1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "GCNSubtarget.h" 13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/CodeGen/MachineFunctionPass.h" 17 #include "llvm/CodeGen/MachineOperand.h" 18 19 #define DEBUG_TYPE "si-fold-operands" 20 using namespace llvm; 21 22 namespace { 23 24 struct FoldCandidate { 25 MachineInstr *UseMI; 26 union { 27 MachineOperand *OpToFold; 28 uint64_t ImmToFold; 29 int FrameIndexToFold; 30 }; 31 int ShrinkOpcode; 32 unsigned UseOpNo; 33 MachineOperand::MachineOperandType Kind; 34 bool Commuted; 35 36 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 37 bool Commuted_ = false, 38 int ShrinkOp = -1) : 39 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 40 Kind(FoldOp->getType()), 41 Commuted(Commuted_) { 42 if (FoldOp->isImm()) { 43 ImmToFold = FoldOp->getImm(); 44 } else if (FoldOp->isFI()) { 45 FrameIndexToFold = FoldOp->getIndex(); 46 } else { 47 assert(FoldOp->isReg() || FoldOp->isGlobal()); 48 OpToFold = FoldOp; 49 } 50 } 51 52 bool isFI() const { 53 return Kind == MachineOperand::MO_FrameIndex; 54 } 55 56 bool isImm() const { 57 return Kind == MachineOperand::MO_Immediate; 58 } 59 60 bool isReg() const { 61 return Kind == MachineOperand::MO_Register; 62 } 63 64 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 65 66 bool needsShrink() const { return ShrinkOpcode != -1; } 67 }; 68 69 class SIFoldOperands : public MachineFunctionPass { 70 public: 71 static char ID; 72 MachineRegisterInfo *MRI; 73 const SIInstrInfo *TII; 74 const SIRegisterInfo *TRI; 75 const GCNSubtarget *ST; 76 const SIMachineFunctionInfo *MFI; 77 78 bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo, 79 const MachineOperand &OpToFold) const; 80 81 bool updateOperand(FoldCandidate &Fold) const; 82 83 bool canUseImmWithOpSel(FoldCandidate &Fold) const; 84 85 bool tryFoldImmWithOpSel(FoldCandidate &Fold) const; 86 87 bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 88 MachineInstr *MI, unsigned OpNo, 89 MachineOperand *OpToFold) const; 90 bool isUseSafeToFold(const MachineInstr &MI, 91 const MachineOperand &UseMO) const; 92 bool 93 getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, 94 Register UseReg, uint8_t OpTy) const; 95 bool tryToFoldACImm(const MachineOperand &OpToFold, MachineInstr *UseMI, 96 unsigned UseOpIdx, 97 SmallVectorImpl<FoldCandidate> &FoldList) const; 98 void foldOperand(MachineOperand &OpToFold, 99 MachineInstr *UseMI, 100 int UseOpIdx, 101 SmallVectorImpl<FoldCandidate> &FoldList, 102 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 103 104 MachineOperand *getImmOrMaterializedImm(MachineOperand &Op) const; 105 bool tryConstantFoldOp(MachineInstr *MI) const; 106 bool tryFoldCndMask(MachineInstr &MI) const; 107 bool tryFoldZeroHighBits(MachineInstr &MI) const; 108 bool foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 109 bool tryFoldFoldableCopy(MachineInstr &MI, 110 MachineOperand *&CurrentKnownM0Val) const; 111 112 const MachineOperand *isClamp(const MachineInstr &MI) const; 113 bool tryFoldClamp(MachineInstr &MI); 114 115 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 116 bool tryFoldOMod(MachineInstr &MI); 117 bool tryFoldRegSequence(MachineInstr &MI); 118 bool tryFoldPhiAGPR(MachineInstr &MI); 119 bool tryFoldLoad(MachineInstr &MI); 120 121 bool tryOptimizeAGPRPhis(MachineBasicBlock &MBB); 122 123 public: 124 SIFoldOperands() : MachineFunctionPass(ID) { 125 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 126 } 127 128 bool runOnMachineFunction(MachineFunction &MF) override; 129 130 StringRef getPassName() const override { return "SI Fold Operands"; } 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override { 133 AU.setPreservesCFG(); 134 MachineFunctionPass::getAnalysisUsage(AU); 135 } 136 }; 137 138 } // End anonymous namespace. 139 140 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 141 "SI Fold Operands", false, false) 142 143 char SIFoldOperands::ID = 0; 144 145 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 146 147 static const TargetRegisterClass *getRegOpRC(const MachineRegisterInfo &MRI, 148 const TargetRegisterInfo &TRI, 149 const MachineOperand &MO) { 150 const TargetRegisterClass *RC = MRI.getRegClass(MO.getReg()); 151 if (const TargetRegisterClass *SubRC = 152 TRI.getSubRegisterClass(RC, MO.getSubReg())) 153 RC = SubRC; 154 return RC; 155 } 156 157 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. 158 static unsigned macToMad(unsigned Opc) { 159 switch (Opc) { 160 case AMDGPU::V_MAC_F32_e64: 161 return AMDGPU::V_MAD_F32_e64; 162 case AMDGPU::V_MAC_F16_e64: 163 return AMDGPU::V_MAD_F16_e64; 164 case AMDGPU::V_FMAC_F32_e64: 165 return AMDGPU::V_FMA_F32_e64; 166 case AMDGPU::V_FMAC_F16_e64: 167 return AMDGPU::V_FMA_F16_gfx9_e64; 168 case AMDGPU::V_FMAC_F16_t16_e64: 169 return AMDGPU::V_FMA_F16_gfx9_e64; 170 case AMDGPU::V_FMAC_LEGACY_F32_e64: 171 return AMDGPU::V_FMA_LEGACY_F32_e64; 172 case AMDGPU::V_FMAC_F64_e64: 173 return AMDGPU::V_FMA_F64_e64; 174 } 175 return AMDGPU::INSTRUCTION_LIST_END; 176 } 177 178 // TODO: Add heuristic that the frame index might not fit in the addressing mode 179 // immediate offset to avoid materializing in loops. 180 bool SIFoldOperands::frameIndexMayFold(const MachineInstr &UseMI, int OpNo, 181 const MachineOperand &OpToFold) const { 182 if (!OpToFold.isFI()) 183 return false; 184 185 const unsigned Opc = UseMI.getOpcode(); 186 if (TII->isMUBUF(UseMI)) 187 return OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 188 if (!TII->isFLATScratch(UseMI)) 189 return false; 190 191 int SIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr); 192 if (OpNo == SIdx) 193 return true; 194 195 int VIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 196 return OpNo == VIdx && SIdx == -1; 197 } 198 199 FunctionPass *llvm::createSIFoldOperandsPass() { 200 return new SIFoldOperands(); 201 } 202 203 bool SIFoldOperands::canUseImmWithOpSel(FoldCandidate &Fold) const { 204 MachineInstr *MI = Fold.UseMI; 205 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 206 const uint64_t TSFlags = MI->getDesc().TSFlags; 207 208 assert(Old.isReg() && Fold.isImm()); 209 210 if (!(TSFlags & SIInstrFlags::IsPacked) || (TSFlags & SIInstrFlags::IsMAI) || 211 (TSFlags & SIInstrFlags::IsWMMA) || (TSFlags & SIInstrFlags::IsSWMMAC) || 212 (ST->hasDOTOpSelHazard() && (TSFlags & SIInstrFlags::IsDOT))) 213 return false; 214 215 unsigned Opcode = MI->getOpcode(); 216 int OpNo = MI->getOperandNo(&Old); 217 uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; 218 switch (OpType) { 219 default: 220 return false; 221 case AMDGPU::OPERAND_REG_IMM_V2FP16: 222 case AMDGPU::OPERAND_REG_IMM_V2BF16: 223 case AMDGPU::OPERAND_REG_IMM_V2INT16: 224 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 225 case AMDGPU::OPERAND_REG_INLINE_C_V2BF16: 226 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 227 break; 228 } 229 230 return true; 231 } 232 233 bool SIFoldOperands::tryFoldImmWithOpSel(FoldCandidate &Fold) const { 234 MachineInstr *MI = Fold.UseMI; 235 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 236 unsigned Opcode = MI->getOpcode(); 237 int OpNo = MI->getOperandNo(&Old); 238 uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; 239 240 // If the literal can be inlined as-is, apply it and short-circuit the 241 // tests below. The main motivation for this is to avoid unintuitive 242 // uses of opsel. 243 if (AMDGPU::isInlinableLiteralV216(Fold.ImmToFold, OpType)) { 244 Old.ChangeToImmediate(Fold.ImmToFold); 245 return true; 246 } 247 248 // Refer to op_sel/op_sel_hi and check if we can change the immediate and 249 // op_sel in a way that allows an inline constant. 250 int ModIdx = -1; 251 unsigned SrcIdx = ~0; 252 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) { 253 ModIdx = AMDGPU::OpName::src0_modifiers; 254 SrcIdx = 0; 255 } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) { 256 ModIdx = AMDGPU::OpName::src1_modifiers; 257 SrcIdx = 1; 258 } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) { 259 ModIdx = AMDGPU::OpName::src2_modifiers; 260 SrcIdx = 2; 261 } 262 assert(ModIdx != -1); 263 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 264 MachineOperand &Mod = MI->getOperand(ModIdx); 265 unsigned ModVal = Mod.getImm(); 266 267 uint16_t ImmLo = static_cast<uint16_t>( 268 Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_0 ? 16 : 0)); 269 uint16_t ImmHi = static_cast<uint16_t>( 270 Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_1 ? 16 : 0)); 271 uint32_t Imm = (static_cast<uint32_t>(ImmHi) << 16) | ImmLo; 272 unsigned NewModVal = ModVal & ~(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); 273 274 // Helper function that attempts to inline the given value with a newly 275 // chosen opsel pattern. 276 auto tryFoldToInline = [&](uint32_t Imm) -> bool { 277 if (AMDGPU::isInlinableLiteralV216(Imm, OpType)) { 278 Mod.setImm(NewModVal | SISrcMods::OP_SEL_1); 279 Old.ChangeToImmediate(Imm); 280 return true; 281 } 282 283 // Try to shuffle the halves around and leverage opsel to get an inline 284 // constant. 285 uint16_t Lo = static_cast<uint16_t>(Imm); 286 uint16_t Hi = static_cast<uint16_t>(Imm >> 16); 287 if (Lo == Hi) { 288 if (AMDGPU::isInlinableLiteralV216(Lo, OpType)) { 289 Mod.setImm(NewModVal); 290 Old.ChangeToImmediate(Lo); 291 return true; 292 } 293 294 if (static_cast<int16_t>(Lo) < 0) { 295 int32_t SExt = static_cast<int16_t>(Lo); 296 if (AMDGPU::isInlinableLiteralV216(SExt, OpType)) { 297 Mod.setImm(NewModVal); 298 Old.ChangeToImmediate(SExt); 299 return true; 300 } 301 } 302 303 // This check is only useful for integer instructions 304 if (OpType == AMDGPU::OPERAND_REG_IMM_V2INT16 || 305 OpType == AMDGPU::OPERAND_REG_INLINE_AC_V2INT16) { 306 if (AMDGPU::isInlinableLiteralV216(Lo << 16, OpType)) { 307 Mod.setImm(NewModVal | SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); 308 Old.ChangeToImmediate(static_cast<uint32_t>(Lo) << 16); 309 return true; 310 } 311 } 312 } else { 313 uint32_t Swapped = (static_cast<uint32_t>(Lo) << 16) | Hi; 314 if (AMDGPU::isInlinableLiteralV216(Swapped, OpType)) { 315 Mod.setImm(NewModVal | SISrcMods::OP_SEL_0); 316 Old.ChangeToImmediate(Swapped); 317 return true; 318 } 319 } 320 321 return false; 322 }; 323 324 if (tryFoldToInline(Imm)) 325 return true; 326 327 // Replace integer addition by subtraction and vice versa if it allows 328 // folding the immediate to an inline constant. 329 // 330 // We should only ever get here for SrcIdx == 1 due to canonicalization 331 // earlier in the pipeline, but we double-check here to be safe / fully 332 // general. 333 bool IsUAdd = Opcode == AMDGPU::V_PK_ADD_U16; 334 bool IsUSub = Opcode == AMDGPU::V_PK_SUB_U16; 335 if (SrcIdx == 1 && (IsUAdd || IsUSub)) { 336 unsigned ClampIdx = 337 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::clamp); 338 bool Clamp = MI->getOperand(ClampIdx).getImm() != 0; 339 340 if (!Clamp) { 341 uint16_t NegLo = -static_cast<uint16_t>(Imm); 342 uint16_t NegHi = -static_cast<uint16_t>(Imm >> 16); 343 uint32_t NegImm = (static_cast<uint32_t>(NegHi) << 16) | NegLo; 344 345 if (tryFoldToInline(NegImm)) { 346 unsigned NegOpcode = 347 IsUAdd ? AMDGPU::V_PK_SUB_U16 : AMDGPU::V_PK_ADD_U16; 348 MI->setDesc(TII->get(NegOpcode)); 349 return true; 350 } 351 } 352 } 353 354 return false; 355 } 356 357 bool SIFoldOperands::updateOperand(FoldCandidate &Fold) const { 358 MachineInstr *MI = Fold.UseMI; 359 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 360 assert(Old.isReg()); 361 362 if (Fold.isImm() && canUseImmWithOpSel(Fold)) { 363 if (tryFoldImmWithOpSel(Fold)) 364 return true; 365 366 // We can't represent the candidate as an inline constant. Try as a literal 367 // with the original opsel, checking constant bus limitations. 368 MachineOperand New = MachineOperand::CreateImm(Fold.ImmToFold); 369 int OpNo = MI->getOperandNo(&Old); 370 if (!TII->isOperandLegal(*MI, OpNo, &New)) 371 return false; 372 Old.ChangeToImmediate(Fold.ImmToFold); 373 return true; 374 } 375 376 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 377 MachineBasicBlock *MBB = MI->getParent(); 378 auto Liveness = MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, MI, 16); 379 if (Liveness != MachineBasicBlock::LQR_Dead) { 380 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 381 return false; 382 } 383 384 int Op32 = Fold.ShrinkOpcode; 385 MachineOperand &Dst0 = MI->getOperand(0); 386 MachineOperand &Dst1 = MI->getOperand(1); 387 assert(Dst0.isDef() && Dst1.isDef()); 388 389 bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(Dst1.getReg()); 390 391 const TargetRegisterClass *Dst0RC = MRI->getRegClass(Dst0.getReg()); 392 Register NewReg0 = MRI->createVirtualRegister(Dst0RC); 393 394 MachineInstr *Inst32 = TII->buildShrunkInst(*MI, Op32); 395 396 if (HaveNonDbgCarryUse) { 397 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(AMDGPU::COPY), 398 Dst1.getReg()) 399 .addReg(AMDGPU::VCC, RegState::Kill); 400 } 401 402 // Keep the old instruction around to avoid breaking iterators, but 403 // replace it with a dummy instruction to remove uses. 404 // 405 // FIXME: We should not invert how this pass looks at operands to avoid 406 // this. Should track set of foldable movs instead of looking for uses 407 // when looking at a use. 408 Dst0.setReg(NewReg0); 409 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 410 MI->removeOperand(I); 411 MI->setDesc(TII->get(AMDGPU::IMPLICIT_DEF)); 412 413 if (Fold.Commuted) 414 TII->commuteInstruction(*Inst32, false); 415 return true; 416 } 417 418 assert(!Fold.needsShrink() && "not handled"); 419 420 if (Fold.isImm()) { 421 if (Old.isTied()) { 422 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(MI->getOpcode()); 423 if (NewMFMAOpc == -1) 424 return false; 425 MI->setDesc(TII->get(NewMFMAOpc)); 426 MI->untieRegOperand(0); 427 } 428 Old.ChangeToImmediate(Fold.ImmToFold); 429 return true; 430 } 431 432 if (Fold.isGlobal()) { 433 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 434 Fold.OpToFold->getTargetFlags()); 435 return true; 436 } 437 438 if (Fold.isFI()) { 439 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 440 return true; 441 } 442 443 MachineOperand *New = Fold.OpToFold; 444 Old.substVirtReg(New->getReg(), New->getSubReg(), *TRI); 445 Old.setIsUndef(New->isUndef()); 446 return true; 447 } 448 449 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 450 const MachineInstr *MI) { 451 return any_of(FoldList, [&](const auto &C) { return C.UseMI == MI; }); 452 } 453 454 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 455 MachineInstr *MI, unsigned OpNo, 456 MachineOperand *FoldOp, bool Commuted = false, 457 int ShrinkOp = -1) { 458 // Skip additional folding on the same operand. 459 for (FoldCandidate &Fold : FoldList) 460 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 461 return; 462 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 463 << " operand " << OpNo << "\n " << *MI); 464 FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp); 465 } 466 467 bool SIFoldOperands::tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 468 MachineInstr *MI, unsigned OpNo, 469 MachineOperand *OpToFold) const { 470 const unsigned Opc = MI->getOpcode(); 471 472 auto tryToFoldAsFMAAKorMK = [&]() { 473 if (!OpToFold->isImm()) 474 return false; 475 476 const bool TryAK = OpNo == 3; 477 const unsigned NewOpc = TryAK ? AMDGPU::S_FMAAK_F32 : AMDGPU::S_FMAMK_F32; 478 MI->setDesc(TII->get(NewOpc)); 479 480 // We have to fold into operand which would be Imm not into OpNo. 481 bool FoldAsFMAAKorMK = 482 tryAddToFoldList(FoldList, MI, TryAK ? 3 : 2, OpToFold); 483 if (FoldAsFMAAKorMK) { 484 // Untie Src2 of fmac. 485 MI->untieRegOperand(3); 486 // For fmamk swap operands 1 and 2 if OpToFold was meant for operand 1. 487 if (OpNo == 1) { 488 MachineOperand &Op1 = MI->getOperand(1); 489 MachineOperand &Op2 = MI->getOperand(2); 490 Register OldReg = Op1.getReg(); 491 // Operand 2 might be an inlinable constant 492 if (Op2.isImm()) { 493 Op1.ChangeToImmediate(Op2.getImm()); 494 Op2.ChangeToRegister(OldReg, false); 495 } else { 496 Op1.setReg(Op2.getReg()); 497 Op2.setReg(OldReg); 498 } 499 } 500 return true; 501 } 502 MI->setDesc(TII->get(Opc)); 503 return false; 504 }; 505 506 bool IsLegal = TII->isOperandLegal(*MI, OpNo, OpToFold); 507 if (!IsLegal && OpToFold->isImm()) { 508 FoldCandidate Fold(MI, OpNo, OpToFold); 509 IsLegal = canUseImmWithOpSel(Fold); 510 } 511 512 if (!IsLegal) { 513 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 514 unsigned NewOpc = macToMad(Opc); 515 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 516 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 517 // to fold the operand. 518 MI->setDesc(TII->get(NewOpc)); 519 bool AddOpSel = !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel) && 520 AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel); 521 if (AddOpSel) 522 MI->addOperand(MachineOperand::CreateImm(0)); 523 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold); 524 if (FoldAsMAD) { 525 MI->untieRegOperand(OpNo); 526 return true; 527 } 528 if (AddOpSel) 529 MI->removeOperand(MI->getNumExplicitOperands() - 1); 530 MI->setDesc(TII->get(Opc)); 531 } 532 533 // Special case for s_fmac_f32 if we are trying to fold into Src2. 534 // By transforming into fmaak we can untie Src2 and make folding legal. 535 if (Opc == AMDGPU::S_FMAC_F32 && OpNo == 3) { 536 if (tryToFoldAsFMAAKorMK()) 537 return true; 538 } 539 540 // Special case for s_setreg_b32 541 if (OpToFold->isImm()) { 542 unsigned ImmOpc = 0; 543 if (Opc == AMDGPU::S_SETREG_B32) 544 ImmOpc = AMDGPU::S_SETREG_IMM32_B32; 545 else if (Opc == AMDGPU::S_SETREG_B32_mode) 546 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; 547 if (ImmOpc) { 548 MI->setDesc(TII->get(ImmOpc)); 549 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 550 return true; 551 } 552 } 553 554 // If we are already folding into another operand of MI, then 555 // we can't commute the instruction, otherwise we risk making the 556 // other fold illegal. 557 if (isUseMIInFoldList(FoldList, MI)) 558 return false; 559 560 // Operand is not legal, so try to commute the instruction to 561 // see if this makes it possible to fold. 562 unsigned CommuteOpNo = TargetInstrInfo::CommuteAnyOperandIndex; 563 bool CanCommute = TII->findCommutedOpIndices(*MI, OpNo, CommuteOpNo); 564 if (!CanCommute) 565 return false; 566 567 // One of operands might be an Imm operand, and OpNo may refer to it after 568 // the call of commuteInstruction() below. Such situations are avoided 569 // here explicitly as OpNo must be a register operand to be a candidate 570 // for memory folding. 571 if (!MI->getOperand(OpNo).isReg() || !MI->getOperand(CommuteOpNo).isReg()) 572 return false; 573 574 if (!TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo)) 575 return false; 576 577 int Op32 = -1; 578 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 579 if ((Opc != AMDGPU::V_ADD_CO_U32_e64 && Opc != AMDGPU::V_SUB_CO_U32_e64 && 580 Opc != AMDGPU::V_SUBREV_CO_U32_e64) || // FIXME 581 (!OpToFold->isImm() && !OpToFold->isFI() && !OpToFold->isGlobal())) { 582 TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo); 583 return false; 584 } 585 586 // Verify the other operand is a VGPR, otherwise we would violate the 587 // constant bus restriction. 588 MachineOperand &OtherOp = MI->getOperand(OpNo); 589 if (!OtherOp.isReg() || 590 !TII->getRegisterInfo().isVGPR(*MRI, OtherOp.getReg())) 591 return false; 592 593 assert(MI->getOperand(1).isDef()); 594 595 // Make sure to get the 32-bit version of the commuted opcode. 596 unsigned MaybeCommutedOpc = MI->getOpcode(); 597 Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 598 } 599 600 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 601 return true; 602 } 603 604 // Inlineable constant might have been folded into Imm operand of fmaak or 605 // fmamk and we are trying to fold a non-inlinable constant. 606 if ((Opc == AMDGPU::S_FMAAK_F32 || Opc == AMDGPU::S_FMAMK_F32) && 607 !OpToFold->isReg() && !TII->isInlineConstant(*OpToFold)) { 608 unsigned ImmIdx = Opc == AMDGPU::S_FMAAK_F32 ? 3 : 2; 609 MachineOperand &OpImm = MI->getOperand(ImmIdx); 610 if (!OpImm.isReg() && 611 TII->isInlineConstant(*MI, MI->getOperand(OpNo), OpImm)) 612 return tryToFoldAsFMAAKorMK(); 613 } 614 615 // Special case for s_fmac_f32 if we are trying to fold into Src0 or Src1. 616 // By changing into fmamk we can untie Src2. 617 // If folding for Src0 happens first and it is identical operand to Src1 we 618 // should avoid transforming into fmamk which requires commuting as it would 619 // cause folding into Src1 to fail later on due to wrong OpNo used. 620 if (Opc == AMDGPU::S_FMAC_F32 && 621 (OpNo != 1 || !MI->getOperand(1).isIdenticalTo(MI->getOperand(2)))) { 622 if (tryToFoldAsFMAAKorMK()) 623 return true; 624 } 625 626 // Check the case where we might introduce a second constant operand to a 627 // scalar instruction 628 if (TII->isSALU(MI->getOpcode())) { 629 const MCInstrDesc &InstDesc = MI->getDesc(); 630 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; 631 632 // Fine if the operand can be encoded as an inline constant 633 if (!OpToFold->isReg() && !TII->isInlineConstant(*OpToFold, OpInfo)) { 634 // Otherwise check for another constant 635 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 636 auto &Op = MI->getOperand(i); 637 if (OpNo != i && !Op.isReg() && 638 !TII->isInlineConstant(Op, InstDesc.operands()[i])) 639 return false; 640 } 641 } 642 } 643 644 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 645 return true; 646 } 647 648 bool SIFoldOperands::isUseSafeToFold(const MachineInstr &MI, 649 const MachineOperand &UseMO) const { 650 // Operands of SDWA instructions must be registers. 651 return !TII->isSDWA(MI); 652 } 653 654 // Find a def of the UseReg, check if it is a reg_sequence and find initializers 655 // for each subreg, tracking it to foldable inline immediate if possible. 656 // Returns true on success. 657 bool SIFoldOperands::getRegSeqInit( 658 SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, 659 Register UseReg, uint8_t OpTy) const { 660 MachineInstr *Def = MRI->getVRegDef(UseReg); 661 if (!Def || !Def->isRegSequence()) 662 return false; 663 664 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 665 MachineOperand *Sub = &Def->getOperand(I); 666 assert(Sub->isReg()); 667 668 for (MachineInstr *SubDef = MRI->getVRegDef(Sub->getReg()); 669 SubDef && Sub->isReg() && Sub->getReg().isVirtual() && 670 !Sub->getSubReg() && TII->isFoldableCopy(*SubDef); 671 SubDef = MRI->getVRegDef(Sub->getReg())) { 672 MachineOperand *Op = &SubDef->getOperand(1); 673 if (Op->isImm()) { 674 if (TII->isInlineConstant(*Op, OpTy)) 675 Sub = Op; 676 break; 677 } 678 if (!Op->isReg() || Op->getReg().isPhysical()) 679 break; 680 Sub = Op; 681 } 682 683 Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm()); 684 } 685 686 return true; 687 } 688 689 bool SIFoldOperands::tryToFoldACImm( 690 const MachineOperand &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx, 691 SmallVectorImpl<FoldCandidate> &FoldList) const { 692 const MCInstrDesc &Desc = UseMI->getDesc(); 693 if (UseOpIdx >= Desc.getNumOperands()) 694 return false; 695 696 if (!AMDGPU::isSISrcInlinableOperand(Desc, UseOpIdx)) 697 return false; 698 699 uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType; 700 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 701 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 702 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 703 return true; 704 } 705 706 if (!OpToFold.isReg()) 707 return false; 708 709 Register UseReg = OpToFold.getReg(); 710 if (!UseReg.isVirtual()) 711 return false; 712 713 if (isUseMIInFoldList(FoldList, UseMI)) 714 return false; 715 716 // Maybe it is just a COPY of an immediate itself. 717 MachineInstr *Def = MRI->getVRegDef(UseReg); 718 MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 719 if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) { 720 MachineOperand &DefOp = Def->getOperand(1); 721 if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) && 722 TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) { 723 UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm()); 724 return true; 725 } 726 } 727 728 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 729 if (!getRegSeqInit(Defs, UseReg, OpTy)) 730 return false; 731 732 int32_t Imm; 733 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 734 const MachineOperand *Op = Defs[I].first; 735 if (!Op->isImm()) 736 return false; 737 738 auto SubImm = Op->getImm(); 739 if (!I) { 740 Imm = SubImm; 741 if (!TII->isInlineConstant(*Op, OpTy) || 742 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 743 return false; 744 745 continue; 746 } 747 if (Imm != SubImm) 748 return false; // Can only fold splat constants 749 } 750 751 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 752 return true; 753 } 754 755 void SIFoldOperands::foldOperand( 756 MachineOperand &OpToFold, 757 MachineInstr *UseMI, 758 int UseOpIdx, 759 SmallVectorImpl<FoldCandidate> &FoldList, 760 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 761 const MachineOperand *UseOp = &UseMI->getOperand(UseOpIdx); 762 763 if (!isUseSafeToFold(*UseMI, *UseOp)) 764 return; 765 766 // FIXME: Fold operands with subregs. 767 if (UseOp->isReg() && OpToFold.isReg() && 768 (UseOp->isImplicit() || UseOp->getSubReg() != AMDGPU::NoSubRegister)) 769 return; 770 771 // Special case for REG_SEQUENCE: We can't fold literals into 772 // REG_SEQUENCE instructions, so we have to fold them into the 773 // uses of REG_SEQUENCE. 774 if (UseMI->isRegSequence()) { 775 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 776 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 777 778 // Grab the use operands first 779 SmallVector<MachineOperand *, 4> UsesToProcess; 780 for (auto &Use : MRI->use_nodbg_operands(RegSeqDstReg)) 781 UsesToProcess.push_back(&Use); 782 for (auto *RSUse : UsesToProcess) { 783 MachineInstr *RSUseMI = RSUse->getParent(); 784 785 if (tryToFoldACImm(UseMI->getOperand(0), RSUseMI, 786 RSUseMI->getOperandNo(RSUse), FoldList)) 787 continue; 788 789 if (RSUse->getSubReg() != RegSeqDstSubReg) 790 continue; 791 792 foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(RSUse), FoldList, 793 CopiesToReplace); 794 } 795 return; 796 } 797 798 if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList)) 799 return; 800 801 if (frameIndexMayFold(*UseMI, UseOpIdx, OpToFold)) { 802 // Verify that this is a stack access. 803 // FIXME: Should probably use stack pseudos before frame lowering. 804 805 if (TII->isMUBUF(*UseMI)) { 806 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 807 MFI->getScratchRSrcReg()) 808 return; 809 810 // Ensure this is either relative to the current frame or the current 811 // wave. 812 MachineOperand &SOff = 813 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 814 if (!SOff.isImm() || SOff.getImm() != 0) 815 return; 816 } 817 818 // A frame index will resolve to a positive constant, so it should always be 819 // safe to fold the addressing mode, even pre-GFX9. 820 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 821 822 const unsigned Opc = UseMI->getOpcode(); 823 if (TII->isFLATScratch(*UseMI) && 824 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr) && 825 !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::saddr)) { 826 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opc); 827 UseMI->setDesc(TII->get(NewOpc)); 828 } 829 830 return; 831 } 832 833 bool FoldingImmLike = 834 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 835 836 if (FoldingImmLike && UseMI->isCopy()) { 837 Register DestReg = UseMI->getOperand(0).getReg(); 838 Register SrcReg = UseMI->getOperand(1).getReg(); 839 assert(SrcReg.isVirtual()); 840 841 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); 842 843 // Don't fold into a copy to a physical register with the same class. Doing 844 // so would interfere with the register coalescer's logic which would avoid 845 // redundant initializations. 846 if (DestReg.isPhysical() && SrcRC->contains(DestReg)) 847 return; 848 849 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); 850 if (!DestReg.isPhysical()) { 851 if (DestRC == &AMDGPU::AGPR_32RegClass && 852 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 853 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 854 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 855 CopiesToReplace.push_back(UseMI); 856 return; 857 } 858 } 859 860 // In order to fold immediates into copies, we need to change the 861 // copy to a MOV. 862 863 unsigned MovOp = TII->getMovOpcode(DestRC); 864 if (MovOp == AMDGPU::COPY) 865 return; 866 867 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 868 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 869 while (ImpOpI != ImpOpE) { 870 MachineInstr::mop_iterator Tmp = ImpOpI; 871 ImpOpI++; 872 UseMI->removeOperand(UseMI->getOperandNo(Tmp)); 873 } 874 UseMI->setDesc(TII->get(MovOp)); 875 876 if (MovOp == AMDGPU::V_MOV_B16_t16_e64) { 877 const auto &SrcOp = UseMI->getOperand(UseOpIdx); 878 MachineOperand NewSrcOp(SrcOp); 879 MachineFunction *MF = UseMI->getParent()->getParent(); 880 UseMI->removeOperand(1); 881 UseMI->addOperand(*MF, MachineOperand::CreateImm(0)); // src0_modifiers 882 UseMI->addOperand(NewSrcOp); // src0 883 UseMI->addOperand(*MF, MachineOperand::CreateImm(0)); // op_sel 884 UseOpIdx = 2; 885 UseOp = &UseMI->getOperand(UseOpIdx); 886 } 887 CopiesToReplace.push_back(UseMI); 888 } else { 889 if (UseMI->isCopy() && OpToFold.isReg() && 890 UseMI->getOperand(0).getReg().isVirtual() && 891 !UseMI->getOperand(1).getSubReg()) { 892 LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI); 893 unsigned Size = TII->getOpSize(*UseMI, 1); 894 Register UseReg = OpToFold.getReg(); 895 UseMI->getOperand(1).setReg(UseReg); 896 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 897 UseMI->getOperand(1).setIsKill(false); 898 CopiesToReplace.push_back(UseMI); 899 OpToFold.setIsKill(false); 900 901 // Remove kill flags as kills may now be out of order with uses. 902 MRI->clearKillFlags(OpToFold.getReg()); 903 904 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 905 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 906 // its initializers right here, so we will rematerialize immediates and 907 // avoid copies via different reg classes. 908 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 909 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 910 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 911 const DebugLoc &DL = UseMI->getDebugLoc(); 912 MachineBasicBlock &MBB = *UseMI->getParent(); 913 914 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 915 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 916 UseMI->removeOperand(I); 917 918 MachineInstrBuilder B(*MBB.getParent(), UseMI); 919 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 920 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 921 for (unsigned I = 0; I < Size / 4; ++I) { 922 MachineOperand *Def = Defs[I].first; 923 TargetInstrInfo::RegSubRegPair CopyToVGPR; 924 if (Def->isImm() && 925 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 926 int64_t Imm = Def->getImm(); 927 928 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 929 BuildMI(MBB, UseMI, DL, 930 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm); 931 B.addReg(Tmp); 932 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 933 auto Src = getRegSubRegPair(*Def); 934 Def->setIsKill(false); 935 if (!SeenAGPRs.insert(Src)) { 936 // We cannot build a reg_sequence out of the same registers, they 937 // must be copied. Better do it here before copyPhysReg() created 938 // several reads to do the AGPR->VGPR->AGPR copy. 939 CopyToVGPR = Src; 940 } else { 941 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 942 Src.SubReg); 943 } 944 } else { 945 assert(Def->isReg()); 946 Def->setIsKill(false); 947 auto Src = getRegSubRegPair(*Def); 948 949 // Direct copy from SGPR to AGPR is not possible. To avoid creation 950 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 951 // create a copy here and track if we already have such a copy. 952 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 953 CopyToVGPR = Src; 954 } else { 955 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 956 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 957 B.addReg(Tmp); 958 } 959 } 960 961 if (CopyToVGPR.Reg) { 962 Register Vgpr; 963 if (VGPRCopies.count(CopyToVGPR)) { 964 Vgpr = VGPRCopies[CopyToVGPR]; 965 } else { 966 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 967 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 968 VGPRCopies[CopyToVGPR] = Vgpr; 969 } 970 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 971 BuildMI(MBB, UseMI, DL, 972 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr); 973 B.addReg(Tmp); 974 } 975 976 B.addImm(Defs[I].second); 977 } 978 LLVM_DEBUG(dbgs() << "Folded " << *UseMI); 979 return; 980 } 981 982 if (Size != 4) 983 return; 984 985 Register Reg0 = UseMI->getOperand(0).getReg(); 986 Register Reg1 = UseMI->getOperand(1).getReg(); 987 if (TRI->isAGPR(*MRI, Reg0) && TRI->isVGPR(*MRI, Reg1)) 988 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 989 else if (TRI->isVGPR(*MRI, Reg0) && TRI->isAGPR(*MRI, Reg1)) 990 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64)); 991 else if (ST->hasGFX90AInsts() && TRI->isAGPR(*MRI, Reg0) && 992 TRI->isAGPR(*MRI, Reg1)) 993 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32)); 994 return; 995 } 996 997 unsigned UseOpc = UseMI->getOpcode(); 998 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 999 (UseOpc == AMDGPU::V_READLANE_B32 && 1000 (int)UseOpIdx == 1001 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 1002 // %vgpr = V_MOV_B32 imm 1003 // %sgpr = V_READFIRSTLANE_B32 %vgpr 1004 // => 1005 // %sgpr = S_MOV_B32 imm 1006 if (FoldingImmLike) { 1007 if (execMayBeModifiedBeforeUse(*MRI, 1008 UseMI->getOperand(UseOpIdx).getReg(), 1009 *OpToFold.getParent(), 1010 *UseMI)) 1011 return; 1012 1013 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 1014 1015 if (OpToFold.isImm()) 1016 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 1017 else 1018 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 1019 UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) 1020 return; 1021 } 1022 1023 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 1024 if (execMayBeModifiedBeforeUse(*MRI, 1025 UseMI->getOperand(UseOpIdx).getReg(), 1026 *OpToFold.getParent(), 1027 *UseMI)) 1028 return; 1029 1030 // %vgpr = COPY %sgpr0 1031 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 1032 // => 1033 // %sgpr1 = COPY %sgpr0 1034 UseMI->setDesc(TII->get(AMDGPU::COPY)); 1035 UseMI->getOperand(1).setReg(OpToFold.getReg()); 1036 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 1037 UseMI->getOperand(1).setIsKill(false); 1038 UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) 1039 return; 1040 } 1041 } 1042 1043 const MCInstrDesc &UseDesc = UseMI->getDesc(); 1044 1045 // Don't fold into target independent nodes. Target independent opcodes 1046 // don't have defined register classes. 1047 if (UseDesc.isVariadic() || UseOp->isImplicit() || 1048 UseDesc.operands()[UseOpIdx].RegClass == -1) 1049 return; 1050 } 1051 1052 if (!FoldingImmLike) { 1053 if (OpToFold.isReg() && ST->needsAlignedVGPRs()) { 1054 // Don't fold if OpToFold doesn't hold an aligned register. 1055 const TargetRegisterClass *RC = 1056 TRI->getRegClassForReg(*MRI, OpToFold.getReg()); 1057 assert(RC); 1058 if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) { 1059 unsigned SubReg = OpToFold.getSubReg(); 1060 if (const TargetRegisterClass *SubRC = 1061 TRI->getSubRegisterClass(RC, SubReg)) 1062 RC = SubRC; 1063 } 1064 1065 if (!RC || !TRI->isProperlyAlignedRC(*RC)) 1066 return; 1067 } 1068 1069 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold); 1070 1071 // FIXME: We could try to change the instruction from 64-bit to 32-bit 1072 // to enable more folding opportunities. The shrink operands pass 1073 // already does this. 1074 return; 1075 } 1076 1077 1078 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 1079 const TargetRegisterClass *FoldRC = 1080 TRI->getRegClass(FoldDesc.operands()[0].RegClass); 1081 1082 // Split 64-bit constants into 32-bits for folding. 1083 if (UseOp->getSubReg() && AMDGPU::getRegBitWidth(*FoldRC) == 64) { 1084 Register UseReg = UseOp->getReg(); 1085 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 1086 if (AMDGPU::getRegBitWidth(*UseRC) != 64) 1087 return; 1088 1089 APInt Imm(64, OpToFold.getImm()); 1090 if (UseOp->getSubReg() == AMDGPU::sub0) { 1091 Imm = Imm.getLoBits(32); 1092 } else { 1093 assert(UseOp->getSubReg() == AMDGPU::sub1); 1094 Imm = Imm.getHiBits(32); 1095 } 1096 1097 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 1098 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp); 1099 return; 1100 } 1101 1102 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold); 1103 } 1104 1105 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 1106 uint32_t LHS, uint32_t RHS) { 1107 switch (Opcode) { 1108 case AMDGPU::V_AND_B32_e64: 1109 case AMDGPU::V_AND_B32_e32: 1110 case AMDGPU::S_AND_B32: 1111 Result = LHS & RHS; 1112 return true; 1113 case AMDGPU::V_OR_B32_e64: 1114 case AMDGPU::V_OR_B32_e32: 1115 case AMDGPU::S_OR_B32: 1116 Result = LHS | RHS; 1117 return true; 1118 case AMDGPU::V_XOR_B32_e64: 1119 case AMDGPU::V_XOR_B32_e32: 1120 case AMDGPU::S_XOR_B32: 1121 Result = LHS ^ RHS; 1122 return true; 1123 case AMDGPU::S_XNOR_B32: 1124 Result = ~(LHS ^ RHS); 1125 return true; 1126 case AMDGPU::S_NAND_B32: 1127 Result = ~(LHS & RHS); 1128 return true; 1129 case AMDGPU::S_NOR_B32: 1130 Result = ~(LHS | RHS); 1131 return true; 1132 case AMDGPU::S_ANDN2_B32: 1133 Result = LHS & ~RHS; 1134 return true; 1135 case AMDGPU::S_ORN2_B32: 1136 Result = LHS | ~RHS; 1137 return true; 1138 case AMDGPU::V_LSHL_B32_e64: 1139 case AMDGPU::V_LSHL_B32_e32: 1140 case AMDGPU::S_LSHL_B32: 1141 // The instruction ignores the high bits for out of bounds shifts. 1142 Result = LHS << (RHS & 31); 1143 return true; 1144 case AMDGPU::V_LSHLREV_B32_e64: 1145 case AMDGPU::V_LSHLREV_B32_e32: 1146 Result = RHS << (LHS & 31); 1147 return true; 1148 case AMDGPU::V_LSHR_B32_e64: 1149 case AMDGPU::V_LSHR_B32_e32: 1150 case AMDGPU::S_LSHR_B32: 1151 Result = LHS >> (RHS & 31); 1152 return true; 1153 case AMDGPU::V_LSHRREV_B32_e64: 1154 case AMDGPU::V_LSHRREV_B32_e32: 1155 Result = RHS >> (LHS & 31); 1156 return true; 1157 case AMDGPU::V_ASHR_I32_e64: 1158 case AMDGPU::V_ASHR_I32_e32: 1159 case AMDGPU::S_ASHR_I32: 1160 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 1161 return true; 1162 case AMDGPU::V_ASHRREV_I32_e64: 1163 case AMDGPU::V_ASHRREV_I32_e32: 1164 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 1165 return true; 1166 default: 1167 return false; 1168 } 1169 } 1170 1171 static unsigned getMovOpc(bool IsScalar) { 1172 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1173 } 1174 1175 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 1176 MI.setDesc(NewDesc); 1177 1178 // Remove any leftover implicit operands from mutating the instruction. e.g. 1179 // if we replace an s_and_b32 with a copy, we don't need the implicit scc def 1180 // anymore. 1181 const MCInstrDesc &Desc = MI.getDesc(); 1182 unsigned NumOps = Desc.getNumOperands() + Desc.implicit_uses().size() + 1183 Desc.implicit_defs().size(); 1184 1185 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 1186 MI.removeOperand(I); 1187 } 1188 1189 MachineOperand * 1190 SIFoldOperands::getImmOrMaterializedImm(MachineOperand &Op) const { 1191 // If this has a subregister, it obviously is a register source. 1192 if (!Op.isReg() || Op.getSubReg() != AMDGPU::NoSubRegister || 1193 !Op.getReg().isVirtual()) 1194 return &Op; 1195 1196 MachineInstr *Def = MRI->getVRegDef(Op.getReg()); 1197 if (Def && Def->isMoveImmediate()) { 1198 MachineOperand &ImmSrc = Def->getOperand(1); 1199 if (ImmSrc.isImm()) 1200 return &ImmSrc; 1201 } 1202 1203 return &Op; 1204 } 1205 1206 // Try to simplify operations with a constant that may appear after instruction 1207 // selection. 1208 // TODO: See if a frame index with a fixed offset can fold. 1209 bool SIFoldOperands::tryConstantFoldOp(MachineInstr *MI) const { 1210 if (!MI->allImplicitDefsAreDead()) 1211 return false; 1212 1213 unsigned Opc = MI->getOpcode(); 1214 1215 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1216 if (Src0Idx == -1) 1217 return false; 1218 MachineOperand *Src0 = getImmOrMaterializedImm(MI->getOperand(Src0Idx)); 1219 1220 if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1221 Opc == AMDGPU::S_NOT_B32) && 1222 Src0->isImm()) { 1223 MI->getOperand(1).ChangeToImmediate(~Src0->getImm()); 1224 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1225 return true; 1226 } 1227 1228 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1229 if (Src1Idx == -1) 1230 return false; 1231 MachineOperand *Src1 = getImmOrMaterializedImm(MI->getOperand(Src1Idx)); 1232 1233 if (!Src0->isImm() && !Src1->isImm()) 1234 return false; 1235 1236 // and k0, k1 -> v_mov_b32 (k0 & k1) 1237 // or k0, k1 -> v_mov_b32 (k0 | k1) 1238 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1239 if (Src0->isImm() && Src1->isImm()) { 1240 int32_t NewImm; 1241 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1242 return false; 1243 1244 bool IsSGPR = TRI->isSGPRReg(*MRI, MI->getOperand(0).getReg()); 1245 1246 // Be careful to change the right operand, src0 may belong to a different 1247 // instruction. 1248 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1249 MI->removeOperand(Src1Idx); 1250 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1251 return true; 1252 } 1253 1254 if (!MI->isCommutable()) 1255 return false; 1256 1257 if (Src0->isImm() && !Src1->isImm()) { 1258 std::swap(Src0, Src1); 1259 std::swap(Src0Idx, Src1Idx); 1260 } 1261 1262 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1263 if (Opc == AMDGPU::V_OR_B32_e64 || 1264 Opc == AMDGPU::V_OR_B32_e32 || 1265 Opc == AMDGPU::S_OR_B32) { 1266 if (Src1Val == 0) { 1267 // y = or x, 0 => y = copy x 1268 MI->removeOperand(Src1Idx); 1269 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1270 } else if (Src1Val == -1) { 1271 // y = or x, -1 => y = v_mov_b32 -1 1272 MI->removeOperand(Src1Idx); 1273 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1274 } else 1275 return false; 1276 1277 return true; 1278 } 1279 1280 if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 || 1281 Opc == AMDGPU::S_AND_B32) { 1282 if (Src1Val == 0) { 1283 // y = and x, 0 => y = v_mov_b32 0 1284 MI->removeOperand(Src0Idx); 1285 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1286 } else if (Src1Val == -1) { 1287 // y = and x, -1 => y = copy x 1288 MI->removeOperand(Src1Idx); 1289 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1290 } else 1291 return false; 1292 1293 return true; 1294 } 1295 1296 if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 || 1297 Opc == AMDGPU::S_XOR_B32) { 1298 if (Src1Val == 0) { 1299 // y = xor x, 0 => y = copy x 1300 MI->removeOperand(Src1Idx); 1301 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1302 return true; 1303 } 1304 } 1305 1306 return false; 1307 } 1308 1309 // Try to fold an instruction into a simpler one 1310 bool SIFoldOperands::tryFoldCndMask(MachineInstr &MI) const { 1311 unsigned Opc = MI.getOpcode(); 1312 if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 && 1313 Opc != AMDGPU::V_CNDMASK_B64_PSEUDO) 1314 return false; 1315 1316 MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1317 MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1318 if (!Src1->isIdenticalTo(*Src0)) { 1319 auto *Src0Imm = getImmOrMaterializedImm(*Src0); 1320 auto *Src1Imm = getImmOrMaterializedImm(*Src1); 1321 if (!Src1Imm->isIdenticalTo(*Src0Imm)) 1322 return false; 1323 } 1324 1325 int Src1ModIdx = 1326 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1327 int Src0ModIdx = 1328 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1329 if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) || 1330 (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0)) 1331 return false; 1332 1333 LLVM_DEBUG(dbgs() << "Folded " << MI << " into "); 1334 auto &NewDesc = 1335 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1336 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1337 if (Src2Idx != -1) 1338 MI.removeOperand(Src2Idx); 1339 MI.removeOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1340 if (Src1ModIdx != -1) 1341 MI.removeOperand(Src1ModIdx); 1342 if (Src0ModIdx != -1) 1343 MI.removeOperand(Src0ModIdx); 1344 mutateCopyOp(MI, NewDesc); 1345 LLVM_DEBUG(dbgs() << MI); 1346 return true; 1347 } 1348 1349 bool SIFoldOperands::tryFoldZeroHighBits(MachineInstr &MI) const { 1350 if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 && 1351 MI.getOpcode() != AMDGPU::V_AND_B32_e32) 1352 return false; 1353 1354 MachineOperand *Src0 = getImmOrMaterializedImm(MI.getOperand(1)); 1355 if (!Src0->isImm() || Src0->getImm() != 0xffff) 1356 return false; 1357 1358 Register Src1 = MI.getOperand(2).getReg(); 1359 MachineInstr *SrcDef = MRI->getVRegDef(Src1); 1360 if (!ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode())) 1361 return false; 1362 1363 Register Dst = MI.getOperand(0).getReg(); 1364 MRI->replaceRegWith(Dst, Src1); 1365 if (!MI.getOperand(2).isKill()) 1366 MRI->clearKillFlags(Src1); 1367 MI.eraseFromParent(); 1368 return true; 1369 } 1370 1371 bool SIFoldOperands::foldInstOperand(MachineInstr &MI, 1372 MachineOperand &OpToFold) const { 1373 // We need mutate the operands of new mov instructions to add implicit 1374 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1375 // this. 1376 SmallVector<MachineInstr *, 4> CopiesToReplace; 1377 SmallVector<FoldCandidate, 4> FoldList; 1378 MachineOperand &Dst = MI.getOperand(0); 1379 bool Changed = false; 1380 1381 if (OpToFold.isImm()) { 1382 for (auto &UseMI : 1383 make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) { 1384 // Folding the immediate may reveal operations that can be constant 1385 // folded or replaced with a copy. This can happen for example after 1386 // frame indices are lowered to constants or from splitting 64-bit 1387 // constants. 1388 // 1389 // We may also encounter cases where one or both operands are 1390 // immediates materialized into a register, which would ordinarily not 1391 // be folded due to multiple uses or operand constraints. 1392 if (tryConstantFoldOp(&UseMI)) { 1393 LLVM_DEBUG(dbgs() << "Constant folded " << UseMI); 1394 Changed = true; 1395 } 1396 } 1397 } 1398 1399 SmallVector<MachineOperand *, 4> UsesToProcess; 1400 for (auto &Use : MRI->use_nodbg_operands(Dst.getReg())) 1401 UsesToProcess.push_back(&Use); 1402 for (auto *U : UsesToProcess) { 1403 MachineInstr *UseMI = U->getParent(); 1404 foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U), FoldList, 1405 CopiesToReplace); 1406 } 1407 1408 if (CopiesToReplace.empty() && FoldList.empty()) 1409 return Changed; 1410 1411 MachineFunction *MF = MI.getParent()->getParent(); 1412 // Make sure we add EXEC uses to any new v_mov instructions created. 1413 for (MachineInstr *Copy : CopiesToReplace) 1414 Copy->addImplicitDefUseOperands(*MF); 1415 1416 for (FoldCandidate &Fold : FoldList) { 1417 assert(!Fold.isReg() || Fold.OpToFold); 1418 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { 1419 Register Reg = Fold.OpToFold->getReg(); 1420 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1421 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1422 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1423 continue; 1424 } 1425 if (updateOperand(Fold)) { 1426 // Clear kill flags. 1427 if (Fold.isReg()) { 1428 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1429 // FIXME: Probably shouldn't bother trying to fold if not an 1430 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1431 // copies. 1432 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1433 } 1434 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1435 << static_cast<int>(Fold.UseOpNo) << " of " 1436 << *Fold.UseMI); 1437 } else if (Fold.Commuted) { 1438 // Restoring instruction's original operand order if fold has failed. 1439 TII->commuteInstruction(*Fold.UseMI, false); 1440 } 1441 } 1442 return true; 1443 } 1444 1445 bool SIFoldOperands::tryFoldFoldableCopy( 1446 MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const { 1447 // Specially track simple redefs of m0 to the same value in a block, so we 1448 // can erase the later ones. 1449 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1450 MachineOperand &NewM0Val = MI.getOperand(1); 1451 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1452 MI.eraseFromParent(); 1453 return true; 1454 } 1455 1456 // We aren't tracking other physical registers 1457 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) 1458 ? nullptr 1459 : &NewM0Val; 1460 return false; 1461 } 1462 1463 MachineOperand &OpToFold = MI.getOperand(1); 1464 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1465 1466 // FIXME: We could also be folding things like TargetIndexes. 1467 if (!FoldingImm && !OpToFold.isReg()) 1468 return false; 1469 1470 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) 1471 return false; 1472 1473 // Prevent folding operands backwards in the function. For example, 1474 // the COPY opcode must not be replaced by 1 in this example: 1475 // 1476 // %3 = COPY %vgpr0; VGPR_32:%3 1477 // ... 1478 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1479 if (!MI.getOperand(0).getReg().isVirtual()) 1480 return false; 1481 1482 bool Changed = foldInstOperand(MI, OpToFold); 1483 1484 // If we managed to fold all uses of this copy then we might as well 1485 // delete it now. 1486 // The only reason we need to follow chains of copies here is that 1487 // tryFoldRegSequence looks forward through copies before folding a 1488 // REG_SEQUENCE into its eventual users. 1489 auto *InstToErase = &MI; 1490 while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { 1491 auto &SrcOp = InstToErase->getOperand(1); 1492 auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register(); 1493 InstToErase->eraseFromParent(); 1494 Changed = true; 1495 InstToErase = nullptr; 1496 if (!SrcReg || SrcReg.isPhysical()) 1497 break; 1498 InstToErase = MRI->getVRegDef(SrcReg); 1499 if (!InstToErase || !TII->isFoldableCopy(*InstToErase)) 1500 break; 1501 } 1502 1503 if (InstToErase && InstToErase->isRegSequence() && 1504 MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { 1505 InstToErase->eraseFromParent(); 1506 Changed = true; 1507 } 1508 1509 return Changed; 1510 } 1511 1512 // Clamp patterns are canonically selected to v_max_* instructions, so only 1513 // handle them. 1514 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1515 unsigned Op = MI.getOpcode(); 1516 switch (Op) { 1517 case AMDGPU::V_MAX_F32_e64: 1518 case AMDGPU::V_MAX_F16_e64: 1519 case AMDGPU::V_MAX_F16_t16_e64: 1520 case AMDGPU::V_MAX_F16_fake16_e64: 1521 case AMDGPU::V_MAX_F64_e64: 1522 case AMDGPU::V_MAX_NUM_F64_e64: 1523 case AMDGPU::V_PK_MAX_F16: { 1524 if (MI.mayRaiseFPException()) 1525 return nullptr; 1526 1527 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1528 return nullptr; 1529 1530 // Make sure sources are identical. 1531 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1532 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1533 if (!Src0->isReg() || !Src1->isReg() || 1534 Src0->getReg() != Src1->getReg() || 1535 Src0->getSubReg() != Src1->getSubReg() || 1536 Src0->getSubReg() != AMDGPU::NoSubRegister) 1537 return nullptr; 1538 1539 // Can't fold up if we have modifiers. 1540 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1541 return nullptr; 1542 1543 unsigned Src0Mods 1544 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1545 unsigned Src1Mods 1546 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1547 1548 // Having a 0 op_sel_hi would require swizzling the output in the source 1549 // instruction, which we can't do. 1550 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1551 : 0u; 1552 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1553 return nullptr; 1554 return Src0; 1555 } 1556 default: 1557 return nullptr; 1558 } 1559 } 1560 1561 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1562 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1563 const MachineOperand *ClampSrc = isClamp(MI); 1564 if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg())) 1565 return false; 1566 1567 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1568 1569 // The type of clamp must be compatible. 1570 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1571 return false; 1572 1573 if (Def->mayRaiseFPException()) 1574 return false; 1575 1576 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1577 if (!DefClamp) 1578 return false; 1579 1580 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def); 1581 1582 // Clamp is applied after omod, so it is OK if omod is set. 1583 DefClamp->setImm(1); 1584 1585 Register DefReg = Def->getOperand(0).getReg(); 1586 Register MIDstReg = MI.getOperand(0).getReg(); 1587 if (TRI->isSGPRReg(*MRI, DefReg)) { 1588 // Pseudo scalar instructions have a SGPR for dst and clamp is a v_max* 1589 // instruction with a VGPR dst. 1590 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(AMDGPU::COPY), 1591 MIDstReg) 1592 .addReg(DefReg); 1593 } else { 1594 MRI->replaceRegWith(MIDstReg, DefReg); 1595 } 1596 MI.eraseFromParent(); 1597 1598 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac 1599 // instruction, so we might as well convert it to the more flexible VOP3-only 1600 // mad/fma form. 1601 if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) 1602 Def->eraseFromParent(); 1603 1604 return true; 1605 } 1606 1607 static int getOModValue(unsigned Opc, int64_t Val) { 1608 switch (Opc) { 1609 case AMDGPU::V_MUL_F64_e64: 1610 case AMDGPU::V_MUL_F64_pseudo_e64: { 1611 switch (Val) { 1612 case 0x3fe0000000000000: // 0.5 1613 return SIOutMods::DIV2; 1614 case 0x4000000000000000: // 2.0 1615 return SIOutMods::MUL2; 1616 case 0x4010000000000000: // 4.0 1617 return SIOutMods::MUL4; 1618 default: 1619 return SIOutMods::NONE; 1620 } 1621 } 1622 case AMDGPU::V_MUL_F32_e64: { 1623 switch (static_cast<uint32_t>(Val)) { 1624 case 0x3f000000: // 0.5 1625 return SIOutMods::DIV2; 1626 case 0x40000000: // 2.0 1627 return SIOutMods::MUL2; 1628 case 0x40800000: // 4.0 1629 return SIOutMods::MUL4; 1630 default: 1631 return SIOutMods::NONE; 1632 } 1633 } 1634 case AMDGPU::V_MUL_F16_e64: 1635 case AMDGPU::V_MUL_F16_t16_e64: 1636 case AMDGPU::V_MUL_F16_fake16_e64: { 1637 switch (static_cast<uint16_t>(Val)) { 1638 case 0x3800: // 0.5 1639 return SIOutMods::DIV2; 1640 case 0x4000: // 2.0 1641 return SIOutMods::MUL2; 1642 case 0x4400: // 4.0 1643 return SIOutMods::MUL4; 1644 default: 1645 return SIOutMods::NONE; 1646 } 1647 } 1648 default: 1649 llvm_unreachable("invalid mul opcode"); 1650 } 1651 } 1652 1653 // FIXME: Does this really not support denormals with f16? 1654 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1655 // handled, so will anything other than that break? 1656 std::pair<const MachineOperand *, int> 1657 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1658 unsigned Op = MI.getOpcode(); 1659 switch (Op) { 1660 case AMDGPU::V_MUL_F64_e64: 1661 case AMDGPU::V_MUL_F64_pseudo_e64: 1662 case AMDGPU::V_MUL_F32_e64: 1663 case AMDGPU::V_MUL_F16_t16_e64: 1664 case AMDGPU::V_MUL_F16_fake16_e64: 1665 case AMDGPU::V_MUL_F16_e64: { 1666 // If output denormals are enabled, omod is ignored. 1667 if ((Op == AMDGPU::V_MUL_F32_e64 && 1668 MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || 1669 ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F64_pseudo_e64 || 1670 Op == AMDGPU::V_MUL_F16_e64 || Op == AMDGPU::V_MUL_F16_t16_e64 || 1671 Op == AMDGPU::V_MUL_F16_fake16_e64) && 1672 MFI->getMode().FP64FP16Denormals.Output != 1673 DenormalMode::PreserveSign) || 1674 MI.mayRaiseFPException()) 1675 return std::pair(nullptr, SIOutMods::NONE); 1676 1677 const MachineOperand *RegOp = nullptr; 1678 const MachineOperand *ImmOp = nullptr; 1679 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1680 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1681 if (Src0->isImm()) { 1682 ImmOp = Src0; 1683 RegOp = Src1; 1684 } else if (Src1->isImm()) { 1685 ImmOp = Src1; 1686 RegOp = Src0; 1687 } else 1688 return std::pair(nullptr, SIOutMods::NONE); 1689 1690 int OMod = getOModValue(Op, ImmOp->getImm()); 1691 if (OMod == SIOutMods::NONE || 1692 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1693 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1694 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1695 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1696 return std::pair(nullptr, SIOutMods::NONE); 1697 1698 return std::pair(RegOp, OMod); 1699 } 1700 case AMDGPU::V_ADD_F64_e64: 1701 case AMDGPU::V_ADD_F64_pseudo_e64: 1702 case AMDGPU::V_ADD_F32_e64: 1703 case AMDGPU::V_ADD_F16_e64: 1704 case AMDGPU::V_ADD_F16_t16_e64: 1705 case AMDGPU::V_ADD_F16_fake16_e64: { 1706 // If output denormals are enabled, omod is ignored. 1707 if ((Op == AMDGPU::V_ADD_F32_e64 && 1708 MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || 1709 ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F64_pseudo_e64 || 1710 Op == AMDGPU::V_ADD_F16_e64 || Op == AMDGPU::V_ADD_F16_t16_e64 || 1711 Op == AMDGPU::V_ADD_F16_fake16_e64) && 1712 MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign)) 1713 return std::pair(nullptr, SIOutMods::NONE); 1714 1715 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1716 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1717 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1718 1719 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1720 Src0->getSubReg() == Src1->getSubReg() && 1721 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1722 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1723 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1724 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1725 return std::pair(Src0, SIOutMods::MUL2); 1726 1727 return std::pair(nullptr, SIOutMods::NONE); 1728 } 1729 default: 1730 return std::pair(nullptr, SIOutMods::NONE); 1731 } 1732 } 1733 1734 // FIXME: Does this need to check IEEE bit on function? 1735 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1736 const MachineOperand *RegOp; 1737 int OMod; 1738 std::tie(RegOp, OMod) = isOMod(MI); 1739 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1740 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1741 !MRI->hasOneNonDBGUser(RegOp->getReg())) 1742 return false; 1743 1744 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1745 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1746 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1747 return false; 1748 1749 if (Def->mayRaiseFPException()) 1750 return false; 1751 1752 // Clamp is applied after omod. If the source already has clamp set, don't 1753 // fold it. 1754 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1755 return false; 1756 1757 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def); 1758 1759 DefOMod->setImm(OMod); 1760 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1761 MI.eraseFromParent(); 1762 1763 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac 1764 // instruction, so we might as well convert it to the more flexible VOP3-only 1765 // mad/fma form. 1766 if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) 1767 Def->eraseFromParent(); 1768 1769 return true; 1770 } 1771 1772 // Try to fold a reg_sequence with vgpr output and agpr inputs into an 1773 // instruction which can take an agpr. So far that means a store. 1774 bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) { 1775 assert(MI.isRegSequence()); 1776 auto Reg = MI.getOperand(0).getReg(); 1777 1778 if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) || 1779 !MRI->hasOneNonDBGUse(Reg)) 1780 return false; 1781 1782 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 1783 if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER)) 1784 return false; 1785 1786 for (auto &[Op, SubIdx] : Defs) { 1787 if (!Op->isReg()) 1788 return false; 1789 if (TRI->isAGPR(*MRI, Op->getReg())) 1790 continue; 1791 // Maybe this is a COPY from AREG 1792 const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg()); 1793 if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg()) 1794 return false; 1795 if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg())) 1796 return false; 1797 } 1798 1799 MachineOperand *Op = &*MRI->use_nodbg_begin(Reg); 1800 MachineInstr *UseMI = Op->getParent(); 1801 while (UseMI->isCopy() && !Op->getSubReg()) { 1802 Reg = UseMI->getOperand(0).getReg(); 1803 if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg)) 1804 return false; 1805 Op = &*MRI->use_nodbg_begin(Reg); 1806 UseMI = Op->getParent(); 1807 } 1808 1809 if (Op->getSubReg()) 1810 return false; 1811 1812 unsigned OpIdx = Op - &UseMI->getOperand(0); 1813 const MCInstrDesc &InstDesc = UseMI->getDesc(); 1814 const TargetRegisterClass *OpRC = 1815 TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF()); 1816 if (!OpRC || !TRI->isVectorSuperClass(OpRC)) 1817 return false; 1818 1819 const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)); 1820 auto Dst = MRI->createVirtualRegister(NewDstRC); 1821 auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1822 TII->get(AMDGPU::REG_SEQUENCE), Dst); 1823 1824 for (auto &[Def, SubIdx] : Defs) { 1825 Def->setIsKill(false); 1826 if (TRI->isAGPR(*MRI, Def->getReg())) { 1827 RS.add(*Def); 1828 } else { // This is a copy 1829 MachineInstr *SubDef = MRI->getVRegDef(Def->getReg()); 1830 SubDef->getOperand(1).setIsKill(false); 1831 RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg()); 1832 } 1833 RS.addImm(SubIdx); 1834 } 1835 1836 Op->setReg(Dst); 1837 if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) { 1838 Op->setReg(Reg); 1839 RS->eraseFromParent(); 1840 return false; 1841 } 1842 1843 LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI); 1844 1845 // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users, 1846 // in which case we can erase them all later in runOnMachineFunction. 1847 if (MRI->use_nodbg_empty(MI.getOperand(0).getReg())) 1848 MI.eraseFromParent(); 1849 return true; 1850 } 1851 1852 /// Checks whether \p Copy is a AGPR -> VGPR copy. Returns `true` on success and 1853 /// stores the AGPR register in \p OutReg and the subreg in \p OutSubReg 1854 static bool isAGPRCopy(const SIRegisterInfo &TRI, 1855 const MachineRegisterInfo &MRI, const MachineInstr &Copy, 1856 Register &OutReg, unsigned &OutSubReg) { 1857 assert(Copy.isCopy()); 1858 1859 const MachineOperand &CopySrc = Copy.getOperand(1); 1860 Register CopySrcReg = CopySrc.getReg(); 1861 if (!CopySrcReg.isVirtual()) 1862 return false; 1863 1864 // Common case: copy from AGPR directly, e.g. 1865 // %1:vgpr_32 = COPY %0:agpr_32 1866 if (TRI.isAGPR(MRI, CopySrcReg)) { 1867 OutReg = CopySrcReg; 1868 OutSubReg = CopySrc.getSubReg(); 1869 return true; 1870 } 1871 1872 // Sometimes it can also involve two copies, e.g. 1873 // %1:vgpr_256 = COPY %0:agpr_256 1874 // %2:vgpr_32 = COPY %1:vgpr_256.sub0 1875 const MachineInstr *CopySrcDef = MRI.getVRegDef(CopySrcReg); 1876 if (!CopySrcDef || !CopySrcDef->isCopy()) 1877 return false; 1878 1879 const MachineOperand &OtherCopySrc = CopySrcDef->getOperand(1); 1880 Register OtherCopySrcReg = OtherCopySrc.getReg(); 1881 if (!OtherCopySrcReg.isVirtual() || 1882 CopySrcDef->getOperand(0).getSubReg() != AMDGPU::NoSubRegister || 1883 OtherCopySrc.getSubReg() != AMDGPU::NoSubRegister || 1884 !TRI.isAGPR(MRI, OtherCopySrcReg)) 1885 return false; 1886 1887 OutReg = OtherCopySrcReg; 1888 OutSubReg = CopySrc.getSubReg(); 1889 return true; 1890 } 1891 1892 // Try to hoist an AGPR to VGPR copy across a PHI. 1893 // This should allow folding of an AGPR into a consumer which may support it. 1894 // 1895 // Example 1: LCSSA PHI 1896 // loop: 1897 // %1:vreg = COPY %0:areg 1898 // exit: 1899 // %2:vreg = PHI %1:vreg, %loop 1900 // => 1901 // loop: 1902 // exit: 1903 // %1:areg = PHI %0:areg, %loop 1904 // %2:vreg = COPY %1:areg 1905 // 1906 // Example 2: PHI with multiple incoming values: 1907 // entry: 1908 // %1:vreg = GLOBAL_LOAD(..) 1909 // loop: 1910 // %2:vreg = PHI %1:vreg, %entry, %5:vreg, %loop 1911 // %3:areg = COPY %2:vreg 1912 // %4:areg = (instr using %3:areg) 1913 // %5:vreg = COPY %4:areg 1914 // => 1915 // entry: 1916 // %1:vreg = GLOBAL_LOAD(..) 1917 // %2:areg = COPY %1:vreg 1918 // loop: 1919 // %3:areg = PHI %2:areg, %entry, %X:areg, 1920 // %4:areg = (instr using %3:areg) 1921 bool SIFoldOperands::tryFoldPhiAGPR(MachineInstr &PHI) { 1922 assert(PHI.isPHI()); 1923 1924 Register PhiOut = PHI.getOperand(0).getReg(); 1925 if (!TRI->isVGPR(*MRI, PhiOut)) 1926 return false; 1927 1928 // Iterate once over all incoming values of the PHI to check if this PHI is 1929 // eligible, and determine the exact AGPR RC we'll target. 1930 const TargetRegisterClass *ARC = nullptr; 1931 for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { 1932 MachineOperand &MO = PHI.getOperand(K); 1933 MachineInstr *Copy = MRI->getVRegDef(MO.getReg()); 1934 if (!Copy || !Copy->isCopy()) 1935 continue; 1936 1937 Register AGPRSrc; 1938 unsigned AGPRRegMask = AMDGPU::NoSubRegister; 1939 if (!isAGPRCopy(*TRI, *MRI, *Copy, AGPRSrc, AGPRRegMask)) 1940 continue; 1941 1942 const TargetRegisterClass *CopyInRC = MRI->getRegClass(AGPRSrc); 1943 if (const auto *SubRC = TRI->getSubRegisterClass(CopyInRC, AGPRRegMask)) 1944 CopyInRC = SubRC; 1945 1946 if (ARC && !ARC->hasSubClassEq(CopyInRC)) 1947 return false; 1948 ARC = CopyInRC; 1949 } 1950 1951 if (!ARC) 1952 return false; 1953 1954 bool IsAGPR32 = (ARC == &AMDGPU::AGPR_32RegClass); 1955 1956 // Rewrite the PHI's incoming values to ARC. 1957 LLVM_DEBUG(dbgs() << "Folding AGPR copies into: " << PHI); 1958 for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { 1959 MachineOperand &MO = PHI.getOperand(K); 1960 Register Reg = MO.getReg(); 1961 1962 MachineBasicBlock::iterator InsertPt; 1963 MachineBasicBlock *InsertMBB = nullptr; 1964 1965 // Look at the def of Reg, ignoring all copies. 1966 unsigned CopyOpc = AMDGPU::COPY; 1967 if (MachineInstr *Def = MRI->getVRegDef(Reg)) { 1968 1969 // Look at pre-existing COPY instructions from ARC: Steal the operand. If 1970 // the copy was single-use, it will be removed by DCE later. 1971 if (Def->isCopy()) { 1972 Register AGPRSrc; 1973 unsigned AGPRSubReg = AMDGPU::NoSubRegister; 1974 if (isAGPRCopy(*TRI, *MRI, *Def, AGPRSrc, AGPRSubReg)) { 1975 MO.setReg(AGPRSrc); 1976 MO.setSubReg(AGPRSubReg); 1977 continue; 1978 } 1979 1980 // If this is a multi-use SGPR -> VGPR copy, use V_ACCVGPR_WRITE on 1981 // GFX908 directly instead of a COPY. Otherwise, SIFoldOperand may try 1982 // to fold the sgpr -> vgpr -> agpr copy into a sgpr -> agpr copy which 1983 // is unlikely to be profitable. 1984 // 1985 // Note that V_ACCVGPR_WRITE is only used for AGPR_32. 1986 MachineOperand &CopyIn = Def->getOperand(1); 1987 if (IsAGPR32 && !ST->hasGFX90AInsts() && !MRI->hasOneNonDBGUse(Reg) && 1988 TRI->isSGPRReg(*MRI, CopyIn.getReg())) 1989 CopyOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; 1990 } 1991 1992 InsertMBB = Def->getParent(); 1993 InsertPt = InsertMBB->SkipPHIsLabelsAndDebug(++Def->getIterator()); 1994 } else { 1995 InsertMBB = PHI.getOperand(MO.getOperandNo() + 1).getMBB(); 1996 InsertPt = InsertMBB->getFirstTerminator(); 1997 } 1998 1999 Register NewReg = MRI->createVirtualRegister(ARC); 2000 MachineInstr *MI = BuildMI(*InsertMBB, InsertPt, PHI.getDebugLoc(), 2001 TII->get(CopyOpc), NewReg) 2002 .addReg(Reg); 2003 MO.setReg(NewReg); 2004 2005 (void)MI; 2006 LLVM_DEBUG(dbgs() << " Created COPY: " << *MI); 2007 } 2008 2009 // Replace the PHI's result with a new register. 2010 Register NewReg = MRI->createVirtualRegister(ARC); 2011 PHI.getOperand(0).setReg(NewReg); 2012 2013 // COPY that new register back to the original PhiOut register. This COPY will 2014 // usually be folded out later. 2015 MachineBasicBlock *MBB = PHI.getParent(); 2016 BuildMI(*MBB, MBB->getFirstNonPHI(), PHI.getDebugLoc(), 2017 TII->get(AMDGPU::COPY), PhiOut) 2018 .addReg(NewReg); 2019 2020 LLVM_DEBUG(dbgs() << " Done: Folded " << PHI); 2021 return true; 2022 } 2023 2024 // Attempt to convert VGPR load to an AGPR load. 2025 bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) { 2026 assert(MI.mayLoad()); 2027 if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1) 2028 return false; 2029 2030 MachineOperand &Def = MI.getOperand(0); 2031 if (!Def.isDef()) 2032 return false; 2033 2034 Register DefReg = Def.getReg(); 2035 2036 if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg)) 2037 return false; 2038 2039 SmallVector<const MachineInstr*, 8> Users; 2040 SmallVector<Register, 8> MoveRegs; 2041 for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg)) 2042 Users.push_back(&I); 2043 2044 if (Users.empty()) 2045 return false; 2046 2047 // Check that all uses a copy to an agpr or a reg_sequence producing an agpr. 2048 while (!Users.empty()) { 2049 const MachineInstr *I = Users.pop_back_val(); 2050 if (!I->isCopy() && !I->isRegSequence()) 2051 return false; 2052 Register DstReg = I->getOperand(0).getReg(); 2053 // Physical registers may have more than one instruction definitions 2054 if (DstReg.isPhysical()) 2055 return false; 2056 if (TRI->isAGPR(*MRI, DstReg)) 2057 continue; 2058 MoveRegs.push_back(DstReg); 2059 for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg)) 2060 Users.push_back(&U); 2061 } 2062 2063 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 2064 MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC)); 2065 if (!TII->isOperandLegal(MI, 0, &Def)) { 2066 MRI->setRegClass(DefReg, RC); 2067 return false; 2068 } 2069 2070 while (!MoveRegs.empty()) { 2071 Register Reg = MoveRegs.pop_back_val(); 2072 MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg))); 2073 } 2074 2075 LLVM_DEBUG(dbgs() << "Folded " << MI); 2076 2077 return true; 2078 } 2079 2080 // tryFoldPhiAGPR will aggressively try to create AGPR PHIs. 2081 // For GFX90A and later, this is pretty much always a good thing, but for GFX908 2082 // there's cases where it can create a lot more AGPR-AGPR copies, which are 2083 // expensive on this architecture due to the lack of V_ACCVGPR_MOV. 2084 // 2085 // This function looks at all AGPR PHIs in a basic block and collects their 2086 // operands. Then, it checks for register that are used more than once across 2087 // all PHIs and caches them in a VGPR. This prevents ExpandPostRAPseudo from 2088 // having to create one VGPR temporary per use, which can get very messy if 2089 // these PHIs come from a broken-up large PHI (e.g. 32 AGPR phis, one per vector 2090 // element). 2091 // 2092 // Example 2093 // a: 2094 // %in:agpr_256 = COPY %foo:vgpr_256 2095 // c: 2096 // %x:agpr_32 = .. 2097 // b: 2098 // %0:areg = PHI %in.sub0:agpr_32, %a, %x, %c 2099 // %1:areg = PHI %in.sub0:agpr_32, %a, %y, %c 2100 // %2:areg = PHI %in.sub0:agpr_32, %a, %z, %c 2101 // => 2102 // a: 2103 // %in:agpr_256 = COPY %foo:vgpr_256 2104 // %tmp:vgpr_32 = V_ACCVGPR_READ_B32_e64 %in.sub0:agpr_32 2105 // %tmp_agpr:agpr_32 = COPY %tmp 2106 // c: 2107 // %x:agpr_32 = .. 2108 // b: 2109 // %0:areg = PHI %tmp_agpr, %a, %x, %c 2110 // %1:areg = PHI %tmp_agpr, %a, %y, %c 2111 // %2:areg = PHI %tmp_agpr, %a, %z, %c 2112 bool SIFoldOperands::tryOptimizeAGPRPhis(MachineBasicBlock &MBB) { 2113 // This is only really needed on GFX908 where AGPR-AGPR copies are 2114 // unreasonably difficult. 2115 if (ST->hasGFX90AInsts()) 2116 return false; 2117 2118 // Look at all AGPR Phis and collect the register + subregister used. 2119 DenseMap<std::pair<Register, unsigned>, std::vector<MachineOperand *>> 2120 RegToMO; 2121 2122 for (auto &MI : MBB) { 2123 if (!MI.isPHI()) 2124 break; 2125 2126 if (!TRI->isAGPR(*MRI, MI.getOperand(0).getReg())) 2127 continue; 2128 2129 for (unsigned K = 1; K < MI.getNumOperands(); K += 2) { 2130 MachineOperand &PhiMO = MI.getOperand(K); 2131 if (!PhiMO.getSubReg()) 2132 continue; 2133 RegToMO[{PhiMO.getReg(), PhiMO.getSubReg()}].push_back(&PhiMO); 2134 } 2135 } 2136 2137 // For all (Reg, SubReg) pair that are used more than once, cache the value in 2138 // a VGPR. 2139 bool Changed = false; 2140 for (const auto &[Entry, MOs] : RegToMO) { 2141 if (MOs.size() == 1) 2142 continue; 2143 2144 const auto [Reg, SubReg] = Entry; 2145 MachineInstr *Def = MRI->getVRegDef(Reg); 2146 MachineBasicBlock *DefMBB = Def->getParent(); 2147 2148 // Create a copy in a VGPR using V_ACCVGPR_READ_B32_e64 so it's not folded 2149 // out. 2150 const TargetRegisterClass *ARC = getRegOpRC(*MRI, *TRI, *MOs.front()); 2151 Register TempVGPR = 2152 MRI->createVirtualRegister(TRI->getEquivalentVGPRClass(ARC)); 2153 MachineInstr *VGPRCopy = 2154 BuildMI(*DefMBB, ++Def->getIterator(), Def->getDebugLoc(), 2155 TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64), TempVGPR) 2156 .addReg(Reg, /* flags */ 0, SubReg); 2157 2158 // Copy back to an AGPR and use that instead of the AGPR subreg in all MOs. 2159 Register TempAGPR = MRI->createVirtualRegister(ARC); 2160 BuildMI(*DefMBB, ++VGPRCopy->getIterator(), Def->getDebugLoc(), 2161 TII->get(AMDGPU::COPY), TempAGPR) 2162 .addReg(TempVGPR); 2163 2164 LLVM_DEBUG(dbgs() << "Caching AGPR into VGPR: " << *VGPRCopy); 2165 for (MachineOperand *MO : MOs) { 2166 MO->setReg(TempAGPR); 2167 MO->setSubReg(AMDGPU::NoSubRegister); 2168 LLVM_DEBUG(dbgs() << " Changed PHI Operand: " << *MO << "\n"); 2169 } 2170 2171 Changed = true; 2172 } 2173 2174 return Changed; 2175 } 2176 2177 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 2178 if (skipFunction(MF.getFunction())) 2179 return false; 2180 2181 MRI = &MF.getRegInfo(); 2182 ST = &MF.getSubtarget<GCNSubtarget>(); 2183 TII = ST->getInstrInfo(); 2184 TRI = &TII->getRegisterInfo(); 2185 MFI = MF.getInfo<SIMachineFunctionInfo>(); 2186 2187 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 2188 // correctly handle signed zeros. 2189 // 2190 // FIXME: Also need to check strictfp 2191 bool IsIEEEMode = MFI->getMode().IEEE; 2192 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 2193 2194 bool Changed = false; 2195 for (MachineBasicBlock *MBB : depth_first(&MF)) { 2196 MachineOperand *CurrentKnownM0Val = nullptr; 2197 for (auto &MI : make_early_inc_range(*MBB)) { 2198 Changed |= tryFoldCndMask(MI); 2199 2200 if (tryFoldZeroHighBits(MI)) { 2201 Changed = true; 2202 continue; 2203 } 2204 2205 if (MI.isRegSequence() && tryFoldRegSequence(MI)) { 2206 Changed = true; 2207 continue; 2208 } 2209 2210 if (MI.isPHI() && tryFoldPhiAGPR(MI)) { 2211 Changed = true; 2212 continue; 2213 } 2214 2215 if (MI.mayLoad() && tryFoldLoad(MI)) { 2216 Changed = true; 2217 continue; 2218 } 2219 2220 if (TII->isFoldableCopy(MI)) { 2221 Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val); 2222 continue; 2223 } 2224 2225 // Saw an unknown clobber of m0, so we no longer know what it is. 2226 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 2227 CurrentKnownM0Val = nullptr; 2228 2229 // TODO: Omod might be OK if there is NSZ only on the source 2230 // instruction, and not the omod multiply. 2231 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 2232 !tryFoldOMod(MI)) 2233 Changed |= tryFoldClamp(MI); 2234 } 2235 2236 Changed |= tryOptimizeAGPRPhis(*MBB); 2237 } 2238 2239 return Changed; 2240 } 2241