1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "GCNSubtarget.h" 13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/CodeGen/MachineFunctionPass.h" 17 18 #define DEBUG_TYPE "si-fold-operands" 19 using namespace llvm; 20 21 namespace { 22 23 struct FoldCandidate { 24 MachineInstr *UseMI; 25 union { 26 MachineOperand *OpToFold; 27 uint64_t ImmToFold; 28 int FrameIndexToFold; 29 }; 30 int ShrinkOpcode; 31 unsigned UseOpNo; 32 MachineOperand::MachineOperandType Kind; 33 bool Commuted; 34 35 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 36 bool Commuted_ = false, 37 int ShrinkOp = -1) : 38 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 39 Kind(FoldOp->getType()), 40 Commuted(Commuted_) { 41 if (FoldOp->isImm()) { 42 ImmToFold = FoldOp->getImm(); 43 } else if (FoldOp->isFI()) { 44 FrameIndexToFold = FoldOp->getIndex(); 45 } else { 46 assert(FoldOp->isReg() || FoldOp->isGlobal()); 47 OpToFold = FoldOp; 48 } 49 } 50 51 bool isFI() const { 52 return Kind == MachineOperand::MO_FrameIndex; 53 } 54 55 bool isImm() const { 56 return Kind == MachineOperand::MO_Immediate; 57 } 58 59 bool isReg() const { 60 return Kind == MachineOperand::MO_Register; 61 } 62 63 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 64 65 bool isCommuted() const { 66 return Commuted; 67 } 68 69 bool needsShrink() const { 70 return ShrinkOpcode != -1; 71 } 72 73 int getShrinkOpcode() const { 74 return ShrinkOpcode; 75 } 76 }; 77 78 class SIFoldOperands : public MachineFunctionPass { 79 public: 80 static char ID; 81 MachineRegisterInfo *MRI; 82 const SIInstrInfo *TII; 83 const SIRegisterInfo *TRI; 84 const GCNSubtarget *ST; 85 const SIMachineFunctionInfo *MFI; 86 87 void foldOperand(MachineOperand &OpToFold, 88 MachineInstr *UseMI, 89 int UseOpIdx, 90 SmallVectorImpl<FoldCandidate> &FoldList, 91 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 92 93 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 94 95 const MachineOperand *isClamp(const MachineInstr &MI) const; 96 bool tryFoldClamp(MachineInstr &MI); 97 98 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 99 bool tryFoldOMod(MachineInstr &MI); 100 101 public: 102 SIFoldOperands() : MachineFunctionPass(ID) { 103 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 104 } 105 106 bool runOnMachineFunction(MachineFunction &MF) override; 107 108 StringRef getPassName() const override { return "SI Fold Operands"; } 109 110 void getAnalysisUsage(AnalysisUsage &AU) const override { 111 AU.setPreservesCFG(); 112 MachineFunctionPass::getAnalysisUsage(AU); 113 } 114 }; 115 116 } // End anonymous namespace. 117 118 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 119 "SI Fold Operands", false, false) 120 121 char SIFoldOperands::ID = 0; 122 123 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 124 125 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. 126 static unsigned macToMad(unsigned Opc) { 127 switch (Opc) { 128 case AMDGPU::V_MAC_F32_e64: 129 return AMDGPU::V_MAD_F32_e64; 130 case AMDGPU::V_MAC_F16_e64: 131 return AMDGPU::V_MAD_F16_e64; 132 case AMDGPU::V_FMAC_F32_e64: 133 return AMDGPU::V_FMA_F32_e64; 134 case AMDGPU::V_FMAC_F16_e64: 135 return AMDGPU::V_FMA_F16_gfx9_e64; 136 case AMDGPU::V_FMAC_LEGACY_F32_e64: 137 return AMDGPU::V_FMA_LEGACY_F32_e64; 138 } 139 return AMDGPU::INSTRUCTION_LIST_END; 140 } 141 142 // Wrapper around isInlineConstant that understands special cases when 143 // instruction types are replaced during operand folding. 144 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 145 const MachineInstr &UseMI, 146 unsigned OpNo, 147 const MachineOperand &OpToFold) { 148 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 149 return true; 150 151 unsigned Opc = UseMI.getOpcode(); 152 unsigned NewOpc = macToMad(Opc); 153 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 154 // Special case for mac. Since this is replaced with mad when folded into 155 // src2, we need to check the legality for the final instruction. 156 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 157 if (static_cast<int>(OpNo) == Src2Idx) { 158 const MCInstrDesc &MadDesc = TII->get(NewOpc); 159 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 160 } 161 } 162 163 return false; 164 } 165 166 // TODO: Add heuristic that the frame index might not fit in the addressing mode 167 // immediate offset to avoid materializing in loops. 168 static bool frameIndexMayFold(const SIInstrInfo *TII, 169 const MachineInstr &UseMI, 170 int OpNo, 171 const MachineOperand &OpToFold) { 172 if (!OpToFold.isFI()) 173 return false; 174 175 if (TII->isMUBUF(UseMI)) 176 return OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 177 AMDGPU::OpName::vaddr); 178 if (!TII->isFLATScratch(UseMI)) 179 return false; 180 181 int SIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 182 AMDGPU::OpName::saddr); 183 if (OpNo == SIdx) 184 return true; 185 186 int VIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 187 AMDGPU::OpName::vaddr); 188 return OpNo == VIdx && SIdx == -1; 189 } 190 191 FunctionPass *llvm::createSIFoldOperandsPass() { 192 return new SIFoldOperands(); 193 } 194 195 static bool updateOperand(FoldCandidate &Fold, 196 const SIInstrInfo &TII, 197 const TargetRegisterInfo &TRI, 198 const GCNSubtarget &ST) { 199 MachineInstr *MI = Fold.UseMI; 200 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 201 assert(Old.isReg()); 202 203 if (Fold.isImm()) { 204 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 205 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 206 AMDGPU::isFoldableLiteralV216(Fold.ImmToFold, 207 ST.hasInv2PiInlineImm())) { 208 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 209 // already set. 210 unsigned Opcode = MI->getOpcode(); 211 int OpNo = MI->getOperandNo(&Old); 212 int ModIdx = -1; 213 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 214 ModIdx = AMDGPU::OpName::src0_modifiers; 215 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 216 ModIdx = AMDGPU::OpName::src1_modifiers; 217 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 218 ModIdx = AMDGPU::OpName::src2_modifiers; 219 assert(ModIdx != -1); 220 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 221 MachineOperand &Mod = MI->getOperand(ModIdx); 222 unsigned Val = Mod.getImm(); 223 if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) { 224 // Only apply the following transformation if that operand requries 225 // a packed immediate. 226 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 227 case AMDGPU::OPERAND_REG_IMM_V2FP16: 228 case AMDGPU::OPERAND_REG_IMM_V2INT16: 229 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 230 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 231 // If upper part is all zero we do not need op_sel_hi. 232 if (!isUInt<16>(Fold.ImmToFold)) { 233 if (!(Fold.ImmToFold & 0xffff)) { 234 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 235 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 236 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 237 return true; 238 } 239 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 240 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 241 return true; 242 } 243 break; 244 default: 245 break; 246 } 247 } 248 } 249 } 250 251 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 252 MachineBasicBlock *MBB = MI->getParent(); 253 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16); 254 if (Liveness != MachineBasicBlock::LQR_Dead) { 255 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 256 return false; 257 } 258 259 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 260 int Op32 = Fold.getShrinkOpcode(); 261 MachineOperand &Dst0 = MI->getOperand(0); 262 MachineOperand &Dst1 = MI->getOperand(1); 263 assert(Dst0.isDef() && Dst1.isDef()); 264 265 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 266 267 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 268 Register NewReg0 = MRI.createVirtualRegister(Dst0RC); 269 270 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 271 272 if (HaveNonDbgCarryUse) { 273 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 274 .addReg(AMDGPU::VCC, RegState::Kill); 275 } 276 277 // Keep the old instruction around to avoid breaking iterators, but 278 // replace it with a dummy instruction to remove uses. 279 // 280 // FIXME: We should not invert how this pass looks at operands to avoid 281 // this. Should track set of foldable movs instead of looking for uses 282 // when looking at a use. 283 Dst0.setReg(NewReg0); 284 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 285 MI->RemoveOperand(I); 286 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 287 288 if (Fold.isCommuted()) 289 TII.commuteInstruction(*Inst32, false); 290 return true; 291 } 292 293 assert(!Fold.needsShrink() && "not handled"); 294 295 if (Fold.isImm()) { 296 Old.ChangeToImmediate(Fold.ImmToFold); 297 return true; 298 } 299 300 if (Fold.isGlobal()) { 301 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 302 Fold.OpToFold->getTargetFlags()); 303 return true; 304 } 305 306 if (Fold.isFI()) { 307 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 308 return true; 309 } 310 311 MachineOperand *New = Fold.OpToFold; 312 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 313 Old.setIsUndef(New->isUndef()); 314 return true; 315 } 316 317 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 318 const MachineInstr *MI) { 319 for (auto Candidate : FoldList) { 320 if (Candidate.UseMI == MI) 321 return true; 322 } 323 return false; 324 } 325 326 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 327 MachineInstr *MI, unsigned OpNo, 328 MachineOperand *FoldOp, bool Commuted = false, 329 int ShrinkOp = -1) { 330 // Skip additional folding on the same operand. 331 for (FoldCandidate &Fold : FoldList) 332 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 333 return; 334 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 335 << " operand " << OpNo << "\n " << *MI << '\n'); 336 FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp)); 337 } 338 339 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 340 MachineInstr *MI, unsigned OpNo, 341 MachineOperand *OpToFold, 342 const SIInstrInfo *TII) { 343 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 344 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 345 unsigned Opc = MI->getOpcode(); 346 unsigned NewOpc = macToMad(Opc); 347 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 348 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 349 // to fold the operand. 350 MI->setDesc(TII->get(NewOpc)); 351 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 352 if (FoldAsMAD) { 353 MI->untieRegOperand(OpNo); 354 return true; 355 } 356 MI->setDesc(TII->get(Opc)); 357 } 358 359 // Special case for s_setreg_b32 360 if (OpToFold->isImm()) { 361 unsigned ImmOpc = 0; 362 if (Opc == AMDGPU::S_SETREG_B32) 363 ImmOpc = AMDGPU::S_SETREG_IMM32_B32; 364 else if (Opc == AMDGPU::S_SETREG_B32_mode) 365 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; 366 if (ImmOpc) { 367 MI->setDesc(TII->get(ImmOpc)); 368 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 369 return true; 370 } 371 } 372 373 // If we are already folding into another operand of MI, then 374 // we can't commute the instruction, otherwise we risk making the 375 // other fold illegal. 376 if (isUseMIInFoldList(FoldList, MI)) 377 return false; 378 379 unsigned CommuteOpNo = OpNo; 380 381 // Operand is not legal, so try to commute the instruction to 382 // see if this makes it possible to fold. 383 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 384 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 385 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 386 387 if (CanCommute) { 388 if (CommuteIdx0 == OpNo) 389 CommuteOpNo = CommuteIdx1; 390 else if (CommuteIdx1 == OpNo) 391 CommuteOpNo = CommuteIdx0; 392 } 393 394 395 // One of operands might be an Imm operand, and OpNo may refer to it after 396 // the call of commuteInstruction() below. Such situations are avoided 397 // here explicitly as OpNo must be a register operand to be a candidate 398 // for memory folding. 399 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 400 !MI->getOperand(CommuteIdx1).isReg())) 401 return false; 402 403 if (!CanCommute || 404 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 405 return false; 406 407 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 408 if ((Opc == AMDGPU::V_ADD_CO_U32_e64 || 409 Opc == AMDGPU::V_SUB_CO_U32_e64 || 410 Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME 411 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 412 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 413 414 // Verify the other operand is a VGPR, otherwise we would violate the 415 // constant bus restriction. 416 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 417 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 418 if (!OtherOp.isReg() || 419 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 420 return false; 421 422 assert(MI->getOperand(1).isDef()); 423 424 // Make sure to get the 32-bit version of the commuted opcode. 425 unsigned MaybeCommutedOpc = MI->getOpcode(); 426 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 427 428 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 429 return true; 430 } 431 432 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 433 return false; 434 } 435 436 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true); 437 return true; 438 } 439 440 // Check the case where we might introduce a second constant operand to a 441 // scalar instruction 442 if (TII->isSALU(MI->getOpcode())) { 443 const MCInstrDesc &InstDesc = MI->getDesc(); 444 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo]; 445 const SIRegisterInfo &SRI = TII->getRegisterInfo(); 446 447 // Fine if the operand can be encoded as an inline constant 448 if (OpToFold->isImm()) { 449 if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) || 450 !TII->isInlineConstant(*OpToFold, OpInfo)) { 451 // Otherwise check for another constant 452 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 453 auto &Op = MI->getOperand(i); 454 if (OpNo != i && 455 TII->isLiteralConstantLike(Op, OpInfo)) { 456 return false; 457 } 458 } 459 } 460 } 461 } 462 463 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 464 return true; 465 } 466 467 // If the use operand doesn't care about the value, this may be an operand only 468 // used for register indexing, in which case it is unsafe to fold. 469 static bool isUseSafeToFold(const SIInstrInfo *TII, 470 const MachineInstr &MI, 471 const MachineOperand &UseMO) { 472 if (UseMO.isUndef() || TII->isSDWA(MI)) 473 return false; 474 475 switch (MI.getOpcode()) { 476 case AMDGPU::V_MOV_B32_e32: 477 case AMDGPU::V_MOV_B32_e64: 478 case AMDGPU::V_MOV_B64_PSEUDO: 479 // Do not fold into an indirect mov. 480 return !MI.hasRegisterImplicitUseOperand(AMDGPU::M0); 481 } 482 483 return true; 484 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 485 } 486 487 // Find a def of the UseReg, check if it is a reg_seqence and find initializers 488 // for each subreg, tracking it to foldable inline immediate if possible. 489 // Returns true on success. 490 static bool getRegSeqInit( 491 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs, 492 Register UseReg, uint8_t OpTy, 493 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) { 494 MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); 495 if (!Def || !Def->isRegSequence()) 496 return false; 497 498 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 499 MachineOperand *Sub = &Def->getOperand(I); 500 assert (Sub->isReg()); 501 502 for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg()); 503 SubDef && Sub->isReg() && !Sub->getSubReg() && 504 TII->isFoldableCopy(*SubDef); 505 SubDef = MRI.getUniqueVRegDef(Sub->getReg())) { 506 MachineOperand *Op = &SubDef->getOperand(1); 507 if (Op->isImm()) { 508 if (TII->isInlineConstant(*Op, OpTy)) 509 Sub = Op; 510 break; 511 } 512 if (!Op->isReg()) 513 break; 514 Sub = Op; 515 } 516 517 Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm())); 518 } 519 520 return true; 521 } 522 523 static bool tryToFoldACImm(const SIInstrInfo *TII, 524 const MachineOperand &OpToFold, 525 MachineInstr *UseMI, 526 unsigned UseOpIdx, 527 SmallVectorImpl<FoldCandidate> &FoldList) { 528 const MCInstrDesc &Desc = UseMI->getDesc(); 529 const MCOperandInfo *OpInfo = Desc.OpInfo; 530 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 531 return false; 532 533 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 534 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 535 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) 536 return false; 537 538 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 539 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 540 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 541 return true; 542 } 543 544 if (!OpToFold.isReg()) 545 return false; 546 547 Register UseReg = OpToFold.getReg(); 548 if (!UseReg.isVirtual()) 549 return false; 550 551 if (llvm::any_of(FoldList, [UseMI](const FoldCandidate &FC) { 552 return FC.UseMI == UseMI; 553 })) 554 return false; 555 556 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 557 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 558 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI)) 559 return false; 560 561 int32_t Imm; 562 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 563 const MachineOperand *Op = Defs[I].first; 564 if (!Op->isImm()) 565 return false; 566 567 auto SubImm = Op->getImm(); 568 if (!I) { 569 Imm = SubImm; 570 if (!TII->isInlineConstant(*Op, OpTy) || 571 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 572 return false; 573 574 continue; 575 } 576 if (Imm != SubImm) 577 return false; // Can only fold splat constants 578 } 579 580 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 581 return true; 582 } 583 584 void SIFoldOperands::foldOperand( 585 MachineOperand &OpToFold, 586 MachineInstr *UseMI, 587 int UseOpIdx, 588 SmallVectorImpl<FoldCandidate> &FoldList, 589 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 590 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 591 592 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 593 return; 594 595 // FIXME: Fold operands with subregs. 596 if (UseOp.isReg() && OpToFold.isReg()) { 597 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 598 return; 599 } 600 601 // Special case for REG_SEQUENCE: We can't fold literals into 602 // REG_SEQUENCE instructions, so we have to fold them into the 603 // uses of REG_SEQUENCE. 604 if (UseMI->isRegSequence()) { 605 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 606 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 607 608 MachineRegisterInfo::use_nodbg_iterator Next; 609 for (MachineRegisterInfo::use_nodbg_iterator 610 RSUse = MRI->use_nodbg_begin(RegSeqDstReg), RSE = MRI->use_nodbg_end(); 611 RSUse != RSE; RSUse = Next) { 612 Next = std::next(RSUse); 613 614 MachineInstr *RSUseMI = RSUse->getParent(); 615 616 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 617 RSUse.getOperandNo(), FoldList)) 618 continue; 619 620 if (RSUse->getSubReg() != RegSeqDstSubReg) 621 continue; 622 623 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 624 CopiesToReplace); 625 } 626 627 return; 628 } 629 630 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 631 return; 632 633 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 634 // Sanity check that this is a stack access. 635 // FIXME: Should probably use stack pseudos before frame lowering. 636 637 if (TII->isMUBUF(*UseMI)) { 638 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 639 MFI->getScratchRSrcReg()) 640 return; 641 642 // Ensure this is either relative to the current frame or the current 643 // wave. 644 MachineOperand &SOff = 645 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 646 if (!SOff.isImm() || SOff.getImm() != 0) 647 return; 648 } 649 650 // A frame index will resolve to a positive constant, so it should always be 651 // safe to fold the addressing mode, even pre-GFX9. 652 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 653 654 if (TII->isFLATScratch(*UseMI) && 655 AMDGPU::getNamedOperandIdx(UseMI->getOpcode(), 656 AMDGPU::OpName::vaddr) != -1) { 657 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(UseMI->getOpcode()); 658 UseMI->setDesc(TII->get(NewOpc)); 659 } 660 661 return; 662 } 663 664 bool FoldingImmLike = 665 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 666 667 if (FoldingImmLike && UseMI->isCopy()) { 668 Register DestReg = UseMI->getOperand(0).getReg(); 669 Register SrcReg = UseMI->getOperand(1).getReg(); 670 assert(SrcReg.isVirtual()); 671 672 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); 673 674 // Don't fold into a copy to a physical register with the same class. Doing 675 // so would interfere with the register coalescer's logic which would avoid 676 // redundant initalizations. 677 if (DestReg.isPhysical() && SrcRC->contains(DestReg)) 678 return; 679 680 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); 681 if (!DestReg.isPhysical()) { 682 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 683 MachineRegisterInfo::use_nodbg_iterator NextUse; 684 SmallVector<FoldCandidate, 4> CopyUses; 685 for (MachineRegisterInfo::use_nodbg_iterator Use = MRI->use_nodbg_begin(DestReg), 686 E = MRI->use_nodbg_end(); 687 Use != E; Use = NextUse) { 688 NextUse = std::next(Use); 689 // There's no point trying to fold into an implicit operand. 690 if (Use->isImplicit()) 691 continue; 692 693 FoldCandidate FC = FoldCandidate(Use->getParent(), Use.getOperandNo(), 694 &UseMI->getOperand(1)); 695 CopyUses.push_back(FC); 696 } 697 for (auto &F : CopyUses) { 698 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList, CopiesToReplace); 699 } 700 } 701 702 if (DestRC == &AMDGPU::AGPR_32RegClass && 703 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 704 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 705 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 706 CopiesToReplace.push_back(UseMI); 707 return; 708 } 709 } 710 711 // In order to fold immediates into copies, we need to change the 712 // copy to a MOV. 713 714 unsigned MovOp = TII->getMovOpcode(DestRC); 715 if (MovOp == AMDGPU::COPY) 716 return; 717 718 UseMI->setDesc(TII->get(MovOp)); 719 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 720 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 721 while (ImpOpI != ImpOpE) { 722 MachineInstr::mop_iterator Tmp = ImpOpI; 723 ImpOpI++; 724 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); 725 } 726 CopiesToReplace.push_back(UseMI); 727 } else { 728 if (UseMI->isCopy() && OpToFold.isReg() && 729 UseMI->getOperand(0).getReg().isVirtual() && 730 !UseMI->getOperand(1).getSubReg()) { 731 LLVM_DEBUG(dbgs() << "Folding " << OpToFold 732 << "\n into " << *UseMI << '\n'); 733 unsigned Size = TII->getOpSize(*UseMI, 1); 734 Register UseReg = OpToFold.getReg(); 735 UseMI->getOperand(1).setReg(UseReg); 736 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 737 UseMI->getOperand(1).setIsKill(false); 738 CopiesToReplace.push_back(UseMI); 739 OpToFold.setIsKill(false); 740 741 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 742 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 743 // its initializers right here, so we will rematerialize immediates and 744 // avoid copies via different reg classes. 745 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 746 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 747 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII, 748 *MRI)) { 749 const DebugLoc &DL = UseMI->getDebugLoc(); 750 MachineBasicBlock &MBB = *UseMI->getParent(); 751 752 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 753 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 754 UseMI->RemoveOperand(I); 755 756 MachineInstrBuilder B(*MBB.getParent(), UseMI); 757 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 758 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 759 for (unsigned I = 0; I < Size / 4; ++I) { 760 MachineOperand *Def = Defs[I].first; 761 TargetInstrInfo::RegSubRegPair CopyToVGPR; 762 if (Def->isImm() && 763 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 764 int64_t Imm = Def->getImm(); 765 766 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 767 BuildMI(MBB, UseMI, DL, 768 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm); 769 B.addReg(Tmp); 770 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 771 auto Src = getRegSubRegPair(*Def); 772 Def->setIsKill(false); 773 if (!SeenAGPRs.insert(Src)) { 774 // We cannot build a reg_sequence out of the same registers, they 775 // must be copied. Better do it here before copyPhysReg() created 776 // several reads to do the AGPR->VGPR->AGPR copy. 777 CopyToVGPR = Src; 778 } else { 779 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 780 Src.SubReg); 781 } 782 } else { 783 assert(Def->isReg()); 784 Def->setIsKill(false); 785 auto Src = getRegSubRegPair(*Def); 786 787 // Direct copy from SGPR to AGPR is not possible. To avoid creation 788 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 789 // create a copy here and track if we already have such a copy. 790 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 791 CopyToVGPR = Src; 792 } else { 793 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 794 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 795 B.addReg(Tmp); 796 } 797 } 798 799 if (CopyToVGPR.Reg) { 800 Register Vgpr; 801 if (VGPRCopies.count(CopyToVGPR)) { 802 Vgpr = VGPRCopies[CopyToVGPR]; 803 } else { 804 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 805 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 806 VGPRCopies[CopyToVGPR] = Vgpr; 807 } 808 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 809 BuildMI(MBB, UseMI, DL, 810 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr); 811 B.addReg(Tmp); 812 } 813 814 B.addImm(Defs[I].second); 815 } 816 LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n'); 817 return; 818 } 819 820 if (Size != 4) 821 return; 822 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 823 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 824 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 825 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 826 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 827 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64)); 828 return; 829 } 830 831 unsigned UseOpc = UseMI->getOpcode(); 832 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 833 (UseOpc == AMDGPU::V_READLANE_B32 && 834 (int)UseOpIdx == 835 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 836 // %vgpr = V_MOV_B32 imm 837 // %sgpr = V_READFIRSTLANE_B32 %vgpr 838 // => 839 // %sgpr = S_MOV_B32 imm 840 if (FoldingImmLike) { 841 if (execMayBeModifiedBeforeUse(*MRI, 842 UseMI->getOperand(UseOpIdx).getReg(), 843 *OpToFold.getParent(), 844 *UseMI)) 845 return; 846 847 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 848 849 if (OpToFold.isImm()) 850 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 851 else 852 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 853 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 854 return; 855 } 856 857 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 858 if (execMayBeModifiedBeforeUse(*MRI, 859 UseMI->getOperand(UseOpIdx).getReg(), 860 *OpToFold.getParent(), 861 *UseMI)) 862 return; 863 864 // %vgpr = COPY %sgpr0 865 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 866 // => 867 // %sgpr1 = COPY %sgpr0 868 UseMI->setDesc(TII->get(AMDGPU::COPY)); 869 UseMI->getOperand(1).setReg(OpToFold.getReg()); 870 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 871 UseMI->getOperand(1).setIsKill(false); 872 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 873 return; 874 } 875 } 876 877 const MCInstrDesc &UseDesc = UseMI->getDesc(); 878 879 // Don't fold into target independent nodes. Target independent opcodes 880 // don't have defined register classes. 881 if (UseDesc.isVariadic() || 882 UseOp.isImplicit() || 883 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 884 return; 885 } 886 887 if (!FoldingImmLike) { 888 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 889 890 // FIXME: We could try to change the instruction from 64-bit to 32-bit 891 // to enable more folding opportunites. The shrink operands pass 892 // already does this. 893 return; 894 } 895 896 897 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 898 const TargetRegisterClass *FoldRC = 899 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 900 901 // Split 64-bit constants into 32-bits for folding. 902 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 903 Register UseReg = UseOp.getReg(); 904 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 905 906 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 907 return; 908 909 APInt Imm(64, OpToFold.getImm()); 910 if (UseOp.getSubReg() == AMDGPU::sub0) { 911 Imm = Imm.getLoBits(32); 912 } else { 913 assert(UseOp.getSubReg() == AMDGPU::sub1); 914 Imm = Imm.getHiBits(32); 915 } 916 917 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 918 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 919 return; 920 } 921 922 923 924 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 925 } 926 927 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 928 uint32_t LHS, uint32_t RHS) { 929 switch (Opcode) { 930 case AMDGPU::V_AND_B32_e64: 931 case AMDGPU::V_AND_B32_e32: 932 case AMDGPU::S_AND_B32: 933 Result = LHS & RHS; 934 return true; 935 case AMDGPU::V_OR_B32_e64: 936 case AMDGPU::V_OR_B32_e32: 937 case AMDGPU::S_OR_B32: 938 Result = LHS | RHS; 939 return true; 940 case AMDGPU::V_XOR_B32_e64: 941 case AMDGPU::V_XOR_B32_e32: 942 case AMDGPU::S_XOR_B32: 943 Result = LHS ^ RHS; 944 return true; 945 case AMDGPU::S_XNOR_B32: 946 Result = ~(LHS ^ RHS); 947 return true; 948 case AMDGPU::S_NAND_B32: 949 Result = ~(LHS & RHS); 950 return true; 951 case AMDGPU::S_NOR_B32: 952 Result = ~(LHS | RHS); 953 return true; 954 case AMDGPU::S_ANDN2_B32: 955 Result = LHS & ~RHS; 956 return true; 957 case AMDGPU::S_ORN2_B32: 958 Result = LHS | ~RHS; 959 return true; 960 case AMDGPU::V_LSHL_B32_e64: 961 case AMDGPU::V_LSHL_B32_e32: 962 case AMDGPU::S_LSHL_B32: 963 // The instruction ignores the high bits for out of bounds shifts. 964 Result = LHS << (RHS & 31); 965 return true; 966 case AMDGPU::V_LSHLREV_B32_e64: 967 case AMDGPU::V_LSHLREV_B32_e32: 968 Result = RHS << (LHS & 31); 969 return true; 970 case AMDGPU::V_LSHR_B32_e64: 971 case AMDGPU::V_LSHR_B32_e32: 972 case AMDGPU::S_LSHR_B32: 973 Result = LHS >> (RHS & 31); 974 return true; 975 case AMDGPU::V_LSHRREV_B32_e64: 976 case AMDGPU::V_LSHRREV_B32_e32: 977 Result = RHS >> (LHS & 31); 978 return true; 979 case AMDGPU::V_ASHR_I32_e64: 980 case AMDGPU::V_ASHR_I32_e32: 981 case AMDGPU::S_ASHR_I32: 982 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 983 return true; 984 case AMDGPU::V_ASHRREV_I32_e64: 985 case AMDGPU::V_ASHRREV_I32_e32: 986 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 987 return true; 988 default: 989 return false; 990 } 991 } 992 993 static unsigned getMovOpc(bool IsScalar) { 994 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 995 } 996 997 /// Remove any leftover implicit operands from mutating the instruction. e.g. 998 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 999 /// anymore. 1000 static void stripExtraCopyOperands(MachineInstr &MI) { 1001 const MCInstrDesc &Desc = MI.getDesc(); 1002 unsigned NumOps = Desc.getNumOperands() + 1003 Desc.getNumImplicitUses() + 1004 Desc.getNumImplicitDefs(); 1005 1006 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 1007 MI.RemoveOperand(I); 1008 } 1009 1010 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 1011 MI.setDesc(NewDesc); 1012 stripExtraCopyOperands(MI); 1013 } 1014 1015 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 1016 MachineOperand &Op) { 1017 if (Op.isReg()) { 1018 // If this has a subregister, it obviously is a register source. 1019 if (Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual()) 1020 return &Op; 1021 1022 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 1023 if (Def && Def->isMoveImmediate()) { 1024 MachineOperand &ImmSrc = Def->getOperand(1); 1025 if (ImmSrc.isImm()) 1026 return &ImmSrc; 1027 } 1028 } 1029 1030 return &Op; 1031 } 1032 1033 // Try to simplify operations with a constant that may appear after instruction 1034 // selection. 1035 // TODO: See if a frame index with a fixed offset can fold. 1036 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 1037 const SIInstrInfo *TII, 1038 MachineInstr *MI, 1039 MachineOperand *ImmOp) { 1040 unsigned Opc = MI->getOpcode(); 1041 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1042 Opc == AMDGPU::S_NOT_B32) { 1043 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 1044 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1045 return true; 1046 } 1047 1048 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1049 if (Src1Idx == -1) 1050 return false; 1051 1052 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1053 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 1054 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 1055 1056 if (!Src0->isImm() && !Src1->isImm()) 1057 return false; 1058 1059 // and k0, k1 -> v_mov_b32 (k0 & k1) 1060 // or k0, k1 -> v_mov_b32 (k0 | k1) 1061 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1062 if (Src0->isImm() && Src1->isImm()) { 1063 int32_t NewImm; 1064 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1065 return false; 1066 1067 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 1068 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 1069 1070 // Be careful to change the right operand, src0 may belong to a different 1071 // instruction. 1072 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1073 MI->RemoveOperand(Src1Idx); 1074 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1075 return true; 1076 } 1077 1078 if (!MI->isCommutable()) 1079 return false; 1080 1081 if (Src0->isImm() && !Src1->isImm()) { 1082 std::swap(Src0, Src1); 1083 std::swap(Src0Idx, Src1Idx); 1084 } 1085 1086 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1087 if (Opc == AMDGPU::V_OR_B32_e64 || 1088 Opc == AMDGPU::V_OR_B32_e32 || 1089 Opc == AMDGPU::S_OR_B32) { 1090 if (Src1Val == 0) { 1091 // y = or x, 0 => y = copy x 1092 MI->RemoveOperand(Src1Idx); 1093 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1094 } else if (Src1Val == -1) { 1095 // y = or x, -1 => y = v_mov_b32 -1 1096 MI->RemoveOperand(Src1Idx); 1097 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1098 } else 1099 return false; 1100 1101 return true; 1102 } 1103 1104 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 1105 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 1106 MI->getOpcode() == AMDGPU::S_AND_B32) { 1107 if (Src1Val == 0) { 1108 // y = and x, 0 => y = v_mov_b32 0 1109 MI->RemoveOperand(Src0Idx); 1110 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1111 } else if (Src1Val == -1) { 1112 // y = and x, -1 => y = copy x 1113 MI->RemoveOperand(Src1Idx); 1114 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1115 stripExtraCopyOperands(*MI); 1116 } else 1117 return false; 1118 1119 return true; 1120 } 1121 1122 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 1123 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 1124 MI->getOpcode() == AMDGPU::S_XOR_B32) { 1125 if (Src1Val == 0) { 1126 // y = xor x, 0 => y = copy x 1127 MI->RemoveOperand(Src1Idx); 1128 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1129 return true; 1130 } 1131 } 1132 1133 return false; 1134 } 1135 1136 // Try to fold an instruction into a simpler one 1137 static bool tryFoldInst(const SIInstrInfo *TII, 1138 MachineInstr *MI) { 1139 unsigned Opc = MI->getOpcode(); 1140 1141 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 1142 Opc == AMDGPU::V_CNDMASK_B32_e64 || 1143 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 1144 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1145 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 1146 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1147 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1148 if (Src1->isIdenticalTo(*Src0) && 1149 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && 1150 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { 1151 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 1152 auto &NewDesc = 1153 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1154 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1155 if (Src2Idx != -1) 1156 MI->RemoveOperand(Src2Idx); 1157 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1158 if (Src1ModIdx != -1) 1159 MI->RemoveOperand(Src1ModIdx); 1160 if (Src0ModIdx != -1) 1161 MI->RemoveOperand(Src0ModIdx); 1162 mutateCopyOp(*MI, NewDesc); 1163 LLVM_DEBUG(dbgs() << *MI << '\n'); 1164 return true; 1165 } 1166 } 1167 1168 return false; 1169 } 1170 1171 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 1172 MachineOperand &OpToFold) const { 1173 // We need mutate the operands of new mov instructions to add implicit 1174 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1175 // this. 1176 SmallVector<MachineInstr *, 4> CopiesToReplace; 1177 SmallVector<FoldCandidate, 4> FoldList; 1178 MachineOperand &Dst = MI.getOperand(0); 1179 1180 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1181 if (FoldingImm) { 1182 unsigned NumLiteralUses = 0; 1183 MachineOperand *NonInlineUse = nullptr; 1184 int NonInlineUseOpNo = -1; 1185 1186 MachineRegisterInfo::use_nodbg_iterator NextUse; 1187 for (MachineRegisterInfo::use_nodbg_iterator 1188 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end(); 1189 Use != E; Use = NextUse) { 1190 NextUse = std::next(Use); 1191 MachineInstr *UseMI = Use->getParent(); 1192 unsigned OpNo = Use.getOperandNo(); 1193 1194 // Folding the immediate may reveal operations that can be constant 1195 // folded or replaced with a copy. This can happen for example after 1196 // frame indices are lowered to constants or from splitting 64-bit 1197 // constants. 1198 // 1199 // We may also encounter cases where one or both operands are 1200 // immediates materialized into a register, which would ordinarily not 1201 // be folded due to multiple uses or operand constraints. 1202 1203 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 1204 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 1205 1206 // Some constant folding cases change the same immediate's use to a new 1207 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 1208 // again. The same constant folded instruction could also have a second 1209 // use operand. 1210 NextUse = MRI->use_nodbg_begin(Dst.getReg()); 1211 FoldList.clear(); 1212 continue; 1213 } 1214 1215 // Try to fold any inline immediate uses, and then only fold other 1216 // constants if they have one use. 1217 // 1218 // The legality of the inline immediate must be checked based on the use 1219 // operand, not the defining instruction, because 32-bit instructions 1220 // with 32-bit inline immediate sources may be used to materialize 1221 // constants used in 16-bit operands. 1222 // 1223 // e.g. it is unsafe to fold: 1224 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1225 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1226 1227 // Folding immediates with more than one use will increase program size. 1228 // FIXME: This will also reduce register usage, which may be better 1229 // in some cases. A better heuristic is needed. 1230 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1231 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1232 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1233 foldOperand(OpToFold, UseMI, OpNo, FoldList, 1234 CopiesToReplace); 1235 } else { 1236 if (++NumLiteralUses == 1) { 1237 NonInlineUse = &*Use; 1238 NonInlineUseOpNo = OpNo; 1239 } 1240 } 1241 } 1242 1243 if (NumLiteralUses == 1) { 1244 MachineInstr *UseMI = NonInlineUse->getParent(); 1245 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1246 } 1247 } else { 1248 // Folding register. 1249 SmallVector <MachineRegisterInfo::use_nodbg_iterator, 4> UsesToProcess; 1250 for (MachineRegisterInfo::use_nodbg_iterator 1251 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end(); 1252 Use != E; ++Use) { 1253 UsesToProcess.push_back(Use); 1254 } 1255 for (auto U : UsesToProcess) { 1256 MachineInstr *UseMI = U->getParent(); 1257 1258 foldOperand(OpToFold, UseMI, U.getOperandNo(), 1259 FoldList, CopiesToReplace); 1260 } 1261 } 1262 1263 MachineFunction *MF = MI.getParent()->getParent(); 1264 // Make sure we add EXEC uses to any new v_mov instructions created. 1265 for (MachineInstr *Copy : CopiesToReplace) 1266 Copy->addImplicitDefUseOperands(*MF); 1267 1268 SmallPtrSet<MachineInstr *, 16> Folded; 1269 for (FoldCandidate &Fold : FoldList) { 1270 assert(!Fold.isReg() || Fold.OpToFold); 1271 if (Folded.count(Fold.UseMI)) 1272 continue; 1273 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { 1274 Register Reg = Fold.OpToFold->getReg(); 1275 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1276 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1277 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1278 continue; 1279 } 1280 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1281 // Clear kill flags. 1282 if (Fold.isReg()) { 1283 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1284 // FIXME: Probably shouldn't bother trying to fold if not an 1285 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1286 // copies. 1287 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1288 } 1289 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1290 << static_cast<int>(Fold.UseOpNo) << " of " 1291 << *Fold.UseMI << '\n'); 1292 if (tryFoldInst(TII, Fold.UseMI)) 1293 Folded.insert(Fold.UseMI); 1294 } else if (Fold.isCommuted()) { 1295 // Restoring instruction's original operand order if fold has failed. 1296 TII->commuteInstruction(*Fold.UseMI, false); 1297 } 1298 } 1299 } 1300 1301 // Clamp patterns are canonically selected to v_max_* instructions, so only 1302 // handle them. 1303 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1304 unsigned Op = MI.getOpcode(); 1305 switch (Op) { 1306 case AMDGPU::V_MAX_F32_e64: 1307 case AMDGPU::V_MAX_F16_e64: 1308 case AMDGPU::V_MAX_F64_e64: 1309 case AMDGPU::V_PK_MAX_F16: { 1310 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1311 return nullptr; 1312 1313 // Make sure sources are identical. 1314 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1315 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1316 if (!Src0->isReg() || !Src1->isReg() || 1317 Src0->getReg() != Src1->getReg() || 1318 Src0->getSubReg() != Src1->getSubReg() || 1319 Src0->getSubReg() != AMDGPU::NoSubRegister) 1320 return nullptr; 1321 1322 // Can't fold up if we have modifiers. 1323 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1324 return nullptr; 1325 1326 unsigned Src0Mods 1327 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1328 unsigned Src1Mods 1329 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1330 1331 // Having a 0 op_sel_hi would require swizzling the output in the source 1332 // instruction, which we can't do. 1333 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1334 : 0u; 1335 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1336 return nullptr; 1337 return Src0; 1338 } 1339 default: 1340 return nullptr; 1341 } 1342 } 1343 1344 // We obviously have multiple uses in a clamp since the register is used twice 1345 // in the same instruction. 1346 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 1347 int Count = 0; 1348 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 1349 I != E; ++I) { 1350 if (++Count > 1) 1351 return false; 1352 } 1353 1354 return true; 1355 } 1356 1357 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1358 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1359 const MachineOperand *ClampSrc = isClamp(MI); 1360 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 1361 return false; 1362 1363 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1364 1365 // The type of clamp must be compatible. 1366 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1367 return false; 1368 1369 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1370 if (!DefClamp) 1371 return false; 1372 1373 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 1374 << '\n'); 1375 1376 // Clamp is applied after omod, so it is OK if omod is set. 1377 DefClamp->setImm(1); 1378 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1379 MI.eraseFromParent(); 1380 return true; 1381 } 1382 1383 static int getOModValue(unsigned Opc, int64_t Val) { 1384 switch (Opc) { 1385 case AMDGPU::V_MUL_F32_e64: { 1386 switch (static_cast<uint32_t>(Val)) { 1387 case 0x3f000000: // 0.5 1388 return SIOutMods::DIV2; 1389 case 0x40000000: // 2.0 1390 return SIOutMods::MUL2; 1391 case 0x40800000: // 4.0 1392 return SIOutMods::MUL4; 1393 default: 1394 return SIOutMods::NONE; 1395 } 1396 } 1397 case AMDGPU::V_MUL_F16_e64: { 1398 switch (static_cast<uint16_t>(Val)) { 1399 case 0x3800: // 0.5 1400 return SIOutMods::DIV2; 1401 case 0x4000: // 2.0 1402 return SIOutMods::MUL2; 1403 case 0x4400: // 4.0 1404 return SIOutMods::MUL4; 1405 default: 1406 return SIOutMods::NONE; 1407 } 1408 } 1409 default: 1410 llvm_unreachable("invalid mul opcode"); 1411 } 1412 } 1413 1414 // FIXME: Does this really not support denormals with f16? 1415 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1416 // handled, so will anything other than that break? 1417 std::pair<const MachineOperand *, int> 1418 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1419 unsigned Op = MI.getOpcode(); 1420 switch (Op) { 1421 case AMDGPU::V_MUL_F32_e64: 1422 case AMDGPU::V_MUL_F16_e64: { 1423 // If output denormals are enabled, omod is ignored. 1424 if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1425 (Op == AMDGPU::V_MUL_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1426 return std::make_pair(nullptr, SIOutMods::NONE); 1427 1428 const MachineOperand *RegOp = nullptr; 1429 const MachineOperand *ImmOp = nullptr; 1430 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1431 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1432 if (Src0->isImm()) { 1433 ImmOp = Src0; 1434 RegOp = Src1; 1435 } else if (Src1->isImm()) { 1436 ImmOp = Src1; 1437 RegOp = Src0; 1438 } else 1439 return std::make_pair(nullptr, SIOutMods::NONE); 1440 1441 int OMod = getOModValue(Op, ImmOp->getImm()); 1442 if (OMod == SIOutMods::NONE || 1443 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1444 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1445 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1446 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1447 return std::make_pair(nullptr, SIOutMods::NONE); 1448 1449 return std::make_pair(RegOp, OMod); 1450 } 1451 case AMDGPU::V_ADD_F32_e64: 1452 case AMDGPU::V_ADD_F16_e64: { 1453 // If output denormals are enabled, omod is ignored. 1454 if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1455 (Op == AMDGPU::V_ADD_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1456 return std::make_pair(nullptr, SIOutMods::NONE); 1457 1458 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1459 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1460 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1461 1462 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1463 Src0->getSubReg() == Src1->getSubReg() && 1464 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1465 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1466 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1467 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1468 return std::make_pair(Src0, SIOutMods::MUL2); 1469 1470 return std::make_pair(nullptr, SIOutMods::NONE); 1471 } 1472 default: 1473 return std::make_pair(nullptr, SIOutMods::NONE); 1474 } 1475 } 1476 1477 // FIXME: Does this need to check IEEE bit on function? 1478 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1479 const MachineOperand *RegOp; 1480 int OMod; 1481 std::tie(RegOp, OMod) = isOMod(MI); 1482 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1483 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1484 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1485 return false; 1486 1487 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1488 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1489 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1490 return false; 1491 1492 // Clamp is applied after omod. If the source already has clamp set, don't 1493 // fold it. 1494 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1495 return false; 1496 1497 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1498 1499 DefOMod->setImm(OMod); 1500 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1501 MI.eraseFromParent(); 1502 return true; 1503 } 1504 1505 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1506 if (skipFunction(MF.getFunction())) 1507 return false; 1508 1509 MRI = &MF.getRegInfo(); 1510 ST = &MF.getSubtarget<GCNSubtarget>(); 1511 TII = ST->getInstrInfo(); 1512 TRI = &TII->getRegisterInfo(); 1513 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1514 1515 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1516 // correctly handle signed zeros. 1517 // 1518 // FIXME: Also need to check strictfp 1519 bool IsIEEEMode = MFI->getMode().IEEE; 1520 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1521 1522 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1523 MachineBasicBlock::iterator I, Next; 1524 1525 MachineOperand *CurrentKnownM0Val = nullptr; 1526 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1527 Next = std::next(I); 1528 MachineInstr &MI = *I; 1529 1530 tryFoldInst(TII, &MI); 1531 1532 if (!TII->isFoldableCopy(MI)) { 1533 // Saw an unknown clobber of m0, so we no longer know what it is. 1534 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 1535 CurrentKnownM0Val = nullptr; 1536 1537 // TODO: Omod might be OK if there is NSZ only on the source 1538 // instruction, and not the omod multiply. 1539 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1540 !tryFoldOMod(MI)) 1541 tryFoldClamp(MI); 1542 1543 continue; 1544 } 1545 1546 // Specially track simple redefs of m0 to the same value in a block, so we 1547 // can erase the later ones. 1548 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1549 MachineOperand &NewM0Val = MI.getOperand(1); 1550 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1551 MI.eraseFromParent(); 1552 continue; 1553 } 1554 1555 // We aren't tracking other physical registers 1556 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? 1557 nullptr : &NewM0Val; 1558 continue; 1559 } 1560 1561 MachineOperand &OpToFold = MI.getOperand(1); 1562 bool FoldingImm = 1563 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1564 1565 // FIXME: We could also be folding things like TargetIndexes. 1566 if (!FoldingImm && !OpToFold.isReg()) 1567 continue; 1568 1569 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) 1570 continue; 1571 1572 // Prevent folding operands backwards in the function. For example, 1573 // the COPY opcode must not be replaced by 1 in this example: 1574 // 1575 // %3 = COPY %vgpr0; VGPR_32:%3 1576 // ... 1577 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1578 MachineOperand &Dst = MI.getOperand(0); 1579 if (Dst.isReg() && !Dst.getReg().isVirtual()) 1580 continue; 1581 1582 foldInstOperand(MI, OpToFold); 1583 } 1584 } 1585 return true; 1586 } 1587