xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 //===----------------------------------------------------------------------===//
9 //
10 
11 #include "AMDGPU.h"
12 #include "GCNSubtarget.h"
13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/CodeGen/MachineFunctionPass.h"
17 
18 #define DEBUG_TYPE "si-fold-operands"
19 using namespace llvm;
20 
21 namespace {
22 
23 struct FoldCandidate {
24   MachineInstr *UseMI;
25   union {
26     MachineOperand *OpToFold;
27     uint64_t ImmToFold;
28     int FrameIndexToFold;
29   };
30   int ShrinkOpcode;
31   unsigned UseOpNo;
32   MachineOperand::MachineOperandType Kind;
33   bool Commuted;
34 
35   FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
36                 bool Commuted_ = false,
37                 int ShrinkOp = -1) :
38     UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
39     Kind(FoldOp->getType()),
40     Commuted(Commuted_) {
41     if (FoldOp->isImm()) {
42       ImmToFold = FoldOp->getImm();
43     } else if (FoldOp->isFI()) {
44       FrameIndexToFold = FoldOp->getIndex();
45     } else {
46       assert(FoldOp->isReg() || FoldOp->isGlobal());
47       OpToFold = FoldOp;
48     }
49   }
50 
51   bool isFI() const {
52     return Kind == MachineOperand::MO_FrameIndex;
53   }
54 
55   bool isImm() const {
56     return Kind == MachineOperand::MO_Immediate;
57   }
58 
59   bool isReg() const {
60     return Kind == MachineOperand::MO_Register;
61   }
62 
63   bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
64 
65   bool isCommuted() const {
66     return Commuted;
67   }
68 
69   bool needsShrink() const {
70     return ShrinkOpcode != -1;
71   }
72 
73   int getShrinkOpcode() const {
74     return ShrinkOpcode;
75   }
76 };
77 
78 class SIFoldOperands : public MachineFunctionPass {
79 public:
80   static char ID;
81   MachineRegisterInfo *MRI;
82   const SIInstrInfo *TII;
83   const SIRegisterInfo *TRI;
84   const GCNSubtarget *ST;
85   const SIMachineFunctionInfo *MFI;
86 
87   void foldOperand(MachineOperand &OpToFold,
88                    MachineInstr *UseMI,
89                    int UseOpIdx,
90                    SmallVectorImpl<FoldCandidate> &FoldList,
91                    SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
92 
93   bool tryFoldCndMask(MachineInstr &MI) const;
94   bool tryFoldZeroHighBits(MachineInstr &MI) const;
95   void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
96 
97   const MachineOperand *isClamp(const MachineInstr &MI) const;
98   bool tryFoldClamp(MachineInstr &MI);
99 
100   std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
101   bool tryFoldOMod(MachineInstr &MI);
102   bool tryFoldRegSequence(MachineInstr &MI);
103   bool tryFoldLCSSAPhi(MachineInstr &MI);
104   bool tryFoldLoad(MachineInstr &MI);
105 
106 public:
107   SIFoldOperands() : MachineFunctionPass(ID) {
108     initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
109   }
110 
111   bool runOnMachineFunction(MachineFunction &MF) override;
112 
113   StringRef getPassName() const override { return "SI Fold Operands"; }
114 
115   void getAnalysisUsage(AnalysisUsage &AU) const override {
116     AU.setPreservesCFG();
117     MachineFunctionPass::getAnalysisUsage(AU);
118   }
119 };
120 
121 } // End anonymous namespace.
122 
123 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
124                 "SI Fold Operands", false, false)
125 
126 char SIFoldOperands::ID = 0;
127 
128 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
129 
130 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any.
131 static unsigned macToMad(unsigned Opc) {
132   switch (Opc) {
133   case AMDGPU::V_MAC_F32_e64:
134     return AMDGPU::V_MAD_F32_e64;
135   case AMDGPU::V_MAC_F16_e64:
136     return AMDGPU::V_MAD_F16_e64;
137   case AMDGPU::V_FMAC_F32_e64:
138     return AMDGPU::V_FMA_F32_e64;
139   case AMDGPU::V_FMAC_F16_e64:
140     return AMDGPU::V_FMA_F16_gfx9_e64;
141   case AMDGPU::V_FMAC_LEGACY_F32_e64:
142     return AMDGPU::V_FMA_LEGACY_F32_e64;
143   case AMDGPU::V_FMAC_F64_e64:
144     return AMDGPU::V_FMA_F64_e64;
145   }
146   return AMDGPU::INSTRUCTION_LIST_END;
147 }
148 
149 // Wrapper around isInlineConstant that understands special cases when
150 // instruction types are replaced during operand folding.
151 static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
152                                      const MachineInstr &UseMI,
153                                      unsigned OpNo,
154                                      const MachineOperand &OpToFold) {
155   if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
156     return true;
157 
158   unsigned Opc = UseMI.getOpcode();
159   unsigned NewOpc = macToMad(Opc);
160   if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) {
161     // Special case for mac. Since this is replaced with mad when folded into
162     // src2, we need to check the legality for the final instruction.
163     int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
164     if (static_cast<int>(OpNo) == Src2Idx) {
165       const MCInstrDesc &MadDesc = TII->get(NewOpc);
166       return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
167     }
168   }
169 
170   return false;
171 }
172 
173 // TODO: Add heuristic that the frame index might not fit in the addressing mode
174 // immediate offset to avoid materializing in loops.
175 static bool frameIndexMayFold(const SIInstrInfo *TII,
176                               const MachineInstr &UseMI,
177                               int OpNo,
178                               const MachineOperand &OpToFold) {
179   if (!OpToFold.isFI())
180     return false;
181 
182   if (TII->isMUBUF(UseMI))
183     return OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(),
184                                               AMDGPU::OpName::vaddr);
185   if (!TII->isFLATScratch(UseMI))
186     return false;
187 
188   int SIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(),
189                                         AMDGPU::OpName::saddr);
190   if (OpNo == SIdx)
191     return true;
192 
193   int VIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(),
194                                         AMDGPU::OpName::vaddr);
195   return OpNo == VIdx && SIdx == -1;
196 }
197 
198 FunctionPass *llvm::createSIFoldOperandsPass() {
199   return new SIFoldOperands();
200 }
201 
202 static bool updateOperand(FoldCandidate &Fold,
203                           const SIInstrInfo &TII,
204                           const TargetRegisterInfo &TRI,
205                           const GCNSubtarget &ST) {
206   MachineInstr *MI = Fold.UseMI;
207   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
208   assert(Old.isReg());
209 
210   if (Fold.isImm()) {
211     if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked &&
212         !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) &&
213         AMDGPU::isFoldableLiteralV216(Fold.ImmToFold,
214                                       ST.hasInv2PiInlineImm())) {
215       // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
216       // already set.
217       unsigned Opcode = MI->getOpcode();
218       int OpNo = MI->getOperandNo(&Old);
219       int ModIdx = -1;
220       if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
221         ModIdx = AMDGPU::OpName::src0_modifiers;
222       else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
223         ModIdx = AMDGPU::OpName::src1_modifiers;
224       else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
225         ModIdx = AMDGPU::OpName::src2_modifiers;
226       assert(ModIdx != -1);
227       ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
228       MachineOperand &Mod = MI->getOperand(ModIdx);
229       unsigned Val = Mod.getImm();
230       if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) {
231         // Only apply the following transformation if that operand requires
232         // a packed immediate.
233         switch (TII.get(Opcode).OpInfo[OpNo].OperandType) {
234         case AMDGPU::OPERAND_REG_IMM_V2FP16:
235         case AMDGPU::OPERAND_REG_IMM_V2INT16:
236         case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
237         case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
238           // If upper part is all zero we do not need op_sel_hi.
239           if (!isUInt<16>(Fold.ImmToFold)) {
240             if (!(Fold.ImmToFold & 0xffff)) {
241               Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
242               Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
243               Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
244               return true;
245             }
246             Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
247             Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
248             return true;
249           }
250           break;
251         default:
252           break;
253         }
254       }
255     }
256   }
257 
258   if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
259     MachineBasicBlock *MBB = MI->getParent();
260     auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16);
261     if (Liveness != MachineBasicBlock::LQR_Dead) {
262       LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n");
263       return false;
264     }
265 
266     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
267     int Op32 = Fold.getShrinkOpcode();
268     MachineOperand &Dst0 = MI->getOperand(0);
269     MachineOperand &Dst1 = MI->getOperand(1);
270     assert(Dst0.isDef() && Dst1.isDef());
271 
272     bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg());
273 
274     const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg());
275     Register NewReg0 = MRI.createVirtualRegister(Dst0RC);
276 
277     MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32);
278 
279     if (HaveNonDbgCarryUse) {
280       BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg())
281         .addReg(AMDGPU::VCC, RegState::Kill);
282     }
283 
284     // Keep the old instruction around to avoid breaking iterators, but
285     // replace it with a dummy instruction to remove uses.
286     //
287     // FIXME: We should not invert how this pass looks at operands to avoid
288     // this. Should track set of foldable movs instead of looking for uses
289     // when looking at a use.
290     Dst0.setReg(NewReg0);
291     for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
292       MI->RemoveOperand(I);
293     MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF));
294 
295     if (Fold.isCommuted())
296       TII.commuteInstruction(*Inst32, false);
297     return true;
298   }
299 
300   assert(!Fold.needsShrink() && "not handled");
301 
302   if (Fold.isImm()) {
303     Old.ChangeToImmediate(Fold.ImmToFold);
304     return true;
305   }
306 
307   if (Fold.isGlobal()) {
308     Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
309                    Fold.OpToFold->getTargetFlags());
310     return true;
311   }
312 
313   if (Fold.isFI()) {
314     Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
315     return true;
316   }
317 
318   MachineOperand *New = Fold.OpToFold;
319   Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
320   Old.setIsUndef(New->isUndef());
321   return true;
322 }
323 
324 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
325                               const MachineInstr *MI) {
326   for (auto Candidate : FoldList) {
327     if (Candidate.UseMI == MI)
328       return true;
329   }
330   return false;
331 }
332 
333 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList,
334                                 MachineInstr *MI, unsigned OpNo,
335                                 MachineOperand *FoldOp, bool Commuted = false,
336                                 int ShrinkOp = -1) {
337   // Skip additional folding on the same operand.
338   for (FoldCandidate &Fold : FoldList)
339     if (Fold.UseMI == MI && Fold.UseOpNo == OpNo)
340       return;
341   LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal")
342                     << " operand " << OpNo << "\n  " << *MI);
343   FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp);
344 }
345 
346 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
347                              MachineInstr *MI, unsigned OpNo,
348                              MachineOperand *OpToFold,
349                              const SIInstrInfo *TII) {
350   if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
351     // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
352     unsigned Opc = MI->getOpcode();
353     unsigned NewOpc = macToMad(Opc);
354     if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) {
355       // Check if changing this to a v_mad_{f16, f32} instruction will allow us
356       // to fold the operand.
357       MI->setDesc(TII->get(NewOpc));
358       bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
359       if (FoldAsMAD) {
360         MI->untieRegOperand(OpNo);
361         return true;
362       }
363       MI->setDesc(TII->get(Opc));
364     }
365 
366     // Special case for s_setreg_b32
367     if (OpToFold->isImm()) {
368       unsigned ImmOpc = 0;
369       if (Opc == AMDGPU::S_SETREG_B32)
370         ImmOpc = AMDGPU::S_SETREG_IMM32_B32;
371       else if (Opc == AMDGPU::S_SETREG_B32_mode)
372         ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode;
373       if (ImmOpc) {
374         MI->setDesc(TII->get(ImmOpc));
375         appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
376         return true;
377       }
378     }
379 
380     // If we are already folding into another operand of MI, then
381     // we can't commute the instruction, otherwise we risk making the
382     // other fold illegal.
383     if (isUseMIInFoldList(FoldList, MI))
384       return false;
385 
386     unsigned CommuteOpNo = OpNo;
387 
388     // Operand is not legal, so try to commute the instruction to
389     // see if this makes it possible to fold.
390     unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
391     unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
392     bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
393 
394     if (CanCommute) {
395       if (CommuteIdx0 == OpNo)
396         CommuteOpNo = CommuteIdx1;
397       else if (CommuteIdx1 == OpNo)
398         CommuteOpNo = CommuteIdx0;
399     }
400 
401 
402     // One of operands might be an Imm operand, and OpNo may refer to it after
403     // the call of commuteInstruction() below. Such situations are avoided
404     // here explicitly as OpNo must be a register operand to be a candidate
405     // for memory folding.
406     if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
407                        !MI->getOperand(CommuteIdx1).isReg()))
408       return false;
409 
410     if (!CanCommute ||
411         !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
412       return false;
413 
414     if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
415       if ((Opc == AMDGPU::V_ADD_CO_U32_e64 ||
416            Opc == AMDGPU::V_SUB_CO_U32_e64 ||
417            Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME
418           (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) {
419         MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
420 
421         // Verify the other operand is a VGPR, otherwise we would violate the
422         // constant bus restriction.
423         unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
424         MachineOperand &OtherOp = MI->getOperand(OtherIdx);
425         if (!OtherOp.isReg() ||
426             !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg()))
427           return false;
428 
429         assert(MI->getOperand(1).isDef());
430 
431         // Make sure to get the 32-bit version of the commuted opcode.
432         unsigned MaybeCommutedOpc = MI->getOpcode();
433         int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
434 
435         appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32);
436         return true;
437       }
438 
439       TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
440       return false;
441     }
442 
443     appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true);
444     return true;
445   }
446 
447   // Check the case where we might introduce a second constant operand to a
448   // scalar instruction
449   if (TII->isSALU(MI->getOpcode())) {
450     const MCInstrDesc &InstDesc = MI->getDesc();
451     const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo];
452     const SIRegisterInfo &SRI = TII->getRegisterInfo();
453 
454     // Fine if the operand can be encoded as an inline constant
455     if (TII->isLiteralConstantLike(*OpToFold, OpInfo)) {
456       if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) ||
457           !TII->isInlineConstant(*OpToFold, OpInfo)) {
458         // Otherwise check for another constant
459         for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) {
460           auto &Op = MI->getOperand(i);
461           if (OpNo != i &&
462               TII->isLiteralConstantLike(Op, OpInfo)) {
463             return false;
464           }
465         }
466       }
467     }
468   }
469 
470   appendFoldCandidate(FoldList, MI, OpNo, OpToFold);
471   return true;
472 }
473 
474 // If the use operand doesn't care about the value, this may be an operand only
475 // used for register indexing, in which case it is unsafe to fold.
476 static bool isUseSafeToFold(const SIInstrInfo *TII,
477                             const MachineInstr &MI,
478                             const MachineOperand &UseMO) {
479   if (UseMO.isUndef() || TII->isSDWA(MI))
480     return false;
481 
482   switch (MI.getOpcode()) {
483   case AMDGPU::V_MOV_B32_e32:
484   case AMDGPU::V_MOV_B32_e64:
485   case AMDGPU::V_MOV_B64_PSEUDO:
486     // Do not fold into an indirect mov.
487     return !MI.hasRegisterImplicitUseOperand(AMDGPU::M0);
488   }
489 
490   return true;
491   //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
492 }
493 
494 // Find a def of the UseReg, check if it is a reg_sequence and find initializers
495 // for each subreg, tracking it to foldable inline immediate if possible.
496 // Returns true on success.
497 static bool getRegSeqInit(
498     SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs,
499     Register UseReg, uint8_t OpTy,
500     const SIInstrInfo *TII, const MachineRegisterInfo &MRI) {
501   MachineInstr *Def = MRI.getVRegDef(UseReg);
502   if (!Def || !Def->isRegSequence())
503     return false;
504 
505   for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
506     MachineOperand *Sub = &Def->getOperand(I);
507     assert(Sub->isReg());
508 
509     for (MachineInstr *SubDef = MRI.getVRegDef(Sub->getReg());
510          SubDef && Sub->isReg() && Sub->getReg().isVirtual() &&
511          !Sub->getSubReg() && TII->isFoldableCopy(*SubDef);
512          SubDef = MRI.getVRegDef(Sub->getReg())) {
513       MachineOperand *Op = &SubDef->getOperand(1);
514       if (Op->isImm()) {
515         if (TII->isInlineConstant(*Op, OpTy))
516           Sub = Op;
517         break;
518       }
519       if (!Op->isReg() || Op->getReg().isPhysical())
520         break;
521       Sub = Op;
522     }
523 
524     Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm());
525   }
526 
527   return true;
528 }
529 
530 static bool tryToFoldACImm(const SIInstrInfo *TII,
531                            const MachineOperand &OpToFold,
532                            MachineInstr *UseMI,
533                            unsigned UseOpIdx,
534                            SmallVectorImpl<FoldCandidate> &FoldList) {
535   const MCInstrDesc &Desc = UseMI->getDesc();
536   const MCOperandInfo *OpInfo = Desc.OpInfo;
537   if (!OpInfo || UseOpIdx >= Desc.getNumOperands())
538     return false;
539 
540   uint8_t OpTy = OpInfo[UseOpIdx].OperandType;
541   if ((OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST ||
542        OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) &&
543       (OpTy < AMDGPU::OPERAND_REG_INLINE_C_FIRST ||
544        OpTy > AMDGPU::OPERAND_REG_INLINE_C_LAST))
545     return false;
546 
547   if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
548       TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
549     UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
550     return true;
551   }
552 
553   if (!OpToFold.isReg())
554     return false;
555 
556   Register UseReg = OpToFold.getReg();
557   if (!UseReg.isVirtual())
558     return false;
559 
560   if (isUseMIInFoldList(FoldList, UseMI))
561     return false;
562 
563   MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo();
564 
565   // Maybe it is just a COPY of an immediate itself.
566   MachineInstr *Def = MRI.getVRegDef(UseReg);
567   MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
568   if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) {
569     MachineOperand &DefOp = Def->getOperand(1);
570     if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) &&
571         TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) {
572       UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm());
573       return true;
574     }
575   }
576 
577   SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
578   if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI))
579     return false;
580 
581   int32_t Imm;
582   for (unsigned I = 0, E = Defs.size(); I != E; ++I) {
583     const MachineOperand *Op = Defs[I].first;
584     if (!Op->isImm())
585       return false;
586 
587     auto SubImm = Op->getImm();
588     if (!I) {
589       Imm = SubImm;
590       if (!TII->isInlineConstant(*Op, OpTy) ||
591           !TII->isOperandLegal(*UseMI, UseOpIdx, Op))
592         return false;
593 
594       continue;
595     }
596     if (Imm != SubImm)
597       return false; // Can only fold splat constants
598   }
599 
600   appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first);
601   return true;
602 }
603 
604 void SIFoldOperands::foldOperand(
605   MachineOperand &OpToFold,
606   MachineInstr *UseMI,
607   int UseOpIdx,
608   SmallVectorImpl<FoldCandidate> &FoldList,
609   SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
610   const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
611 
612   if (!isUseSafeToFold(TII, *UseMI, UseOp))
613     return;
614 
615   // FIXME: Fold operands with subregs.
616   if (UseOp.isReg() && OpToFold.isReg()) {
617     if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
618       return;
619   }
620 
621   // Special case for REG_SEQUENCE: We can't fold literals into
622   // REG_SEQUENCE instructions, so we have to fold them into the
623   // uses of REG_SEQUENCE.
624   if (UseMI->isRegSequence()) {
625     Register RegSeqDstReg = UseMI->getOperand(0).getReg();
626     unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
627 
628     for (auto &RSUse : make_early_inc_range(MRI->use_nodbg_operands(RegSeqDstReg))) {
629       MachineInstr *RSUseMI = RSUse.getParent();
630 
631       if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI,
632                          RSUseMI->getOperandNo(&RSUse), FoldList))
633         continue;
634 
635       if (RSUse.getSubReg() != RegSeqDstSubReg)
636         continue;
637 
638       foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(&RSUse), FoldList,
639                   CopiesToReplace);
640     }
641 
642     return;
643   }
644 
645   if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList))
646     return;
647 
648   if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) {
649     // Verify that this is a stack access.
650     // FIXME: Should probably use stack pseudos before frame lowering.
651 
652     if (TII->isMUBUF(*UseMI)) {
653       if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
654           MFI->getScratchRSrcReg())
655         return;
656 
657       // Ensure this is either relative to the current frame or the current
658       // wave.
659       MachineOperand &SOff =
660           *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
661       if (!SOff.isImm() || SOff.getImm() != 0)
662         return;
663     }
664 
665     // A frame index will resolve to a positive constant, so it should always be
666     // safe to fold the addressing mode, even pre-GFX9.
667     UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
668 
669     if (TII->isFLATScratch(*UseMI) &&
670         AMDGPU::getNamedOperandIdx(UseMI->getOpcode(),
671                                    AMDGPU::OpName::vaddr) != -1) {
672       unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(UseMI->getOpcode());
673       UseMI->setDesc(TII->get(NewOpc));
674     }
675 
676     return;
677   }
678 
679   bool FoldingImmLike =
680       OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
681 
682   if (FoldingImmLike && UseMI->isCopy()) {
683     Register DestReg = UseMI->getOperand(0).getReg();
684     Register SrcReg = UseMI->getOperand(1).getReg();
685     assert(SrcReg.isVirtual());
686 
687     const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg);
688 
689     // Don't fold into a copy to a physical register with the same class. Doing
690     // so would interfere with the register coalescer's logic which would avoid
691     // redundant initializations.
692     if (DestReg.isPhysical() && SrcRC->contains(DestReg))
693       return;
694 
695     const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg);
696     if (!DestReg.isPhysical()) {
697       if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) {
698         SmallVector<FoldCandidate, 4> CopyUses;
699         for (auto &Use : MRI->use_nodbg_operands(DestReg)) {
700           // There's no point trying to fold into an implicit operand.
701           if (Use.isImplicit())
702             continue;
703 
704           CopyUses.emplace_back(Use.getParent(),
705                                 Use.getParent()->getOperandNo(&Use),
706                                 &UseMI->getOperand(1));
707         }
708         for (auto &F : CopyUses) {
709           foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList, CopiesToReplace);
710         }
711       }
712 
713       if (DestRC == &AMDGPU::AGPR_32RegClass &&
714           TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
715         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
716         UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
717         CopiesToReplace.push_back(UseMI);
718         return;
719       }
720     }
721 
722     // In order to fold immediates into copies, we need to change the
723     // copy to a MOV.
724 
725     unsigned MovOp = TII->getMovOpcode(DestRC);
726     if (MovOp == AMDGPU::COPY)
727       return;
728 
729     UseMI->setDesc(TII->get(MovOp));
730     MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
731     MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
732     while (ImpOpI != ImpOpE) {
733       MachineInstr::mop_iterator Tmp = ImpOpI;
734       ImpOpI++;
735       UseMI->RemoveOperand(UseMI->getOperandNo(Tmp));
736     }
737     CopiesToReplace.push_back(UseMI);
738   } else {
739     if (UseMI->isCopy() && OpToFold.isReg() &&
740         UseMI->getOperand(0).getReg().isVirtual() &&
741         !UseMI->getOperand(1).getSubReg()) {
742       LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI);
743       unsigned Size = TII->getOpSize(*UseMI, 1);
744       Register UseReg = OpToFold.getReg();
745       UseMI->getOperand(1).setReg(UseReg);
746       UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
747       UseMI->getOperand(1).setIsKill(false);
748       CopiesToReplace.push_back(UseMI);
749       OpToFold.setIsKill(false);
750 
751       // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32
752       // can only accept VGPR or inline immediate. Recreate a reg_sequence with
753       // its initializers right here, so we will rematerialize immediates and
754       // avoid copies via different reg classes.
755       SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
756       if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
757           getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII,
758                         *MRI)) {
759         const DebugLoc &DL = UseMI->getDebugLoc();
760         MachineBasicBlock &MBB = *UseMI->getParent();
761 
762         UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE));
763         for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I)
764           UseMI->RemoveOperand(I);
765 
766         MachineInstrBuilder B(*MBB.getParent(), UseMI);
767         DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies;
768         SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs;
769         for (unsigned I = 0; I < Size / 4; ++I) {
770           MachineOperand *Def = Defs[I].first;
771           TargetInstrInfo::RegSubRegPair CopyToVGPR;
772           if (Def->isImm() &&
773               TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
774             int64_t Imm = Def->getImm();
775 
776             auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
777             BuildMI(MBB, UseMI, DL,
778                     TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm);
779             B.addReg(Tmp);
780           } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) {
781             auto Src = getRegSubRegPair(*Def);
782             Def->setIsKill(false);
783             if (!SeenAGPRs.insert(Src)) {
784               // We cannot build a reg_sequence out of the same registers, they
785               // must be copied. Better do it here before copyPhysReg() created
786               // several reads to do the AGPR->VGPR->AGPR copy.
787               CopyToVGPR = Src;
788             } else {
789               B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0,
790                        Src.SubReg);
791             }
792           } else {
793             assert(Def->isReg());
794             Def->setIsKill(false);
795             auto Src = getRegSubRegPair(*Def);
796 
797             // Direct copy from SGPR to AGPR is not possible. To avoid creation
798             // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later,
799             // create a copy here and track if we already have such a copy.
800             if (TRI->isSGPRReg(*MRI, Src.Reg)) {
801               CopyToVGPR = Src;
802             } else {
803               auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
804               BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def);
805               B.addReg(Tmp);
806             }
807           }
808 
809           if (CopyToVGPR.Reg) {
810             Register Vgpr;
811             if (VGPRCopies.count(CopyToVGPR)) {
812               Vgpr = VGPRCopies[CopyToVGPR];
813             } else {
814               Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
815               BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def);
816               VGPRCopies[CopyToVGPR] = Vgpr;
817             }
818             auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass);
819             BuildMI(MBB, UseMI, DL,
820                     TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr);
821             B.addReg(Tmp);
822           }
823 
824           B.addImm(Defs[I].second);
825         }
826         LLVM_DEBUG(dbgs() << "Folded " << *UseMI);
827         return;
828       }
829 
830       if (Size != 4)
831         return;
832       if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
833           TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()))
834         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64));
835       else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) &&
836                TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
837         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64));
838       else if (ST->hasGFX90AInsts() &&
839                TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
840                TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
841         UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32));
842       return;
843     }
844 
845     unsigned UseOpc = UseMI->getOpcode();
846     if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
847         (UseOpc == AMDGPU::V_READLANE_B32 &&
848          (int)UseOpIdx ==
849          AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
850       // %vgpr = V_MOV_B32 imm
851       // %sgpr = V_READFIRSTLANE_B32 %vgpr
852       // =>
853       // %sgpr = S_MOV_B32 imm
854       if (FoldingImmLike) {
855         if (execMayBeModifiedBeforeUse(*MRI,
856                                        UseMI->getOperand(UseOpIdx).getReg(),
857                                        *OpToFold.getParent(),
858                                        *UseMI))
859           return;
860 
861         UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
862 
863         if (OpToFold.isImm())
864           UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
865         else
866           UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
867         UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
868         return;
869       }
870 
871       if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
872         if (execMayBeModifiedBeforeUse(*MRI,
873                                        UseMI->getOperand(UseOpIdx).getReg(),
874                                        *OpToFold.getParent(),
875                                        *UseMI))
876           return;
877 
878         // %vgpr = COPY %sgpr0
879         // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
880         // =>
881         // %sgpr1 = COPY %sgpr0
882         UseMI->setDesc(TII->get(AMDGPU::COPY));
883         UseMI->getOperand(1).setReg(OpToFold.getReg());
884         UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
885         UseMI->getOperand(1).setIsKill(false);
886         UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
887         return;
888       }
889     }
890 
891     const MCInstrDesc &UseDesc = UseMI->getDesc();
892 
893     // Don't fold into target independent nodes.  Target independent opcodes
894     // don't have defined register classes.
895     if (UseDesc.isVariadic() ||
896         UseOp.isImplicit() ||
897         UseDesc.OpInfo[UseOpIdx].RegClass == -1)
898       return;
899   }
900 
901   if (!FoldingImmLike) {
902     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
903 
904     // FIXME: We could try to change the instruction from 64-bit to 32-bit
905     // to enable more folding opportunities.  The shrink operands pass
906     // already does this.
907     return;
908   }
909 
910 
911   const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
912   const TargetRegisterClass *FoldRC =
913     TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
914 
915   // Split 64-bit constants into 32-bits for folding.
916   if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
917     Register UseReg = UseOp.getReg();
918     const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
919 
920     if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
921       return;
922 
923     APInt Imm(64, OpToFold.getImm());
924     if (UseOp.getSubReg() == AMDGPU::sub0) {
925       Imm = Imm.getLoBits(32);
926     } else {
927       assert(UseOp.getSubReg() == AMDGPU::sub1);
928       Imm = Imm.getHiBits(32);
929     }
930 
931     MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
932     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
933     return;
934   }
935 
936 
937 
938   tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
939 }
940 
941 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
942                                   uint32_t LHS, uint32_t RHS) {
943   switch (Opcode) {
944   case AMDGPU::V_AND_B32_e64:
945   case AMDGPU::V_AND_B32_e32:
946   case AMDGPU::S_AND_B32:
947     Result = LHS & RHS;
948     return true;
949   case AMDGPU::V_OR_B32_e64:
950   case AMDGPU::V_OR_B32_e32:
951   case AMDGPU::S_OR_B32:
952     Result = LHS | RHS;
953     return true;
954   case AMDGPU::V_XOR_B32_e64:
955   case AMDGPU::V_XOR_B32_e32:
956   case AMDGPU::S_XOR_B32:
957     Result = LHS ^ RHS;
958     return true;
959   case AMDGPU::S_XNOR_B32:
960     Result = ~(LHS ^ RHS);
961     return true;
962   case AMDGPU::S_NAND_B32:
963     Result = ~(LHS & RHS);
964     return true;
965   case AMDGPU::S_NOR_B32:
966     Result = ~(LHS | RHS);
967     return true;
968   case AMDGPU::S_ANDN2_B32:
969     Result = LHS & ~RHS;
970     return true;
971   case AMDGPU::S_ORN2_B32:
972     Result = LHS | ~RHS;
973     return true;
974   case AMDGPU::V_LSHL_B32_e64:
975   case AMDGPU::V_LSHL_B32_e32:
976   case AMDGPU::S_LSHL_B32:
977     // The instruction ignores the high bits for out of bounds shifts.
978     Result = LHS << (RHS & 31);
979     return true;
980   case AMDGPU::V_LSHLREV_B32_e64:
981   case AMDGPU::V_LSHLREV_B32_e32:
982     Result = RHS << (LHS & 31);
983     return true;
984   case AMDGPU::V_LSHR_B32_e64:
985   case AMDGPU::V_LSHR_B32_e32:
986   case AMDGPU::S_LSHR_B32:
987     Result = LHS >> (RHS & 31);
988     return true;
989   case AMDGPU::V_LSHRREV_B32_e64:
990   case AMDGPU::V_LSHRREV_B32_e32:
991     Result = RHS >> (LHS & 31);
992     return true;
993   case AMDGPU::V_ASHR_I32_e64:
994   case AMDGPU::V_ASHR_I32_e32:
995   case AMDGPU::S_ASHR_I32:
996     Result = static_cast<int32_t>(LHS) >> (RHS & 31);
997     return true;
998   case AMDGPU::V_ASHRREV_I32_e64:
999   case AMDGPU::V_ASHRREV_I32_e32:
1000     Result = static_cast<int32_t>(RHS) >> (LHS & 31);
1001     return true;
1002   default:
1003     return false;
1004   }
1005 }
1006 
1007 static unsigned getMovOpc(bool IsScalar) {
1008   return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
1009 }
1010 
1011 /// Remove any leftover implicit operands from mutating the instruction. e.g.
1012 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
1013 /// anymore.
1014 static void stripExtraCopyOperands(MachineInstr &MI) {
1015   const MCInstrDesc &Desc = MI.getDesc();
1016   unsigned NumOps = Desc.getNumOperands() +
1017                     Desc.getNumImplicitUses() +
1018                     Desc.getNumImplicitDefs();
1019 
1020   for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
1021     MI.RemoveOperand(I);
1022 }
1023 
1024 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
1025   MI.setDesc(NewDesc);
1026   stripExtraCopyOperands(MI);
1027 }
1028 
1029 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
1030                                                MachineOperand &Op) {
1031   if (Op.isReg()) {
1032     // If this has a subregister, it obviously is a register source.
1033     if (Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual())
1034       return &Op;
1035 
1036     MachineInstr *Def = MRI.getVRegDef(Op.getReg());
1037     if (Def && Def->isMoveImmediate()) {
1038       MachineOperand &ImmSrc = Def->getOperand(1);
1039       if (ImmSrc.isImm())
1040         return &ImmSrc;
1041     }
1042   }
1043 
1044   return &Op;
1045 }
1046 
1047 // Try to simplify operations with a constant that may appear after instruction
1048 // selection.
1049 // TODO: See if a frame index with a fixed offset can fold.
1050 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, const SIInstrInfo *TII,
1051                               MachineInstr *MI) {
1052   unsigned Opc = MI->getOpcode();
1053 
1054   int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1055   if (Src0Idx == -1)
1056     return false;
1057   MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
1058 
1059   if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
1060        Opc == AMDGPU::S_NOT_B32) &&
1061       Src0->isImm()) {
1062     MI->getOperand(1).ChangeToImmediate(~Src0->getImm());
1063     mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
1064     return true;
1065   }
1066 
1067   int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1068   if (Src1Idx == -1)
1069     return false;
1070   MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
1071 
1072   if (!Src0->isImm() && !Src1->isImm())
1073     return false;
1074 
1075   // and k0, k1 -> v_mov_b32 (k0 & k1)
1076   // or k0, k1 -> v_mov_b32 (k0 | k1)
1077   // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
1078   if (Src0->isImm() && Src1->isImm()) {
1079     int32_t NewImm;
1080     if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
1081       return false;
1082 
1083     const SIRegisterInfo &TRI = TII->getRegisterInfo();
1084     bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
1085 
1086     // Be careful to change the right operand, src0 may belong to a different
1087     // instruction.
1088     MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
1089     MI->RemoveOperand(Src1Idx);
1090     mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
1091     return true;
1092   }
1093 
1094   if (!MI->isCommutable())
1095     return false;
1096 
1097   if (Src0->isImm() && !Src1->isImm()) {
1098     std::swap(Src0, Src1);
1099     std::swap(Src0Idx, Src1Idx);
1100   }
1101 
1102   int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
1103   if (Opc == AMDGPU::V_OR_B32_e64 ||
1104       Opc == AMDGPU::V_OR_B32_e32 ||
1105       Opc == AMDGPU::S_OR_B32) {
1106     if (Src1Val == 0) {
1107       // y = or x, 0 => y = copy x
1108       MI->RemoveOperand(Src1Idx);
1109       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1110     } else if (Src1Val == -1) {
1111       // y = or x, -1 => y = v_mov_b32 -1
1112       MI->RemoveOperand(Src1Idx);
1113       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
1114     } else
1115       return false;
1116 
1117     return true;
1118   }
1119 
1120   if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
1121       MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
1122       MI->getOpcode() == AMDGPU::S_AND_B32) {
1123     if (Src1Val == 0) {
1124       // y = and x, 0 => y = v_mov_b32 0
1125       MI->RemoveOperand(Src0Idx);
1126       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
1127     } else if (Src1Val == -1) {
1128       // y = and x, -1 => y = copy x
1129       MI->RemoveOperand(Src1Idx);
1130       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1131       stripExtraCopyOperands(*MI);
1132     } else
1133       return false;
1134 
1135     return true;
1136   }
1137 
1138   if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
1139       MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
1140       MI->getOpcode() == AMDGPU::S_XOR_B32) {
1141     if (Src1Val == 0) {
1142       // y = xor x, 0 => y = copy x
1143       MI->RemoveOperand(Src1Idx);
1144       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
1145       return true;
1146     }
1147   }
1148 
1149   return false;
1150 }
1151 
1152 // Try to fold an instruction into a simpler one
1153 bool SIFoldOperands::tryFoldCndMask(MachineInstr &MI) const {
1154   unsigned Opc = MI.getOpcode();
1155   if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 &&
1156       Opc != AMDGPU::V_CNDMASK_B64_PSEUDO)
1157     return false;
1158 
1159   MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1160   MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1161   if (!Src1->isIdenticalTo(*Src0)) {
1162     auto *Src0Imm = getImmOrMaterializedImm(*MRI, *Src0);
1163     auto *Src1Imm = getImmOrMaterializedImm(*MRI, *Src1);
1164     if (!Src1Imm->isIdenticalTo(*Src0Imm))
1165       return false;
1166   }
1167 
1168   int Src1ModIdx =
1169       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
1170   int Src0ModIdx =
1171       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
1172   if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) ||
1173       (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0))
1174     return false;
1175 
1176   LLVM_DEBUG(dbgs() << "Folded " << MI << " into ");
1177   auto &NewDesc =
1178       TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
1179   int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1180   if (Src2Idx != -1)
1181     MI.RemoveOperand(Src2Idx);
1182   MI.RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
1183   if (Src1ModIdx != -1)
1184     MI.RemoveOperand(Src1ModIdx);
1185   if (Src0ModIdx != -1)
1186     MI.RemoveOperand(Src0ModIdx);
1187   mutateCopyOp(MI, NewDesc);
1188   LLVM_DEBUG(dbgs() << MI);
1189   return true;
1190 }
1191 
1192 bool SIFoldOperands::tryFoldZeroHighBits(MachineInstr &MI) const {
1193   if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 &&
1194       MI.getOpcode() != AMDGPU::V_AND_B32_e32)
1195     return false;
1196 
1197   MachineOperand *Src0 = getImmOrMaterializedImm(*MRI, MI.getOperand(1));
1198   if (!Src0->isImm() || Src0->getImm() != 0xffff)
1199     return false;
1200 
1201   Register Src1 = MI.getOperand(2).getReg();
1202   MachineInstr *SrcDef = MRI->getVRegDef(Src1);
1203   if (ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode())) {
1204     Register Dst = MI.getOperand(0).getReg();
1205     MRI->replaceRegWith(Dst, SrcDef->getOperand(0).getReg());
1206     MI.eraseFromParent();
1207     return true;
1208   }
1209 
1210   return false;
1211 }
1212 
1213 void SIFoldOperands::foldInstOperand(MachineInstr &MI,
1214                                      MachineOperand &OpToFold) const {
1215   // We need mutate the operands of new mov instructions to add implicit
1216   // uses of EXEC, but adding them invalidates the use_iterator, so defer
1217   // this.
1218   SmallVector<MachineInstr *, 4> CopiesToReplace;
1219   SmallVector<FoldCandidate, 4> FoldList;
1220   MachineOperand &Dst = MI.getOperand(0);
1221 
1222   if (OpToFold.isImm()) {
1223     for (auto &UseMI :
1224          make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) {
1225       // Folding the immediate may reveal operations that can be constant
1226       // folded or replaced with a copy. This can happen for example after
1227       // frame indices are lowered to constants or from splitting 64-bit
1228       // constants.
1229       //
1230       // We may also encounter cases where one or both operands are
1231       // immediates materialized into a register, which would ordinarily not
1232       // be folded due to multiple uses or operand constraints.
1233       if (tryConstantFoldOp(*MRI, TII, &UseMI))
1234         LLVM_DEBUG(dbgs() << "Constant folded " << UseMI);
1235     }
1236   }
1237 
1238   bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1239   if (FoldingImm) {
1240     unsigned NumLiteralUses = 0;
1241     MachineOperand *NonInlineUse = nullptr;
1242     int NonInlineUseOpNo = -1;
1243 
1244     for (auto &Use :
1245          make_early_inc_range(MRI->use_nodbg_operands(Dst.getReg()))) {
1246       MachineInstr *UseMI = Use.getParent();
1247       unsigned OpNo = UseMI->getOperandNo(&Use);
1248 
1249       // Try to fold any inline immediate uses, and then only fold other
1250       // constants if they have one use.
1251       //
1252       // The legality of the inline immediate must be checked based on the use
1253       // operand, not the defining instruction, because 32-bit instructions
1254       // with 32-bit inline immediate sources may be used to materialize
1255       // constants used in 16-bit operands.
1256       //
1257       // e.g. it is unsafe to fold:
1258       //  s_mov_b32 s0, 1.0    // materializes 0x3f800000
1259       //  v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
1260 
1261       // Folding immediates with more than one use will increase program size.
1262       // FIXME: This will also reduce register usage, which may be better
1263       // in some cases. A better heuristic is needed.
1264       if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
1265         foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
1266       } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) {
1267         foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
1268       } else {
1269         if (++NumLiteralUses == 1) {
1270           NonInlineUse = &Use;
1271           NonInlineUseOpNo = OpNo;
1272         }
1273       }
1274     }
1275 
1276     if (NumLiteralUses == 1) {
1277       MachineInstr *UseMI = NonInlineUse->getParent();
1278       foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
1279     }
1280   } else {
1281     // Folding register.
1282     SmallVector <MachineOperand *, 4> UsesToProcess;
1283     for (auto &Use : MRI->use_nodbg_operands(Dst.getReg()))
1284       UsesToProcess.push_back(&Use);
1285     for (auto U : UsesToProcess) {
1286       MachineInstr *UseMI = U->getParent();
1287 
1288       foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U),
1289         FoldList, CopiesToReplace);
1290     }
1291   }
1292 
1293   MachineFunction *MF = MI.getParent()->getParent();
1294   // Make sure we add EXEC uses to any new v_mov instructions created.
1295   for (MachineInstr *Copy : CopiesToReplace)
1296     Copy->addImplicitDefUseOperands(*MF);
1297 
1298   for (FoldCandidate &Fold : FoldList) {
1299     assert(!Fold.isReg() || Fold.OpToFold);
1300     if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) {
1301       Register Reg = Fold.OpToFold->getReg();
1302       MachineInstr *DefMI = Fold.OpToFold->getParent();
1303       if (DefMI->readsRegister(AMDGPU::EXEC, TRI) &&
1304           execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI))
1305         continue;
1306     }
1307     if (updateOperand(Fold, *TII, *TRI, *ST)) {
1308       // Clear kill flags.
1309       if (Fold.isReg()) {
1310         assert(Fold.OpToFold && Fold.OpToFold->isReg());
1311         // FIXME: Probably shouldn't bother trying to fold if not an
1312         // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1313         // copies.
1314         MRI->clearKillFlags(Fold.OpToFold->getReg());
1315       }
1316       LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
1317                         << static_cast<int>(Fold.UseOpNo) << " of "
1318                         << *Fold.UseMI);
1319     } else if (Fold.isCommuted()) {
1320       // Restoring instruction's original operand order if fold has failed.
1321       TII->commuteInstruction(*Fold.UseMI, false);
1322     }
1323   }
1324 }
1325 
1326 // Clamp patterns are canonically selected to v_max_* instructions, so only
1327 // handle them.
1328 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
1329   unsigned Op = MI.getOpcode();
1330   switch (Op) {
1331   case AMDGPU::V_MAX_F32_e64:
1332   case AMDGPU::V_MAX_F16_e64:
1333   case AMDGPU::V_MAX_F64_e64:
1334   case AMDGPU::V_PK_MAX_F16: {
1335     if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
1336       return nullptr;
1337 
1338     // Make sure sources are identical.
1339     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1340     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1341     if (!Src0->isReg() || !Src1->isReg() ||
1342         Src0->getReg() != Src1->getReg() ||
1343         Src0->getSubReg() != Src1->getSubReg() ||
1344         Src0->getSubReg() != AMDGPU::NoSubRegister)
1345       return nullptr;
1346 
1347     // Can't fold up if we have modifiers.
1348     if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1349       return nullptr;
1350 
1351     unsigned Src0Mods
1352       = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
1353     unsigned Src1Mods
1354       = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
1355 
1356     // Having a 0 op_sel_hi would require swizzling the output in the source
1357     // instruction, which we can't do.
1358     unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
1359                                                       : 0u;
1360     if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
1361       return nullptr;
1362     return Src0;
1363   }
1364   default:
1365     return nullptr;
1366   }
1367 }
1368 
1369 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
1370 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
1371   const MachineOperand *ClampSrc = isClamp(MI);
1372   if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg()))
1373     return false;
1374 
1375   MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
1376 
1377   // The type of clamp must be compatible.
1378   if (TII->getClampMask(*Def) != TII->getClampMask(MI))
1379     return false;
1380 
1381   MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
1382   if (!DefClamp)
1383     return false;
1384 
1385   LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def);
1386 
1387   // Clamp is applied after omod, so it is OK if omod is set.
1388   DefClamp->setImm(1);
1389   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1390   MI.eraseFromParent();
1391 
1392   // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
1393   // instruction, so we might as well convert it to the more flexible VOP3-only
1394   // mad/fma form.
1395   if (TII->convertToThreeAddress(*Def, nullptr, nullptr))
1396     Def->eraseFromParent();
1397 
1398   return true;
1399 }
1400 
1401 static int getOModValue(unsigned Opc, int64_t Val) {
1402   switch (Opc) {
1403   case AMDGPU::V_MUL_F64_e64: {
1404     switch (Val) {
1405     case 0x3fe0000000000000: // 0.5
1406       return SIOutMods::DIV2;
1407     case 0x4000000000000000: // 2.0
1408       return SIOutMods::MUL2;
1409     case 0x4010000000000000: // 4.0
1410       return SIOutMods::MUL4;
1411     default:
1412       return SIOutMods::NONE;
1413     }
1414   }
1415   case AMDGPU::V_MUL_F32_e64: {
1416     switch (static_cast<uint32_t>(Val)) {
1417     case 0x3f000000: // 0.5
1418       return SIOutMods::DIV2;
1419     case 0x40000000: // 2.0
1420       return SIOutMods::MUL2;
1421     case 0x40800000: // 4.0
1422       return SIOutMods::MUL4;
1423     default:
1424       return SIOutMods::NONE;
1425     }
1426   }
1427   case AMDGPU::V_MUL_F16_e64: {
1428     switch (static_cast<uint16_t>(Val)) {
1429     case 0x3800: // 0.5
1430       return SIOutMods::DIV2;
1431     case 0x4000: // 2.0
1432       return SIOutMods::MUL2;
1433     case 0x4400: // 4.0
1434       return SIOutMods::MUL4;
1435     default:
1436       return SIOutMods::NONE;
1437     }
1438   }
1439   default:
1440     llvm_unreachable("invalid mul opcode");
1441   }
1442 }
1443 
1444 // FIXME: Does this really not support denormals with f16?
1445 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1446 // handled, so will anything other than that break?
1447 std::pair<const MachineOperand *, int>
1448 SIFoldOperands::isOMod(const MachineInstr &MI) const {
1449   unsigned Op = MI.getOpcode();
1450   switch (Op) {
1451   case AMDGPU::V_MUL_F64_e64:
1452   case AMDGPU::V_MUL_F32_e64:
1453   case AMDGPU::V_MUL_F16_e64: {
1454     // If output denormals are enabled, omod is ignored.
1455     if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) ||
1456         ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F16_e64) &&
1457          MFI->getMode().FP64FP16OutputDenormals))
1458       return std::make_pair(nullptr, SIOutMods::NONE);
1459 
1460     const MachineOperand *RegOp = nullptr;
1461     const MachineOperand *ImmOp = nullptr;
1462     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1463     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1464     if (Src0->isImm()) {
1465       ImmOp = Src0;
1466       RegOp = Src1;
1467     } else if (Src1->isImm()) {
1468       ImmOp = Src1;
1469       RegOp = Src0;
1470     } else
1471       return std::make_pair(nullptr, SIOutMods::NONE);
1472 
1473     int OMod = getOModValue(Op, ImmOp->getImm());
1474     if (OMod == SIOutMods::NONE ||
1475         TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1476         TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1477         TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1478         TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1479       return std::make_pair(nullptr, SIOutMods::NONE);
1480 
1481     return std::make_pair(RegOp, OMod);
1482   }
1483   case AMDGPU::V_ADD_F64_e64:
1484   case AMDGPU::V_ADD_F32_e64:
1485   case AMDGPU::V_ADD_F16_e64: {
1486     // If output denormals are enabled, omod is ignored.
1487     if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) ||
1488         ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F16_e64) &&
1489          MFI->getMode().FP64FP16OutputDenormals))
1490       return std::make_pair(nullptr, SIOutMods::NONE);
1491 
1492     // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1493     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1494     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1495 
1496     if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1497         Src0->getSubReg() == Src1->getSubReg() &&
1498         !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1499         !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1500         !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1501         !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1502       return std::make_pair(Src0, SIOutMods::MUL2);
1503 
1504     return std::make_pair(nullptr, SIOutMods::NONE);
1505   }
1506   default:
1507     return std::make_pair(nullptr, SIOutMods::NONE);
1508   }
1509 }
1510 
1511 // FIXME: Does this need to check IEEE bit on function?
1512 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1513   const MachineOperand *RegOp;
1514   int OMod;
1515   std::tie(RegOp, OMod) = isOMod(MI);
1516   if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1517       RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1518       !MRI->hasOneNonDBGUser(RegOp->getReg()))
1519     return false;
1520 
1521   MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
1522   MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1523   if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1524     return false;
1525 
1526   // Clamp is applied after omod. If the source already has clamp set, don't
1527   // fold it.
1528   if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1529     return false;
1530 
1531   LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def);
1532 
1533   DefOMod->setImm(OMod);
1534   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1535   MI.eraseFromParent();
1536 
1537   // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac
1538   // instruction, so we might as well convert it to the more flexible VOP3-only
1539   // mad/fma form.
1540   if (TII->convertToThreeAddress(*Def, nullptr, nullptr))
1541     Def->eraseFromParent();
1542 
1543   return true;
1544 }
1545 
1546 // Try to fold a reg_sequence with vgpr output and agpr inputs into an
1547 // instruction which can take an agpr. So far that means a store.
1548 bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) {
1549   assert(MI.isRegSequence());
1550   auto Reg = MI.getOperand(0).getReg();
1551 
1552   if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) ||
1553       !MRI->hasOneNonDBGUse(Reg))
1554     return false;
1555 
1556   SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs;
1557   if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER, TII, *MRI))
1558     return false;
1559 
1560   for (auto &Def : Defs) {
1561     const auto *Op = Def.first;
1562     if (!Op->isReg())
1563       return false;
1564     if (TRI->isAGPR(*MRI, Op->getReg()))
1565       continue;
1566     // Maybe this is a COPY from AREG
1567     const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg());
1568     if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg())
1569       return false;
1570     if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg()))
1571       return false;
1572   }
1573 
1574   MachineOperand *Op = &*MRI->use_nodbg_begin(Reg);
1575   MachineInstr *UseMI = Op->getParent();
1576   while (UseMI->isCopy() && !Op->getSubReg()) {
1577     Reg = UseMI->getOperand(0).getReg();
1578     if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg))
1579       return false;
1580     Op = &*MRI->use_nodbg_begin(Reg);
1581     UseMI = Op->getParent();
1582   }
1583 
1584   if (Op->getSubReg())
1585     return false;
1586 
1587   unsigned OpIdx = Op - &UseMI->getOperand(0);
1588   const MCInstrDesc &InstDesc = UseMI->getDesc();
1589   const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx];
1590   switch (OpInfo.RegClass) {
1591   case AMDGPU::AV_32RegClassID:  LLVM_FALLTHROUGH;
1592   case AMDGPU::AV_64RegClassID:  LLVM_FALLTHROUGH;
1593   case AMDGPU::AV_96RegClassID:  LLVM_FALLTHROUGH;
1594   case AMDGPU::AV_128RegClassID: LLVM_FALLTHROUGH;
1595   case AMDGPU::AV_160RegClassID:
1596     break;
1597   default:
1598     return false;
1599   }
1600 
1601   const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg));
1602   auto Dst = MRI->createVirtualRegister(NewDstRC);
1603   auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1604                     TII->get(AMDGPU::REG_SEQUENCE), Dst);
1605 
1606   for (unsigned I = 0; I < Defs.size(); ++I) {
1607     MachineOperand *Def = Defs[I].first;
1608     Def->setIsKill(false);
1609     if (TRI->isAGPR(*MRI, Def->getReg())) {
1610       RS.add(*Def);
1611     } else { // This is a copy
1612       MachineInstr *SubDef = MRI->getVRegDef(Def->getReg());
1613       SubDef->getOperand(1).setIsKill(false);
1614       RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg());
1615     }
1616     RS.addImm(Defs[I].second);
1617   }
1618 
1619   Op->setReg(Dst);
1620   if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) {
1621     Op->setReg(Reg);
1622     RS->eraseFromParent();
1623     return false;
1624   }
1625 
1626   LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI);
1627 
1628   // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users,
1629   // in which case we can erase them all later in runOnMachineFunction.
1630   if (MRI->use_nodbg_empty(MI.getOperand(0).getReg()))
1631     MI.eraseFromParentAndMarkDBGValuesForRemoval();
1632   return true;
1633 }
1634 
1635 // Try to hoist an AGPR to VGPR copy out of the loop across a LCSSA PHI.
1636 // This should allow folding of an AGPR into a consumer which may support it.
1637 // I.e.:
1638 //
1639 // loop:                             // loop:
1640 //   %1:vreg = COPY %0:areg          // exit:
1641 // exit:                          => //   %1:areg = PHI %0:areg, %loop
1642 //   %2:vreg = PHI %1:vreg, %loop    //   %2:vreg = COPY %1:areg
1643 bool SIFoldOperands::tryFoldLCSSAPhi(MachineInstr &PHI) {
1644   assert(PHI.isPHI());
1645 
1646   if (PHI.getNumExplicitOperands() != 3) // Single input LCSSA PHI
1647     return false;
1648 
1649   Register PhiIn = PHI.getOperand(1).getReg();
1650   Register PhiOut = PHI.getOperand(0).getReg();
1651   if (PHI.getOperand(1).getSubReg() ||
1652       !TRI->isVGPR(*MRI, PhiIn) || !TRI->isVGPR(*MRI, PhiOut))
1653     return false;
1654 
1655   // A single use should not matter for correctness, but if it has another use
1656   // inside the loop we may perform copy twice in a worst case.
1657   if (!MRI->hasOneNonDBGUse(PhiIn))
1658     return false;
1659 
1660   MachineInstr *Copy = MRI->getVRegDef(PhiIn);
1661   if (!Copy || !Copy->isCopy())
1662     return false;
1663 
1664   Register CopyIn = Copy->getOperand(1).getReg();
1665   if (!TRI->isAGPR(*MRI, CopyIn) || Copy->getOperand(1).getSubReg())
1666     return false;
1667 
1668   const TargetRegisterClass *ARC = MRI->getRegClass(CopyIn);
1669   Register NewReg = MRI->createVirtualRegister(ARC);
1670   PHI.getOperand(1).setReg(CopyIn);
1671   PHI.getOperand(0).setReg(NewReg);
1672 
1673   MachineBasicBlock *MBB = PHI.getParent();
1674   BuildMI(*MBB, MBB->getFirstNonPHI(), Copy->getDebugLoc(),
1675           TII->get(AMDGPU::COPY), PhiOut)
1676     .addReg(NewReg, RegState::Kill);
1677   Copy->eraseFromParent(); // We know this copy had a single use.
1678 
1679   LLVM_DEBUG(dbgs() << "Folded " << PHI);
1680 
1681   return true;
1682 }
1683 
1684 // Attempt to convert VGPR load to an AGPR load.
1685 bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) {
1686   assert(MI.mayLoad());
1687   if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1)
1688     return false;
1689 
1690   MachineOperand &Def = MI.getOperand(0);
1691   if (!Def.isDef())
1692     return false;
1693 
1694   Register DefReg = Def.getReg();
1695 
1696   if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg))
1697     return false;
1698 
1699   SmallVector<const MachineInstr*, 8> Users;
1700   SmallVector<Register, 8> MoveRegs;
1701   for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg)) {
1702     Users.push_back(&I);
1703   }
1704   if (Users.empty())
1705     return false;
1706 
1707   // Check that all uses a copy to an agpr or a reg_sequence producing an agpr.
1708   while (!Users.empty()) {
1709     const MachineInstr *I = Users.pop_back_val();
1710     if (!I->isCopy() && !I->isRegSequence())
1711       return false;
1712     Register DstReg = I->getOperand(0).getReg();
1713     if (TRI->isAGPR(*MRI, DstReg))
1714       continue;
1715     MoveRegs.push_back(DstReg);
1716     for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg)) {
1717       Users.push_back(&U);
1718     }
1719   }
1720 
1721   const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
1722   MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC));
1723   if (!TII->isOperandLegal(MI, 0, &Def)) {
1724     MRI->setRegClass(DefReg, RC);
1725     return false;
1726   }
1727 
1728   while (!MoveRegs.empty()) {
1729     Register Reg = MoveRegs.pop_back_val();
1730     MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)));
1731   }
1732 
1733   LLVM_DEBUG(dbgs() << "Folded " << MI);
1734 
1735   return true;
1736 }
1737 
1738 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
1739   if (skipFunction(MF.getFunction()))
1740     return false;
1741 
1742   MRI = &MF.getRegInfo();
1743   ST = &MF.getSubtarget<GCNSubtarget>();
1744   TII = ST->getInstrInfo();
1745   TRI = &TII->getRegisterInfo();
1746   MFI = MF.getInfo<SIMachineFunctionInfo>();
1747 
1748   // omod is ignored by hardware if IEEE bit is enabled. omod also does not
1749   // correctly handle signed zeros.
1750   //
1751   // FIXME: Also need to check strictfp
1752   bool IsIEEEMode = MFI->getMode().IEEE;
1753   bool HasNSZ = MFI->hasNoSignedZerosFPMath();
1754 
1755   for (MachineBasicBlock *MBB : depth_first(&MF)) {
1756     MachineOperand *CurrentKnownM0Val = nullptr;
1757     for (auto &MI : make_early_inc_range(*MBB)) {
1758       tryFoldCndMask(MI);
1759 
1760       if (tryFoldZeroHighBits(MI))
1761         continue;
1762 
1763       if (MI.isRegSequence() && tryFoldRegSequence(MI))
1764         continue;
1765 
1766       if (MI.isPHI() && tryFoldLCSSAPhi(MI))
1767         continue;
1768 
1769       if (MI.mayLoad() && tryFoldLoad(MI))
1770         continue;
1771 
1772       if (!TII->isFoldableCopy(MI)) {
1773         // Saw an unknown clobber of m0, so we no longer know what it is.
1774         if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI))
1775           CurrentKnownM0Val = nullptr;
1776 
1777         // TODO: Omod might be OK if there is NSZ only on the source
1778         // instruction, and not the omod multiply.
1779         if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
1780             !tryFoldOMod(MI))
1781           tryFoldClamp(MI);
1782 
1783         continue;
1784       }
1785 
1786       // Specially track simple redefs of m0 to the same value in a block, so we
1787       // can erase the later ones.
1788       if (MI.getOperand(0).getReg() == AMDGPU::M0) {
1789         MachineOperand &NewM0Val = MI.getOperand(1);
1790         if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) {
1791           MI.eraseFromParent();
1792           continue;
1793         }
1794 
1795         // We aren't tracking other physical registers
1796         CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ?
1797           nullptr : &NewM0Val;
1798         continue;
1799       }
1800 
1801       MachineOperand &OpToFold = MI.getOperand(1);
1802       bool FoldingImm =
1803           OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1804 
1805       // FIXME: We could also be folding things like TargetIndexes.
1806       if (!FoldingImm && !OpToFold.isReg())
1807         continue;
1808 
1809       if (OpToFold.isReg() && !OpToFold.getReg().isVirtual())
1810         continue;
1811 
1812       // Prevent folding operands backwards in the function. For example,
1813       // the COPY opcode must not be replaced by 1 in this example:
1814       //
1815       //    %3 = COPY %vgpr0; VGPR_32:%3
1816       //    ...
1817       //    %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1818       if (!MI.getOperand(0).getReg().isVirtual())
1819         continue;
1820 
1821       foldInstOperand(MI, OpToFold);
1822 
1823       // If we managed to fold all uses of this copy then we might as well
1824       // delete it now.
1825       // The only reason we need to follow chains of copies here is that
1826       // tryFoldRegSequence looks forward through copies before folding a
1827       // REG_SEQUENCE into its eventual users.
1828       auto *InstToErase = &MI;
1829       while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) {
1830         auto &SrcOp = InstToErase->getOperand(1);
1831         auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register();
1832         InstToErase->eraseFromParentAndMarkDBGValuesForRemoval();
1833         InstToErase = nullptr;
1834         if (!SrcReg || SrcReg.isPhysical())
1835           break;
1836         InstToErase = MRI->getVRegDef(SrcReg);
1837         if (!InstToErase || !TII->isFoldableCopy(*InstToErase))
1838           break;
1839       }
1840       if (InstToErase && InstToErase->isRegSequence() &&
1841           MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg()))
1842         InstToErase->eraseFromParentAndMarkDBGValuesForRemoval();
1843     }
1844   }
1845   return true;
1846 }
1847