if OpToFold doesn't hold an aligned register.
869       const TargetRegisterClass *RC =
870           TRI->getRegClassForReg(*MRI, OpToFold.getReg());
871       if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) {
872         unsigned SubReg = OpToFold.getSubReg();
873         if (const TargetRegisterClass *SubRC =
874                 TRI->getSubRegisterClass(RC, SubReg))
875           RC = SubRC;
876       }
877 
878       if (!RC || !TRI->isProperlyAlignedRC(*RC))
879         return;
880     }
881 
882     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold);
883 
884     // FIXME: We could try to change the instruction from 64-bit to 32-bit
885     // to enable more folding opportunities.  The shrink operands pass
886     // already does this.
887     return;
888   }
889 
890 
891   const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
892   const TargetRegisterClass *FoldRC =
893       TRI->getRegClass(FoldDesc.operands()[0].RegClass);
894 
895   // Split 64-bit constants into 32-bits for folding.
896   if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
897     Register UseReg = UseOp.getReg();
898     const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
899 
900     if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
901       return;
902 
903     APInt Imm(64, OpToFold.getImm());
904     if (UseOp.getSubReg() == AMDGPU::sub0) {
905       Imm = Imm.getLoBits(32);
906     } else {
907       assert(UseOp.getSubReg() == AMDGPU::sub1);
908       Imm = Imm.getHiBits(32);
909     }
910 
911     MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
912     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp);
913     return;
914   }
915 
916   tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold);
917 }
918 
919 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
920                                   uint32_t LHS, uint32_t RHS) {
921   switch (Opcode) {
922   case AMDGPU::V_AND_B32_e64:
923   case AMDGPU::V_AND_B32_e32:
924   case AMDGPU::S_AND_B32:
925     Result = LHS & RHS;
926     return true;
927   case AMDGPU::V_OR_B32_e64:
928   case AMDGPU::V_OR_B32_e32:
929   case AMDGPU::S_OR_B32:
930     Result = LHS | RHS;
931     return true;
932   case AMDGPU::V_XOR_B32_e64:
933   case AMDGPU::V_XOR_B32_e32:
934   case AMDGPU::S_XOR_B32:
935     Result = LHS ^ RHS;
936     return true;
937   case AMDGPU::S_XNOR_B32:
938     Result = ~(LHS ^ RHS);
939     return true;
940   case AMDGPU::S_NAND_B32:
941     Result = ~(LHS & RHS);
942     return true;
943   case AMDGPU::S_NOR_B32:
944     Result = ~(LHS | RHS);
945     return true;
946   case AMDGPU::S_ANDN2_B32:
947     Result = LHS & ~RHS;
948     return true;
949   case AMDGPU::S_ORN2_B32:
950     Result = LHS | ~RHS;
951     return true;
952   case AMDGPU::V_LSHL_B32_e64:
953   case AMDGPU::V_LSHL_B32_e32:
954   case AMDGPU::S_LSHL_B32:
955     // The instruction ignores the high bits for out of bounds shifts.
956     Result = LHS << (RHS & 31);
957     return true;
958   case AMDGPU::V_LSHLREV_B32_e64:
959   case AMDGPU::V_LSHLREV_B32_e32:
960     Result = RHS << (LHS & 31);
961     return true;
962   case AMDGPU::V_LSHR_B32_e64:
963   case AMDGPU::V_LSHR_B32_e32:
964   case AMDGPU::S_LSHR_B32:
965     Result = LHS >> (RHS & 31);
966     return true;
967   case AMDGPU::V_LSHRREV_B32_e64:
968   case AMDGPU::V_LSHRREV_B32_e32:
969     Result = RHS >> (LHS & 31);
970     return true;
971   case AMDGPU::V_ASHR_I32_e64:
972   case AMDGPU::V_ASHR_I32_e32:
973   case AMDGPU::S_ASHR_I32:
974     Result = static_cast<int32_t>(LHS) >> (RHS & 31);
975     return true;
976   case AMDGPU::V_ASHRREV_I32_e64:
977   case AMDGPU::V_ASHRREV_I32_e32:
978     Result = static_cast<int32_t>(RHS) >> (LHS & 31);
979     return true;
980   default:
981     return false;
982   }
983 }
984 
985 static unsigned getMovOpc(bool IsScalar) {
986   return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
987 }
988 
989 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
990   MI.setDesc(NewDesc);
991 
992   // Remove any leftover implicit operands from mutating the instruction. e.g.
993   // if we replace an s_and_b32 with a copy, we don't need the implicit scc def
994   // anymore.
995   const MCInstrDesc &Desc = MI.getDesc();
996   unsigned NumOps = Desc.getNumOperands() + Desc.implicit_uses().size() +
997                     Desc.implicit_defs().size();
998 
999   for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
1000     MI.removeOperand(I);
1001 }
1002 
1003 MachineOperand *
1004 SIFoldOperands::getImmOrMaterializedImm(MachineOperand &Op) const {
1005   // If this has a subregister, it obviously is a register source.
1006   if (!Op.isReg() || Op.getSubReg() != AMDGPU::NoSubRegister ||
1007       !Op.getReg().isVirtual())
1008     return &Op;
1009 
1010   MachineInstr *Def = MRI->getVRegDef(Op.getReg());
1011   if (Def && Def->isMoveImmediate()) {
1012     MachineOperand &ImmSrc = Def->getOperand(1);
1013     if (ImmSrc.isImm())
1014       return &ImmSrc;
1015   }
1016 
1017   return &Op;
1018 }
1019 
1020 // Try to simplify operations with a constant that may appear after instruction
1021 // selection.
1022 // TODO: See if a frame index with a fixed offset can fold.
1023 bool SIFoldOperands::tryConstantFoldOp(MachineInstr *MI) const {
1024   unsigned Opc = MI->getOpcode();
1025 
1026   int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1027   if (Src0Idx == -1)
1028     return false;
1029   MachineOperand *Src0 = getImmOrMaterializedImm(MI->getOperand(Src0Idx));
1030 
1031   if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
1032        Opc == AMDGPU::S_NOT_B32) &&
1033       Src0->isImm()) {
1034     MI->getOperand(1).ChangeToImmediate(~Src0->getImm());
1035     mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
1036     return true;
1037   }
1038 
1039   int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1040   if (Src1Idx == -1)
1041     return false;
1042   MachineOperand *Src1 = getImmOrMaterializedImm(MI->getOperand(Src1Idx));
1043 
1044   if (!Src0->isImm() && !Src1->isImm())
1045     return false;
1046 
1047   // and k0, k1 -> v_mov_b32 (k0 & k1)
1048   // or k0, k1 -> v_mov_b32 (k0 | k1)
1049   // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
1050   if (Src0->isImm() && Src1->isImm()) {
1051     int32_t NewImm;
1052     if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
1053       return false;
1054 
1055     bool IsSGPR = TRI->isSGPRReg(*MRI, MI->getOperand(0).getReg());
1056 
1057     // Be careful to change the right operand, src0 may belong to a different
1058     // instruction.
1059     MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
1060     MI->removeOperand(Src1Idx);
1061     mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
1062     return true;
1063   }
1064 
1065   if (!MI->isCommutable())
1066     return false;
1067 
1068   if (Src0->isImm() && !Src1->isImm()) {
1069     std::swap(Src0, Src1);
1070     std::swap(Src0Idx, Src1Idx);
1071   }
1072 
1073   int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
1074   if (Opc == AMDGPU::V_OR_B32_e64 ||
1075       Opc == AMDGPU::V_OR_B32_e32 ||
1076       Opc == AMDGPU::S_OR_B32) {
1077     if (Src1Val == 0) {
1078       // y = or x, 0 => y = copy x
1079       MI->removeOperand(Src1Idx);
1080       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1081     } else if (Src1Val == -1) {
1082       // y = or x, -1 => y = v_mov_b32 -1
1083       MI->removeOperand(Src1Idx);
1084       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
1085     } else
1086       return false;
1087 
1088     return true;
1089   }
1090 
1091   if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 ||
1092       Opc == AMDGPU::S_AND_B32) {
1093     if (Src1Val == 0) {
1094       // y = and x, 0 => y = v_mov_b32 0
1095       MI->removeOperand(Src0Idx);
1096       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
1097     } else if (Src1Val == -1) {
1098       // y = and x, -1 => y = copy x
1099       MI->removeOperand(Src1Idx);
1100       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1101     } else
1102       return false;
1103 
1104     return true;
1105   }
1106 
1107   if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 ||
1108       Opc == AMDGPU::S_XOR_B32) {
1109     if (Src1Val == 0) {
1110       // y = xor x, 0 => y = copy x
1111       MI->removeOperand(Src1Idx);
1112       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1113       return true;
1114     }
1115   }
1116 
1117   return false;
1118 }
1119 
1120 // Try to fold an instruction into a simpler one
1121 bool SIFoldOperands::tryFoldCndMask(MachineInstr &MI) const {
1122   unsigned Opc = MI.getOpcode();
1123   if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 &&
1124       Opc != AMDGPU::V_CNDMASK_B64_PSEUDO)
1125     return false;
1126 
1127   MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1128   MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1129   if (!Src1->isIdenticalTo(*Src0)) {
1130     auto *Src0Imm = getImmOrMaterializedImm(*Src0);
1131     auto *Src1Imm = getImmOrMaterializedImm(*Src1);
1132     if (!Src1Imm->isIdenticalTo(*Src0Imm))
1133       return false;
1134   }
1135 
1136   int Src1ModIdx =
1137       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
1138   int Src0ModIdx =
1139       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
1140   if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) ||
1141       (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0))
1142     return false;
1143 
1144   LLVM_DEBUG(dbgs() << "Folded " << MI << " into ");
1145   auto &NewDesc =
1146       TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
1147   int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1148   if (Src2Idx != -1)
1149     MI.removeOperand(Src2Idx);
1150   MI.removeOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
1151   if (Src1ModIdx != -1)
1152     MI.removeOperand(Src1ModIdx);
1153   if (Src0ModIdx != -1)
1154     MI.removeOperand(Src0ModIdx);
1155   mutateCopyOp(MI, NewDesc);
1156   LLVM_DEBUG(dbgs() << MI);
1157   return true;
1158 }
1159 
1160 bool SIFoldOperands::tryFoldZeroHighBits(MachineInstr &MI) const {
1161   if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 &&
1162       MI.getOpcode() != AMDGPU::V_AND_B32_e32)
1163     return false;
1164 
1165   MachineOperand *Src0 = getImmOrMaterializedImm(MI.getOperand(1));
1166   if (!Src0->isImm() || Src0->getImm() != 0xffff)
1167     return false;
1168 
1169   Register Src1 = MI.getOperand(2).getReg();
1170   MachineInstr *SrcDef = MRI->getVRegDef(Src1);
1171   if (!ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode()))
1172     return false;
1173 
1174   Register Dst = MI.getOperand(0).getReg();
1175   MRI->replaceRegWith(Dst, SrcDef->getOperand(0).getReg());
1176   MI.eraseFromParent();
1177   return true;
1178 }
1179 
1180 bool SIFoldOperands::foldInstOperand(MachineInstr &MI,
1181                                      MachineOperand &OpToFold) const {
1182   // We need mutate the operands of new mov instructions to add implicit
1183   // uses of EXEC, but adding them invalidates the use_iterator, so defer
1184   // this.
1185   SmallVector<MachineInstr *, 4> CopiesToReplace;
1186   SmallVector<FoldCandidate, 4> FoldList;
1187   MachineOperand &Dst = MI.getOperand(0);
1188   bool Changed = false;
1189 
1190   if (OpToFold.isImm()) {
1191     for (auto &UseMI :
1192          make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) {
1193       // Folding the immediate may reveal operations that can be constant
1194       // folded or replaced with a copy. This can happen for example after
1195       // frame indices are lowered to constants or from splitting 64-bit
1196       // constants.
1197       //
1198       // We may also encounter cases where one or both operands are
1199       // immediates materialized into a register, which would ordinarily not
1200       // be folded due to multiple uses or operand constraints.
1201       if (tryConstantFoldOp(&UseMI)) {
1202         LLVM_DEBUG(dbgs() << "Constant folded " << UseMI);
1203         Changed = true;
1204       }
1205     }
1206   }
1207 
1208   SmallVector<MachineOperand *, 4> UsesToProcess;
1209   for (auto &Use : MRI->use_nodbg_operands(Dst.getReg()))
1210     UsesToProcess.push_back(&Use);
1211   for (auto *U : UsesToProcess) {
1212     MachineInstr *UseMI = U->getParent();
1213     foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U), FoldList,
1214                 CopiesToReplace);
1215   }
1216 
1217   if (CopiesToReplace.empty() && FoldList.empty())
1218     return Changed;
1219 
1220   MachineFunction *MF = MI.getParent()->getParent();
1221   // Make sure we add EXEC uses to any new v_mov instructions created.
1222   for (MachineInstr *Copy : CopiesToReplace)
1223     Copy->addImplicitDefUseOperands(*MF);
1224 
1225   for (FoldCandidate &Fold : FoldList) {
1226     assert(!Fold.isReg() || Fold.OpToFold);
1227     if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) {
1228       Register Reg = Fold.OpToFold->getReg();
1229       MachineInstr *DefMI = Fold.OpToFold->getParent();
1230       if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
1231           execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
1232         continue;
1233     }
1234     if (updateOperand(Fold)) {
1235       // Clear kill flags.
1236       if (Fold.isReg()) {
1237         assert(Fold.OpToFold && Fold.OpToFold->isReg());
1238         // FIXME: Probably shouldn't bother trying to fold if not an
1239         // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1240         // copies.
1241         MRI->clearKillFlags(Fold.OpToFold->getReg());
1242       }
1243       LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
1244                         << static_cast<int>(Fold.UseOpNo) << " of "
1245                         << *Fold.UseMI);
1246     } else if (Fold.Commuted) {
1247       // Restoring instruction's original operand order if fold has failed.
1248       TII->commuteInstruction(*Fold.UseMI, false);
1249     }
1250   }
1251   return true;
1252 }
1253 
1254 bool SIFoldOperands::tryFoldFoldableCopy(
1255     MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const {
1256   // Specially track simple redefs of m0 to the same value in a block, so we
1257   // can erase the later ones.
1258   if (MI.getOperand(0).getReg() == AMDGPU::M0) {
1259     MachineOperand &NewM0Val = MI.getOperand(1);
1260     if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) {
1261       MI.eraseFromParent();
1262       return true;
1263     }
1264 
1265     // We aren't tracking other physical registers
1266     CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical())
1267                             ? nullptr
1268                             : &NewM0Val;
1269     return false;
1270   }
1271 
1272   MachineOperand &OpToFold = MI.getOperand(1);
1273   bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1274 
1275   // FIXME: We could also be folding things like TargetIndexes.
1276   if (!FoldingImm && !OpToFold.isReg())
1277     return false;
1278 
1279   if (OpToFold.isReg() && !OpToFold.getReg().isVirtual())
1280     return false;
1281 
1282   // Prevent folding operands backwards in the function. For example,
1283   // the COPY opcode must not be replaced by 1 in this example:
1284   //
1285   //    %3 = COPY %vgpr0; VGPR_32:%3
1286   //    ...
1287   //    %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1288   if (!MI.getOperand(0).getReg().isVirtual())
1289     return false;
1290 
1291   bool Changed = foldInstOperand(MI, OpToFold);
1292 
1293   // If we managed to fold all uses of this copy then we might as well
1294   // delete it now.
1295   // The only reason we need to follow chains of copies here is that
1296   // tryFoldRegSequence looks forward through copies before folding a
1297   // REG_SEQUENCE into its eventual users.
1298   auto *InstToErase = &MI;
1299   while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) {
1300     auto &SrcOp = InstToErase->getOperand(1);
1301     auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register();
1302     InstToErase->eraseFromParent();
1303     Changed = true;
1304     InstToErase = nullptr;
1305     if (!SrcReg || SrcReg.isPhysical())
1306       break;
1307     InstToErase = MRI->getVRegDef(SrcReg);
1308     if (!InstToErase || !TII->isFoldableCopy(*InstToErase))
1309       break;
1310   }
1311 
1312   if (InstToErase && InstToErase->isRegSequence() &&
1313       MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) {
1314     InstToErase->eraseFromParent();
1315     Changed = true;
1316   }
1317 
1318   return Changed;
1319 }
1320 
1321 // Clamp patterns are canonically selected to v_max_* instructions, so only
1322 // handle them.
1323 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
1324   unsigned Op = MI.getOpcode();
1325   switch (Op) {
1326   case AMDGPU::V_MAX_F32_e64:
1327   case AMDGPU::V_MAX_F16_e64:
1328   case AMDGPU::V_MAX_F16_t16_e64:
1329   case AMDGPU::V_MAX_F64_e64:
1330   case AMDGPU::V_PK_MAX_F16: {
1331     if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
1332       return nullptr;
1333 
1334     // Make sure sources are identical.
1335     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1336     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1337     if (!Src0->isReg() || !Src1->isReg() ||
1338         Src0->getReg() != Src1->getReg() ||
1339         Src0->getSubReg() != Src1->getSubReg() ||
1340         Src0->getSubReg() != AMDGPU::NoSubRegister)
1341       return nullptr;
1342 
1343     // Can't fold up if we have modifiers.
1344     if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1345       return nullptr;
1346 
1347     unsigned Src0Mods
1348       = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
1349     unsigned Src1Mods
1350       = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
1351 
1352     // Having a 0 op_sel_hi would require swizzling the output in the source
1353     // instruction, which we can't do.
1354     unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
1355                                                       : 0u;
1356     if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
1357       return nullptr;
1358     return Src0;
1359   }
1360   default:
1361     return nullptr;
1362   }
1363 }
1364 
1365 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
1366 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
1367   const MachineOperand *ClampSrc = isClamp(MI);
1368   if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg()))
1369     return false;
1370 
1371   MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
1372 
1373   // The type of clamp must be compatible.
1374   if (TII->getClampMask(*Def) != TII->getClampMask(MI))
1375     return false;
1376 
1377   MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
1378   if (!DefClamp)
1379     return false;
1380 
1381   LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def);
1382 
1383   // Clamp is applied after omod, so it is OK if omod is set.
1384   DefClamp->setImm(1);
1385   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1386   MI.eraseFromParent();
1387 
1388   // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
1389   // instruction, so we might as well convert it to the more flexible VOP3-only
1390   // mad/fma form.
1391   if (TII->convertToThreeAddress(*Def, nullptr, nullptr))
1392     Def->eraseFromParent();
1393 
1394   return true;
1395 }
1396 
1397 static int getOModValue(unsigned Opc, int64_t Val) {
1398   switch (Opc) {
1399   case AMDGPU::V_MUL_F64_e64: {
1400     switch (Val) {
1401     case 0x3fe0000000000000: // 0.5
1402       return SIOutMods::DIV2;
1403     case 0x4000000000000000: // 2.0
1404       return SIOutMods::MUL2;
1405     case 0x4010000000000000: // 4.0
1406       return SIOutMods::MUL4;
1407     default:
1408       return SIOutMods::NONE;
1409     }
1410   }
1411   case AMDGPU::V_MUL_F32_e64: {
1412     switch (static_cast<uint32_t>(Val)) {
1413     case 0x3f000000: // 0.5
1414       return SIOutMods::DIV2;
1415     case 0x40000000: // 2.0
1416       return SIOutMods::MUL2;
1417     case 0x40800000: // 4.0
1418       return SIOutMods::MUL4;
1419     default:
1420       return SIOutMods::NONE;
1421     }
1422   }
1423   case AMDGPU::V_MUL_F16_e64:
1424   case AMDGPU::V_MUL_F16_t16_e64: {
1425     switch (static_cast<uint16_t>(Val)) {
1426     case 0x3800: // 0.5
1427       return SIOutMods::DIV2;
1428     case 0x4000: // 2.0
1429       return SIOutMods::MUL2;
1430     case 0x4400: // 4.0
1431       return SIOutMods::MUL4;
1432     default:
1433       return SIOutMods::NONE;
1434     }
1435   }
1436   default:
1437     llvm_unreachable("invalid mul opcode");
1438   }
1439 }
1440 
1441 // FIXME: Does this really not support denormals with f16?
1442 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1443 // handled, so will anything other than that break?
1444 std::pair<const MachineOperand *, int>
1445 SIFoldOperands::isOMod(const MachineInstr &MI) const {
1446   unsigned Op = MI.getOpcode();
1447   switch (Op) {
1448   case AMDGPU::V_MUL_F64_e64:
1449   case AMDGPU::V_MUL_F32_e64:
1450   case AMDGPU::V_MUL_F16_t16_e64:
1451   case AMDGPU::V_MUL_F16_e64: {
1452     // If output denormals are enabled, omod is ignored.
1453     if ((Op == AMDGPU::V_MUL_F32_e64 &&
1454          MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) ||
1455         ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F16_e64 ||
1456           Op == AMDGPU::V_MUL_F16_t16_e64) &&
1457          MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign))
1458       return std::pair(nullptr, SIOutMods::NONE);
1459 
1460     const MachineOperand *RegOp = nullptr;
1461     const MachineOperand *ImmOp = nullptr;
1462     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1463     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1464     if (Src0->isImm()) {
1465       ImmOp = Src0;
1466       RegOp = Src1;
1467     } else if (Src1->isImm()) {
1468       ImmOp = Src1;
1469       RegOp = Src0;
1470     } else
1471       return std::pair(nullptr, SIOutMods::NONE);
1472 
1473     int OMod = getOModValue(Op, ImmOp->getImm());
1474     if (OMod == SIOutMods::NONE ||
1475         TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1476         TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1477         TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1478         TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1479       return std::pair(nullptr, SIOutMods::NONE);
1480 
1481     return std::pair(RegOp, OMod);
1482   }
1483   case AMDGPU::V_ADD_F64_e64:
1484   case AMDGPU::V_ADD_F32_e64:
1485   case AMDGPU::V_ADD_F16_e64:
1486   case AMDGPU::V_ADD_F16_t16_e64: {
1487     // If output denormals are enabled, omod is ignored.
1488     if ((Op == AMDGPU::V_ADD_F32_e64 &&
1489          MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) ||
1490         ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F16_e64 ||
1491           Op == AMDGPU::V_ADD_F16_t16_e64) &&
1492          MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign))
1493       return std::pair(nullptr, SIOutMods::NONE);
1494 
1495     // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1496     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1497     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1498 
1499     if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1500         Src0->getSubReg() == Src1->getSubReg() &&
1501         !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1502         !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1503         !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1504         !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1505       return std::pair(Src0, SIOutMods::MUL2);
1506 
1507     return std::pair(nullptr, SIOutMods::NONE);
1508   }
1509   default:
1510     return std::pair(nullptr, SIOutMods::NONE);
1511   }
1512 }
1513 
1514 // FIXME: Does this need to check IEEE bit on function?
1515 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1516   const MachineOperand *RegOp;
1517   int OMod;
1518   std::tie(RegOp, OMod) = isOMod(MI);
1519   if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1520       RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1521       !MRI->hasOneNonDBGUser(RegOp->getReg()))
1522     return false;
1523 
1524   MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
1525   MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1526   if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1527     return false;
1528 
1529   // Clamp is applied after omod. If the source already has clamp set, don't
1530   // fold it.
1531   if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1532     return false;
1533 
1534   LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def);
1535 
1536   DefOMod->setImm(OMod);
1537   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1538   MI.eraseFromParent();
1539 
1540   // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
1541   // instruction, so we might as well convert it to the more flexible VOP3-only
1542   // mad/fma form.
1543   if (TII->convertToThreeAddress(*Def, nullptr, nullptr))
1544     Def->eraseFromParent();
1545 
1546   return true;
1547 }
1548 
1549 // Try to fold a reg_sequence with vgpr output and agpr inputs into an
1550 // instruction which can take an agpr. So far that means a store.
1551 bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) {
1552   assert(MI.isRegSequence());
1553   auto Reg = MI.getOperand(0).getReg();
1554 
1555   if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) ||
1556       !MRI->hasOneNonDBGUse(Reg))
1557     return false;
1558 
1559   SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
1560   if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER))
1561     return false;
1562 
1563   for (auto &Def : Defs) {
1564     const auto *Op = Def.first;
1565     if (!Op->isReg())
1566       return false;
1567     if (TRI->isAGPR(*MRI, Op->getReg()))
1568       continue;
1569     // Maybe this is a COPY from AREG
1570     const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg());
1571     if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg())
1572       return false;
1573     if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg()))
1574       return false;
1575   }
1576 
1577   MachineOperand *Op = &*MRI->use_nodbg_begin(Reg);
1578   MachineInstr *UseMI = Op->getParent();
1579   while (UseMI->isCopy() && !Op->getSubReg()) {
1580     Reg = UseMI->getOperand(0).getReg();
1581     if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg))
1582       return false;
1583     Op = &*MRI->use_nodbg_begin(Reg);
1584     UseMI = Op->getParent();
1585   }
1586 
1587   if (Op->getSubReg())
1588     return false;
1589 
1590   unsigned OpIdx = Op - &UseMI->getOperand(0);
1591   const MCInstrDesc &InstDesc = UseMI->getDesc();
1592   const TargetRegisterClass *OpRC =
1593       TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF());
1594   if (!OpRC || !TRI->isVectorSuperClass(OpRC))
1595     return false;
1596 
1597   const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg));
1598   auto Dst = MRI->createVirtualRegister(NewDstRC);
1599   auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1600                     TII->get(AMDGPU::REG_SEQUENCE), Dst);
1601 
1602   for (unsigned I = 0; I < Defs.size(); ++I) {
1603     MachineOperand *Def = Defs[I].first;
1604     Def->setIsKill(false);
1605     if (TRI->isAGPR(*MRI, Def->getReg())) {
1606       RS.add(*Def);
1607     } else { // This is a copy
1608       MachineInstr *SubDef = MRI->getVRegDef(Def->getReg());
1609       SubDef->getOperand(1).setIsKill(false);
1610       RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg());
1611     }
1612     RS.addImm(Defs[I].second);
1613   }
1614 
1615   Op->setReg(Dst);
1616   if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) {
1617     Op->setReg(Reg);
1618     RS->eraseFromParent();
1619     return false;
1620   }
1621 
1622   LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI);
1623 
1624   // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users,
1625   // in which case we can erase them all later in runOnMachineFunction.
1626   if (MRI->use_nodbg_empty(MI.getOperand(0).getReg()))
1627     MI.eraseFromParent();
1628   return true;
1629 }
1630 
1631 // Try to hoist an AGPR to VGPR copy out of the loop across a LCSSA PHI.
1632 // This should allow folding of an AGPR into a consumer which may support it.
1633 // I.e.:
1634 //
1635 // loop:                             // loop:
1636 //   %1:vreg = COPY %0:areg          // exit:
1637 // exit:                          => //   %1:areg = PHI %0:areg, %loop
1638 //   %2:vreg = PHI %1:vreg, %loop    //   %2:vreg = COPY %1:areg
1639 bool SIFoldOperands::tryFoldLCSSAPhi(MachineInstr &PHI) {
1640   assert(PHI.isPHI());
1641 
1642   if (PHI.getNumExplicitOperands() != 3) // Single input LCSSA PHI
1643     return false;
1644 
1645   Register PhiIn = PHI.getOperand(1).getReg();
1646   Register PhiOut = PHI.getOperand(0).getReg();
1647   if (PHI.getOperand(1).getSubReg() ||
1648       !TRI->isVGPR(*MRI, PhiIn) || !TRI->isVGPR(*MRI, PhiOut))
1649     return false;
1650 
1651   // A single use should not matter for correctness, but if it has another use
1652   // inside the loop we may perform copy twice in a worst case.
1653   if (!MRI->hasOneNonDBGUse(PhiIn))
1654     return false;
1655 
1656   MachineInstr *Copy = MRI->getVRegDef(PhiIn);
1657   if (!Copy || !Copy->isCopy())
1658     return false;
1659 
1660   Register CopyIn = Copy->getOperand(1).getReg();
1661   if (!TRI->isAGPR(*MRI, CopyIn) || Copy->getOperand(1).getSubReg())
1662     return false;
1663 
1664   const TargetRegisterClass *ARC = MRI->getRegClass(CopyIn);
1665   Register NewReg = MRI->createVirtualRegister(ARC);
1666   PHI.getOperand(1).setReg(CopyIn);
1667   PHI.getOperand(0).setReg(NewReg);
1668 
1669   MachineBasicBlock *MBB = PHI.getParent();
1670   BuildMI(*MBB, MBB->getFirstNonPHI(), Copy->getDebugLoc(),
1671           TII->get(AMDGPU::COPY), PhiOut)
1672     .addReg(NewReg, RegState::Kill);
1673   Copy->eraseFromParent(); // We know this copy had a single use.
1674 
1675   LLVM_DEBUG(dbgs() << "Folded " << PHI);
1676 
1677   return true;
1678 }
1679 
1680 // Attempt to convert VGPR load to an AGPR load.
1681 bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) {
1682   assert(MI.mayLoad());
1683   if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1)
1684     return false;
1685 
1686   MachineOperand &Def = MI.getOperand(0);
1687   if (!Def.isDef())
1688     return false;
1689 
1690   Register DefReg = Def.getReg();
1691 
1692   if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg))
1693     return false;
1694 
1695   SmallVector<const MachineInstr*, 8> Users;
1696   SmallVector<Register, 8> MoveRegs;
1697   for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg))
1698     Users.push_back(&I);
1699 
1700   if (Users.empty())
1701     return false;
1702 
1703   // Check that all uses a copy to an agpr or a reg_sequence producing an agpr.
1704   while (!Users.empty()) {
1705     const MachineInstr *I = Users.pop_back_val();
1706     if (!I->isCopy() && !I->isRegSequence())
1707       return false;
1708     Register DstReg = I->getOperand(0).getReg();
1709     // Physical registers may have more than one instruction definitions
1710     if (DstReg.isPhysical())
1711       return false;
1712     if (TRI->isAGPR(*MRI, DstReg))
1713       continue;
1714     MoveRegs.push_back(DstReg);
1715     for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg))
1716       Users.push_back(&U);
1717   }
1718 
1719   const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
1720   MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC));
1721   if (!TII->isOperandLegal(MI, 0, &Def)) {
1722     MRI->setRegClass(DefReg, RC);
1723     return false;
1724   }
1725 
1726   while (!MoveRegs.empty()) {
1727     Register Reg = MoveRegs.pop_back_val();
1728     MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)));
1729   }
1730 
1731   LLVM_DEBUG(dbgs() << "Folded " << MI);
1732 
1733   return true;
1734 }
1735 
1736 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
1737   if (skipFunction(MF.getFunction()))
1738     return false;
1739 
1740   MRI = &MF.getRegInfo();
1741   ST = &MF.getSubtarget<GCNSubtarget>();
1742   TII = ST->getInstrInfo();
1743   TRI = &TII->getRegisterInfo();
1744   MFI = MF.getInfo<SIMachineFunctionInfo>();
1745 
1746   // omod is ignored by hardware if IEEE bit is enabled. omod also does not
1747   // correctly handle signed zeros.
1748   //
1749   // FIXME: Also need to check strictfp
1750   bool IsIEEEMode = MFI->getMode().IEEE;
1751   bool HasNSZ = MFI->hasNoSignedZerosFPMath();
1752 
1753   bool Changed = false;
1754   for (MachineBasicBlock *MBB : depth_first(&MF)) {
1755     MachineOperand *CurrentKnownM0Val = nullptr;
1756     for (auto &MI : make_early_inc_range(*MBB)) {
1757       Changed |= tryFoldCndMask(MI);
1758 
1759       if (tryFoldZeroHighBits(MI)) {
1760         Changed = true;
1761         continue;
1762       }
1763 
1764       if (MI.isRegSequence() && tryFoldRegSequence(MI)) {
1765         Changed = true;
1766         continue;
1767       }
1768 
1769       if (MI.isPHI() && tryFoldLCSSAPhi(MI)) {
1770         Changed = true;
1771         continue;
1772       }
1773 
1774       if (MI.mayLoad() && tryFoldLoad(MI)) {
1775         Changed = true;
1776         continue;
1777       }
1778 
1779       if (TII->isFoldableCopy(MI)) {
1780         Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val);
1781         continue;
1782       }
1783 
1784       // Saw an unknown clobber of m0, so we no longer know what it is.
1785       if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
1786         CurrentKnownM0Val = nullptr;
1787 
1788       // TODO: Omod might be OK if there is NSZ only on the source
1789       // instruction, and not the omod multiply.
1790       if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
1791           !tryFoldOMod(MI))
1792         Changed |= tryFoldClamp(MI);
1793     }
1794   }
1795 
1796   return Changed;
1797 }
1798