1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "AMDGPUSubtarget.h" 13 #include "SIInstrInfo.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/CodeGen/LiveIntervals.h" 18 #include "llvm/CodeGen/MachineFunctionPass.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "si-fold-operands" 26 using namespace llvm; 27 28 namespace { 29 30 struct FoldCandidate { 31 MachineInstr *UseMI; 32 union { 33 MachineOperand *OpToFold; 34 uint64_t ImmToFold; 35 int FrameIndexToFold; 36 }; 37 int ShrinkOpcode; 38 unsigned char UseOpNo; 39 MachineOperand::MachineOperandType Kind; 40 bool Commuted; 41 42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 43 bool Commuted_ = false, 44 int ShrinkOp = -1) : 45 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 46 Kind(FoldOp->getType()), 47 Commuted(Commuted_) { 48 if (FoldOp->isImm()) { 49 ImmToFold = FoldOp->getImm(); 50 } else if (FoldOp->isFI()) { 51 FrameIndexToFold = FoldOp->getIndex(); 52 } else { 53 assert(FoldOp->isReg() || FoldOp->isGlobal()); 54 OpToFold = FoldOp; 55 } 56 } 57 58 bool isFI() const { 59 return Kind == MachineOperand::MO_FrameIndex; 60 } 61 62 bool isImm() const { 63 return Kind == MachineOperand::MO_Immediate; 64 } 65 66 bool isReg() const { 67 return Kind == MachineOperand::MO_Register; 68 } 69 70 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 71 72 bool isCommuted() const { 73 return Commuted; 74 } 75 76 bool needsShrink() const { 77 return ShrinkOpcode != -1; 78 } 79 80 int getShrinkOpcode() const { 81 return ShrinkOpcode; 82 } 83 }; 84 85 class SIFoldOperands : public MachineFunctionPass { 86 public: 87 static char ID; 88 MachineRegisterInfo *MRI; 89 const SIInstrInfo *TII; 90 const SIRegisterInfo *TRI; 91 const GCNSubtarget *ST; 92 const SIMachineFunctionInfo *MFI; 93 94 void foldOperand(MachineOperand &OpToFold, 95 MachineInstr *UseMI, 96 int UseOpIdx, 97 SmallVectorImpl<FoldCandidate> &FoldList, 98 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 99 100 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 101 102 const MachineOperand *isClamp(const MachineInstr &MI) const; 103 bool tryFoldClamp(MachineInstr &MI); 104 105 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 106 bool tryFoldOMod(MachineInstr &MI); 107 108 public: 109 SIFoldOperands() : MachineFunctionPass(ID) { 110 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 111 } 112 113 bool runOnMachineFunction(MachineFunction &MF) override; 114 115 StringRef getPassName() const override { return "SI Fold Operands"; } 116 117 void getAnalysisUsage(AnalysisUsage &AU) const override { 118 AU.setPreservesCFG(); 119 MachineFunctionPass::getAnalysisUsage(AU); 120 } 121 }; 122 123 } // End anonymous namespace. 124 125 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 126 "SI Fold Operands", false, false) 127 128 char SIFoldOperands::ID = 0; 129 130 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 131 132 // Wrapper around isInlineConstant that understands special cases when 133 // instruction types are replaced during operand folding. 134 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 135 const MachineInstr &UseMI, 136 unsigned OpNo, 137 const MachineOperand &OpToFold) { 138 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 139 return true; 140 141 unsigned Opc = UseMI.getOpcode(); 142 switch (Opc) { 143 case AMDGPU::V_MAC_F32_e64: 144 case AMDGPU::V_MAC_F16_e64: 145 case AMDGPU::V_FMAC_F32_e64: { 146 // Special case for mac. Since this is replaced with mad when folded into 147 // src2, we need to check the legality for the final instruction. 148 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 149 if (static_cast<int>(OpNo) == Src2Idx) { 150 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; 151 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 152 153 unsigned Opc = IsFMA ? 154 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 155 const MCInstrDesc &MadDesc = TII->get(Opc); 156 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 157 } 158 return false; 159 } 160 default: 161 return false; 162 } 163 } 164 165 // TODO: Add heuristic that the frame index might not fit in the addressing mode 166 // immediate offset to avoid materializing in loops. 167 static bool frameIndexMayFold(const SIInstrInfo *TII, 168 const MachineInstr &UseMI, 169 int OpNo, 170 const MachineOperand &OpToFold) { 171 return OpToFold.isFI() && 172 (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) && 173 OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr); 174 } 175 176 FunctionPass *llvm::createSIFoldOperandsPass() { 177 return new SIFoldOperands(); 178 } 179 180 static bool updateOperand(FoldCandidate &Fold, 181 const SIInstrInfo &TII, 182 const TargetRegisterInfo &TRI, 183 const GCNSubtarget &ST) { 184 MachineInstr *MI = Fold.UseMI; 185 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 186 assert(Old.isReg()); 187 188 if (Fold.isImm()) { 189 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 190 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 191 AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold), 192 ST.hasInv2PiInlineImm())) { 193 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 194 // already set. 195 unsigned Opcode = MI->getOpcode(); 196 int OpNo = MI->getOperandNo(&Old); 197 int ModIdx = -1; 198 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 199 ModIdx = AMDGPU::OpName::src0_modifiers; 200 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 201 ModIdx = AMDGPU::OpName::src1_modifiers; 202 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 203 ModIdx = AMDGPU::OpName::src2_modifiers; 204 assert(ModIdx != -1); 205 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 206 MachineOperand &Mod = MI->getOperand(ModIdx); 207 unsigned Val = Mod.getImm(); 208 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) 209 return false; 210 // Only apply the following transformation if that operand requries 211 // a packed immediate. 212 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 213 case AMDGPU::OPERAND_REG_IMM_V2FP16: 214 case AMDGPU::OPERAND_REG_IMM_V2INT16: 215 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 216 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 217 // If upper part is all zero we do not need op_sel_hi. 218 if (!isUInt<16>(Fold.ImmToFold)) { 219 if (!(Fold.ImmToFold & 0xffff)) { 220 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 221 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 222 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 223 return true; 224 } 225 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 226 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 227 return true; 228 } 229 break; 230 default: 231 break; 232 } 233 } 234 } 235 236 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 237 MachineBasicBlock *MBB = MI->getParent(); 238 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI); 239 if (Liveness != MachineBasicBlock::LQR_Dead) 240 return false; 241 242 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 243 int Op32 = Fold.getShrinkOpcode(); 244 MachineOperand &Dst0 = MI->getOperand(0); 245 MachineOperand &Dst1 = MI->getOperand(1); 246 assert(Dst0.isDef() && Dst1.isDef()); 247 248 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 249 250 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 251 unsigned NewReg0 = MRI.createVirtualRegister(Dst0RC); 252 253 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 254 255 if (HaveNonDbgCarryUse) { 256 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 257 .addReg(AMDGPU::VCC, RegState::Kill); 258 } 259 260 // Keep the old instruction around to avoid breaking iterators, but 261 // replace it with a dummy instruction to remove uses. 262 // 263 // FIXME: We should not invert how this pass looks at operands to avoid 264 // this. Should track set of foldable movs instead of looking for uses 265 // when looking at a use. 266 Dst0.setReg(NewReg0); 267 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 268 MI->RemoveOperand(I); 269 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 270 271 if (Fold.isCommuted()) 272 TII.commuteInstruction(*Inst32, false); 273 return true; 274 } 275 276 assert(!Fold.needsShrink() && "not handled"); 277 278 if (Fold.isImm()) { 279 Old.ChangeToImmediate(Fold.ImmToFold); 280 return true; 281 } 282 283 if (Fold.isGlobal()) { 284 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 285 Fold.OpToFold->getTargetFlags()); 286 return true; 287 } 288 289 if (Fold.isFI()) { 290 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 291 return true; 292 } 293 294 MachineOperand *New = Fold.OpToFold; 295 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 296 Old.setIsUndef(New->isUndef()); 297 return true; 298 } 299 300 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 301 const MachineInstr *MI) { 302 for (auto Candidate : FoldList) { 303 if (Candidate.UseMI == MI) 304 return true; 305 } 306 return false; 307 } 308 309 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 310 MachineInstr *MI, unsigned OpNo, 311 MachineOperand *OpToFold, 312 const SIInstrInfo *TII) { 313 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 314 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 315 unsigned Opc = MI->getOpcode(); 316 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 317 Opc == AMDGPU::V_FMAC_F32_e64) && 318 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 319 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; 320 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 321 unsigned NewOpc = IsFMA ? 322 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 323 324 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 325 // to fold the operand. 326 MI->setDesc(TII->get(NewOpc)); 327 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 328 if (FoldAsMAD) { 329 MI->untieRegOperand(OpNo); 330 return true; 331 } 332 MI->setDesc(TII->get(Opc)); 333 } 334 335 // Special case for s_setreg_b32 336 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 337 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 338 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 339 return true; 340 } 341 342 // If we are already folding into another operand of MI, then 343 // we can't commute the instruction, otherwise we risk making the 344 // other fold illegal. 345 if (isUseMIInFoldList(FoldList, MI)) 346 return false; 347 348 unsigned CommuteOpNo = OpNo; 349 350 // Operand is not legal, so try to commute the instruction to 351 // see if this makes it possible to fold. 352 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 353 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 354 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 355 356 if (CanCommute) { 357 if (CommuteIdx0 == OpNo) 358 CommuteOpNo = CommuteIdx1; 359 else if (CommuteIdx1 == OpNo) 360 CommuteOpNo = CommuteIdx0; 361 } 362 363 364 // One of operands might be an Imm operand, and OpNo may refer to it after 365 // the call of commuteInstruction() below. Such situations are avoided 366 // here explicitly as OpNo must be a register operand to be a candidate 367 // for memory folding. 368 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 369 !MI->getOperand(CommuteIdx1).isReg())) 370 return false; 371 372 if (!CanCommute || 373 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 374 return false; 375 376 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 377 if ((Opc == AMDGPU::V_ADD_I32_e64 || 378 Opc == AMDGPU::V_SUB_I32_e64 || 379 Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME 380 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 381 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 382 383 // Verify the other operand is a VGPR, otherwise we would violate the 384 // constant bus restriction. 385 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 386 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 387 if (!OtherOp.isReg() || 388 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 389 return false; 390 391 assert(MI->getOperand(1).isDef()); 392 393 // Make sure to get the 32-bit version of the commuted opcode. 394 unsigned MaybeCommutedOpc = MI->getOpcode(); 395 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 396 397 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true, 398 Op32)); 399 return true; 400 } 401 402 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 403 return false; 404 } 405 406 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true)); 407 return true; 408 } 409 410 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 411 return true; 412 } 413 414 // If the use operand doesn't care about the value, this may be an operand only 415 // used for register indexing, in which case it is unsafe to fold. 416 static bool isUseSafeToFold(const SIInstrInfo *TII, 417 const MachineInstr &MI, 418 const MachineOperand &UseMO) { 419 return !UseMO.isUndef() && !TII->isSDWA(MI); 420 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 421 } 422 423 static bool tryToFoldACImm(const SIInstrInfo *TII, 424 const MachineOperand &OpToFold, 425 MachineInstr *UseMI, 426 unsigned UseOpIdx, 427 SmallVectorImpl<FoldCandidate> &FoldList) { 428 const MCInstrDesc &Desc = UseMI->getDesc(); 429 const MCOperandInfo *OpInfo = Desc.OpInfo; 430 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 431 return false; 432 433 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 434 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 435 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) 436 return false; 437 438 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy)) { 439 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 440 return true; 441 } 442 443 if (!OpToFold.isReg()) 444 return false; 445 446 unsigned UseReg = OpToFold.getReg(); 447 if (!TargetRegisterInfo::isVirtualRegister(UseReg)) 448 return false; 449 450 if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) { 451 return FC.UseMI == UseMI; }) != FoldList.end()) 452 return false; 453 454 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 455 const MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); 456 if (!Def || !Def->isRegSequence()) 457 return false; 458 459 int64_t Imm; 460 MachineOperand *Op; 461 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 462 const MachineOperand &Sub = Def->getOperand(I); 463 if (!Sub.isReg() || Sub.getSubReg()) 464 return false; 465 MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub.getReg()); 466 while (SubDef && !SubDef->isMoveImmediate() && 467 !SubDef->getOperand(1).isImm() && TII->isFoldableCopy(*SubDef)) 468 SubDef = MRI.getUniqueVRegDef(SubDef->getOperand(1).getReg()); 469 if (!SubDef || !SubDef->isMoveImmediate() || !SubDef->getOperand(1).isImm()) 470 return false; 471 Op = &SubDef->getOperand(1); 472 auto SubImm = Op->getImm(); 473 if (I == 1) { 474 if (!TII->isInlineConstant(SubDef->getOperand(1), OpTy)) 475 return false; 476 477 Imm = SubImm; 478 continue; 479 } 480 if (Imm != SubImm) 481 return false; // Can only fold splat constants 482 } 483 484 FoldList.push_back(FoldCandidate(UseMI, UseOpIdx, Op)); 485 return true; 486 } 487 488 void SIFoldOperands::foldOperand( 489 MachineOperand &OpToFold, 490 MachineInstr *UseMI, 491 int UseOpIdx, 492 SmallVectorImpl<FoldCandidate> &FoldList, 493 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 494 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 495 496 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 497 return; 498 499 // FIXME: Fold operands with subregs. 500 if (UseOp.isReg() && OpToFold.isReg()) { 501 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 502 return; 503 504 // Don't fold subregister extracts into tied operands, only if it is a full 505 // copy since a subregister use tied to a full register def doesn't really 506 // make sense. e.g. don't fold: 507 // 508 // %1 = COPY %0:sub1 509 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0> 510 // 511 // into 512 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0> 513 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister) 514 return; 515 } 516 517 // Special case for REG_SEQUENCE: We can't fold literals into 518 // REG_SEQUENCE instructions, so we have to fold them into the 519 // uses of REG_SEQUENCE. 520 if (UseMI->isRegSequence()) { 521 unsigned RegSeqDstReg = UseMI->getOperand(0).getReg(); 522 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 523 524 MachineRegisterInfo::use_iterator Next; 525 for (MachineRegisterInfo::use_iterator 526 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 527 RSUse != RSE; RSUse = Next) { 528 Next = std::next(RSUse); 529 530 MachineInstr *RSUseMI = RSUse->getParent(); 531 532 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 533 RSUse.getOperandNo(), FoldList)) 534 continue; 535 536 if (RSUse->getSubReg() != RegSeqDstSubReg) 537 continue; 538 539 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 540 CopiesToReplace); 541 } 542 543 return; 544 } 545 546 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 547 return; 548 549 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 550 // Sanity check that this is a stack access. 551 // FIXME: Should probably use stack pseudos before frame lowering. 552 MachineOperand *SOff = TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 553 if (!SOff->isReg() || (SOff->getReg() != MFI->getScratchWaveOffsetReg() && 554 SOff->getReg() != MFI->getStackPtrOffsetReg())) 555 return; 556 557 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 558 MFI->getScratchRSrcReg()) 559 return; 560 561 // A frame index will resolve to a positive constant, so it should always be 562 // safe to fold the addressing mode, even pre-GFX9. 563 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 564 SOff->setReg(MFI->getStackPtrOffsetReg()); 565 return; 566 } 567 568 bool FoldingImmLike = 569 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 570 571 if (FoldingImmLike && UseMI->isCopy()) { 572 unsigned DestReg = UseMI->getOperand(0).getReg(); 573 const TargetRegisterClass *DestRC 574 = TargetRegisterInfo::isVirtualRegister(DestReg) ? 575 MRI->getRegClass(DestReg) : 576 TRI->getPhysRegClass(DestReg); 577 578 unsigned SrcReg = UseMI->getOperand(1).getReg(); 579 if (TargetRegisterInfo::isVirtualRegister(DestReg) && 580 TargetRegisterInfo::isVirtualRegister(SrcReg)) { 581 const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg); 582 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 583 MachineRegisterInfo::use_iterator NextUse; 584 SmallVector<FoldCandidate, 4> CopyUses; 585 for (MachineRegisterInfo::use_iterator 586 Use = MRI->use_begin(DestReg), E = MRI->use_end(); 587 Use != E; Use = NextUse) { 588 NextUse = std::next(Use); 589 FoldCandidate FC = FoldCandidate(Use->getParent(), 590 Use.getOperandNo(), &UseMI->getOperand(1)); 591 CopyUses.push_back(FC); 592 } 593 for (auto & F : CopyUses) { 594 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, 595 FoldList, CopiesToReplace); 596 } 597 } 598 } 599 600 if (DestRC == &AMDGPU::AGPR_32RegClass && 601 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 602 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 603 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 604 CopiesToReplace.push_back(UseMI); 605 return; 606 } 607 608 // In order to fold immediates into copies, we need to change the 609 // copy to a MOV. 610 611 unsigned MovOp = TII->getMovOpcode(DestRC); 612 if (MovOp == AMDGPU::COPY) 613 return; 614 615 UseMI->setDesc(TII->get(MovOp)); 616 CopiesToReplace.push_back(UseMI); 617 } else { 618 if (UseMI->isCopy() && OpToFold.isReg() && 619 TargetRegisterInfo::isVirtualRegister(UseMI->getOperand(0).getReg()) && 620 TRI->isVectorRegister(*MRI, UseMI->getOperand(0).getReg()) && 621 TRI->isVectorRegister(*MRI, UseMI->getOperand(1).getReg()) && 622 !UseMI->getOperand(1).getSubReg()) { 623 unsigned Size = TII->getOpSize(*UseMI, 1); 624 UseMI->getOperand(1).setReg(OpToFold.getReg()); 625 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 626 UseMI->getOperand(1).setIsKill(false); 627 CopiesToReplace.push_back(UseMI); 628 OpToFold.setIsKill(false); 629 if (Size != 4) 630 return; 631 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 632 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 633 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 634 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 635 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 636 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32)); 637 return; 638 } 639 640 unsigned UseOpc = UseMI->getOpcode(); 641 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 642 (UseOpc == AMDGPU::V_READLANE_B32 && 643 (int)UseOpIdx == 644 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 645 // %vgpr = V_MOV_B32 imm 646 // %sgpr = V_READFIRSTLANE_B32 %vgpr 647 // => 648 // %sgpr = S_MOV_B32 imm 649 if (FoldingImmLike) { 650 if (execMayBeModifiedBeforeUse(*MRI, 651 UseMI->getOperand(UseOpIdx).getReg(), 652 *OpToFold.getParent(), 653 *UseMI)) 654 return; 655 656 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 657 658 // FIXME: ChangeToImmediate should clear subreg 659 UseMI->getOperand(1).setSubReg(0); 660 if (OpToFold.isImm()) 661 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 662 else 663 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 664 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 665 return; 666 } 667 668 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 669 if (execMayBeModifiedBeforeUse(*MRI, 670 UseMI->getOperand(UseOpIdx).getReg(), 671 *OpToFold.getParent(), 672 *UseMI)) 673 return; 674 675 // %vgpr = COPY %sgpr0 676 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 677 // => 678 // %sgpr1 = COPY %sgpr0 679 UseMI->setDesc(TII->get(AMDGPU::COPY)); 680 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 681 return; 682 } 683 } 684 685 const MCInstrDesc &UseDesc = UseMI->getDesc(); 686 687 // Don't fold into target independent nodes. Target independent opcodes 688 // don't have defined register classes. 689 if (UseDesc.isVariadic() || 690 UseOp.isImplicit() || 691 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 692 return; 693 } 694 695 if (!FoldingImmLike) { 696 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 697 698 // FIXME: We could try to change the instruction from 64-bit to 32-bit 699 // to enable more folding opportunites. The shrink operands pass 700 // already does this. 701 return; 702 } 703 704 705 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 706 const TargetRegisterClass *FoldRC = 707 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 708 709 // Split 64-bit constants into 32-bits for folding. 710 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 711 unsigned UseReg = UseOp.getReg(); 712 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 713 714 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 715 return; 716 717 APInt Imm(64, OpToFold.getImm()); 718 if (UseOp.getSubReg() == AMDGPU::sub0) { 719 Imm = Imm.getLoBits(32); 720 } else { 721 assert(UseOp.getSubReg() == AMDGPU::sub1); 722 Imm = Imm.getHiBits(32); 723 } 724 725 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 726 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 727 return; 728 } 729 730 731 732 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 733 } 734 735 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 736 uint32_t LHS, uint32_t RHS) { 737 switch (Opcode) { 738 case AMDGPU::V_AND_B32_e64: 739 case AMDGPU::V_AND_B32_e32: 740 case AMDGPU::S_AND_B32: 741 Result = LHS & RHS; 742 return true; 743 case AMDGPU::V_OR_B32_e64: 744 case AMDGPU::V_OR_B32_e32: 745 case AMDGPU::S_OR_B32: 746 Result = LHS | RHS; 747 return true; 748 case AMDGPU::V_XOR_B32_e64: 749 case AMDGPU::V_XOR_B32_e32: 750 case AMDGPU::S_XOR_B32: 751 Result = LHS ^ RHS; 752 return true; 753 case AMDGPU::V_LSHL_B32_e64: 754 case AMDGPU::V_LSHL_B32_e32: 755 case AMDGPU::S_LSHL_B32: 756 // The instruction ignores the high bits for out of bounds shifts. 757 Result = LHS << (RHS & 31); 758 return true; 759 case AMDGPU::V_LSHLREV_B32_e64: 760 case AMDGPU::V_LSHLREV_B32_e32: 761 Result = RHS << (LHS & 31); 762 return true; 763 case AMDGPU::V_LSHR_B32_e64: 764 case AMDGPU::V_LSHR_B32_e32: 765 case AMDGPU::S_LSHR_B32: 766 Result = LHS >> (RHS & 31); 767 return true; 768 case AMDGPU::V_LSHRREV_B32_e64: 769 case AMDGPU::V_LSHRREV_B32_e32: 770 Result = RHS >> (LHS & 31); 771 return true; 772 case AMDGPU::V_ASHR_I32_e64: 773 case AMDGPU::V_ASHR_I32_e32: 774 case AMDGPU::S_ASHR_I32: 775 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 776 return true; 777 case AMDGPU::V_ASHRREV_I32_e64: 778 case AMDGPU::V_ASHRREV_I32_e32: 779 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 780 return true; 781 default: 782 return false; 783 } 784 } 785 786 static unsigned getMovOpc(bool IsScalar) { 787 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 788 } 789 790 /// Remove any leftover implicit operands from mutating the instruction. e.g. 791 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 792 /// anymore. 793 static void stripExtraCopyOperands(MachineInstr &MI) { 794 const MCInstrDesc &Desc = MI.getDesc(); 795 unsigned NumOps = Desc.getNumOperands() + 796 Desc.getNumImplicitUses() + 797 Desc.getNumImplicitDefs(); 798 799 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 800 MI.RemoveOperand(I); 801 } 802 803 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 804 MI.setDesc(NewDesc); 805 stripExtraCopyOperands(MI); 806 } 807 808 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 809 MachineOperand &Op) { 810 if (Op.isReg()) { 811 // If this has a subregister, it obviously is a register source. 812 if (Op.getSubReg() != AMDGPU::NoSubRegister || 813 !TargetRegisterInfo::isVirtualRegister(Op.getReg())) 814 return &Op; 815 816 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 817 if (Def && Def->isMoveImmediate()) { 818 MachineOperand &ImmSrc = Def->getOperand(1); 819 if (ImmSrc.isImm()) 820 return &ImmSrc; 821 } 822 } 823 824 return &Op; 825 } 826 827 // Try to simplify operations with a constant that may appear after instruction 828 // selection. 829 // TODO: See if a frame index with a fixed offset can fold. 830 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 831 const SIInstrInfo *TII, 832 MachineInstr *MI, 833 MachineOperand *ImmOp) { 834 unsigned Opc = MI->getOpcode(); 835 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 836 Opc == AMDGPU::S_NOT_B32) { 837 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 838 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 839 return true; 840 } 841 842 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 843 if (Src1Idx == -1) 844 return false; 845 846 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 847 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 848 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 849 850 if (!Src0->isImm() && !Src1->isImm()) 851 return false; 852 853 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) { 854 if (Src0->isImm() && Src0->getImm() == 0) { 855 // v_lshl_or_b32 0, X, Y -> copy Y 856 // v_lshl_or_b32 0, X, K -> v_mov_b32 K 857 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg(); 858 MI->RemoveOperand(Src1Idx); 859 MI->RemoveOperand(Src0Idx); 860 861 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32)); 862 return true; 863 } 864 } 865 866 // and k0, k1 -> v_mov_b32 (k0 & k1) 867 // or k0, k1 -> v_mov_b32 (k0 | k1) 868 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 869 if (Src0->isImm() && Src1->isImm()) { 870 int32_t NewImm; 871 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 872 return false; 873 874 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 875 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 876 877 // Be careful to change the right operand, src0 may belong to a different 878 // instruction. 879 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 880 MI->RemoveOperand(Src1Idx); 881 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 882 return true; 883 } 884 885 if (!MI->isCommutable()) 886 return false; 887 888 if (Src0->isImm() && !Src1->isImm()) { 889 std::swap(Src0, Src1); 890 std::swap(Src0Idx, Src1Idx); 891 } 892 893 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 894 if (Opc == AMDGPU::V_OR_B32_e64 || 895 Opc == AMDGPU::V_OR_B32_e32 || 896 Opc == AMDGPU::S_OR_B32) { 897 if (Src1Val == 0) { 898 // y = or x, 0 => y = copy x 899 MI->RemoveOperand(Src1Idx); 900 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 901 } else if (Src1Val == -1) { 902 // y = or x, -1 => y = v_mov_b32 -1 903 MI->RemoveOperand(Src1Idx); 904 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 905 } else 906 return false; 907 908 return true; 909 } 910 911 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 912 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 913 MI->getOpcode() == AMDGPU::S_AND_B32) { 914 if (Src1Val == 0) { 915 // y = and x, 0 => y = v_mov_b32 0 916 MI->RemoveOperand(Src0Idx); 917 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 918 } else if (Src1Val == -1) { 919 // y = and x, -1 => y = copy x 920 MI->RemoveOperand(Src1Idx); 921 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 922 stripExtraCopyOperands(*MI); 923 } else 924 return false; 925 926 return true; 927 } 928 929 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 930 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 931 MI->getOpcode() == AMDGPU::S_XOR_B32) { 932 if (Src1Val == 0) { 933 // y = xor x, 0 => y = copy x 934 MI->RemoveOperand(Src1Idx); 935 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 936 return true; 937 } 938 } 939 940 return false; 941 } 942 943 // Try to fold an instruction into a simpler one 944 static bool tryFoldInst(const SIInstrInfo *TII, 945 MachineInstr *MI) { 946 unsigned Opc = MI->getOpcode(); 947 948 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 949 Opc == AMDGPU::V_CNDMASK_B32_e64 || 950 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 951 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 952 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 953 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 954 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 955 if (Src1->isIdenticalTo(*Src0) && 956 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && 957 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { 958 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 959 auto &NewDesc = 960 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 961 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 962 if (Src2Idx != -1) 963 MI->RemoveOperand(Src2Idx); 964 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 965 if (Src1ModIdx != -1) 966 MI->RemoveOperand(Src1ModIdx); 967 if (Src0ModIdx != -1) 968 MI->RemoveOperand(Src0ModIdx); 969 mutateCopyOp(*MI, NewDesc); 970 LLVM_DEBUG(dbgs() << *MI << '\n'); 971 return true; 972 } 973 } 974 975 return false; 976 } 977 978 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 979 MachineOperand &OpToFold) const { 980 // We need mutate the operands of new mov instructions to add implicit 981 // uses of EXEC, but adding them invalidates the use_iterator, so defer 982 // this. 983 SmallVector<MachineInstr *, 4> CopiesToReplace; 984 SmallVector<FoldCandidate, 4> FoldList; 985 MachineOperand &Dst = MI.getOperand(0); 986 987 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 988 if (FoldingImm) { 989 unsigned NumLiteralUses = 0; 990 MachineOperand *NonInlineUse = nullptr; 991 int NonInlineUseOpNo = -1; 992 993 MachineRegisterInfo::use_iterator NextUse; 994 for (MachineRegisterInfo::use_iterator 995 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 996 Use != E; Use = NextUse) { 997 NextUse = std::next(Use); 998 MachineInstr *UseMI = Use->getParent(); 999 unsigned OpNo = Use.getOperandNo(); 1000 1001 // Folding the immediate may reveal operations that can be constant 1002 // folded or replaced with a copy. This can happen for example after 1003 // frame indices are lowered to constants or from splitting 64-bit 1004 // constants. 1005 // 1006 // We may also encounter cases where one or both operands are 1007 // immediates materialized into a register, which would ordinarily not 1008 // be folded due to multiple uses or operand constraints. 1009 1010 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 1011 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 1012 1013 // Some constant folding cases change the same immediate's use to a new 1014 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 1015 // again. The same constant folded instruction could also have a second 1016 // use operand. 1017 NextUse = MRI->use_begin(Dst.getReg()); 1018 FoldList.clear(); 1019 continue; 1020 } 1021 1022 // Try to fold any inline immediate uses, and then only fold other 1023 // constants if they have one use. 1024 // 1025 // The legality of the inline immediate must be checked based on the use 1026 // operand, not the defining instruction, because 32-bit instructions 1027 // with 32-bit inline immediate sources may be used to materialize 1028 // constants used in 16-bit operands. 1029 // 1030 // e.g. it is unsafe to fold: 1031 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1032 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1033 1034 // Folding immediates with more than one use will increase program size. 1035 // FIXME: This will also reduce register usage, which may be better 1036 // in some cases. A better heuristic is needed. 1037 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1038 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1039 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1040 foldOperand(OpToFold, UseMI, OpNo, FoldList, 1041 CopiesToReplace); 1042 } else { 1043 if (++NumLiteralUses == 1) { 1044 NonInlineUse = &*Use; 1045 NonInlineUseOpNo = OpNo; 1046 } 1047 } 1048 } 1049 1050 if (NumLiteralUses == 1) { 1051 MachineInstr *UseMI = NonInlineUse->getParent(); 1052 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1053 } 1054 } else { 1055 // Folding register. 1056 SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess; 1057 for (MachineRegisterInfo::use_iterator 1058 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 1059 Use != E; ++Use) { 1060 UsesToProcess.push_back(Use); 1061 } 1062 for (auto U : UsesToProcess) { 1063 MachineInstr *UseMI = U->getParent(); 1064 1065 foldOperand(OpToFold, UseMI, U.getOperandNo(), 1066 FoldList, CopiesToReplace); 1067 } 1068 } 1069 1070 MachineFunction *MF = MI.getParent()->getParent(); 1071 // Make sure we add EXEC uses to any new v_mov instructions created. 1072 for (MachineInstr *Copy : CopiesToReplace) 1073 Copy->addImplicitDefUseOperands(*MF); 1074 1075 for (FoldCandidate &Fold : FoldList) { 1076 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1077 // Clear kill flags. 1078 if (Fold.isReg()) { 1079 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1080 // FIXME: Probably shouldn't bother trying to fold if not an 1081 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1082 // copies. 1083 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1084 } 1085 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1086 << static_cast<int>(Fold.UseOpNo) << " of " 1087 << *Fold.UseMI << '\n'); 1088 tryFoldInst(TII, Fold.UseMI); 1089 } else if (Fold.isCommuted()) { 1090 // Restoring instruction's original operand order if fold has failed. 1091 TII->commuteInstruction(*Fold.UseMI, false); 1092 } 1093 } 1094 } 1095 1096 // Clamp patterns are canonically selected to v_max_* instructions, so only 1097 // handle them. 1098 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1099 unsigned Op = MI.getOpcode(); 1100 switch (Op) { 1101 case AMDGPU::V_MAX_F32_e64: 1102 case AMDGPU::V_MAX_F16_e64: 1103 case AMDGPU::V_MAX_F64: 1104 case AMDGPU::V_PK_MAX_F16: { 1105 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1106 return nullptr; 1107 1108 // Make sure sources are identical. 1109 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1110 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1111 if (!Src0->isReg() || !Src1->isReg() || 1112 Src0->getReg() != Src1->getReg() || 1113 Src0->getSubReg() != Src1->getSubReg() || 1114 Src0->getSubReg() != AMDGPU::NoSubRegister) 1115 return nullptr; 1116 1117 // Can't fold up if we have modifiers. 1118 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1119 return nullptr; 1120 1121 unsigned Src0Mods 1122 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1123 unsigned Src1Mods 1124 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1125 1126 // Having a 0 op_sel_hi would require swizzling the output in the source 1127 // instruction, which we can't do. 1128 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1129 : 0u; 1130 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1131 return nullptr; 1132 return Src0; 1133 } 1134 default: 1135 return nullptr; 1136 } 1137 } 1138 1139 // We obviously have multiple uses in a clamp since the register is used twice 1140 // in the same instruction. 1141 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 1142 int Count = 0; 1143 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 1144 I != E; ++I) { 1145 if (++Count > 1) 1146 return false; 1147 } 1148 1149 return true; 1150 } 1151 1152 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1153 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1154 const MachineOperand *ClampSrc = isClamp(MI); 1155 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 1156 return false; 1157 1158 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1159 1160 // The type of clamp must be compatible. 1161 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1162 return false; 1163 1164 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1165 if (!DefClamp) 1166 return false; 1167 1168 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 1169 << '\n'); 1170 1171 // Clamp is applied after omod, so it is OK if omod is set. 1172 DefClamp->setImm(1); 1173 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1174 MI.eraseFromParent(); 1175 return true; 1176 } 1177 1178 static int getOModValue(unsigned Opc, int64_t Val) { 1179 switch (Opc) { 1180 case AMDGPU::V_MUL_F32_e64: { 1181 switch (static_cast<uint32_t>(Val)) { 1182 case 0x3f000000: // 0.5 1183 return SIOutMods::DIV2; 1184 case 0x40000000: // 2.0 1185 return SIOutMods::MUL2; 1186 case 0x40800000: // 4.0 1187 return SIOutMods::MUL4; 1188 default: 1189 return SIOutMods::NONE; 1190 } 1191 } 1192 case AMDGPU::V_MUL_F16_e64: { 1193 switch (static_cast<uint16_t>(Val)) { 1194 case 0x3800: // 0.5 1195 return SIOutMods::DIV2; 1196 case 0x4000: // 2.0 1197 return SIOutMods::MUL2; 1198 case 0x4400: // 4.0 1199 return SIOutMods::MUL4; 1200 default: 1201 return SIOutMods::NONE; 1202 } 1203 } 1204 default: 1205 llvm_unreachable("invalid mul opcode"); 1206 } 1207 } 1208 1209 // FIXME: Does this really not support denormals with f16? 1210 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1211 // handled, so will anything other than that break? 1212 std::pair<const MachineOperand *, int> 1213 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1214 unsigned Op = MI.getOpcode(); 1215 switch (Op) { 1216 case AMDGPU::V_MUL_F32_e64: 1217 case AMDGPU::V_MUL_F16_e64: { 1218 // If output denormals are enabled, omod is ignored. 1219 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || 1220 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) 1221 return std::make_pair(nullptr, SIOutMods::NONE); 1222 1223 const MachineOperand *RegOp = nullptr; 1224 const MachineOperand *ImmOp = nullptr; 1225 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1226 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1227 if (Src0->isImm()) { 1228 ImmOp = Src0; 1229 RegOp = Src1; 1230 } else if (Src1->isImm()) { 1231 ImmOp = Src1; 1232 RegOp = Src0; 1233 } else 1234 return std::make_pair(nullptr, SIOutMods::NONE); 1235 1236 int OMod = getOModValue(Op, ImmOp->getImm()); 1237 if (OMod == SIOutMods::NONE || 1238 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1239 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1240 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1241 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1242 return std::make_pair(nullptr, SIOutMods::NONE); 1243 1244 return std::make_pair(RegOp, OMod); 1245 } 1246 case AMDGPU::V_ADD_F32_e64: 1247 case AMDGPU::V_ADD_F16_e64: { 1248 // If output denormals are enabled, omod is ignored. 1249 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || 1250 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) 1251 return std::make_pair(nullptr, SIOutMods::NONE); 1252 1253 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1254 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1255 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1256 1257 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1258 Src0->getSubReg() == Src1->getSubReg() && 1259 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1260 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1261 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1262 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1263 return std::make_pair(Src0, SIOutMods::MUL2); 1264 1265 return std::make_pair(nullptr, SIOutMods::NONE); 1266 } 1267 default: 1268 return std::make_pair(nullptr, SIOutMods::NONE); 1269 } 1270 } 1271 1272 // FIXME: Does this need to check IEEE bit on function? 1273 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1274 const MachineOperand *RegOp; 1275 int OMod; 1276 std::tie(RegOp, OMod) = isOMod(MI); 1277 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1278 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1279 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1280 return false; 1281 1282 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1283 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1284 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1285 return false; 1286 1287 // Clamp is applied after omod. If the source already has clamp set, don't 1288 // fold it. 1289 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1290 return false; 1291 1292 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1293 1294 DefOMod->setImm(OMod); 1295 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1296 MI.eraseFromParent(); 1297 return true; 1298 } 1299 1300 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1301 if (skipFunction(MF.getFunction())) 1302 return false; 1303 1304 MRI = &MF.getRegInfo(); 1305 ST = &MF.getSubtarget<GCNSubtarget>(); 1306 TII = ST->getInstrInfo(); 1307 TRI = &TII->getRegisterInfo(); 1308 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1309 1310 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1311 // correctly handle signed zeros. 1312 // 1313 // FIXME: Also need to check strictfp 1314 bool IsIEEEMode = MFI->getMode().IEEE; 1315 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1316 1317 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1318 MachineBasicBlock::iterator I, Next; 1319 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1320 Next = std::next(I); 1321 MachineInstr &MI = *I; 1322 1323 tryFoldInst(TII, &MI); 1324 1325 if (!TII->isFoldableCopy(MI)) { 1326 // TODO: Omod might be OK if there is NSZ only on the source 1327 // instruction, and not the omod multiply. 1328 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1329 !tryFoldOMod(MI)) 1330 tryFoldClamp(MI); 1331 continue; 1332 } 1333 1334 MachineOperand &OpToFold = MI.getOperand(1); 1335 bool FoldingImm = 1336 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1337 1338 // FIXME: We could also be folding things like TargetIndexes. 1339 if (!FoldingImm && !OpToFold.isReg()) 1340 continue; 1341 1342 if (OpToFold.isReg() && 1343 !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg())) 1344 continue; 1345 1346 // Prevent folding operands backwards in the function. For example, 1347 // the COPY opcode must not be replaced by 1 in this example: 1348 // 1349 // %3 = COPY %vgpr0; VGPR_32:%3 1350 // ... 1351 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1352 MachineOperand &Dst = MI.getOperand(0); 1353 if (Dst.isReg() && 1354 !TargetRegisterInfo::isVirtualRegister(Dst.getReg())) 1355 continue; 1356 1357 foldInstOperand(MI, OpToFold); 1358 } 1359 } 1360 return false; 1361 } 1362