1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "GCNSubtarget.h" 13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/CodeGen/MachineFunctionPass.h" 17 #include "llvm/CodeGen/MachineOperand.h" 18 19 #define DEBUG_TYPE "si-fold-operands" 20 using namespace llvm; 21 22 namespace { 23 24 struct FoldCandidate { 25 MachineInstr *UseMI; 26 union { 27 MachineOperand *OpToFold; 28 uint64_t ImmToFold; 29 int FrameIndexToFold; 30 }; 31 int ShrinkOpcode; 32 unsigned UseOpNo; 33 MachineOperand::MachineOperandType Kind; 34 bool Commuted; 35 36 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 37 bool Commuted_ = false, 38 int ShrinkOp = -1) : 39 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 40 Kind(FoldOp->getType()), 41 Commuted(Commuted_) { 42 if (FoldOp->isImm()) { 43 ImmToFold = FoldOp->getImm(); 44 } else if (FoldOp->isFI()) { 45 FrameIndexToFold = FoldOp->getIndex(); 46 } else { 47 assert(FoldOp->isReg() || FoldOp->isGlobal()); 48 OpToFold = FoldOp; 49 } 50 } 51 52 bool isFI() const { 53 return Kind == MachineOperand::MO_FrameIndex; 54 } 55 56 bool isImm() const { 57 return Kind == MachineOperand::MO_Immediate; 58 } 59 60 bool isReg() const { 61 return Kind == MachineOperand::MO_Register; 62 } 63 64 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 65 66 bool needsShrink() const { return ShrinkOpcode != -1; } 67 }; 68 69 class SIFoldOperands : public MachineFunctionPass { 70 public: 71 static char ID; 72 MachineRegisterInfo *MRI; 73 const SIInstrInfo *TII; 74 const SIRegisterInfo *TRI; 75 const GCNSubtarget *ST; 76 const SIMachineFunctionInfo *MFI; 77 78 bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo, 79 const MachineOperand &OpToFold) const; 80 81 bool updateOperand(FoldCandidate &Fold) const; 82 83 bool canUseImmWithOpSel(FoldCandidate &Fold) const; 84 85 bool tryFoldImmWithOpSel(FoldCandidate &Fold) const; 86 87 bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 88 MachineInstr *MI, unsigned OpNo, 89 MachineOperand *OpToFold) const; 90 bool isUseSafeToFold(const MachineInstr &MI, 91 const MachineOperand &UseMO) const; 92 bool 93 getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, 94 Register UseReg, uint8_t OpTy) const; 95 bool tryToFoldACImm(const MachineOperand &OpToFold, MachineInstr *UseMI, 96 unsigned UseOpIdx, 97 SmallVectorImpl<FoldCandidate> &FoldList) const; 98 void foldOperand(MachineOperand &OpToFold, 99 MachineInstr *UseMI, 100 int UseOpIdx, 101 SmallVectorImpl<FoldCandidate> &FoldList, 102 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 103 104 MachineOperand *getImmOrMaterializedImm(MachineOperand &Op) const; 105 bool tryConstantFoldOp(MachineInstr *MI) const; 106 bool tryFoldCndMask(MachineInstr &MI) const; 107 bool tryFoldZeroHighBits(MachineInstr &MI) const; 108 bool foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 109 bool tryFoldFoldableCopy(MachineInstr &MI, 110 MachineOperand *&CurrentKnownM0Val) const; 111 112 const MachineOperand *isClamp(const MachineInstr &MI) const; 113 bool tryFoldClamp(MachineInstr &MI); 114 115 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 116 bool tryFoldOMod(MachineInstr &MI); 117 bool tryFoldRegSequence(MachineInstr &MI); 118 bool tryFoldPhiAGPR(MachineInstr &MI); 119 bool tryFoldLoad(MachineInstr &MI); 120 121 bool tryOptimizeAGPRPhis(MachineBasicBlock &MBB); 122 123 public: 124 SIFoldOperands() : MachineFunctionPass(ID) { 125 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 126 } 127 128 bool runOnMachineFunction(MachineFunction &MF) override; 129 130 StringRef getPassName() const override { return "SI Fold Operands"; } 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override { 133 AU.setPreservesCFG(); 134 MachineFunctionPass::getAnalysisUsage(AU); 135 } 136 }; 137 138 } // End anonymous namespace. 139 140 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 141 "SI Fold Operands", false, false) 142 143 char SIFoldOperands::ID = 0; 144 145 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 146 147 static const TargetRegisterClass *getRegOpRC(const MachineRegisterInfo &MRI, 148 const TargetRegisterInfo &TRI, 149 const MachineOperand &MO) { 150 const TargetRegisterClass *RC = MRI.getRegClass(MO.getReg()); 151 if (const TargetRegisterClass *SubRC = 152 TRI.getSubRegisterClass(RC, MO.getSubReg())) 153 RC = SubRC; 154 return RC; 155 } 156 157 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. 158 static unsigned macToMad(unsigned Opc) { 159 switch (Opc) { 160 case AMDGPU::V_MAC_F32_e64: 161 return AMDGPU::V_MAD_F32_e64; 162 case AMDGPU::V_MAC_F16_e64: 163 return AMDGPU::V_MAD_F16_e64; 164 case AMDGPU::V_FMAC_F32_e64: 165 return AMDGPU::V_FMA_F32_e64; 166 case AMDGPU::V_FMAC_F16_e64: 167 return AMDGPU::V_FMA_F16_gfx9_e64; 168 case AMDGPU::V_FMAC_F16_t16_e64: 169 return AMDGPU::V_FMA_F16_gfx9_e64; 170 case AMDGPU::V_FMAC_LEGACY_F32_e64: 171 return AMDGPU::V_FMA_LEGACY_F32_e64; 172 case AMDGPU::V_FMAC_F64_e64: 173 return AMDGPU::V_FMA_F64_e64; 174 } 175 return AMDGPU::INSTRUCTION_LIST_END; 176 } 177 178 // TODO: Add heuristic that the frame index might not fit in the addressing mode 179 // immediate offset to avoid materializing in loops. 180 bool SIFoldOperands::frameIndexMayFold(const MachineInstr &UseMI, int OpNo, 181 const MachineOperand &OpToFold) const { 182 if (!OpToFold.isFI()) 183 return false; 184 185 const unsigned Opc = UseMI.getOpcode(); 186 if (TII->isMUBUF(UseMI)) 187 return OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 188 if (!TII->isFLATScratch(UseMI)) 189 return false; 190 191 int SIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr); 192 if (OpNo == SIdx) 193 return true; 194 195 int VIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 196 return OpNo == VIdx && SIdx == -1; 197 } 198 199 FunctionPass *llvm::createSIFoldOperandsPass() { 200 return new SIFoldOperands(); 201 } 202 203 bool SIFoldOperands::canUseImmWithOpSel(FoldCandidate &Fold) const { 204 MachineInstr *MI = Fold.UseMI; 205 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 206 const uint64_t TSFlags = MI->getDesc().TSFlags; 207 208 assert(Old.isReg() && Fold.isImm()); 209 210 if (!(TSFlags & SIInstrFlags::IsPacked) || (TSFlags & SIInstrFlags::IsMAI) || 211 (TSFlags & SIInstrFlags::IsWMMA) || (TSFlags & SIInstrFlags::IsSWMMAC) || 212 (ST->hasDOTOpSelHazard() && (TSFlags & SIInstrFlags::IsDOT))) 213 return false; 214 215 unsigned Opcode = MI->getOpcode(); 216 int OpNo = MI->getOperandNo(&Old); 217 uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; 218 switch (OpType) { 219 default: 220 return false; 221 case AMDGPU::OPERAND_REG_IMM_V2FP16: 222 case AMDGPU::OPERAND_REG_IMM_V2INT16: 223 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 224 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 225 break; 226 } 227 228 return true; 229 } 230 231 bool SIFoldOperands::tryFoldImmWithOpSel(FoldCandidate &Fold) const { 232 MachineInstr *MI = Fold.UseMI; 233 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 234 unsigned Opcode = MI->getOpcode(); 235 int OpNo = MI->getOperandNo(&Old); 236 uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; 237 238 // If the literal can be inlined as-is, apply it and short-circuit the 239 // tests below. The main motivation for this is to avoid unintuitive 240 // uses of opsel. 241 if (AMDGPU::isInlinableLiteralV216(Fold.ImmToFold, OpType)) { 242 Old.ChangeToImmediate(Fold.ImmToFold); 243 return true; 244 } 245 246 // Refer to op_sel/op_sel_hi and check if we can change the immediate and 247 // op_sel in a way that allows an inline constant. 248 int ModIdx = -1; 249 unsigned SrcIdx = ~0; 250 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) { 251 ModIdx = AMDGPU::OpName::src0_modifiers; 252 SrcIdx = 0; 253 } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) { 254 ModIdx = AMDGPU::OpName::src1_modifiers; 255 SrcIdx = 1; 256 } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) { 257 ModIdx = AMDGPU::OpName::src2_modifiers; 258 SrcIdx = 2; 259 } 260 assert(ModIdx != -1); 261 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 262 MachineOperand &Mod = MI->getOperand(ModIdx); 263 unsigned ModVal = Mod.getImm(); 264 265 uint16_t ImmLo = static_cast<uint16_t>( 266 Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_0 ? 16 : 0)); 267 uint16_t ImmHi = static_cast<uint16_t>( 268 Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_1 ? 16 : 0)); 269 uint32_t Imm = (static_cast<uint32_t>(ImmHi) << 16) | ImmLo; 270 unsigned NewModVal = ModVal & ~(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); 271 272 // Helper function that attempts to inline the given value with a newly 273 // chosen opsel pattern. 274 auto tryFoldToInline = [&](uint32_t Imm) -> bool { 275 if (AMDGPU::isInlinableLiteralV216(Imm, OpType)) { 276 Mod.setImm(NewModVal | SISrcMods::OP_SEL_1); 277 Old.ChangeToImmediate(Imm); 278 return true; 279 } 280 281 // Try to shuffle the halves around and leverage opsel to get an inline 282 // constant. 283 uint16_t Lo = static_cast<uint16_t>(Imm); 284 uint16_t Hi = static_cast<uint16_t>(Imm >> 16); 285 if (Lo == Hi) { 286 if (AMDGPU::isInlinableLiteralV216(Lo, OpType)) { 287 Mod.setImm(NewModVal); 288 Old.ChangeToImmediate(Lo); 289 return true; 290 } 291 292 if (static_cast<int16_t>(Lo) < 0) { 293 int32_t SExt = static_cast<int16_t>(Lo); 294 if (AMDGPU::isInlinableLiteralV216(SExt, OpType)) { 295 Mod.setImm(NewModVal); 296 Old.ChangeToImmediate(SExt); 297 return true; 298 } 299 } 300 301 // This check is only useful for integer instructions 302 if (OpType == AMDGPU::OPERAND_REG_IMM_V2INT16 || 303 OpType == AMDGPU::OPERAND_REG_INLINE_AC_V2INT16) { 304 if (AMDGPU::isInlinableLiteralV216(Lo << 16, OpType)) { 305 Mod.setImm(NewModVal | SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); 306 Old.ChangeToImmediate(static_cast<uint32_t>(Lo) << 16); 307 return true; 308 } 309 } 310 } else { 311 uint32_t Swapped = (static_cast<uint32_t>(Lo) << 16) | Hi; 312 if (AMDGPU::isInlinableLiteralV216(Swapped, OpType)) { 313 Mod.setImm(NewModVal | SISrcMods::OP_SEL_0); 314 Old.ChangeToImmediate(Swapped); 315 return true; 316 } 317 } 318 319 return false; 320 }; 321 322 if (tryFoldToInline(Imm)) 323 return true; 324 325 // Replace integer addition by subtraction and vice versa if it allows 326 // folding the immediate to an inline constant. 327 // 328 // We should only ever get here for SrcIdx == 1 due to canonicalization 329 // earlier in the pipeline, but we double-check here to be safe / fully 330 // general. 331 bool IsUAdd = Opcode == AMDGPU::V_PK_ADD_U16; 332 bool IsUSub = Opcode == AMDGPU::V_PK_SUB_U16; 333 if (SrcIdx == 1 && (IsUAdd || IsUSub)) { 334 unsigned ClampIdx = 335 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::clamp); 336 bool Clamp = MI->getOperand(ClampIdx).getImm() != 0; 337 338 if (!Clamp) { 339 uint16_t NegLo = -static_cast<uint16_t>(Imm); 340 uint16_t NegHi = -static_cast<uint16_t>(Imm >> 16); 341 uint32_t NegImm = (static_cast<uint32_t>(NegHi) << 16) | NegLo; 342 343 if (tryFoldToInline(NegImm)) { 344 unsigned NegOpcode = 345 IsUAdd ? AMDGPU::V_PK_SUB_U16 : AMDGPU::V_PK_ADD_U16; 346 MI->setDesc(TII->get(NegOpcode)); 347 return true; 348 } 349 } 350 } 351 352 return false; 353 } 354 355 bool SIFoldOperands::updateOperand(FoldCandidate &Fold) const { 356 MachineInstr *MI = Fold.UseMI; 357 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 358 assert(Old.isReg()); 359 360 if (Fold.isImm() && canUseImmWithOpSel(Fold)) { 361 if (tryFoldImmWithOpSel(Fold)) 362 return true; 363 364 // We can't represent the candidate as an inline constant. Try as a literal 365 // with the original opsel, checking constant bus limitations. 366 MachineOperand New = MachineOperand::CreateImm(Fold.ImmToFold); 367 int OpNo = MI->getOperandNo(&Old); 368 if (!TII->isOperandLegal(*MI, OpNo, &New)) 369 return false; 370 Old.ChangeToImmediate(Fold.ImmToFold); 371 return true; 372 } 373 374 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 375 MachineBasicBlock *MBB = MI->getParent(); 376 auto Liveness = MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, MI, 16); 377 if (Liveness != MachineBasicBlock::LQR_Dead) { 378 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 379 return false; 380 } 381 382 int Op32 = Fold.ShrinkOpcode; 383 MachineOperand &Dst0 = MI->getOperand(0); 384 MachineOperand &Dst1 = MI->getOperand(1); 385 assert(Dst0.isDef() && Dst1.isDef()); 386 387 bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(Dst1.getReg()); 388 389 const TargetRegisterClass *Dst0RC = MRI->getRegClass(Dst0.getReg()); 390 Register NewReg0 = MRI->createVirtualRegister(Dst0RC); 391 392 MachineInstr *Inst32 = TII->buildShrunkInst(*MI, Op32); 393 394 if (HaveNonDbgCarryUse) { 395 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(AMDGPU::COPY), 396 Dst1.getReg()) 397 .addReg(AMDGPU::VCC, RegState::Kill); 398 } 399 400 // Keep the old instruction around to avoid breaking iterators, but 401 // replace it with a dummy instruction to remove uses. 402 // 403 // FIXME: We should not invert how this pass looks at operands to avoid 404 // this. Should track set of foldable movs instead of looking for uses 405 // when looking at a use. 406 Dst0.setReg(NewReg0); 407 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 408 MI->removeOperand(I); 409 MI->setDesc(TII->get(AMDGPU::IMPLICIT_DEF)); 410 411 if (Fold.Commuted) 412 TII->commuteInstruction(*Inst32, false); 413 return true; 414 } 415 416 assert(!Fold.needsShrink() && "not handled"); 417 418 if (Fold.isImm()) { 419 if (Old.isTied()) { 420 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(MI->getOpcode()); 421 if (NewMFMAOpc == -1) 422 return false; 423 MI->setDesc(TII->get(NewMFMAOpc)); 424 MI->untieRegOperand(0); 425 } 426 Old.ChangeToImmediate(Fold.ImmToFold); 427 return true; 428 } 429 430 if (Fold.isGlobal()) { 431 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 432 Fold.OpToFold->getTargetFlags()); 433 return true; 434 } 435 436 if (Fold.isFI()) { 437 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 438 return true; 439 } 440 441 MachineOperand *New = Fold.OpToFold; 442 Old.substVirtReg(New->getReg(), New->getSubReg(), *TRI); 443 Old.setIsUndef(New->isUndef()); 444 return true; 445 } 446 447 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 448 const MachineInstr *MI) { 449 return any_of(FoldList, [&](const auto &C) { return C.UseMI == MI; }); 450 } 451 452 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 453 MachineInstr *MI, unsigned OpNo, 454 MachineOperand *FoldOp, bool Commuted = false, 455 int ShrinkOp = -1) { 456 // Skip additional folding on the same operand. 457 for (FoldCandidate &Fold : FoldList) 458 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 459 return; 460 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 461 << " operand " << OpNo << "\n " << *MI); 462 FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp); 463 } 464 465 bool SIFoldOperands::tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 466 MachineInstr *MI, unsigned OpNo, 467 MachineOperand *OpToFold) const { 468 const unsigned Opc = MI->getOpcode(); 469 470 auto tryToFoldAsFMAAKorMK = [&]() { 471 if (!OpToFold->isImm()) 472 return false; 473 474 const bool TryAK = OpNo == 3; 475 const unsigned NewOpc = TryAK ? AMDGPU::S_FMAAK_F32 : AMDGPU::S_FMAMK_F32; 476 MI->setDesc(TII->get(NewOpc)); 477 478 // We have to fold into operand which would be Imm not into OpNo. 479 bool FoldAsFMAAKorMK = 480 tryAddToFoldList(FoldList, MI, TryAK ? 3 : 2, OpToFold); 481 if (FoldAsFMAAKorMK) { 482 // Untie Src2 of fmac. 483 MI->untieRegOperand(3); 484 // For fmamk swap operands 1 and 2 if OpToFold was meant for operand 1. 485 if (OpNo == 1) { 486 MachineOperand &Op1 = MI->getOperand(1); 487 MachineOperand &Op2 = MI->getOperand(2); 488 Register OldReg = Op1.getReg(); 489 // Operand 2 might be an inlinable constant 490 if (Op2.isImm()) { 491 Op1.ChangeToImmediate(Op2.getImm()); 492 Op2.ChangeToRegister(OldReg, false); 493 } else { 494 Op1.setReg(Op2.getReg()); 495 Op2.setReg(OldReg); 496 } 497 } 498 return true; 499 } 500 MI->setDesc(TII->get(Opc)); 501 return false; 502 }; 503 504 bool IsLegal = TII->isOperandLegal(*MI, OpNo, OpToFold); 505 if (!IsLegal && OpToFold->isImm()) { 506 FoldCandidate Fold(MI, OpNo, OpToFold); 507 IsLegal = canUseImmWithOpSel(Fold); 508 } 509 510 if (!IsLegal) { 511 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 512 unsigned NewOpc = macToMad(Opc); 513 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 514 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 515 // to fold the operand. 516 MI->setDesc(TII->get(NewOpc)); 517 bool AddOpSel = !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel) && 518 AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel); 519 if (AddOpSel) 520 MI->addOperand(MachineOperand::CreateImm(0)); 521 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold); 522 if (FoldAsMAD) { 523 MI->untieRegOperand(OpNo); 524 return true; 525 } 526 if (AddOpSel) 527 MI->removeOperand(MI->getNumExplicitOperands() - 1); 528 MI->setDesc(TII->get(Opc)); 529 } 530 531 // Special case for s_fmac_f32 if we are trying to fold into Src2. 532 // By transforming into fmaak we can untie Src2 and make folding legal. 533 if (Opc == AMDGPU::S_FMAC_F32 && OpNo == 3) { 534 if (tryToFoldAsFMAAKorMK()) 535 return true; 536 } 537 538 // Special case for s_setreg_b32 539 if (OpToFold->isImm()) { 540 unsigned ImmOpc = 0; 541 if (Opc == AMDGPU::S_SETREG_B32) 542 ImmOpc = AMDGPU::S_SETREG_IMM32_B32; 543 else if (Opc == AMDGPU::S_SETREG_B32_mode) 544 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; 545 if (ImmOpc) { 546 MI->setDesc(TII->get(ImmOpc)); 547 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 548 return true; 549 } 550 } 551 552 // If we are already folding into another operand of MI, then 553 // we can't commute the instruction, otherwise we risk making the 554 // other fold illegal. 555 if (isUseMIInFoldList(FoldList, MI)) 556 return false; 557 558 // Operand is not legal, so try to commute the instruction to 559 // see if this makes it possible to fold. 560 unsigned CommuteOpNo = TargetInstrInfo::CommuteAnyOperandIndex; 561 bool CanCommute = TII->findCommutedOpIndices(*MI, OpNo, CommuteOpNo); 562 if (!CanCommute) 563 return false; 564 565 // One of operands might be an Imm operand, and OpNo may refer to it after 566 // the call of commuteInstruction() below. Such situations are avoided 567 // here explicitly as OpNo must be a register operand to be a candidate 568 // for memory folding. 569 if (!MI->getOperand(OpNo).isReg() || !MI->getOperand(CommuteOpNo).isReg()) 570 return false; 571 572 if (!TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo)) 573 return false; 574 575 int Op32 = -1; 576 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 577 if ((Opc != AMDGPU::V_ADD_CO_U32_e64 && Opc != AMDGPU::V_SUB_CO_U32_e64 && 578 Opc != AMDGPU::V_SUBREV_CO_U32_e64) || // FIXME 579 (!OpToFold->isImm() && !OpToFold->isFI() && !OpToFold->isGlobal())) { 580 TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo); 581 return false; 582 } 583 584 // Verify the other operand is a VGPR, otherwise we would violate the 585 // constant bus restriction. 586 MachineOperand &OtherOp = MI->getOperand(OpNo); 587 if (!OtherOp.isReg() || 588 !TII->getRegisterInfo().isVGPR(*MRI, OtherOp.getReg())) 589 return false; 590 591 assert(MI->getOperand(1).isDef()); 592 593 // Make sure to get the 32-bit version of the commuted opcode. 594 unsigned MaybeCommutedOpc = MI->getOpcode(); 595 Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 596 } 597 598 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 599 return true; 600 } 601 602 // Inlineable constant might have been folded into Imm operand of fmaak or 603 // fmamk and we are trying to fold a non-inlinable constant. 604 if ((Opc == AMDGPU::S_FMAAK_F32 || Opc == AMDGPU::S_FMAMK_F32) && 605 !OpToFold->isReg() && !TII->isInlineConstant(*OpToFold)) { 606 unsigned ImmIdx = Opc == AMDGPU::S_FMAAK_F32 ? 3 : 2; 607 MachineOperand &OpImm = MI->getOperand(ImmIdx); 608 if (!OpImm.isReg() && 609 TII->isInlineConstant(*MI, MI->getOperand(OpNo), OpImm)) 610 return tryToFoldAsFMAAKorMK(); 611 } 612 613 // Special case for s_fmac_f32 if we are trying to fold into Src0 or Src1. 614 // By changing into fmamk we can untie Src2. 615 // If folding for Src0 happens first and it is identical operand to Src1 we 616 // should avoid transforming into fmamk which requires commuting as it would 617 // cause folding into Src1 to fail later on due to wrong OpNo used. 618 if (Opc == AMDGPU::S_FMAC_F32 && 619 (OpNo != 1 || !MI->getOperand(1).isIdenticalTo(MI->getOperand(2)))) { 620 if (tryToFoldAsFMAAKorMK()) 621 return true; 622 } 623 624 // Check the case where we might introduce a second constant operand to a 625 // scalar instruction 626 if (TII->isSALU(MI->getOpcode())) { 627 const MCInstrDesc &InstDesc = MI->getDesc(); 628 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; 629 630 // Fine if the operand can be encoded as an inline constant 631 if (!OpToFold->isReg() && !TII->isInlineConstant(*OpToFold, OpInfo)) { 632 // Otherwise check for another constant 633 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 634 auto &Op = MI->getOperand(i); 635 if (OpNo != i && !Op.isReg() && 636 !TII->isInlineConstant(Op, InstDesc.operands()[i])) 637 return false; 638 } 639 } 640 } 641 642 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 643 return true; 644 } 645 646 bool SIFoldOperands::isUseSafeToFold(const MachineInstr &MI, 647 const MachineOperand &UseMO) const { 648 // Operands of SDWA instructions must be registers. 649 return !TII->isSDWA(MI); 650 } 651 652 // Find a def of the UseReg, check if it is a reg_sequence and find initializers 653 // for each subreg, tracking it to foldable inline immediate if possible. 654 // Returns true on success. 655 bool SIFoldOperands::getRegSeqInit( 656 SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, 657 Register UseReg, uint8_t OpTy) const { 658 MachineInstr *Def = MRI->getVRegDef(UseReg); 659 if (!Def || !Def->isRegSequence()) 660 return false; 661 662 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 663 MachineOperand *Sub = &Def->getOperand(I); 664 assert(Sub->isReg()); 665 666 for (MachineInstr *SubDef = MRI->getVRegDef(Sub->getReg()); 667 SubDef && Sub->isReg() && Sub->getReg().isVirtual() && 668 !Sub->getSubReg() && TII->isFoldableCopy(*SubDef); 669 SubDef = MRI->getVRegDef(Sub->getReg())) { 670 MachineOperand *Op = &SubDef->getOperand(1); 671 if (Op->isImm()) { 672 if (TII->isInlineConstant(*Op, OpTy)) 673 Sub = Op; 674 break; 675 } 676 if (!Op->isReg() || Op->getReg().isPhysical()) 677 break; 678 Sub = Op; 679 } 680 681 Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm()); 682 } 683 684 return true; 685 } 686 687 bool SIFoldOperands::tryToFoldACImm( 688 const MachineOperand &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx, 689 SmallVectorImpl<FoldCandidate> &FoldList) const { 690 const MCInstrDesc &Desc = UseMI->getDesc(); 691 if (UseOpIdx >= Desc.getNumOperands()) 692 return false; 693 694 if (!AMDGPU::isSISrcInlinableOperand(Desc, UseOpIdx)) 695 return false; 696 697 uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType; 698 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 699 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 700 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 701 return true; 702 } 703 704 if (!OpToFold.isReg()) 705 return false; 706 707 Register UseReg = OpToFold.getReg(); 708 if (!UseReg.isVirtual()) 709 return false; 710 711 if (isUseMIInFoldList(FoldList, UseMI)) 712 return false; 713 714 // Maybe it is just a COPY of an immediate itself. 715 MachineInstr *Def = MRI->getVRegDef(UseReg); 716 MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 717 if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) { 718 MachineOperand &DefOp = Def->getOperand(1); 719 if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) && 720 TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) { 721 UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm()); 722 return true; 723 } 724 } 725 726 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 727 if (!getRegSeqInit(Defs, UseReg, OpTy)) 728 return false; 729 730 int32_t Imm; 731 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 732 const MachineOperand *Op = Defs[I].first; 733 if (!Op->isImm()) 734 return false; 735 736 auto SubImm = Op->getImm(); 737 if (!I) { 738 Imm = SubImm; 739 if (!TII->isInlineConstant(*Op, OpTy) || 740 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 741 return false; 742 743 continue; 744 } 745 if (Imm != SubImm) 746 return false; // Can only fold splat constants 747 } 748 749 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 750 return true; 751 } 752 753 void SIFoldOperands::foldOperand( 754 MachineOperand &OpToFold, 755 MachineInstr *UseMI, 756 int UseOpIdx, 757 SmallVectorImpl<FoldCandidate> &FoldList, 758 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 759 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 760 761 if (!isUseSafeToFold(*UseMI, UseOp)) 762 return; 763 764 // FIXME: Fold operands with subregs. 765 if (UseOp.isReg() && OpToFold.isReg() && 766 (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)) 767 return; 768 769 // Special case for REG_SEQUENCE: We can't fold literals into 770 // REG_SEQUENCE instructions, so we have to fold them into the 771 // uses of REG_SEQUENCE. 772 if (UseMI->isRegSequence()) { 773 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 774 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 775 776 for (auto &RSUse : make_early_inc_range(MRI->use_nodbg_operands(RegSeqDstReg))) { 777 MachineInstr *RSUseMI = RSUse.getParent(); 778 779 if (tryToFoldACImm(UseMI->getOperand(0), RSUseMI, 780 RSUseMI->getOperandNo(&RSUse), FoldList)) 781 continue; 782 783 if (RSUse.getSubReg() != RegSeqDstSubReg) 784 continue; 785 786 foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(&RSUse), FoldList, 787 CopiesToReplace); 788 } 789 790 return; 791 } 792 793 if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList)) 794 return; 795 796 if (frameIndexMayFold(*UseMI, UseOpIdx, OpToFold)) { 797 // Verify that this is a stack access. 798 // FIXME: Should probably use stack pseudos before frame lowering. 799 800 if (TII->isMUBUF(*UseMI)) { 801 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 802 MFI->getScratchRSrcReg()) 803 return; 804 805 // Ensure this is either relative to the current frame or the current 806 // wave. 807 MachineOperand &SOff = 808 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 809 if (!SOff.isImm() || SOff.getImm() != 0) 810 return; 811 } 812 813 // A frame index will resolve to a positive constant, so it should always be 814 // safe to fold the addressing mode, even pre-GFX9. 815 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 816 817 const unsigned Opc = UseMI->getOpcode(); 818 if (TII->isFLATScratch(*UseMI) && 819 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr) && 820 !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::saddr)) { 821 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opc); 822 UseMI->setDesc(TII->get(NewOpc)); 823 } 824 825 return; 826 } 827 828 bool FoldingImmLike = 829 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 830 831 if (FoldingImmLike && UseMI->isCopy()) { 832 Register DestReg = UseMI->getOperand(0).getReg(); 833 Register SrcReg = UseMI->getOperand(1).getReg(); 834 assert(SrcReg.isVirtual()); 835 836 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); 837 838 // Don't fold into a copy to a physical register with the same class. Doing 839 // so would interfere with the register coalescer's logic which would avoid 840 // redundant initializations. 841 if (DestReg.isPhysical() && SrcRC->contains(DestReg)) 842 return; 843 844 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); 845 if (!DestReg.isPhysical()) { 846 if (DestRC == &AMDGPU::AGPR_32RegClass && 847 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 848 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 849 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 850 CopiesToReplace.push_back(UseMI); 851 return; 852 } 853 } 854 855 // In order to fold immediates into copies, we need to change the 856 // copy to a MOV. 857 858 unsigned MovOp = TII->getMovOpcode(DestRC); 859 if (MovOp == AMDGPU::COPY) 860 return; 861 862 UseMI->setDesc(TII->get(MovOp)); 863 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 864 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 865 while (ImpOpI != ImpOpE) { 866 MachineInstr::mop_iterator Tmp = ImpOpI; 867 ImpOpI++; 868 UseMI->removeOperand(UseMI->getOperandNo(Tmp)); 869 } 870 CopiesToReplace.push_back(UseMI); 871 } else { 872 if (UseMI->isCopy() && OpToFold.isReg() && 873 UseMI->getOperand(0).getReg().isVirtual() && 874 !UseMI->getOperand(1).getSubReg()) { 875 LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI); 876 unsigned Size = TII->getOpSize(*UseMI, 1); 877 Register UseReg = OpToFold.getReg(); 878 UseMI->getOperand(1).setReg(UseReg); 879 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 880 UseMI->getOperand(1).setIsKill(false); 881 CopiesToReplace.push_back(UseMI); 882 OpToFold.setIsKill(false); 883 884 // Remove kill flags as kills may now be out of order with uses. 885 MRI->clearKillFlags(OpToFold.getReg()); 886 887 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 888 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 889 // its initializers right here, so we will rematerialize immediates and 890 // avoid copies via different reg classes. 891 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 892 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 893 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 894 const DebugLoc &DL = UseMI->getDebugLoc(); 895 MachineBasicBlock &MBB = *UseMI->getParent(); 896 897 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 898 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 899 UseMI->removeOperand(I); 900 901 MachineInstrBuilder B(*MBB.getParent(), UseMI); 902 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 903 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 904 for (unsigned I = 0; I < Size / 4; ++I) { 905 MachineOperand *Def = Defs[I].first; 906 TargetInstrInfo::RegSubRegPair CopyToVGPR; 907 if (Def->isImm() && 908 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 909 int64_t Imm = Def->getImm(); 910 911 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 912 BuildMI(MBB, UseMI, DL, 913 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm); 914 B.addReg(Tmp); 915 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 916 auto Src = getRegSubRegPair(*Def); 917 Def->setIsKill(false); 918 if (!SeenAGPRs.insert(Src)) { 919 // We cannot build a reg_sequence out of the same registers, they 920 // must be copied. Better do it here before copyPhysReg() created 921 // several reads to do the AGPR->VGPR->AGPR copy. 922 CopyToVGPR = Src; 923 } else { 924 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 925 Src.SubReg); 926 } 927 } else { 928 assert(Def->isReg()); 929 Def->setIsKill(false); 930 auto Src = getRegSubRegPair(*Def); 931 932 // Direct copy from SGPR to AGPR is not possible. To avoid creation 933 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 934 // create a copy here and track if we already have such a copy. 935 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 936 CopyToVGPR = Src; 937 } else { 938 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 939 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 940 B.addReg(Tmp); 941 } 942 } 943 944 if (CopyToVGPR.Reg) { 945 Register Vgpr; 946 if (VGPRCopies.count(CopyToVGPR)) { 947 Vgpr = VGPRCopies[CopyToVGPR]; 948 } else { 949 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 950 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 951 VGPRCopies[CopyToVGPR] = Vgpr; 952 } 953 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 954 BuildMI(MBB, UseMI, DL, 955 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr); 956 B.addReg(Tmp); 957 } 958 959 B.addImm(Defs[I].second); 960 } 961 LLVM_DEBUG(dbgs() << "Folded " << *UseMI); 962 return; 963 } 964 965 if (Size != 4) 966 return; 967 968 Register Reg0 = UseMI->getOperand(0).getReg(); 969 Register Reg1 = UseMI->getOperand(1).getReg(); 970 if (TRI->isAGPR(*MRI, Reg0) && TRI->isVGPR(*MRI, Reg1)) 971 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 972 else if (TRI->isVGPR(*MRI, Reg0) && TRI->isAGPR(*MRI, Reg1)) 973 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64)); 974 else if (ST->hasGFX90AInsts() && TRI->isAGPR(*MRI, Reg0) && 975 TRI->isAGPR(*MRI, Reg1)) 976 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32)); 977 return; 978 } 979 980 unsigned UseOpc = UseMI->getOpcode(); 981 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 982 (UseOpc == AMDGPU::V_READLANE_B32 && 983 (int)UseOpIdx == 984 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 985 // %vgpr = V_MOV_B32 imm 986 // %sgpr = V_READFIRSTLANE_B32 %vgpr 987 // => 988 // %sgpr = S_MOV_B32 imm 989 if (FoldingImmLike) { 990 if (execMayBeModifiedBeforeUse(*MRI, 991 UseMI->getOperand(UseOpIdx).getReg(), 992 *OpToFold.getParent(), 993 *UseMI)) 994 return; 995 996 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 997 998 if (OpToFold.isImm()) 999 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 1000 else 1001 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 1002 UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) 1003 return; 1004 } 1005 1006 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 1007 if (execMayBeModifiedBeforeUse(*MRI, 1008 UseMI->getOperand(UseOpIdx).getReg(), 1009 *OpToFold.getParent(), 1010 *UseMI)) 1011 return; 1012 1013 // %vgpr = COPY %sgpr0 1014 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 1015 // => 1016 // %sgpr1 = COPY %sgpr0 1017 UseMI->setDesc(TII->get(AMDGPU::COPY)); 1018 UseMI->getOperand(1).setReg(OpToFold.getReg()); 1019 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 1020 UseMI->getOperand(1).setIsKill(false); 1021 UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) 1022 return; 1023 } 1024 } 1025 1026 const MCInstrDesc &UseDesc = UseMI->getDesc(); 1027 1028 // Don't fold into target independent nodes. Target independent opcodes 1029 // don't have defined register classes. 1030 if (UseDesc.isVariadic() || UseOp.isImplicit() || 1031 UseDesc.operands()[UseOpIdx].RegClass == -1) 1032 return; 1033 } 1034 1035 if (!FoldingImmLike) { 1036 if (OpToFold.isReg() && ST->needsAlignedVGPRs()) { 1037 // Don't fold if OpToFold doesn't hold an aligned register. 1038 const TargetRegisterClass *RC = 1039 TRI->getRegClassForReg(*MRI, OpToFold.getReg()); 1040 if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) { 1041 unsigned SubReg = OpToFold.getSubReg(); 1042 if (const TargetRegisterClass *SubRC = 1043 TRI->getSubRegisterClass(RC, SubReg)) 1044 RC = SubRC; 1045 } 1046 1047 if (!RC || !TRI->isProperlyAlignedRC(*RC)) 1048 return; 1049 } 1050 1051 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold); 1052 1053 // FIXME: We could try to change the instruction from 64-bit to 32-bit 1054 // to enable more folding opportunities. The shrink operands pass 1055 // already does this. 1056 return; 1057 } 1058 1059 1060 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 1061 const TargetRegisterClass *FoldRC = 1062 TRI->getRegClass(FoldDesc.operands()[0].RegClass); 1063 1064 // Split 64-bit constants into 32-bits for folding. 1065 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(*FoldRC) == 64) { 1066 Register UseReg = UseOp.getReg(); 1067 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 1068 if (AMDGPU::getRegBitWidth(*UseRC) != 64) 1069 return; 1070 1071 APInt Imm(64, OpToFold.getImm()); 1072 if (UseOp.getSubReg() == AMDGPU::sub0) { 1073 Imm = Imm.getLoBits(32); 1074 } else { 1075 assert(UseOp.getSubReg() == AMDGPU::sub1); 1076 Imm = Imm.getHiBits(32); 1077 } 1078 1079 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 1080 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp); 1081 return; 1082 } 1083 1084 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold); 1085 } 1086 1087 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 1088 uint32_t LHS, uint32_t RHS) { 1089 switch (Opcode) { 1090 case AMDGPU::V_AND_B32_e64: 1091 case AMDGPU::V_AND_B32_e32: 1092 case AMDGPU::S_AND_B32: 1093 Result = LHS & RHS; 1094 return true; 1095 case AMDGPU::V_OR_B32_e64: 1096 case AMDGPU::V_OR_B32_e32: 1097 case AMDGPU::S_OR_B32: 1098 Result = LHS | RHS; 1099 return true; 1100 case AMDGPU::V_XOR_B32_e64: 1101 case AMDGPU::V_XOR_B32_e32: 1102 case AMDGPU::S_XOR_B32: 1103 Result = LHS ^ RHS; 1104 return true; 1105 case AMDGPU::S_XNOR_B32: 1106 Result = ~(LHS ^ RHS); 1107 return true; 1108 case AMDGPU::S_NAND_B32: 1109 Result = ~(LHS & RHS); 1110 return true; 1111 case AMDGPU::S_NOR_B32: 1112 Result = ~(LHS | RHS); 1113 return true; 1114 case AMDGPU::S_ANDN2_B32: 1115 Result = LHS & ~RHS; 1116 return true; 1117 case AMDGPU::S_ORN2_B32: 1118 Result = LHS | ~RHS; 1119 return true; 1120 case AMDGPU::V_LSHL_B32_e64: 1121 case AMDGPU::V_LSHL_B32_e32: 1122 case AMDGPU::S_LSHL_B32: 1123 // The instruction ignores the high bits for out of bounds shifts. 1124 Result = LHS << (RHS & 31); 1125 return true; 1126 case AMDGPU::V_LSHLREV_B32_e64: 1127 case AMDGPU::V_LSHLREV_B32_e32: 1128 Result = RHS << (LHS & 31); 1129 return true; 1130 case AMDGPU::V_LSHR_B32_e64: 1131 case AMDGPU::V_LSHR_B32_e32: 1132 case AMDGPU::S_LSHR_B32: 1133 Result = LHS >> (RHS & 31); 1134 return true; 1135 case AMDGPU::V_LSHRREV_B32_e64: 1136 case AMDGPU::V_LSHRREV_B32_e32: 1137 Result = RHS >> (LHS & 31); 1138 return true; 1139 case AMDGPU::V_ASHR_I32_e64: 1140 case AMDGPU::V_ASHR_I32_e32: 1141 case AMDGPU::S_ASHR_I32: 1142 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 1143 return true; 1144 case AMDGPU::V_ASHRREV_I32_e64: 1145 case AMDGPU::V_ASHRREV_I32_e32: 1146 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 1147 return true; 1148 default: 1149 return false; 1150 } 1151 } 1152 1153 static unsigned getMovOpc(bool IsScalar) { 1154 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1155 } 1156 1157 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 1158 MI.setDesc(NewDesc); 1159 1160 // Remove any leftover implicit operands from mutating the instruction. e.g. 1161 // if we replace an s_and_b32 with a copy, we don't need the implicit scc def 1162 // anymore. 1163 const MCInstrDesc &Desc = MI.getDesc(); 1164 unsigned NumOps = Desc.getNumOperands() + Desc.implicit_uses().size() + 1165 Desc.implicit_defs().size(); 1166 1167 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 1168 MI.removeOperand(I); 1169 } 1170 1171 MachineOperand * 1172 SIFoldOperands::getImmOrMaterializedImm(MachineOperand &Op) const { 1173 // If this has a subregister, it obviously is a register source. 1174 if (!Op.isReg() || Op.getSubReg() != AMDGPU::NoSubRegister || 1175 !Op.getReg().isVirtual()) 1176 return &Op; 1177 1178 MachineInstr *Def = MRI->getVRegDef(Op.getReg()); 1179 if (Def && Def->isMoveImmediate()) { 1180 MachineOperand &ImmSrc = Def->getOperand(1); 1181 if (ImmSrc.isImm()) 1182 return &ImmSrc; 1183 } 1184 1185 return &Op; 1186 } 1187 1188 // Try to simplify operations with a constant that may appear after instruction 1189 // selection. 1190 // TODO: See if a frame index with a fixed offset can fold. 1191 bool SIFoldOperands::tryConstantFoldOp(MachineInstr *MI) const { 1192 if (!MI->allImplicitDefsAreDead()) 1193 return false; 1194 1195 unsigned Opc = MI->getOpcode(); 1196 1197 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1198 if (Src0Idx == -1) 1199 return false; 1200 MachineOperand *Src0 = getImmOrMaterializedImm(MI->getOperand(Src0Idx)); 1201 1202 if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1203 Opc == AMDGPU::S_NOT_B32) && 1204 Src0->isImm()) { 1205 MI->getOperand(1).ChangeToImmediate(~Src0->getImm()); 1206 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1207 return true; 1208 } 1209 1210 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1211 if (Src1Idx == -1) 1212 return false; 1213 MachineOperand *Src1 = getImmOrMaterializedImm(MI->getOperand(Src1Idx)); 1214 1215 if (!Src0->isImm() && !Src1->isImm()) 1216 return false; 1217 1218 // and k0, k1 -> v_mov_b32 (k0 & k1) 1219 // or k0, k1 -> v_mov_b32 (k0 | k1) 1220 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1221 if (Src0->isImm() && Src1->isImm()) { 1222 int32_t NewImm; 1223 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1224 return false; 1225 1226 bool IsSGPR = TRI->isSGPRReg(*MRI, MI->getOperand(0).getReg()); 1227 1228 // Be careful to change the right operand, src0 may belong to a different 1229 // instruction. 1230 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1231 MI->removeOperand(Src1Idx); 1232 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1233 return true; 1234 } 1235 1236 if (!MI->isCommutable()) 1237 return false; 1238 1239 if (Src0->isImm() && !Src1->isImm()) { 1240 std::swap(Src0, Src1); 1241 std::swap(Src0Idx, Src1Idx); 1242 } 1243 1244 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1245 if (Opc == AMDGPU::V_OR_B32_e64 || 1246 Opc == AMDGPU::V_OR_B32_e32 || 1247 Opc == AMDGPU::S_OR_B32) { 1248 if (Src1Val == 0) { 1249 // y = or x, 0 => y = copy x 1250 MI->removeOperand(Src1Idx); 1251 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1252 } else if (Src1Val == -1) { 1253 // y = or x, -1 => y = v_mov_b32 -1 1254 MI->removeOperand(Src1Idx); 1255 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1256 } else 1257 return false; 1258 1259 return true; 1260 } 1261 1262 if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 || 1263 Opc == AMDGPU::S_AND_B32) { 1264 if (Src1Val == 0) { 1265 // y = and x, 0 => y = v_mov_b32 0 1266 MI->removeOperand(Src0Idx); 1267 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1268 } else if (Src1Val == -1) { 1269 // y = and x, -1 => y = copy x 1270 MI->removeOperand(Src1Idx); 1271 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1272 } else 1273 return false; 1274 1275 return true; 1276 } 1277 1278 if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 || 1279 Opc == AMDGPU::S_XOR_B32) { 1280 if (Src1Val == 0) { 1281 // y = xor x, 0 => y = copy x 1282 MI->removeOperand(Src1Idx); 1283 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1284 return true; 1285 } 1286 } 1287 1288 return false; 1289 } 1290 1291 // Try to fold an instruction into a simpler one 1292 bool SIFoldOperands::tryFoldCndMask(MachineInstr &MI) const { 1293 unsigned Opc = MI.getOpcode(); 1294 if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 && 1295 Opc != AMDGPU::V_CNDMASK_B64_PSEUDO) 1296 return false; 1297 1298 MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1299 MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1300 if (!Src1->isIdenticalTo(*Src0)) { 1301 auto *Src0Imm = getImmOrMaterializedImm(*Src0); 1302 auto *Src1Imm = getImmOrMaterializedImm(*Src1); 1303 if (!Src1Imm->isIdenticalTo(*Src0Imm)) 1304 return false; 1305 } 1306 1307 int Src1ModIdx = 1308 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1309 int Src0ModIdx = 1310 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1311 if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) || 1312 (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0)) 1313 return false; 1314 1315 LLVM_DEBUG(dbgs() << "Folded " << MI << " into "); 1316 auto &NewDesc = 1317 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1318 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1319 if (Src2Idx != -1) 1320 MI.removeOperand(Src2Idx); 1321 MI.removeOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1322 if (Src1ModIdx != -1) 1323 MI.removeOperand(Src1ModIdx); 1324 if (Src0ModIdx != -1) 1325 MI.removeOperand(Src0ModIdx); 1326 mutateCopyOp(MI, NewDesc); 1327 LLVM_DEBUG(dbgs() << MI); 1328 return true; 1329 } 1330 1331 bool SIFoldOperands::tryFoldZeroHighBits(MachineInstr &MI) const { 1332 if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 && 1333 MI.getOpcode() != AMDGPU::V_AND_B32_e32) 1334 return false; 1335 1336 MachineOperand *Src0 = getImmOrMaterializedImm(MI.getOperand(1)); 1337 if (!Src0->isImm() || Src0->getImm() != 0xffff) 1338 return false; 1339 1340 Register Src1 = MI.getOperand(2).getReg(); 1341 MachineInstr *SrcDef = MRI->getVRegDef(Src1); 1342 if (!ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode())) 1343 return false; 1344 1345 Register Dst = MI.getOperand(0).getReg(); 1346 MRI->replaceRegWith(Dst, SrcDef->getOperand(0).getReg()); 1347 MI.eraseFromParent(); 1348 return true; 1349 } 1350 1351 bool SIFoldOperands::foldInstOperand(MachineInstr &MI, 1352 MachineOperand &OpToFold) const { 1353 // We need mutate the operands of new mov instructions to add implicit 1354 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1355 // this. 1356 SmallVector<MachineInstr *, 4> CopiesToReplace; 1357 SmallVector<FoldCandidate, 4> FoldList; 1358 MachineOperand &Dst = MI.getOperand(0); 1359 bool Changed = false; 1360 1361 if (OpToFold.isImm()) { 1362 for (auto &UseMI : 1363 make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) { 1364 // Folding the immediate may reveal operations that can be constant 1365 // folded or replaced with a copy. This can happen for example after 1366 // frame indices are lowered to constants or from splitting 64-bit 1367 // constants. 1368 // 1369 // We may also encounter cases where one or both operands are 1370 // immediates materialized into a register, which would ordinarily not 1371 // be folded due to multiple uses or operand constraints. 1372 if (tryConstantFoldOp(&UseMI)) { 1373 LLVM_DEBUG(dbgs() << "Constant folded " << UseMI); 1374 Changed = true; 1375 } 1376 } 1377 } 1378 1379 SmallVector<MachineOperand *, 4> UsesToProcess; 1380 for (auto &Use : MRI->use_nodbg_operands(Dst.getReg())) 1381 UsesToProcess.push_back(&Use); 1382 for (auto *U : UsesToProcess) { 1383 MachineInstr *UseMI = U->getParent(); 1384 foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U), FoldList, 1385 CopiesToReplace); 1386 } 1387 1388 if (CopiesToReplace.empty() && FoldList.empty()) 1389 return Changed; 1390 1391 MachineFunction *MF = MI.getParent()->getParent(); 1392 // Make sure we add EXEC uses to any new v_mov instructions created. 1393 for (MachineInstr *Copy : CopiesToReplace) 1394 Copy->addImplicitDefUseOperands(*MF); 1395 1396 for (FoldCandidate &Fold : FoldList) { 1397 assert(!Fold.isReg() || Fold.OpToFold); 1398 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { 1399 Register Reg = Fold.OpToFold->getReg(); 1400 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1401 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1402 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1403 continue; 1404 } 1405 if (updateOperand(Fold)) { 1406 // Clear kill flags. 1407 if (Fold.isReg()) { 1408 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1409 // FIXME: Probably shouldn't bother trying to fold if not an 1410 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1411 // copies. 1412 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1413 } 1414 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1415 << static_cast<int>(Fold.UseOpNo) << " of " 1416 << *Fold.UseMI); 1417 } else if (Fold.Commuted) { 1418 // Restoring instruction's original operand order if fold has failed. 1419 TII->commuteInstruction(*Fold.UseMI, false); 1420 } 1421 } 1422 return true; 1423 } 1424 1425 bool SIFoldOperands::tryFoldFoldableCopy( 1426 MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const { 1427 // Specially track simple redefs of m0 to the same value in a block, so we 1428 // can erase the later ones. 1429 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1430 MachineOperand &NewM0Val = MI.getOperand(1); 1431 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1432 MI.eraseFromParent(); 1433 return true; 1434 } 1435 1436 // We aren't tracking other physical registers 1437 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) 1438 ? nullptr 1439 : &NewM0Val; 1440 return false; 1441 } 1442 1443 MachineOperand &OpToFold = MI.getOperand(1); 1444 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1445 1446 // FIXME: We could also be folding things like TargetIndexes. 1447 if (!FoldingImm && !OpToFold.isReg()) 1448 return false; 1449 1450 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) 1451 return false; 1452 1453 // Prevent folding operands backwards in the function. For example, 1454 // the COPY opcode must not be replaced by 1 in this example: 1455 // 1456 // %3 = COPY %vgpr0; VGPR_32:%3 1457 // ... 1458 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1459 if (!MI.getOperand(0).getReg().isVirtual()) 1460 return false; 1461 1462 bool Changed = foldInstOperand(MI, OpToFold); 1463 1464 // If we managed to fold all uses of this copy then we might as well 1465 // delete it now. 1466 // The only reason we need to follow chains of copies here is that 1467 // tryFoldRegSequence looks forward through copies before folding a 1468 // REG_SEQUENCE into its eventual users. 1469 auto *InstToErase = &MI; 1470 while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { 1471 auto &SrcOp = InstToErase->getOperand(1); 1472 auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register(); 1473 InstToErase->eraseFromParent(); 1474 Changed = true; 1475 InstToErase = nullptr; 1476 if (!SrcReg || SrcReg.isPhysical()) 1477 break; 1478 InstToErase = MRI->getVRegDef(SrcReg); 1479 if (!InstToErase || !TII->isFoldableCopy(*InstToErase)) 1480 break; 1481 } 1482 1483 if (InstToErase && InstToErase->isRegSequence() && 1484 MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { 1485 InstToErase->eraseFromParent(); 1486 Changed = true; 1487 } 1488 1489 return Changed; 1490 } 1491 1492 // Clamp patterns are canonically selected to v_max_* instructions, so only 1493 // handle them. 1494 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1495 unsigned Op = MI.getOpcode(); 1496 switch (Op) { 1497 case AMDGPU::V_MAX_F32_e64: 1498 case AMDGPU::V_MAX_F16_e64: 1499 case AMDGPU::V_MAX_F16_t16_e64: 1500 case AMDGPU::V_MAX_F16_fake16_e64: 1501 case AMDGPU::V_MAX_F64_e64: 1502 case AMDGPU::V_MAX_NUM_F64_e64: 1503 case AMDGPU::V_PK_MAX_F16: { 1504 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1505 return nullptr; 1506 1507 // Make sure sources are identical. 1508 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1509 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1510 if (!Src0->isReg() || !Src1->isReg() || 1511 Src0->getReg() != Src1->getReg() || 1512 Src0->getSubReg() != Src1->getSubReg() || 1513 Src0->getSubReg() != AMDGPU::NoSubRegister) 1514 return nullptr; 1515 1516 // Can't fold up if we have modifiers. 1517 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1518 return nullptr; 1519 1520 unsigned Src0Mods 1521 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1522 unsigned Src1Mods 1523 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1524 1525 // Having a 0 op_sel_hi would require swizzling the output in the source 1526 // instruction, which we can't do. 1527 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1528 : 0u; 1529 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1530 return nullptr; 1531 return Src0; 1532 } 1533 default: 1534 return nullptr; 1535 } 1536 } 1537 1538 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1539 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1540 const MachineOperand *ClampSrc = isClamp(MI); 1541 if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg())) 1542 return false; 1543 1544 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1545 1546 // The type of clamp must be compatible. 1547 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1548 return false; 1549 1550 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1551 if (!DefClamp) 1552 return false; 1553 1554 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def); 1555 1556 // Clamp is applied after omod, so it is OK if omod is set. 1557 DefClamp->setImm(1); 1558 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1559 MI.eraseFromParent(); 1560 1561 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac 1562 // instruction, so we might as well convert it to the more flexible VOP3-only 1563 // mad/fma form. 1564 if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) 1565 Def->eraseFromParent(); 1566 1567 return true; 1568 } 1569 1570 static int getOModValue(unsigned Opc, int64_t Val) { 1571 switch (Opc) { 1572 case AMDGPU::V_MUL_F64_e64: 1573 case AMDGPU::V_MUL_F64_pseudo_e64: { 1574 switch (Val) { 1575 case 0x3fe0000000000000: // 0.5 1576 return SIOutMods::DIV2; 1577 case 0x4000000000000000: // 2.0 1578 return SIOutMods::MUL2; 1579 case 0x4010000000000000: // 4.0 1580 return SIOutMods::MUL4; 1581 default: 1582 return SIOutMods::NONE; 1583 } 1584 } 1585 case AMDGPU::V_MUL_F32_e64: { 1586 switch (static_cast<uint32_t>(Val)) { 1587 case 0x3f000000: // 0.5 1588 return SIOutMods::DIV2; 1589 case 0x40000000: // 2.0 1590 return SIOutMods::MUL2; 1591 case 0x40800000: // 4.0 1592 return SIOutMods::MUL4; 1593 default: 1594 return SIOutMods::NONE; 1595 } 1596 } 1597 case AMDGPU::V_MUL_F16_e64: 1598 case AMDGPU::V_MUL_F16_t16_e64: 1599 case AMDGPU::V_MUL_F16_fake16_e64: { 1600 switch (static_cast<uint16_t>(Val)) { 1601 case 0x3800: // 0.5 1602 return SIOutMods::DIV2; 1603 case 0x4000: // 2.0 1604 return SIOutMods::MUL2; 1605 case 0x4400: // 4.0 1606 return SIOutMods::MUL4; 1607 default: 1608 return SIOutMods::NONE; 1609 } 1610 } 1611 default: 1612 llvm_unreachable("invalid mul opcode"); 1613 } 1614 } 1615 1616 // FIXME: Does this really not support denormals with f16? 1617 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1618 // handled, so will anything other than that break? 1619 std::pair<const MachineOperand *, int> 1620 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1621 unsigned Op = MI.getOpcode(); 1622 switch (Op) { 1623 case AMDGPU::V_MUL_F64_e64: 1624 case AMDGPU::V_MUL_F64_pseudo_e64: 1625 case AMDGPU::V_MUL_F32_e64: 1626 case AMDGPU::V_MUL_F16_t16_e64: 1627 case AMDGPU::V_MUL_F16_fake16_e64: 1628 case AMDGPU::V_MUL_F16_e64: { 1629 // If output denormals are enabled, omod is ignored. 1630 if ((Op == AMDGPU::V_MUL_F32_e64 && 1631 MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || 1632 ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F64_pseudo_e64 || 1633 Op == AMDGPU::V_MUL_F16_e64 || Op == AMDGPU::V_MUL_F16_t16_e64 || 1634 Op == AMDGPU::V_MUL_F16_fake16_e64) && 1635 MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign)) 1636 return std::pair(nullptr, SIOutMods::NONE); 1637 1638 const MachineOperand *RegOp = nullptr; 1639 const MachineOperand *ImmOp = nullptr; 1640 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1641 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1642 if (Src0->isImm()) { 1643 ImmOp = Src0; 1644 RegOp = Src1; 1645 } else if (Src1->isImm()) { 1646 ImmOp = Src1; 1647 RegOp = Src0; 1648 } else 1649 return std::pair(nullptr, SIOutMods::NONE); 1650 1651 int OMod = getOModValue(Op, ImmOp->getImm()); 1652 if (OMod == SIOutMods::NONE || 1653 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1654 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1655 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1656 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1657 return std::pair(nullptr, SIOutMods::NONE); 1658 1659 return std::pair(RegOp, OMod); 1660 } 1661 case AMDGPU::V_ADD_F64_e64: 1662 case AMDGPU::V_ADD_F64_pseudo_e64: 1663 case AMDGPU::V_ADD_F32_e64: 1664 case AMDGPU::V_ADD_F16_e64: 1665 case AMDGPU::V_ADD_F16_t16_e64: 1666 case AMDGPU::V_ADD_F16_fake16_e64: { 1667 // If output denormals are enabled, omod is ignored. 1668 if ((Op == AMDGPU::V_ADD_F32_e64 && 1669 MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || 1670 ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F64_pseudo_e64 || 1671 Op == AMDGPU::V_ADD_F16_e64 || Op == AMDGPU::V_ADD_F16_t16_e64 || 1672 Op == AMDGPU::V_ADD_F16_fake16_e64) && 1673 MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign)) 1674 return std::pair(nullptr, SIOutMods::NONE); 1675 1676 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1677 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1678 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1679 1680 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1681 Src0->getSubReg() == Src1->getSubReg() && 1682 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1683 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1684 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1685 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1686 return std::pair(Src0, SIOutMods::MUL2); 1687 1688 return std::pair(nullptr, SIOutMods::NONE); 1689 } 1690 default: 1691 return std::pair(nullptr, SIOutMods::NONE); 1692 } 1693 } 1694 1695 // FIXME: Does this need to check IEEE bit on function? 1696 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1697 const MachineOperand *RegOp; 1698 int OMod; 1699 std::tie(RegOp, OMod) = isOMod(MI); 1700 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1701 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1702 !MRI->hasOneNonDBGUser(RegOp->getReg())) 1703 return false; 1704 1705 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1706 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1707 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1708 return false; 1709 1710 // Clamp is applied after omod. If the source already has clamp set, don't 1711 // fold it. 1712 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1713 return false; 1714 1715 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def); 1716 1717 DefOMod->setImm(OMod); 1718 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1719 MI.eraseFromParent(); 1720 1721 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac 1722 // instruction, so we might as well convert it to the more flexible VOP3-only 1723 // mad/fma form. 1724 if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) 1725 Def->eraseFromParent(); 1726 1727 return true; 1728 } 1729 1730 // Try to fold a reg_sequence with vgpr output and agpr inputs into an 1731 // instruction which can take an agpr. So far that means a store. 1732 bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) { 1733 assert(MI.isRegSequence()); 1734 auto Reg = MI.getOperand(0).getReg(); 1735 1736 if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) || 1737 !MRI->hasOneNonDBGUse(Reg)) 1738 return false; 1739 1740 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 1741 if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER)) 1742 return false; 1743 1744 for (auto &Def : Defs) { 1745 const auto *Op = Def.first; 1746 if (!Op->isReg()) 1747 return false; 1748 if (TRI->isAGPR(*MRI, Op->getReg())) 1749 continue; 1750 // Maybe this is a COPY from AREG 1751 const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg()); 1752 if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg()) 1753 return false; 1754 if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg())) 1755 return false; 1756 } 1757 1758 MachineOperand *Op = &*MRI->use_nodbg_begin(Reg); 1759 MachineInstr *UseMI = Op->getParent(); 1760 while (UseMI->isCopy() && !Op->getSubReg()) { 1761 Reg = UseMI->getOperand(0).getReg(); 1762 if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg)) 1763 return false; 1764 Op = &*MRI->use_nodbg_begin(Reg); 1765 UseMI = Op->getParent(); 1766 } 1767 1768 if (Op->getSubReg()) 1769 return false; 1770 1771 unsigned OpIdx = Op - &UseMI->getOperand(0); 1772 const MCInstrDesc &InstDesc = UseMI->getDesc(); 1773 const TargetRegisterClass *OpRC = 1774 TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF()); 1775 if (!OpRC || !TRI->isVectorSuperClass(OpRC)) 1776 return false; 1777 1778 const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)); 1779 auto Dst = MRI->createVirtualRegister(NewDstRC); 1780 auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1781 TII->get(AMDGPU::REG_SEQUENCE), Dst); 1782 1783 for (unsigned I = 0; I < Defs.size(); ++I) { 1784 MachineOperand *Def = Defs[I].first; 1785 Def->setIsKill(false); 1786 if (TRI->isAGPR(*MRI, Def->getReg())) { 1787 RS.add(*Def); 1788 } else { // This is a copy 1789 MachineInstr *SubDef = MRI->getVRegDef(Def->getReg()); 1790 SubDef->getOperand(1).setIsKill(false); 1791 RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg()); 1792 } 1793 RS.addImm(Defs[I].second); 1794 } 1795 1796 Op->setReg(Dst); 1797 if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) { 1798 Op->setReg(Reg); 1799 RS->eraseFromParent(); 1800 return false; 1801 } 1802 1803 LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI); 1804 1805 // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users, 1806 // in which case we can erase them all later in runOnMachineFunction. 1807 if (MRI->use_nodbg_empty(MI.getOperand(0).getReg())) 1808 MI.eraseFromParent(); 1809 return true; 1810 } 1811 1812 /// Checks whether \p Copy is a AGPR -> VGPR copy. Returns `true` on success and 1813 /// stores the AGPR register in \p OutReg and the subreg in \p OutSubReg 1814 static bool isAGPRCopy(const SIRegisterInfo &TRI, 1815 const MachineRegisterInfo &MRI, const MachineInstr &Copy, 1816 Register &OutReg, unsigned &OutSubReg) { 1817 assert(Copy.isCopy()); 1818 1819 const MachineOperand &CopySrc = Copy.getOperand(1); 1820 Register CopySrcReg = CopySrc.getReg(); 1821 if (!CopySrcReg.isVirtual()) 1822 return false; 1823 1824 // Common case: copy from AGPR directly, e.g. 1825 // %1:vgpr_32 = COPY %0:agpr_32 1826 if (TRI.isAGPR(MRI, CopySrcReg)) { 1827 OutReg = CopySrcReg; 1828 OutSubReg = CopySrc.getSubReg(); 1829 return true; 1830 } 1831 1832 // Sometimes it can also involve two copies, e.g. 1833 // %1:vgpr_256 = COPY %0:agpr_256 1834 // %2:vgpr_32 = COPY %1:vgpr_256.sub0 1835 const MachineInstr *CopySrcDef = MRI.getVRegDef(CopySrcReg); 1836 if (!CopySrcDef || !CopySrcDef->isCopy()) 1837 return false; 1838 1839 const MachineOperand &OtherCopySrc = CopySrcDef->getOperand(1); 1840 Register OtherCopySrcReg = OtherCopySrc.getReg(); 1841 if (!OtherCopySrcReg.isVirtual() || 1842 CopySrcDef->getOperand(0).getSubReg() != AMDGPU::NoSubRegister || 1843 OtherCopySrc.getSubReg() != AMDGPU::NoSubRegister || 1844 !TRI.isAGPR(MRI, OtherCopySrcReg)) 1845 return false; 1846 1847 OutReg = OtherCopySrcReg; 1848 OutSubReg = CopySrc.getSubReg(); 1849 return true; 1850 } 1851 1852 // Try to hoist an AGPR to VGPR copy across a PHI. 1853 // This should allow folding of an AGPR into a consumer which may support it. 1854 // 1855 // Example 1: LCSSA PHI 1856 // loop: 1857 // %1:vreg = COPY %0:areg 1858 // exit: 1859 // %2:vreg = PHI %1:vreg, %loop 1860 // => 1861 // loop: 1862 // exit: 1863 // %1:areg = PHI %0:areg, %loop 1864 // %2:vreg = COPY %1:areg 1865 // 1866 // Example 2: PHI with multiple incoming values: 1867 // entry: 1868 // %1:vreg = GLOBAL_LOAD(..) 1869 // loop: 1870 // %2:vreg = PHI %1:vreg, %entry, %5:vreg, %loop 1871 // %3:areg = COPY %2:vreg 1872 // %4:areg = (instr using %3:areg) 1873 // %5:vreg = COPY %4:areg 1874 // => 1875 // entry: 1876 // %1:vreg = GLOBAL_LOAD(..) 1877 // %2:areg = COPY %1:vreg 1878 // loop: 1879 // %3:areg = PHI %2:areg, %entry, %X:areg, 1880 // %4:areg = (instr using %3:areg) 1881 bool SIFoldOperands::tryFoldPhiAGPR(MachineInstr &PHI) { 1882 assert(PHI.isPHI()); 1883 1884 Register PhiOut = PHI.getOperand(0).getReg(); 1885 if (!TRI->isVGPR(*MRI, PhiOut)) 1886 return false; 1887 1888 // Iterate once over all incoming values of the PHI to check if this PHI is 1889 // eligible, and determine the exact AGPR RC we'll target. 1890 const TargetRegisterClass *ARC = nullptr; 1891 for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { 1892 MachineOperand &MO = PHI.getOperand(K); 1893 MachineInstr *Copy = MRI->getVRegDef(MO.getReg()); 1894 if (!Copy || !Copy->isCopy()) 1895 continue; 1896 1897 Register AGPRSrc; 1898 unsigned AGPRRegMask = AMDGPU::NoSubRegister; 1899 if (!isAGPRCopy(*TRI, *MRI, *Copy, AGPRSrc, AGPRRegMask)) 1900 continue; 1901 1902 const TargetRegisterClass *CopyInRC = MRI->getRegClass(AGPRSrc); 1903 if (const auto *SubRC = TRI->getSubRegisterClass(CopyInRC, AGPRRegMask)) 1904 CopyInRC = SubRC; 1905 1906 if (ARC && !ARC->hasSubClassEq(CopyInRC)) 1907 return false; 1908 ARC = CopyInRC; 1909 } 1910 1911 if (!ARC) 1912 return false; 1913 1914 bool IsAGPR32 = (ARC == &AMDGPU::AGPR_32RegClass); 1915 1916 // Rewrite the PHI's incoming values to ARC. 1917 LLVM_DEBUG(dbgs() << "Folding AGPR copies into: " << PHI); 1918 for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { 1919 MachineOperand &MO = PHI.getOperand(K); 1920 Register Reg = MO.getReg(); 1921 1922 MachineBasicBlock::iterator InsertPt; 1923 MachineBasicBlock *InsertMBB = nullptr; 1924 1925 // Look at the def of Reg, ignoring all copies. 1926 unsigned CopyOpc = AMDGPU::COPY; 1927 if (MachineInstr *Def = MRI->getVRegDef(Reg)) { 1928 1929 // Look at pre-existing COPY instructions from ARC: Steal the operand. If 1930 // the copy was single-use, it will be removed by DCE later. 1931 if (Def->isCopy()) { 1932 Register AGPRSrc; 1933 unsigned AGPRSubReg = AMDGPU::NoSubRegister; 1934 if (isAGPRCopy(*TRI, *MRI, *Def, AGPRSrc, AGPRSubReg)) { 1935 MO.setReg(AGPRSrc); 1936 MO.setSubReg(AGPRSubReg); 1937 continue; 1938 } 1939 1940 // If this is a multi-use SGPR -> VGPR copy, use V_ACCVGPR_WRITE on 1941 // GFX908 directly instead of a COPY. Otherwise, SIFoldOperand may try 1942 // to fold the sgpr -> vgpr -> agpr copy into a sgpr -> agpr copy which 1943 // is unlikely to be profitable. 1944 // 1945 // Note that V_ACCVGPR_WRITE is only used for AGPR_32. 1946 MachineOperand &CopyIn = Def->getOperand(1); 1947 if (IsAGPR32 && !ST->hasGFX90AInsts() && !MRI->hasOneNonDBGUse(Reg) && 1948 TRI->isSGPRReg(*MRI, CopyIn.getReg())) 1949 CopyOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; 1950 } 1951 1952 InsertMBB = Def->getParent(); 1953 InsertPt = InsertMBB->SkipPHIsLabelsAndDebug(++Def->getIterator()); 1954 } else { 1955 InsertMBB = PHI.getOperand(MO.getOperandNo() + 1).getMBB(); 1956 InsertPt = InsertMBB->getFirstTerminator(); 1957 } 1958 1959 Register NewReg = MRI->createVirtualRegister(ARC); 1960 MachineInstr *MI = BuildMI(*InsertMBB, InsertPt, PHI.getDebugLoc(), 1961 TII->get(CopyOpc), NewReg) 1962 .addReg(Reg); 1963 MO.setReg(NewReg); 1964 1965 (void)MI; 1966 LLVM_DEBUG(dbgs() << " Created COPY: " << *MI); 1967 } 1968 1969 // Replace the PHI's result with a new register. 1970 Register NewReg = MRI->createVirtualRegister(ARC); 1971 PHI.getOperand(0).setReg(NewReg); 1972 1973 // COPY that new register back to the original PhiOut register. This COPY will 1974 // usually be folded out later. 1975 MachineBasicBlock *MBB = PHI.getParent(); 1976 BuildMI(*MBB, MBB->getFirstNonPHI(), PHI.getDebugLoc(), 1977 TII->get(AMDGPU::COPY), PhiOut) 1978 .addReg(NewReg); 1979 1980 LLVM_DEBUG(dbgs() << " Done: Folded " << PHI); 1981 return true; 1982 } 1983 1984 // Attempt to convert VGPR load to an AGPR load. 1985 bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) { 1986 assert(MI.mayLoad()); 1987 if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1) 1988 return false; 1989 1990 MachineOperand &Def = MI.getOperand(0); 1991 if (!Def.isDef()) 1992 return false; 1993 1994 Register DefReg = Def.getReg(); 1995 1996 if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg)) 1997 return false; 1998 1999 SmallVector<const MachineInstr*, 8> Users; 2000 SmallVector<Register, 8> MoveRegs; 2001 for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg)) 2002 Users.push_back(&I); 2003 2004 if (Users.empty()) 2005 return false; 2006 2007 // Check that all uses a copy to an agpr or a reg_sequence producing an agpr. 2008 while (!Users.empty()) { 2009 const MachineInstr *I = Users.pop_back_val(); 2010 if (!I->isCopy() && !I->isRegSequence()) 2011 return false; 2012 Register DstReg = I->getOperand(0).getReg(); 2013 // Physical registers may have more than one instruction definitions 2014 if (DstReg.isPhysical()) 2015 return false; 2016 if (TRI->isAGPR(*MRI, DstReg)) 2017 continue; 2018 MoveRegs.push_back(DstReg); 2019 for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg)) 2020 Users.push_back(&U); 2021 } 2022 2023 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 2024 MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC)); 2025 if (!TII->isOperandLegal(MI, 0, &Def)) { 2026 MRI->setRegClass(DefReg, RC); 2027 return false; 2028 } 2029 2030 while (!MoveRegs.empty()) { 2031 Register Reg = MoveRegs.pop_back_val(); 2032 MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg))); 2033 } 2034 2035 LLVM_DEBUG(dbgs() << "Folded " << MI); 2036 2037 return true; 2038 } 2039 2040 // tryFoldPhiAGPR will aggressively try to create AGPR PHIs. 2041 // For GFX90A and later, this is pretty much always a good thing, but for GFX908 2042 // there's cases where it can create a lot more AGPR-AGPR copies, which are 2043 // expensive on this architecture due to the lack of V_ACCVGPR_MOV. 2044 // 2045 // This function looks at all AGPR PHIs in a basic block and collects their 2046 // operands. Then, it checks for register that are used more than once across 2047 // all PHIs and caches them in a VGPR. This prevents ExpandPostRAPseudo from 2048 // having to create one VGPR temporary per use, which can get very messy if 2049 // these PHIs come from a broken-up large PHI (e.g. 32 AGPR phis, one per vector 2050 // element). 2051 // 2052 // Example 2053 // a: 2054 // %in:agpr_256 = COPY %foo:vgpr_256 2055 // c: 2056 // %x:agpr_32 = .. 2057 // b: 2058 // %0:areg = PHI %in.sub0:agpr_32, %a, %x, %c 2059 // %1:areg = PHI %in.sub0:agpr_32, %a, %y, %c 2060 // %2:areg = PHI %in.sub0:agpr_32, %a, %z, %c 2061 // => 2062 // a: 2063 // %in:agpr_256 = COPY %foo:vgpr_256 2064 // %tmp:vgpr_32 = V_ACCVGPR_READ_B32_e64 %in.sub0:agpr_32 2065 // %tmp_agpr:agpr_32 = COPY %tmp 2066 // c: 2067 // %x:agpr_32 = .. 2068 // b: 2069 // %0:areg = PHI %tmp_agpr, %a, %x, %c 2070 // %1:areg = PHI %tmp_agpr, %a, %y, %c 2071 // %2:areg = PHI %tmp_agpr, %a, %z, %c 2072 bool SIFoldOperands::tryOptimizeAGPRPhis(MachineBasicBlock &MBB) { 2073 // This is only really needed on GFX908 where AGPR-AGPR copies are 2074 // unreasonably difficult. 2075 if (ST->hasGFX90AInsts()) 2076 return false; 2077 2078 // Look at all AGPR Phis and collect the register + subregister used. 2079 DenseMap<std::pair<Register, unsigned>, std::vector<MachineOperand *>> 2080 RegToMO; 2081 2082 for (auto &MI : MBB) { 2083 if (!MI.isPHI()) 2084 break; 2085 2086 if (!TRI->isAGPR(*MRI, MI.getOperand(0).getReg())) 2087 continue; 2088 2089 for (unsigned K = 1; K < MI.getNumOperands(); K += 2) { 2090 MachineOperand &PhiMO = MI.getOperand(K); 2091 RegToMO[{PhiMO.getReg(), PhiMO.getSubReg()}].push_back(&PhiMO); 2092 } 2093 } 2094 2095 // For all (Reg, SubReg) pair that are used more than once, cache the value in 2096 // a VGPR. 2097 bool Changed = false; 2098 for (const auto &[Entry, MOs] : RegToMO) { 2099 if (MOs.size() == 1) 2100 continue; 2101 2102 const auto [Reg, SubReg] = Entry; 2103 MachineInstr *Def = MRI->getVRegDef(Reg); 2104 MachineBasicBlock *DefMBB = Def->getParent(); 2105 2106 // Create a copy in a VGPR using V_ACCVGPR_READ_B32_e64 so it's not folded 2107 // out. 2108 const TargetRegisterClass *ARC = getRegOpRC(*MRI, *TRI, *MOs.front()); 2109 Register TempVGPR = 2110 MRI->createVirtualRegister(TRI->getEquivalentVGPRClass(ARC)); 2111 MachineInstr *VGPRCopy = 2112 BuildMI(*DefMBB, ++Def->getIterator(), Def->getDebugLoc(), 2113 TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64), TempVGPR) 2114 .addReg(Reg, /* flags */ 0, SubReg); 2115 2116 // Copy back to an AGPR and use that instead of the AGPR subreg in all MOs. 2117 Register TempAGPR = MRI->createVirtualRegister(ARC); 2118 BuildMI(*DefMBB, ++VGPRCopy->getIterator(), Def->getDebugLoc(), 2119 TII->get(AMDGPU::COPY), TempAGPR) 2120 .addReg(TempVGPR); 2121 2122 LLVM_DEBUG(dbgs() << "Caching AGPR into VGPR: " << *VGPRCopy); 2123 for (MachineOperand *MO : MOs) { 2124 MO->setReg(TempAGPR); 2125 MO->setSubReg(AMDGPU::NoSubRegister); 2126 LLVM_DEBUG(dbgs() << " Changed PHI Operand: " << *MO << "\n"); 2127 } 2128 2129 Changed = true; 2130 } 2131 2132 return Changed; 2133 } 2134 2135 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 2136 if (skipFunction(MF.getFunction())) 2137 return false; 2138 2139 MRI = &MF.getRegInfo(); 2140 ST = &MF.getSubtarget<GCNSubtarget>(); 2141 TII = ST->getInstrInfo(); 2142 TRI = &TII->getRegisterInfo(); 2143 MFI = MF.getInfo<SIMachineFunctionInfo>(); 2144 2145 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 2146 // correctly handle signed zeros. 2147 // 2148 // FIXME: Also need to check strictfp 2149 bool IsIEEEMode = MFI->getMode().IEEE; 2150 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 2151 2152 bool Changed = false; 2153 for (MachineBasicBlock *MBB : depth_first(&MF)) { 2154 MachineOperand *CurrentKnownM0Val = nullptr; 2155 for (auto &MI : make_early_inc_range(*MBB)) { 2156 Changed |= tryFoldCndMask(MI); 2157 2158 if (tryFoldZeroHighBits(MI)) { 2159 Changed = true; 2160 continue; 2161 } 2162 2163 if (MI.isRegSequence() && tryFoldRegSequence(MI)) { 2164 Changed = true; 2165 continue; 2166 } 2167 2168 if (MI.isPHI() && tryFoldPhiAGPR(MI)) { 2169 Changed = true; 2170 continue; 2171 } 2172 2173 if (MI.mayLoad() && tryFoldLoad(MI)) { 2174 Changed = true; 2175 continue; 2176 } 2177 2178 if (TII->isFoldableCopy(MI)) { 2179 Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val); 2180 continue; 2181 } 2182 2183 // Saw an unknown clobber of m0, so we no longer know what it is. 2184 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 2185 CurrentKnownM0Val = nullptr; 2186 2187 // TODO: Omod might be OK if there is NSZ only on the source 2188 // instruction, and not the omod multiply. 2189 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 2190 !tryFoldOMod(MI)) 2191 Changed |= tryFoldClamp(MI); 2192 } 2193 2194 Changed |= tryOptimizeAGPRPhis(*MBB); 2195 } 2196 2197 return Changed; 2198 } 2199