1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "GCNSubtarget.h" 13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/CodeGen/MachineFunctionPass.h" 17 #include "llvm/CodeGen/MachineOperand.h" 18 19 #define DEBUG_TYPE "si-fold-operands" 20 using namespace llvm; 21 22 namespace { 23 24 struct FoldCandidate { 25 MachineInstr *UseMI; 26 union { 27 MachineOperand *OpToFold; 28 uint64_t ImmToFold; 29 int FrameIndexToFold; 30 }; 31 int ShrinkOpcode; 32 unsigned UseOpNo; 33 MachineOperand::MachineOperandType Kind; 34 bool Commuted; 35 36 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 37 bool Commuted_ = false, 38 int ShrinkOp = -1) : 39 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 40 Kind(FoldOp->getType()), 41 Commuted(Commuted_) { 42 if (FoldOp->isImm()) { 43 ImmToFold = FoldOp->getImm(); 44 } else if (FoldOp->isFI()) { 45 FrameIndexToFold = FoldOp->getIndex(); 46 } else { 47 assert(FoldOp->isReg() || FoldOp->isGlobal()); 48 OpToFold = FoldOp; 49 } 50 } 51 52 bool isFI() const { 53 return Kind == MachineOperand::MO_FrameIndex; 54 } 55 56 bool isImm() const { 57 return Kind == MachineOperand::MO_Immediate; 58 } 59 60 bool isReg() const { 61 return Kind == MachineOperand::MO_Register; 62 } 63 64 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 65 66 bool needsShrink() const { return ShrinkOpcode != -1; } 67 }; 68 69 class SIFoldOperands : public MachineFunctionPass { 70 public: 71 static char ID; 72 MachineRegisterInfo *MRI; 73 const SIInstrInfo *TII; 74 const SIRegisterInfo *TRI; 75 const GCNSubtarget *ST; 76 const SIMachineFunctionInfo *MFI; 77 78 bool frameIndexMayFold(const MachineInstr &UseMI, int OpNo, 79 const MachineOperand &OpToFold) const; 80 81 bool updateOperand(FoldCandidate &Fold) const; 82 83 bool canUseImmWithOpSel(FoldCandidate &Fold) const; 84 85 bool tryFoldImmWithOpSel(FoldCandidate &Fold) const; 86 87 bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 88 MachineInstr *MI, unsigned OpNo, 89 MachineOperand *OpToFold) const; 90 bool isUseSafeToFold(const MachineInstr &MI, 91 const MachineOperand &UseMO) const; 92 bool 93 getRegSeqInit(SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, 94 Register UseReg, uint8_t OpTy) const; 95 bool tryToFoldACImm(const MachineOperand &OpToFold, MachineInstr *UseMI, 96 unsigned UseOpIdx, 97 SmallVectorImpl<FoldCandidate> &FoldList) const; 98 void foldOperand(MachineOperand &OpToFold, 99 MachineInstr *UseMI, 100 int UseOpIdx, 101 SmallVectorImpl<FoldCandidate> &FoldList, 102 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 103 104 MachineOperand *getImmOrMaterializedImm(MachineOperand &Op) const; 105 bool tryConstantFoldOp(MachineInstr *MI) const; 106 bool tryFoldCndMask(MachineInstr &MI) const; 107 bool tryFoldZeroHighBits(MachineInstr &MI) const; 108 bool foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 109 bool tryFoldFoldableCopy(MachineInstr &MI, 110 MachineOperand *&CurrentKnownM0Val) const; 111 112 const MachineOperand *isClamp(const MachineInstr &MI) const; 113 bool tryFoldClamp(MachineInstr &MI); 114 115 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 116 bool tryFoldOMod(MachineInstr &MI); 117 bool tryFoldRegSequence(MachineInstr &MI); 118 bool tryFoldPhiAGPR(MachineInstr &MI); 119 bool tryFoldLoad(MachineInstr &MI); 120 121 bool tryOptimizeAGPRPhis(MachineBasicBlock &MBB); 122 123 public: 124 SIFoldOperands() : MachineFunctionPass(ID) { 125 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 126 } 127 128 bool runOnMachineFunction(MachineFunction &MF) override; 129 130 StringRef getPassName() const override { return "SI Fold Operands"; } 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override { 133 AU.setPreservesCFG(); 134 MachineFunctionPass::getAnalysisUsage(AU); 135 } 136 }; 137 138 } // End anonymous namespace. 139 140 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 141 "SI Fold Operands", false, false) 142 143 char SIFoldOperands::ID = 0; 144 145 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 146 147 static const TargetRegisterClass *getRegOpRC(const MachineRegisterInfo &MRI, 148 const TargetRegisterInfo &TRI, 149 const MachineOperand &MO) { 150 const TargetRegisterClass *RC = MRI.getRegClass(MO.getReg()); 151 if (const TargetRegisterClass *SubRC = 152 TRI.getSubRegisterClass(RC, MO.getSubReg())) 153 RC = SubRC; 154 return RC; 155 } 156 157 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. 158 static unsigned macToMad(unsigned Opc) { 159 switch (Opc) { 160 case AMDGPU::V_MAC_F32_e64: 161 return AMDGPU::V_MAD_F32_e64; 162 case AMDGPU::V_MAC_F16_e64: 163 return AMDGPU::V_MAD_F16_e64; 164 case AMDGPU::V_FMAC_F32_e64: 165 return AMDGPU::V_FMA_F32_e64; 166 case AMDGPU::V_FMAC_F16_e64: 167 return AMDGPU::V_FMA_F16_gfx9_e64; 168 case AMDGPU::V_FMAC_F16_t16_e64: 169 return AMDGPU::V_FMA_F16_gfx9_e64; 170 case AMDGPU::V_FMAC_LEGACY_F32_e64: 171 return AMDGPU::V_FMA_LEGACY_F32_e64; 172 case AMDGPU::V_FMAC_F64_e64: 173 return AMDGPU::V_FMA_F64_e64; 174 } 175 return AMDGPU::INSTRUCTION_LIST_END; 176 } 177 178 // TODO: Add heuristic that the frame index might not fit in the addressing mode 179 // immediate offset to avoid materializing in loops. 180 bool SIFoldOperands::frameIndexMayFold(const MachineInstr &UseMI, int OpNo, 181 const MachineOperand &OpToFold) const { 182 if (!OpToFold.isFI()) 183 return false; 184 185 const unsigned Opc = UseMI.getOpcode(); 186 if (TII->isMUBUF(UseMI)) 187 return OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 188 if (!TII->isFLATScratch(UseMI)) 189 return false; 190 191 int SIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr); 192 if (OpNo == SIdx) 193 return true; 194 195 int VIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 196 return OpNo == VIdx && SIdx == -1; 197 } 198 199 FunctionPass *llvm::createSIFoldOperandsPass() { 200 return new SIFoldOperands(); 201 } 202 203 bool SIFoldOperands::canUseImmWithOpSel(FoldCandidate &Fold) const { 204 MachineInstr *MI = Fold.UseMI; 205 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 206 const uint64_t TSFlags = MI->getDesc().TSFlags; 207 208 assert(Old.isReg() && Fold.isImm()); 209 210 if (!(TSFlags & SIInstrFlags::IsPacked) || (TSFlags & SIInstrFlags::IsMAI) || 211 (ST->hasDOTOpSelHazard() && (TSFlags & SIInstrFlags::IsDOT))) 212 return false; 213 214 unsigned Opcode = MI->getOpcode(); 215 int OpNo = MI->getOperandNo(&Old); 216 uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; 217 switch (OpType) { 218 default: 219 return false; 220 case AMDGPU::OPERAND_REG_IMM_V2FP16: 221 case AMDGPU::OPERAND_REG_IMM_V2INT16: 222 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 223 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 224 break; 225 } 226 227 return true; 228 } 229 230 bool SIFoldOperands::tryFoldImmWithOpSel(FoldCandidate &Fold) const { 231 MachineInstr *MI = Fold.UseMI; 232 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 233 unsigned Opcode = MI->getOpcode(); 234 int OpNo = MI->getOperandNo(&Old); 235 uint8_t OpType = TII->get(Opcode).operands()[OpNo].OperandType; 236 237 // If the literal can be inlined as-is, apply it and short-circuit the 238 // tests below. The main motivation for this is to avoid unintuitive 239 // uses of opsel. 240 if (AMDGPU::isInlinableLiteralV216(Fold.ImmToFold, OpType)) { 241 Old.ChangeToImmediate(Fold.ImmToFold); 242 return true; 243 } 244 245 // Refer to op_sel/op_sel_hi and check if we can change the immediate and 246 // op_sel in a way that allows an inline constant. 247 int ModIdx = -1; 248 unsigned SrcIdx = ~0; 249 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) { 250 ModIdx = AMDGPU::OpName::src0_modifiers; 251 SrcIdx = 0; 252 } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) { 253 ModIdx = AMDGPU::OpName::src1_modifiers; 254 SrcIdx = 1; 255 } else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) { 256 ModIdx = AMDGPU::OpName::src2_modifiers; 257 SrcIdx = 2; 258 } 259 assert(ModIdx != -1); 260 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 261 MachineOperand &Mod = MI->getOperand(ModIdx); 262 unsigned ModVal = Mod.getImm(); 263 264 uint16_t ImmLo = static_cast<uint16_t>( 265 Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_0 ? 16 : 0)); 266 uint16_t ImmHi = static_cast<uint16_t>( 267 Fold.ImmToFold >> (ModVal & SISrcMods::OP_SEL_1 ? 16 : 0)); 268 uint32_t Imm = (static_cast<uint32_t>(ImmHi) << 16) | ImmLo; 269 unsigned NewModVal = ModVal & ~(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); 270 271 // Helper function that attempts to inline the given value with a newly 272 // chosen opsel pattern. 273 auto tryFoldToInline = [&](uint32_t Imm) -> bool { 274 if (AMDGPU::isInlinableLiteralV216(Imm, OpType)) { 275 Mod.setImm(NewModVal | SISrcMods::OP_SEL_1); 276 Old.ChangeToImmediate(Imm); 277 return true; 278 } 279 280 // Try to shuffle the halves around and leverage opsel to get an inline 281 // constant. 282 uint16_t Lo = static_cast<uint16_t>(Imm); 283 uint16_t Hi = static_cast<uint16_t>(Imm >> 16); 284 if (Lo == Hi) { 285 if (AMDGPU::isInlinableLiteralV216(Lo, OpType)) { 286 Mod.setImm(NewModVal); 287 Old.ChangeToImmediate(Lo); 288 return true; 289 } 290 291 if (static_cast<int16_t>(Lo) < 0) { 292 int32_t SExt = static_cast<int16_t>(Lo); 293 if (AMDGPU::isInlinableLiteralV216(SExt, OpType)) { 294 Mod.setImm(NewModVal); 295 Old.ChangeToImmediate(SExt); 296 return true; 297 } 298 } 299 300 // This check is only useful for integer instructions 301 if (OpType == AMDGPU::OPERAND_REG_IMM_V2INT16 || 302 OpType == AMDGPU::OPERAND_REG_INLINE_AC_V2INT16) { 303 if (AMDGPU::isInlinableLiteralV216(Lo << 16, OpType)) { 304 Mod.setImm(NewModVal | SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1); 305 Old.ChangeToImmediate(static_cast<uint32_t>(Lo) << 16); 306 return true; 307 } 308 } 309 } else { 310 uint32_t Swapped = (static_cast<uint32_t>(Lo) << 16) | Hi; 311 if (AMDGPU::isInlinableLiteralV216(Swapped, OpType)) { 312 Mod.setImm(NewModVal | SISrcMods::OP_SEL_0); 313 Old.ChangeToImmediate(Swapped); 314 return true; 315 } 316 } 317 318 return false; 319 }; 320 321 if (tryFoldToInline(Imm)) 322 return true; 323 324 // Replace integer addition by subtraction and vice versa if it allows 325 // folding the immediate to an inline constant. 326 // 327 // We should only ever get here for SrcIdx == 1 due to canonicalization 328 // earlier in the pipeline, but we double-check here to be safe / fully 329 // general. 330 bool IsUAdd = Opcode == AMDGPU::V_PK_ADD_U16; 331 bool IsUSub = Opcode == AMDGPU::V_PK_SUB_U16; 332 if (SrcIdx == 1 && (IsUAdd || IsUSub)) { 333 unsigned ClampIdx = 334 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::clamp); 335 bool Clamp = MI->getOperand(ClampIdx).getImm() != 0; 336 337 if (!Clamp) { 338 uint16_t NegLo = -static_cast<uint16_t>(Imm); 339 uint16_t NegHi = -static_cast<uint16_t>(Imm >> 16); 340 uint32_t NegImm = (static_cast<uint32_t>(NegHi) << 16) | NegLo; 341 342 if (tryFoldToInline(NegImm)) { 343 unsigned NegOpcode = 344 IsUAdd ? AMDGPU::V_PK_SUB_U16 : AMDGPU::V_PK_ADD_U16; 345 MI->setDesc(TII->get(NegOpcode)); 346 return true; 347 } 348 } 349 } 350 351 return false; 352 } 353 354 bool SIFoldOperands::updateOperand(FoldCandidate &Fold) const { 355 MachineInstr *MI = Fold.UseMI; 356 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 357 assert(Old.isReg()); 358 359 if (Fold.isImm() && canUseImmWithOpSel(Fold)) { 360 if (tryFoldImmWithOpSel(Fold)) 361 return true; 362 363 // We can't represent the candidate as an inline constant. Try as a literal 364 // with the original opsel, checking constant bus limitations. 365 MachineOperand New = MachineOperand::CreateImm(Fold.ImmToFold); 366 int OpNo = MI->getOperandNo(&Old); 367 if (!TII->isOperandLegal(*MI, OpNo, &New)) 368 return false; 369 Old.ChangeToImmediate(Fold.ImmToFold); 370 return true; 371 } 372 373 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 374 MachineBasicBlock *MBB = MI->getParent(); 375 auto Liveness = MBB->computeRegisterLiveness(TRI, AMDGPU::VCC, MI, 16); 376 if (Liveness != MachineBasicBlock::LQR_Dead) { 377 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 378 return false; 379 } 380 381 int Op32 = Fold.ShrinkOpcode; 382 MachineOperand &Dst0 = MI->getOperand(0); 383 MachineOperand &Dst1 = MI->getOperand(1); 384 assert(Dst0.isDef() && Dst1.isDef()); 385 386 bool HaveNonDbgCarryUse = !MRI->use_nodbg_empty(Dst1.getReg()); 387 388 const TargetRegisterClass *Dst0RC = MRI->getRegClass(Dst0.getReg()); 389 Register NewReg0 = MRI->createVirtualRegister(Dst0RC); 390 391 MachineInstr *Inst32 = TII->buildShrunkInst(*MI, Op32); 392 393 if (HaveNonDbgCarryUse) { 394 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(AMDGPU::COPY), 395 Dst1.getReg()) 396 .addReg(AMDGPU::VCC, RegState::Kill); 397 } 398 399 // Keep the old instruction around to avoid breaking iterators, but 400 // replace it with a dummy instruction to remove uses. 401 // 402 // FIXME: We should not invert how this pass looks at operands to avoid 403 // this. Should track set of foldable movs instead of looking for uses 404 // when looking at a use. 405 Dst0.setReg(NewReg0); 406 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 407 MI->removeOperand(I); 408 MI->setDesc(TII->get(AMDGPU::IMPLICIT_DEF)); 409 410 if (Fold.Commuted) 411 TII->commuteInstruction(*Inst32, false); 412 return true; 413 } 414 415 assert(!Fold.needsShrink() && "not handled"); 416 417 if (Fold.isImm()) { 418 if (Old.isTied()) { 419 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(MI->getOpcode()); 420 if (NewMFMAOpc == -1) 421 return false; 422 MI->setDesc(TII->get(NewMFMAOpc)); 423 MI->untieRegOperand(0); 424 } 425 Old.ChangeToImmediate(Fold.ImmToFold); 426 return true; 427 } 428 429 if (Fold.isGlobal()) { 430 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 431 Fold.OpToFold->getTargetFlags()); 432 return true; 433 } 434 435 if (Fold.isFI()) { 436 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 437 return true; 438 } 439 440 MachineOperand *New = Fold.OpToFold; 441 Old.substVirtReg(New->getReg(), New->getSubReg(), *TRI); 442 Old.setIsUndef(New->isUndef()); 443 return true; 444 } 445 446 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 447 const MachineInstr *MI) { 448 return any_of(FoldList, [&](const auto &C) { return C.UseMI == MI; }); 449 } 450 451 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 452 MachineInstr *MI, unsigned OpNo, 453 MachineOperand *FoldOp, bool Commuted = false, 454 int ShrinkOp = -1) { 455 // Skip additional folding on the same operand. 456 for (FoldCandidate &Fold : FoldList) 457 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 458 return; 459 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 460 << " operand " << OpNo << "\n " << *MI); 461 FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp); 462 } 463 464 bool SIFoldOperands::tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 465 MachineInstr *MI, unsigned OpNo, 466 MachineOperand *OpToFold) const { 467 const unsigned Opc = MI->getOpcode(); 468 469 auto tryToFoldAsFMAAKorMK = [&]() { 470 if (!OpToFold->isImm()) 471 return false; 472 473 const bool TryAK = OpNo == 3; 474 const unsigned NewOpc = TryAK ? AMDGPU::S_FMAAK_F32 : AMDGPU::S_FMAMK_F32; 475 MI->setDesc(TII->get(NewOpc)); 476 477 // We have to fold into operand which would be Imm not into OpNo. 478 bool FoldAsFMAAKorMK = 479 tryAddToFoldList(FoldList, MI, TryAK ? 3 : 2, OpToFold); 480 if (FoldAsFMAAKorMK) { 481 // Untie Src2 of fmac. 482 MI->untieRegOperand(3); 483 // For fmamk swap operands 1 and 2 if OpToFold was meant for operand 1. 484 if (OpNo == 1) { 485 MachineOperand &Op1 = MI->getOperand(1); 486 MachineOperand &Op2 = MI->getOperand(2); 487 Register OldReg = Op1.getReg(); 488 // Operand 2 might be an inlinable constant 489 if (Op2.isImm()) { 490 Op1.ChangeToImmediate(Op2.getImm()); 491 Op2.ChangeToRegister(OldReg, false); 492 } else { 493 Op1.setReg(Op2.getReg()); 494 Op2.setReg(OldReg); 495 } 496 } 497 return true; 498 } 499 MI->setDesc(TII->get(Opc)); 500 return false; 501 }; 502 503 bool IsLegal = TII->isOperandLegal(*MI, OpNo, OpToFold); 504 if (!IsLegal && OpToFold->isImm()) { 505 FoldCandidate Fold(MI, OpNo, OpToFold); 506 IsLegal = canUseImmWithOpSel(Fold); 507 } 508 509 if (!IsLegal) { 510 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 511 unsigned NewOpc = macToMad(Opc); 512 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 513 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 514 // to fold the operand. 515 MI->setDesc(TII->get(NewOpc)); 516 bool AddOpSel = !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel) && 517 AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel); 518 if (AddOpSel) 519 MI->addOperand(MachineOperand::CreateImm(0)); 520 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold); 521 if (FoldAsMAD) { 522 MI->untieRegOperand(OpNo); 523 return true; 524 } 525 if (AddOpSel) 526 MI->removeOperand(MI->getNumExplicitOperands() - 1); 527 MI->setDesc(TII->get(Opc)); 528 } 529 530 // Special case for s_fmac_f32 if we are trying to fold into Src2. 531 // By transforming into fmaak we can untie Src2 and make folding legal. 532 if (Opc == AMDGPU::S_FMAC_F32 && OpNo == 3) { 533 if (tryToFoldAsFMAAKorMK()) 534 return true; 535 } 536 537 // Special case for s_setreg_b32 538 if (OpToFold->isImm()) { 539 unsigned ImmOpc = 0; 540 if (Opc == AMDGPU::S_SETREG_B32) 541 ImmOpc = AMDGPU::S_SETREG_IMM32_B32; 542 else if (Opc == AMDGPU::S_SETREG_B32_mode) 543 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; 544 if (ImmOpc) { 545 MI->setDesc(TII->get(ImmOpc)); 546 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 547 return true; 548 } 549 } 550 551 // If we are already folding into another operand of MI, then 552 // we can't commute the instruction, otherwise we risk making the 553 // other fold illegal. 554 if (isUseMIInFoldList(FoldList, MI)) 555 return false; 556 557 // Operand is not legal, so try to commute the instruction to 558 // see if this makes it possible to fold. 559 unsigned CommuteOpNo = TargetInstrInfo::CommuteAnyOperandIndex; 560 bool CanCommute = TII->findCommutedOpIndices(*MI, OpNo, CommuteOpNo); 561 if (!CanCommute) 562 return false; 563 564 // One of operands might be an Imm operand, and OpNo may refer to it after 565 // the call of commuteInstruction() below. Such situations are avoided 566 // here explicitly as OpNo must be a register operand to be a candidate 567 // for memory folding. 568 if (!MI->getOperand(OpNo).isReg() || !MI->getOperand(CommuteOpNo).isReg()) 569 return false; 570 571 if (!TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo)) 572 return false; 573 574 int Op32 = -1; 575 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 576 if ((Opc != AMDGPU::V_ADD_CO_U32_e64 && Opc != AMDGPU::V_SUB_CO_U32_e64 && 577 Opc != AMDGPU::V_SUBREV_CO_U32_e64) || // FIXME 578 (!OpToFold->isImm() && !OpToFold->isFI() && !OpToFold->isGlobal())) { 579 TII->commuteInstruction(*MI, false, OpNo, CommuteOpNo); 580 return false; 581 } 582 583 // Verify the other operand is a VGPR, otherwise we would violate the 584 // constant bus restriction. 585 MachineOperand &OtherOp = MI->getOperand(OpNo); 586 if (!OtherOp.isReg() || 587 !TII->getRegisterInfo().isVGPR(*MRI, OtherOp.getReg())) 588 return false; 589 590 assert(MI->getOperand(1).isDef()); 591 592 // Make sure to get the 32-bit version of the commuted opcode. 593 unsigned MaybeCommutedOpc = MI->getOpcode(); 594 Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 595 } 596 597 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 598 return true; 599 } 600 601 // Inlineable constant might have been folded into Imm operand of fmaak or 602 // fmamk and we are trying to fold a non-inlinable constant. 603 if ((Opc == AMDGPU::S_FMAAK_F32 || Opc == AMDGPU::S_FMAMK_F32) && 604 !OpToFold->isReg() && !TII->isInlineConstant(*OpToFold)) { 605 unsigned ImmIdx = Opc == AMDGPU::S_FMAAK_F32 ? 3 : 2; 606 MachineOperand &OpImm = MI->getOperand(ImmIdx); 607 if (!OpImm.isReg() && 608 TII->isInlineConstant(*MI, MI->getOperand(OpNo), OpImm)) 609 return tryToFoldAsFMAAKorMK(); 610 } 611 612 // Special case for s_fmac_f32 if we are trying to fold into Src0 or Src1. 613 // By changing into fmamk we can untie Src2. 614 // If folding for Src0 happens first and it is identical operand to Src1 we 615 // should avoid transforming into fmamk which requires commuting as it would 616 // cause folding into Src1 to fail later on due to wrong OpNo used. 617 if (Opc == AMDGPU::S_FMAC_F32 && 618 (OpNo != 1 || !MI->getOperand(1).isIdenticalTo(MI->getOperand(2)))) { 619 if (tryToFoldAsFMAAKorMK()) 620 return true; 621 } 622 623 // Check the case where we might introduce a second constant operand to a 624 // scalar instruction 625 if (TII->isSALU(MI->getOpcode())) { 626 const MCInstrDesc &InstDesc = MI->getDesc(); 627 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; 628 629 // Fine if the operand can be encoded as an inline constant 630 if (!OpToFold->isReg() && !TII->isInlineConstant(*OpToFold, OpInfo)) { 631 // Otherwise check for another constant 632 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 633 auto &Op = MI->getOperand(i); 634 if (OpNo != i && !Op.isReg() && 635 !TII->isInlineConstant(Op, InstDesc.operands()[i])) 636 return false; 637 } 638 } 639 } 640 641 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 642 return true; 643 } 644 645 bool SIFoldOperands::isUseSafeToFold(const MachineInstr &MI, 646 const MachineOperand &UseMO) const { 647 // Operands of SDWA instructions must be registers. 648 return !TII->isSDWA(MI); 649 } 650 651 // Find a def of the UseReg, check if it is a reg_sequence and find initializers 652 // for each subreg, tracking it to foldable inline immediate if possible. 653 // Returns true on success. 654 bool SIFoldOperands::getRegSeqInit( 655 SmallVectorImpl<std::pair<MachineOperand *, unsigned>> &Defs, 656 Register UseReg, uint8_t OpTy) const { 657 MachineInstr *Def = MRI->getVRegDef(UseReg); 658 if (!Def || !Def->isRegSequence()) 659 return false; 660 661 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 662 MachineOperand *Sub = &Def->getOperand(I); 663 assert(Sub->isReg()); 664 665 for (MachineInstr *SubDef = MRI->getVRegDef(Sub->getReg()); 666 SubDef && Sub->isReg() && Sub->getReg().isVirtual() && 667 !Sub->getSubReg() && TII->isFoldableCopy(*SubDef); 668 SubDef = MRI->getVRegDef(Sub->getReg())) { 669 MachineOperand *Op = &SubDef->getOperand(1); 670 if (Op->isImm()) { 671 if (TII->isInlineConstant(*Op, OpTy)) 672 Sub = Op; 673 break; 674 } 675 if (!Op->isReg() || Op->getReg().isPhysical()) 676 break; 677 Sub = Op; 678 } 679 680 Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm()); 681 } 682 683 return true; 684 } 685 686 bool SIFoldOperands::tryToFoldACImm( 687 const MachineOperand &OpToFold, MachineInstr *UseMI, unsigned UseOpIdx, 688 SmallVectorImpl<FoldCandidate> &FoldList) const { 689 const MCInstrDesc &Desc = UseMI->getDesc(); 690 if (UseOpIdx >= Desc.getNumOperands()) 691 return false; 692 693 if (!AMDGPU::isSISrcInlinableOperand(Desc, UseOpIdx)) 694 return false; 695 696 uint8_t OpTy = Desc.operands()[UseOpIdx].OperandType; 697 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 698 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 699 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 700 return true; 701 } 702 703 if (!OpToFold.isReg()) 704 return false; 705 706 Register UseReg = OpToFold.getReg(); 707 if (!UseReg.isVirtual()) 708 return false; 709 710 if (isUseMIInFoldList(FoldList, UseMI)) 711 return false; 712 713 // Maybe it is just a COPY of an immediate itself. 714 MachineInstr *Def = MRI->getVRegDef(UseReg); 715 MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 716 if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) { 717 MachineOperand &DefOp = Def->getOperand(1); 718 if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) && 719 TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) { 720 UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm()); 721 return true; 722 } 723 } 724 725 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 726 if (!getRegSeqInit(Defs, UseReg, OpTy)) 727 return false; 728 729 int32_t Imm; 730 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 731 const MachineOperand *Op = Defs[I].first; 732 if (!Op->isImm()) 733 return false; 734 735 auto SubImm = Op->getImm(); 736 if (!I) { 737 Imm = SubImm; 738 if (!TII->isInlineConstant(*Op, OpTy) || 739 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 740 return false; 741 742 continue; 743 } 744 if (Imm != SubImm) 745 return false; // Can only fold splat constants 746 } 747 748 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 749 return true; 750 } 751 752 void SIFoldOperands::foldOperand( 753 MachineOperand &OpToFold, 754 MachineInstr *UseMI, 755 int UseOpIdx, 756 SmallVectorImpl<FoldCandidate> &FoldList, 757 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 758 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 759 760 if (!isUseSafeToFold(*UseMI, UseOp)) 761 return; 762 763 // FIXME: Fold operands with subregs. 764 if (UseOp.isReg() && OpToFold.isReg() && 765 (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)) 766 return; 767 768 // Special case for REG_SEQUENCE: We can't fold literals into 769 // REG_SEQUENCE instructions, so we have to fold them into the 770 // uses of REG_SEQUENCE. 771 if (UseMI->isRegSequence()) { 772 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 773 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 774 775 for (auto &RSUse : make_early_inc_range(MRI->use_nodbg_operands(RegSeqDstReg))) { 776 MachineInstr *RSUseMI = RSUse.getParent(); 777 778 if (tryToFoldACImm(UseMI->getOperand(0), RSUseMI, 779 RSUseMI->getOperandNo(&RSUse), FoldList)) 780 continue; 781 782 if (RSUse.getSubReg() != RegSeqDstSubReg) 783 continue; 784 785 foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(&RSUse), FoldList, 786 CopiesToReplace); 787 } 788 789 return; 790 } 791 792 if (tryToFoldACImm(OpToFold, UseMI, UseOpIdx, FoldList)) 793 return; 794 795 if (frameIndexMayFold(*UseMI, UseOpIdx, OpToFold)) { 796 // Verify that this is a stack access. 797 // FIXME: Should probably use stack pseudos before frame lowering. 798 799 if (TII->isMUBUF(*UseMI)) { 800 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 801 MFI->getScratchRSrcReg()) 802 return; 803 804 // Ensure this is either relative to the current frame or the current 805 // wave. 806 MachineOperand &SOff = 807 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 808 if (!SOff.isImm() || SOff.getImm() != 0) 809 return; 810 } 811 812 // A frame index will resolve to a positive constant, so it should always be 813 // safe to fold the addressing mode, even pre-GFX9. 814 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 815 816 const unsigned Opc = UseMI->getOpcode(); 817 if (TII->isFLATScratch(*UseMI) && 818 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vaddr) && 819 !AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::saddr)) { 820 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(Opc); 821 UseMI->setDesc(TII->get(NewOpc)); 822 } 823 824 return; 825 } 826 827 bool FoldingImmLike = 828 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 829 830 if (FoldingImmLike && UseMI->isCopy()) { 831 Register DestReg = UseMI->getOperand(0).getReg(); 832 Register SrcReg = UseMI->getOperand(1).getReg(); 833 assert(SrcReg.isVirtual()); 834 835 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); 836 837 // Don't fold into a copy to a physical register with the same class. Doing 838 // so would interfere with the register coalescer's logic which would avoid 839 // redundant initializations. 840 if (DestReg.isPhysical() && SrcRC->contains(DestReg)) 841 return; 842 843 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); 844 if (!DestReg.isPhysical()) { 845 if (DestRC == &AMDGPU::AGPR_32RegClass && 846 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 847 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 848 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 849 CopiesToReplace.push_back(UseMI); 850 return; 851 } 852 } 853 854 // In order to fold immediates into copies, we need to change the 855 // copy to a MOV. 856 857 unsigned MovOp = TII->getMovOpcode(DestRC); 858 if (MovOp == AMDGPU::COPY) 859 return; 860 861 UseMI->setDesc(TII->get(MovOp)); 862 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 863 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 864 while (ImpOpI != ImpOpE) { 865 MachineInstr::mop_iterator Tmp = ImpOpI; 866 ImpOpI++; 867 UseMI->removeOperand(UseMI->getOperandNo(Tmp)); 868 } 869 CopiesToReplace.push_back(UseMI); 870 } else { 871 if (UseMI->isCopy() && OpToFold.isReg() && 872 UseMI->getOperand(0).getReg().isVirtual() && 873 !UseMI->getOperand(1).getSubReg()) { 874 LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI); 875 unsigned Size = TII->getOpSize(*UseMI, 1); 876 Register UseReg = OpToFold.getReg(); 877 UseMI->getOperand(1).setReg(UseReg); 878 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 879 UseMI->getOperand(1).setIsKill(false); 880 CopiesToReplace.push_back(UseMI); 881 OpToFold.setIsKill(false); 882 883 // Remove kill flags as kills may now be out of order with uses. 884 MRI->clearKillFlags(OpToFold.getReg()); 885 886 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 887 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 888 // its initializers right here, so we will rematerialize immediates and 889 // avoid copies via different reg classes. 890 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 891 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 892 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 893 const DebugLoc &DL = UseMI->getDebugLoc(); 894 MachineBasicBlock &MBB = *UseMI->getParent(); 895 896 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 897 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 898 UseMI->removeOperand(I); 899 900 MachineInstrBuilder B(*MBB.getParent(), UseMI); 901 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 902 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 903 for (unsigned I = 0; I < Size / 4; ++I) { 904 MachineOperand *Def = Defs[I].first; 905 TargetInstrInfo::RegSubRegPair CopyToVGPR; 906 if (Def->isImm() && 907 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 908 int64_t Imm = Def->getImm(); 909 910 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 911 BuildMI(MBB, UseMI, DL, 912 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm); 913 B.addReg(Tmp); 914 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 915 auto Src = getRegSubRegPair(*Def); 916 Def->setIsKill(false); 917 if (!SeenAGPRs.insert(Src)) { 918 // We cannot build a reg_sequence out of the same registers, they 919 // must be copied. Better do it here before copyPhysReg() created 920 // several reads to do the AGPR->VGPR->AGPR copy. 921 CopyToVGPR = Src; 922 } else { 923 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 924 Src.SubReg); 925 } 926 } else { 927 assert(Def->isReg()); 928 Def->setIsKill(false); 929 auto Src = getRegSubRegPair(*Def); 930 931 // Direct copy from SGPR to AGPR is not possible. To avoid creation 932 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 933 // create a copy here and track if we already have such a copy. 934 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 935 CopyToVGPR = Src; 936 } else { 937 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 938 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 939 B.addReg(Tmp); 940 } 941 } 942 943 if (CopyToVGPR.Reg) { 944 Register Vgpr; 945 if (VGPRCopies.count(CopyToVGPR)) { 946 Vgpr = VGPRCopies[CopyToVGPR]; 947 } else { 948 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 949 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 950 VGPRCopies[CopyToVGPR] = Vgpr; 951 } 952 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 953 BuildMI(MBB, UseMI, DL, 954 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr); 955 B.addReg(Tmp); 956 } 957 958 B.addImm(Defs[I].second); 959 } 960 LLVM_DEBUG(dbgs() << "Folded " << *UseMI); 961 return; 962 } 963 964 if (Size != 4) 965 return; 966 967 Register Reg0 = UseMI->getOperand(0).getReg(); 968 Register Reg1 = UseMI->getOperand(1).getReg(); 969 if (TRI->isAGPR(*MRI, Reg0) && TRI->isVGPR(*MRI, Reg1)) 970 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 971 else if (TRI->isVGPR(*MRI, Reg0) && TRI->isAGPR(*MRI, Reg1)) 972 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64)); 973 else if (ST->hasGFX90AInsts() && TRI->isAGPR(*MRI, Reg0) && 974 TRI->isAGPR(*MRI, Reg1)) 975 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32)); 976 return; 977 } 978 979 unsigned UseOpc = UseMI->getOpcode(); 980 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 981 (UseOpc == AMDGPU::V_READLANE_B32 && 982 (int)UseOpIdx == 983 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 984 // %vgpr = V_MOV_B32 imm 985 // %sgpr = V_READFIRSTLANE_B32 %vgpr 986 // => 987 // %sgpr = S_MOV_B32 imm 988 if (FoldingImmLike) { 989 if (execMayBeModifiedBeforeUse(*MRI, 990 UseMI->getOperand(UseOpIdx).getReg(), 991 *OpToFold.getParent(), 992 *UseMI)) 993 return; 994 995 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 996 997 if (OpToFold.isImm()) 998 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 999 else 1000 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 1001 UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) 1002 return; 1003 } 1004 1005 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 1006 if (execMayBeModifiedBeforeUse(*MRI, 1007 UseMI->getOperand(UseOpIdx).getReg(), 1008 *OpToFold.getParent(), 1009 *UseMI)) 1010 return; 1011 1012 // %vgpr = COPY %sgpr0 1013 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 1014 // => 1015 // %sgpr1 = COPY %sgpr0 1016 UseMI->setDesc(TII->get(AMDGPU::COPY)); 1017 UseMI->getOperand(1).setReg(OpToFold.getReg()); 1018 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 1019 UseMI->getOperand(1).setIsKill(false); 1020 UseMI->removeOperand(2); // Remove exec read (or src1 for readlane) 1021 return; 1022 } 1023 } 1024 1025 const MCInstrDesc &UseDesc = UseMI->getDesc(); 1026 1027 // Don't fold into target independent nodes. Target independent opcodes 1028 // don't have defined register classes. 1029 if (UseDesc.isVariadic() || UseOp.isImplicit() || 1030 UseDesc.operands()[UseOpIdx].RegClass == -1) 1031 return; 1032 } 1033 1034 if (!FoldingImmLike) { 1035 if (OpToFold.isReg() && ST->needsAlignedVGPRs()) { 1036 // Don't fold if OpToFold doesn't hold an aligned register. 1037 const TargetRegisterClass *RC = 1038 TRI->getRegClassForReg(*MRI, OpToFold.getReg()); 1039 if (TRI->hasVectorRegisters(RC) && OpToFold.getSubReg()) { 1040 unsigned SubReg = OpToFold.getSubReg(); 1041 if (const TargetRegisterClass *SubRC = 1042 TRI->getSubRegisterClass(RC, SubReg)) 1043 RC = SubRC; 1044 } 1045 1046 if (!RC || !TRI->isProperlyAlignedRC(*RC)) 1047 return; 1048 } 1049 1050 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold); 1051 1052 // FIXME: We could try to change the instruction from 64-bit to 32-bit 1053 // to enable more folding opportunities. The shrink operands pass 1054 // already does this. 1055 return; 1056 } 1057 1058 1059 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 1060 const TargetRegisterClass *FoldRC = 1061 TRI->getRegClass(FoldDesc.operands()[0].RegClass); 1062 1063 // Split 64-bit constants into 32-bits for folding. 1064 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(*FoldRC) == 64) { 1065 Register UseReg = UseOp.getReg(); 1066 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 1067 if (AMDGPU::getRegBitWidth(*UseRC) != 64) 1068 return; 1069 1070 APInt Imm(64, OpToFold.getImm()); 1071 if (UseOp.getSubReg() == AMDGPU::sub0) { 1072 Imm = Imm.getLoBits(32); 1073 } else { 1074 assert(UseOp.getSubReg() == AMDGPU::sub1); 1075 Imm = Imm.getHiBits(32); 1076 } 1077 1078 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 1079 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp); 1080 return; 1081 } 1082 1083 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold); 1084 } 1085 1086 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 1087 uint32_t LHS, uint32_t RHS) { 1088 switch (Opcode) { 1089 case AMDGPU::V_AND_B32_e64: 1090 case AMDGPU::V_AND_B32_e32: 1091 case AMDGPU::S_AND_B32: 1092 Result = LHS & RHS; 1093 return true; 1094 case AMDGPU::V_OR_B32_e64: 1095 case AMDGPU::V_OR_B32_e32: 1096 case AMDGPU::S_OR_B32: 1097 Result = LHS | RHS; 1098 return true; 1099 case AMDGPU::V_XOR_B32_e64: 1100 case AMDGPU::V_XOR_B32_e32: 1101 case AMDGPU::S_XOR_B32: 1102 Result = LHS ^ RHS; 1103 return true; 1104 case AMDGPU::S_XNOR_B32: 1105 Result = ~(LHS ^ RHS); 1106 return true; 1107 case AMDGPU::S_NAND_B32: 1108 Result = ~(LHS & RHS); 1109 return true; 1110 case AMDGPU::S_NOR_B32: 1111 Result = ~(LHS | RHS); 1112 return true; 1113 case AMDGPU::S_ANDN2_B32: 1114 Result = LHS & ~RHS; 1115 return true; 1116 case AMDGPU::S_ORN2_B32: 1117 Result = LHS | ~RHS; 1118 return true; 1119 case AMDGPU::V_LSHL_B32_e64: 1120 case AMDGPU::V_LSHL_B32_e32: 1121 case AMDGPU::S_LSHL_B32: 1122 // The instruction ignores the high bits for out of bounds shifts. 1123 Result = LHS << (RHS & 31); 1124 return true; 1125 case AMDGPU::V_LSHLREV_B32_e64: 1126 case AMDGPU::V_LSHLREV_B32_e32: 1127 Result = RHS << (LHS & 31); 1128 return true; 1129 case AMDGPU::V_LSHR_B32_e64: 1130 case AMDGPU::V_LSHR_B32_e32: 1131 case AMDGPU::S_LSHR_B32: 1132 Result = LHS >> (RHS & 31); 1133 return true; 1134 case AMDGPU::V_LSHRREV_B32_e64: 1135 case AMDGPU::V_LSHRREV_B32_e32: 1136 Result = RHS >> (LHS & 31); 1137 return true; 1138 case AMDGPU::V_ASHR_I32_e64: 1139 case AMDGPU::V_ASHR_I32_e32: 1140 case AMDGPU::S_ASHR_I32: 1141 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 1142 return true; 1143 case AMDGPU::V_ASHRREV_I32_e64: 1144 case AMDGPU::V_ASHRREV_I32_e32: 1145 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 1146 return true; 1147 default: 1148 return false; 1149 } 1150 } 1151 1152 static unsigned getMovOpc(bool IsScalar) { 1153 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1154 } 1155 1156 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 1157 MI.setDesc(NewDesc); 1158 1159 // Remove any leftover implicit operands from mutating the instruction. e.g. 1160 // if we replace an s_and_b32 with a copy, we don't need the implicit scc def 1161 // anymore. 1162 const MCInstrDesc &Desc = MI.getDesc(); 1163 unsigned NumOps = Desc.getNumOperands() + Desc.implicit_uses().size() + 1164 Desc.implicit_defs().size(); 1165 1166 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 1167 MI.removeOperand(I); 1168 } 1169 1170 MachineOperand * 1171 SIFoldOperands::getImmOrMaterializedImm(MachineOperand &Op) const { 1172 // If this has a subregister, it obviously is a register source. 1173 if (!Op.isReg() || Op.getSubReg() != AMDGPU::NoSubRegister || 1174 !Op.getReg().isVirtual()) 1175 return &Op; 1176 1177 MachineInstr *Def = MRI->getVRegDef(Op.getReg()); 1178 if (Def && Def->isMoveImmediate()) { 1179 MachineOperand &ImmSrc = Def->getOperand(1); 1180 if (ImmSrc.isImm()) 1181 return &ImmSrc; 1182 } 1183 1184 return &Op; 1185 } 1186 1187 // Try to simplify operations with a constant that may appear after instruction 1188 // selection. 1189 // TODO: See if a frame index with a fixed offset can fold. 1190 bool SIFoldOperands::tryConstantFoldOp(MachineInstr *MI) const { 1191 if (!MI->allImplicitDefsAreDead()) 1192 return false; 1193 1194 unsigned Opc = MI->getOpcode(); 1195 1196 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1197 if (Src0Idx == -1) 1198 return false; 1199 MachineOperand *Src0 = getImmOrMaterializedImm(MI->getOperand(Src0Idx)); 1200 1201 if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1202 Opc == AMDGPU::S_NOT_B32) && 1203 Src0->isImm()) { 1204 MI->getOperand(1).ChangeToImmediate(~Src0->getImm()); 1205 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1206 return true; 1207 } 1208 1209 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1210 if (Src1Idx == -1) 1211 return false; 1212 MachineOperand *Src1 = getImmOrMaterializedImm(MI->getOperand(Src1Idx)); 1213 1214 if (!Src0->isImm() && !Src1->isImm()) 1215 return false; 1216 1217 // and k0, k1 -> v_mov_b32 (k0 & k1) 1218 // or k0, k1 -> v_mov_b32 (k0 | k1) 1219 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1220 if (Src0->isImm() && Src1->isImm()) { 1221 int32_t NewImm; 1222 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1223 return false; 1224 1225 bool IsSGPR = TRI->isSGPRReg(*MRI, MI->getOperand(0).getReg()); 1226 1227 // Be careful to change the right operand, src0 may belong to a different 1228 // instruction. 1229 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1230 MI->removeOperand(Src1Idx); 1231 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1232 return true; 1233 } 1234 1235 if (!MI->isCommutable()) 1236 return false; 1237 1238 if (Src0->isImm() && !Src1->isImm()) { 1239 std::swap(Src0, Src1); 1240 std::swap(Src0Idx, Src1Idx); 1241 } 1242 1243 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1244 if (Opc == AMDGPU::V_OR_B32_e64 || 1245 Opc == AMDGPU::V_OR_B32_e32 || 1246 Opc == AMDGPU::S_OR_B32) { 1247 if (Src1Val == 0) { 1248 // y = or x, 0 => y = copy x 1249 MI->removeOperand(Src1Idx); 1250 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1251 } else if (Src1Val == -1) { 1252 // y = or x, -1 => y = v_mov_b32 -1 1253 MI->removeOperand(Src1Idx); 1254 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1255 } else 1256 return false; 1257 1258 return true; 1259 } 1260 1261 if (Opc == AMDGPU::V_AND_B32_e64 || Opc == AMDGPU::V_AND_B32_e32 || 1262 Opc == AMDGPU::S_AND_B32) { 1263 if (Src1Val == 0) { 1264 // y = and x, 0 => y = v_mov_b32 0 1265 MI->removeOperand(Src0Idx); 1266 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1267 } else if (Src1Val == -1) { 1268 // y = and x, -1 => y = copy x 1269 MI->removeOperand(Src1Idx); 1270 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1271 } else 1272 return false; 1273 1274 return true; 1275 } 1276 1277 if (Opc == AMDGPU::V_XOR_B32_e64 || Opc == AMDGPU::V_XOR_B32_e32 || 1278 Opc == AMDGPU::S_XOR_B32) { 1279 if (Src1Val == 0) { 1280 // y = xor x, 0 => y = copy x 1281 MI->removeOperand(Src1Idx); 1282 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1283 return true; 1284 } 1285 } 1286 1287 return false; 1288 } 1289 1290 // Try to fold an instruction into a simpler one 1291 bool SIFoldOperands::tryFoldCndMask(MachineInstr &MI) const { 1292 unsigned Opc = MI.getOpcode(); 1293 if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 && 1294 Opc != AMDGPU::V_CNDMASK_B64_PSEUDO) 1295 return false; 1296 1297 MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1298 MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1299 if (!Src1->isIdenticalTo(*Src0)) { 1300 auto *Src0Imm = getImmOrMaterializedImm(*Src0); 1301 auto *Src1Imm = getImmOrMaterializedImm(*Src1); 1302 if (!Src1Imm->isIdenticalTo(*Src0Imm)) 1303 return false; 1304 } 1305 1306 int Src1ModIdx = 1307 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1308 int Src0ModIdx = 1309 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1310 if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) || 1311 (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0)) 1312 return false; 1313 1314 LLVM_DEBUG(dbgs() << "Folded " << MI << " into "); 1315 auto &NewDesc = 1316 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1317 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1318 if (Src2Idx != -1) 1319 MI.removeOperand(Src2Idx); 1320 MI.removeOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1321 if (Src1ModIdx != -1) 1322 MI.removeOperand(Src1ModIdx); 1323 if (Src0ModIdx != -1) 1324 MI.removeOperand(Src0ModIdx); 1325 mutateCopyOp(MI, NewDesc); 1326 LLVM_DEBUG(dbgs() << MI); 1327 return true; 1328 } 1329 1330 bool SIFoldOperands::tryFoldZeroHighBits(MachineInstr &MI) const { 1331 if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 && 1332 MI.getOpcode() != AMDGPU::V_AND_B32_e32) 1333 return false; 1334 1335 MachineOperand *Src0 = getImmOrMaterializedImm(MI.getOperand(1)); 1336 if (!Src0->isImm() || Src0->getImm() != 0xffff) 1337 return false; 1338 1339 Register Src1 = MI.getOperand(2).getReg(); 1340 MachineInstr *SrcDef = MRI->getVRegDef(Src1); 1341 if (!ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode())) 1342 return false; 1343 1344 Register Dst = MI.getOperand(0).getReg(); 1345 MRI->replaceRegWith(Dst, SrcDef->getOperand(0).getReg()); 1346 MI.eraseFromParent(); 1347 return true; 1348 } 1349 1350 bool SIFoldOperands::foldInstOperand(MachineInstr &MI, 1351 MachineOperand &OpToFold) const { 1352 // We need mutate the operands of new mov instructions to add implicit 1353 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1354 // this. 1355 SmallVector<MachineInstr *, 4> CopiesToReplace; 1356 SmallVector<FoldCandidate, 4> FoldList; 1357 MachineOperand &Dst = MI.getOperand(0); 1358 bool Changed = false; 1359 1360 if (OpToFold.isImm()) { 1361 for (auto &UseMI : 1362 make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) { 1363 // Folding the immediate may reveal operations that can be constant 1364 // folded or replaced with a copy. This can happen for example after 1365 // frame indices are lowered to constants or from splitting 64-bit 1366 // constants. 1367 // 1368 // We may also encounter cases where one or both operands are 1369 // immediates materialized into a register, which would ordinarily not 1370 // be folded due to multiple uses or operand constraints. 1371 if (tryConstantFoldOp(&UseMI)) { 1372 LLVM_DEBUG(dbgs() << "Constant folded " << UseMI); 1373 Changed = true; 1374 } 1375 } 1376 } 1377 1378 SmallVector<MachineOperand *, 4> UsesToProcess; 1379 for (auto &Use : MRI->use_nodbg_operands(Dst.getReg())) 1380 UsesToProcess.push_back(&Use); 1381 for (auto *U : UsesToProcess) { 1382 MachineInstr *UseMI = U->getParent(); 1383 foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U), FoldList, 1384 CopiesToReplace); 1385 } 1386 1387 if (CopiesToReplace.empty() && FoldList.empty()) 1388 return Changed; 1389 1390 MachineFunction *MF = MI.getParent()->getParent(); 1391 // Make sure we add EXEC uses to any new v_mov instructions created. 1392 for (MachineInstr *Copy : CopiesToReplace) 1393 Copy->addImplicitDefUseOperands(*MF); 1394 1395 for (FoldCandidate &Fold : FoldList) { 1396 assert(!Fold.isReg() || Fold.OpToFold); 1397 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { 1398 Register Reg = Fold.OpToFold->getReg(); 1399 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1400 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1401 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1402 continue; 1403 } 1404 if (updateOperand(Fold)) { 1405 // Clear kill flags. 1406 if (Fold.isReg()) { 1407 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1408 // FIXME: Probably shouldn't bother trying to fold if not an 1409 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1410 // copies. 1411 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1412 } 1413 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1414 << static_cast<int>(Fold.UseOpNo) << " of " 1415 << *Fold.UseMI); 1416 } else if (Fold.Commuted) { 1417 // Restoring instruction's original operand order if fold has failed. 1418 TII->commuteInstruction(*Fold.UseMI, false); 1419 } 1420 } 1421 return true; 1422 } 1423 1424 bool SIFoldOperands::tryFoldFoldableCopy( 1425 MachineInstr &MI, MachineOperand *&CurrentKnownM0Val) const { 1426 // Specially track simple redefs of m0 to the same value in a block, so we 1427 // can erase the later ones. 1428 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1429 MachineOperand &NewM0Val = MI.getOperand(1); 1430 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1431 MI.eraseFromParent(); 1432 return true; 1433 } 1434 1435 // We aren't tracking other physical registers 1436 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) 1437 ? nullptr 1438 : &NewM0Val; 1439 return false; 1440 } 1441 1442 MachineOperand &OpToFold = MI.getOperand(1); 1443 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1444 1445 // FIXME: We could also be folding things like TargetIndexes. 1446 if (!FoldingImm && !OpToFold.isReg()) 1447 return false; 1448 1449 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) 1450 return false; 1451 1452 // Prevent folding operands backwards in the function. For example, 1453 // the COPY opcode must not be replaced by 1 in this example: 1454 // 1455 // %3 = COPY %vgpr0; VGPR_32:%3 1456 // ... 1457 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1458 if (!MI.getOperand(0).getReg().isVirtual()) 1459 return false; 1460 1461 bool Changed = foldInstOperand(MI, OpToFold); 1462 1463 // If we managed to fold all uses of this copy then we might as well 1464 // delete it now. 1465 // The only reason we need to follow chains of copies here is that 1466 // tryFoldRegSequence looks forward through copies before folding a 1467 // REG_SEQUENCE into its eventual users. 1468 auto *InstToErase = &MI; 1469 while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { 1470 auto &SrcOp = InstToErase->getOperand(1); 1471 auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register(); 1472 InstToErase->eraseFromParent(); 1473 Changed = true; 1474 InstToErase = nullptr; 1475 if (!SrcReg || SrcReg.isPhysical()) 1476 break; 1477 InstToErase = MRI->getVRegDef(SrcReg); 1478 if (!InstToErase || !TII->isFoldableCopy(*InstToErase)) 1479 break; 1480 } 1481 1482 if (InstToErase && InstToErase->isRegSequence() && 1483 MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { 1484 InstToErase->eraseFromParent(); 1485 Changed = true; 1486 } 1487 1488 return Changed; 1489 } 1490 1491 // Clamp patterns are canonically selected to v_max_* instructions, so only 1492 // handle them. 1493 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1494 unsigned Op = MI.getOpcode(); 1495 switch (Op) { 1496 case AMDGPU::V_MAX_F32_e64: 1497 case AMDGPU::V_MAX_F16_e64: 1498 case AMDGPU::V_MAX_F16_t16_e64: 1499 case AMDGPU::V_MAX_F16_fake16_e64: 1500 case AMDGPU::V_MAX_F64_e64: 1501 case AMDGPU::V_PK_MAX_F16: { 1502 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1503 return nullptr; 1504 1505 // Make sure sources are identical. 1506 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1507 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1508 if (!Src0->isReg() || !Src1->isReg() || 1509 Src0->getReg() != Src1->getReg() || 1510 Src0->getSubReg() != Src1->getSubReg() || 1511 Src0->getSubReg() != AMDGPU::NoSubRegister) 1512 return nullptr; 1513 1514 // Can't fold up if we have modifiers. 1515 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1516 return nullptr; 1517 1518 unsigned Src0Mods 1519 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1520 unsigned Src1Mods 1521 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1522 1523 // Having a 0 op_sel_hi would require swizzling the output in the source 1524 // instruction, which we can't do. 1525 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1526 : 0u; 1527 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1528 return nullptr; 1529 return Src0; 1530 } 1531 default: 1532 return nullptr; 1533 } 1534 } 1535 1536 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1537 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1538 const MachineOperand *ClampSrc = isClamp(MI); 1539 if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg())) 1540 return false; 1541 1542 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1543 1544 // The type of clamp must be compatible. 1545 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1546 return false; 1547 1548 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1549 if (!DefClamp) 1550 return false; 1551 1552 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def); 1553 1554 // Clamp is applied after omod, so it is OK if omod is set. 1555 DefClamp->setImm(1); 1556 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1557 MI.eraseFromParent(); 1558 1559 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac 1560 // instruction, so we might as well convert it to the more flexible VOP3-only 1561 // mad/fma form. 1562 if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) 1563 Def->eraseFromParent(); 1564 1565 return true; 1566 } 1567 1568 static int getOModValue(unsigned Opc, int64_t Val) { 1569 switch (Opc) { 1570 case AMDGPU::V_MUL_F64_e64: { 1571 switch (Val) { 1572 case 0x3fe0000000000000: // 0.5 1573 return SIOutMods::DIV2; 1574 case 0x4000000000000000: // 2.0 1575 return SIOutMods::MUL2; 1576 case 0x4010000000000000: // 4.0 1577 return SIOutMods::MUL4; 1578 default: 1579 return SIOutMods::NONE; 1580 } 1581 } 1582 case AMDGPU::V_MUL_F32_e64: { 1583 switch (static_cast<uint32_t>(Val)) { 1584 case 0x3f000000: // 0.5 1585 return SIOutMods::DIV2; 1586 case 0x40000000: // 2.0 1587 return SIOutMods::MUL2; 1588 case 0x40800000: // 4.0 1589 return SIOutMods::MUL4; 1590 default: 1591 return SIOutMods::NONE; 1592 } 1593 } 1594 case AMDGPU::V_MUL_F16_e64: 1595 case AMDGPU::V_MUL_F16_t16_e64: 1596 case AMDGPU::V_MUL_F16_fake16_e64: { 1597 switch (static_cast<uint16_t>(Val)) { 1598 case 0x3800: // 0.5 1599 return SIOutMods::DIV2; 1600 case 0x4000: // 2.0 1601 return SIOutMods::MUL2; 1602 case 0x4400: // 4.0 1603 return SIOutMods::MUL4; 1604 default: 1605 return SIOutMods::NONE; 1606 } 1607 } 1608 default: 1609 llvm_unreachable("invalid mul opcode"); 1610 } 1611 } 1612 1613 // FIXME: Does this really not support denormals with f16? 1614 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1615 // handled, so will anything other than that break? 1616 std::pair<const MachineOperand *, int> 1617 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1618 unsigned Op = MI.getOpcode(); 1619 switch (Op) { 1620 case AMDGPU::V_MUL_F64_e64: 1621 case AMDGPU::V_MUL_F32_e64: 1622 case AMDGPU::V_MUL_F16_t16_e64: 1623 case AMDGPU::V_MUL_F16_fake16_e64: 1624 case AMDGPU::V_MUL_F16_e64: { 1625 // If output denormals are enabled, omod is ignored. 1626 if ((Op == AMDGPU::V_MUL_F32_e64 && 1627 MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || 1628 ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F16_e64 || 1629 Op == AMDGPU::V_MUL_F16_t16_e64 || 1630 Op == AMDGPU::V_MUL_F16_fake16_e64) && 1631 MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign)) 1632 return std::pair(nullptr, SIOutMods::NONE); 1633 1634 const MachineOperand *RegOp = nullptr; 1635 const MachineOperand *ImmOp = nullptr; 1636 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1637 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1638 if (Src0->isImm()) { 1639 ImmOp = Src0; 1640 RegOp = Src1; 1641 } else if (Src1->isImm()) { 1642 ImmOp = Src1; 1643 RegOp = Src0; 1644 } else 1645 return std::pair(nullptr, SIOutMods::NONE); 1646 1647 int OMod = getOModValue(Op, ImmOp->getImm()); 1648 if (OMod == SIOutMods::NONE || 1649 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1650 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1651 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1652 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1653 return std::pair(nullptr, SIOutMods::NONE); 1654 1655 return std::pair(RegOp, OMod); 1656 } 1657 case AMDGPU::V_ADD_F64_e64: 1658 case AMDGPU::V_ADD_F32_e64: 1659 case AMDGPU::V_ADD_F16_e64: 1660 case AMDGPU::V_ADD_F16_t16_e64: 1661 case AMDGPU::V_ADD_F16_fake16_e64: { 1662 // If output denormals are enabled, omod is ignored. 1663 if ((Op == AMDGPU::V_ADD_F32_e64 && 1664 MFI->getMode().FP32Denormals.Output != DenormalMode::PreserveSign) || 1665 ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F16_e64 || 1666 Op == AMDGPU::V_ADD_F16_t16_e64 || 1667 Op == AMDGPU::V_ADD_F16_fake16_e64) && 1668 MFI->getMode().FP64FP16Denormals.Output != DenormalMode::PreserveSign)) 1669 return std::pair(nullptr, SIOutMods::NONE); 1670 1671 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1672 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1673 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1674 1675 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1676 Src0->getSubReg() == Src1->getSubReg() && 1677 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1678 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1679 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1680 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1681 return std::pair(Src0, SIOutMods::MUL2); 1682 1683 return std::pair(nullptr, SIOutMods::NONE); 1684 } 1685 default: 1686 return std::pair(nullptr, SIOutMods::NONE); 1687 } 1688 } 1689 1690 // FIXME: Does this need to check IEEE bit on function? 1691 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1692 const MachineOperand *RegOp; 1693 int OMod; 1694 std::tie(RegOp, OMod) = isOMod(MI); 1695 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1696 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1697 !MRI->hasOneNonDBGUser(RegOp->getReg())) 1698 return false; 1699 1700 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1701 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1702 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1703 return false; 1704 1705 // Clamp is applied after omod. If the source already has clamp set, don't 1706 // fold it. 1707 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1708 return false; 1709 1710 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def); 1711 1712 DefOMod->setImm(OMod); 1713 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1714 MI.eraseFromParent(); 1715 1716 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac 1717 // instruction, so we might as well convert it to the more flexible VOP3-only 1718 // mad/fma form. 1719 if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) 1720 Def->eraseFromParent(); 1721 1722 return true; 1723 } 1724 1725 // Try to fold a reg_sequence with vgpr output and agpr inputs into an 1726 // instruction which can take an agpr. So far that means a store. 1727 bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) { 1728 assert(MI.isRegSequence()); 1729 auto Reg = MI.getOperand(0).getReg(); 1730 1731 if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) || 1732 !MRI->hasOneNonDBGUse(Reg)) 1733 return false; 1734 1735 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 1736 if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER)) 1737 return false; 1738 1739 for (auto &Def : Defs) { 1740 const auto *Op = Def.first; 1741 if (!Op->isReg()) 1742 return false; 1743 if (TRI->isAGPR(*MRI, Op->getReg())) 1744 continue; 1745 // Maybe this is a COPY from AREG 1746 const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg()); 1747 if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg()) 1748 return false; 1749 if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg())) 1750 return false; 1751 } 1752 1753 MachineOperand *Op = &*MRI->use_nodbg_begin(Reg); 1754 MachineInstr *UseMI = Op->getParent(); 1755 while (UseMI->isCopy() && !Op->getSubReg()) { 1756 Reg = UseMI->getOperand(0).getReg(); 1757 if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg)) 1758 return false; 1759 Op = &*MRI->use_nodbg_begin(Reg); 1760 UseMI = Op->getParent(); 1761 } 1762 1763 if (Op->getSubReg()) 1764 return false; 1765 1766 unsigned OpIdx = Op - &UseMI->getOperand(0); 1767 const MCInstrDesc &InstDesc = UseMI->getDesc(); 1768 const TargetRegisterClass *OpRC = 1769 TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF()); 1770 if (!OpRC || !TRI->isVectorSuperClass(OpRC)) 1771 return false; 1772 1773 const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)); 1774 auto Dst = MRI->createVirtualRegister(NewDstRC); 1775 auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1776 TII->get(AMDGPU::REG_SEQUENCE), Dst); 1777 1778 for (unsigned I = 0; I < Defs.size(); ++I) { 1779 MachineOperand *Def = Defs[I].first; 1780 Def->setIsKill(false); 1781 if (TRI->isAGPR(*MRI, Def->getReg())) { 1782 RS.add(*Def); 1783 } else { // This is a copy 1784 MachineInstr *SubDef = MRI->getVRegDef(Def->getReg()); 1785 SubDef->getOperand(1).setIsKill(false); 1786 RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg()); 1787 } 1788 RS.addImm(Defs[I].second); 1789 } 1790 1791 Op->setReg(Dst); 1792 if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) { 1793 Op->setReg(Reg); 1794 RS->eraseFromParent(); 1795 return false; 1796 } 1797 1798 LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI); 1799 1800 // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users, 1801 // in which case we can erase them all later in runOnMachineFunction. 1802 if (MRI->use_nodbg_empty(MI.getOperand(0).getReg())) 1803 MI.eraseFromParent(); 1804 return true; 1805 } 1806 1807 /// Checks whether \p Copy is a AGPR -> VGPR copy. Returns `true` on success and 1808 /// stores the AGPR register in \p OutReg and the subreg in \p OutSubReg 1809 static bool isAGPRCopy(const SIRegisterInfo &TRI, 1810 const MachineRegisterInfo &MRI, const MachineInstr &Copy, 1811 Register &OutReg, unsigned &OutSubReg) { 1812 assert(Copy.isCopy()); 1813 1814 const MachineOperand &CopySrc = Copy.getOperand(1); 1815 Register CopySrcReg = CopySrc.getReg(); 1816 if (!CopySrcReg.isVirtual()) 1817 return false; 1818 1819 // Common case: copy from AGPR directly, e.g. 1820 // %1:vgpr_32 = COPY %0:agpr_32 1821 if (TRI.isAGPR(MRI, CopySrcReg)) { 1822 OutReg = CopySrcReg; 1823 OutSubReg = CopySrc.getSubReg(); 1824 return true; 1825 } 1826 1827 // Sometimes it can also involve two copies, e.g. 1828 // %1:vgpr_256 = COPY %0:agpr_256 1829 // %2:vgpr_32 = COPY %1:vgpr_256.sub0 1830 const MachineInstr *CopySrcDef = MRI.getVRegDef(CopySrcReg); 1831 if (!CopySrcDef || !CopySrcDef->isCopy()) 1832 return false; 1833 1834 const MachineOperand &OtherCopySrc = CopySrcDef->getOperand(1); 1835 Register OtherCopySrcReg = OtherCopySrc.getReg(); 1836 if (!OtherCopySrcReg.isVirtual() || 1837 CopySrcDef->getOperand(0).getSubReg() != AMDGPU::NoSubRegister || 1838 OtherCopySrc.getSubReg() != AMDGPU::NoSubRegister || 1839 !TRI.isAGPR(MRI, OtherCopySrcReg)) 1840 return false; 1841 1842 OutReg = OtherCopySrcReg; 1843 OutSubReg = CopySrc.getSubReg(); 1844 return true; 1845 } 1846 1847 // Try to hoist an AGPR to VGPR copy across a PHI. 1848 // This should allow folding of an AGPR into a consumer which may support it. 1849 // 1850 // Example 1: LCSSA PHI 1851 // loop: 1852 // %1:vreg = COPY %0:areg 1853 // exit: 1854 // %2:vreg = PHI %1:vreg, %loop 1855 // => 1856 // loop: 1857 // exit: 1858 // %1:areg = PHI %0:areg, %loop 1859 // %2:vreg = COPY %1:areg 1860 // 1861 // Example 2: PHI with multiple incoming values: 1862 // entry: 1863 // %1:vreg = GLOBAL_LOAD(..) 1864 // loop: 1865 // %2:vreg = PHI %1:vreg, %entry, %5:vreg, %loop 1866 // %3:areg = COPY %2:vreg 1867 // %4:areg = (instr using %3:areg) 1868 // %5:vreg = COPY %4:areg 1869 // => 1870 // entry: 1871 // %1:vreg = GLOBAL_LOAD(..) 1872 // %2:areg = COPY %1:vreg 1873 // loop: 1874 // %3:areg = PHI %2:areg, %entry, %X:areg, 1875 // %4:areg = (instr using %3:areg) 1876 bool SIFoldOperands::tryFoldPhiAGPR(MachineInstr &PHI) { 1877 assert(PHI.isPHI()); 1878 1879 Register PhiOut = PHI.getOperand(0).getReg(); 1880 if (!TRI->isVGPR(*MRI, PhiOut)) 1881 return false; 1882 1883 // Iterate once over all incoming values of the PHI to check if this PHI is 1884 // eligible, and determine the exact AGPR RC we'll target. 1885 const TargetRegisterClass *ARC = nullptr; 1886 for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { 1887 MachineOperand &MO = PHI.getOperand(K); 1888 MachineInstr *Copy = MRI->getVRegDef(MO.getReg()); 1889 if (!Copy || !Copy->isCopy()) 1890 continue; 1891 1892 Register AGPRSrc; 1893 unsigned AGPRRegMask = AMDGPU::NoSubRegister; 1894 if (!isAGPRCopy(*TRI, *MRI, *Copy, AGPRSrc, AGPRRegMask)) 1895 continue; 1896 1897 const TargetRegisterClass *CopyInRC = MRI->getRegClass(AGPRSrc); 1898 if (const auto *SubRC = TRI->getSubRegisterClass(CopyInRC, AGPRRegMask)) 1899 CopyInRC = SubRC; 1900 1901 if (ARC && !ARC->hasSubClassEq(CopyInRC)) 1902 return false; 1903 ARC = CopyInRC; 1904 } 1905 1906 if (!ARC) 1907 return false; 1908 1909 bool IsAGPR32 = (ARC == &AMDGPU::AGPR_32RegClass); 1910 1911 // Rewrite the PHI's incoming values to ARC. 1912 LLVM_DEBUG(dbgs() << "Folding AGPR copies into: " << PHI); 1913 for (unsigned K = 1; K < PHI.getNumExplicitOperands(); K += 2) { 1914 MachineOperand &MO = PHI.getOperand(K); 1915 Register Reg = MO.getReg(); 1916 1917 MachineBasicBlock::iterator InsertPt; 1918 MachineBasicBlock *InsertMBB = nullptr; 1919 1920 // Look at the def of Reg, ignoring all copies. 1921 unsigned CopyOpc = AMDGPU::COPY; 1922 if (MachineInstr *Def = MRI->getVRegDef(Reg)) { 1923 1924 // Look at pre-existing COPY instructions from ARC: Steal the operand. If 1925 // the copy was single-use, it will be removed by DCE later. 1926 if (Def->isCopy()) { 1927 Register AGPRSrc; 1928 unsigned AGPRSubReg = AMDGPU::NoSubRegister; 1929 if (isAGPRCopy(*TRI, *MRI, *Def, AGPRSrc, AGPRSubReg)) { 1930 MO.setReg(AGPRSrc); 1931 MO.setSubReg(AGPRSubReg); 1932 continue; 1933 } 1934 1935 // If this is a multi-use SGPR -> VGPR copy, use V_ACCVGPR_WRITE on 1936 // GFX908 directly instead of a COPY. Otherwise, SIFoldOperand may try 1937 // to fold the sgpr -> vgpr -> agpr copy into a sgpr -> agpr copy which 1938 // is unlikely to be profitable. 1939 // 1940 // Note that V_ACCVGPR_WRITE is only used for AGPR_32. 1941 MachineOperand &CopyIn = Def->getOperand(1); 1942 if (IsAGPR32 && !ST->hasGFX90AInsts() && !MRI->hasOneNonDBGUse(Reg) && 1943 TRI->isSGPRReg(*MRI, CopyIn.getReg())) 1944 CopyOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; 1945 } 1946 1947 InsertMBB = Def->getParent(); 1948 InsertPt = InsertMBB->SkipPHIsLabelsAndDebug(++Def->getIterator()); 1949 } else { 1950 InsertMBB = PHI.getOperand(MO.getOperandNo() + 1).getMBB(); 1951 InsertPt = InsertMBB->getFirstTerminator(); 1952 } 1953 1954 Register NewReg = MRI->createVirtualRegister(ARC); 1955 MachineInstr *MI = BuildMI(*InsertMBB, InsertPt, PHI.getDebugLoc(), 1956 TII->get(CopyOpc), NewReg) 1957 .addReg(Reg); 1958 MO.setReg(NewReg); 1959 1960 (void)MI; 1961 LLVM_DEBUG(dbgs() << " Created COPY: " << *MI); 1962 } 1963 1964 // Replace the PHI's result with a new register. 1965 Register NewReg = MRI->createVirtualRegister(ARC); 1966 PHI.getOperand(0).setReg(NewReg); 1967 1968 // COPY that new register back to the original PhiOut register. This COPY will 1969 // usually be folded out later. 1970 MachineBasicBlock *MBB = PHI.getParent(); 1971 BuildMI(*MBB, MBB->getFirstNonPHI(), PHI.getDebugLoc(), 1972 TII->get(AMDGPU::COPY), PhiOut) 1973 .addReg(NewReg); 1974 1975 LLVM_DEBUG(dbgs() << " Done: Folded " << PHI); 1976 return true; 1977 } 1978 1979 // Attempt to convert VGPR load to an AGPR load. 1980 bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) { 1981 assert(MI.mayLoad()); 1982 if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1) 1983 return false; 1984 1985 MachineOperand &Def = MI.getOperand(0); 1986 if (!Def.isDef()) 1987 return false; 1988 1989 Register DefReg = Def.getReg(); 1990 1991 if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg)) 1992 return false; 1993 1994 SmallVector<const MachineInstr*, 8> Users; 1995 SmallVector<Register, 8> MoveRegs; 1996 for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg)) 1997 Users.push_back(&I); 1998 1999 if (Users.empty()) 2000 return false; 2001 2002 // Check that all uses a copy to an agpr or a reg_sequence producing an agpr. 2003 while (!Users.empty()) { 2004 const MachineInstr *I = Users.pop_back_val(); 2005 if (!I->isCopy() && !I->isRegSequence()) 2006 return false; 2007 Register DstReg = I->getOperand(0).getReg(); 2008 // Physical registers may have more than one instruction definitions 2009 if (DstReg.isPhysical()) 2010 return false; 2011 if (TRI->isAGPR(*MRI, DstReg)) 2012 continue; 2013 MoveRegs.push_back(DstReg); 2014 for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg)) 2015 Users.push_back(&U); 2016 } 2017 2018 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 2019 MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC)); 2020 if (!TII->isOperandLegal(MI, 0, &Def)) { 2021 MRI->setRegClass(DefReg, RC); 2022 return false; 2023 } 2024 2025 while (!MoveRegs.empty()) { 2026 Register Reg = MoveRegs.pop_back_val(); 2027 MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg))); 2028 } 2029 2030 LLVM_DEBUG(dbgs() << "Folded " << MI); 2031 2032 return true; 2033 } 2034 2035 // tryFoldPhiAGPR will aggressively try to create AGPR PHIs. 2036 // For GFX90A and later, this is pretty much always a good thing, but for GFX908 2037 // there's cases where it can create a lot more AGPR-AGPR copies, which are 2038 // expensive on this architecture due to the lack of V_ACCVGPR_MOV. 2039 // 2040 // This function looks at all AGPR PHIs in a basic block and collects their 2041 // operands. Then, it checks for register that are used more than once across 2042 // all PHIs and caches them in a VGPR. This prevents ExpandPostRAPseudo from 2043 // having to create one VGPR temporary per use, which can get very messy if 2044 // these PHIs come from a broken-up large PHI (e.g. 32 AGPR phis, one per vector 2045 // element). 2046 // 2047 // Example 2048 // a: 2049 // %in:agpr_256 = COPY %foo:vgpr_256 2050 // c: 2051 // %x:agpr_32 = .. 2052 // b: 2053 // %0:areg = PHI %in.sub0:agpr_32, %a, %x, %c 2054 // %1:areg = PHI %in.sub0:agpr_32, %a, %y, %c 2055 // %2:areg = PHI %in.sub0:agpr_32, %a, %z, %c 2056 // => 2057 // a: 2058 // %in:agpr_256 = COPY %foo:vgpr_256 2059 // %tmp:vgpr_32 = V_ACCVGPR_READ_B32_e64 %in.sub0:agpr_32 2060 // %tmp_agpr:agpr_32 = COPY %tmp 2061 // c: 2062 // %x:agpr_32 = .. 2063 // b: 2064 // %0:areg = PHI %tmp_agpr, %a, %x, %c 2065 // %1:areg = PHI %tmp_agpr, %a, %y, %c 2066 // %2:areg = PHI %tmp_agpr, %a, %z, %c 2067 bool SIFoldOperands::tryOptimizeAGPRPhis(MachineBasicBlock &MBB) { 2068 // This is only really needed on GFX908 where AGPR-AGPR copies are 2069 // unreasonably difficult. 2070 if (ST->hasGFX90AInsts()) 2071 return false; 2072 2073 // Look at all AGPR Phis and collect the register + subregister used. 2074 DenseMap<std::pair<Register, unsigned>, std::vector<MachineOperand *>> 2075 RegToMO; 2076 2077 for (auto &MI : MBB) { 2078 if (!MI.isPHI()) 2079 break; 2080 2081 if (!TRI->isAGPR(*MRI, MI.getOperand(0).getReg())) 2082 continue; 2083 2084 for (unsigned K = 1; K < MI.getNumOperands(); K += 2) { 2085 MachineOperand &PhiMO = MI.getOperand(K); 2086 RegToMO[{PhiMO.getReg(), PhiMO.getSubReg()}].push_back(&PhiMO); 2087 } 2088 } 2089 2090 // For all (Reg, SubReg) pair that are used more than once, cache the value in 2091 // a VGPR. 2092 bool Changed = false; 2093 for (const auto &[Entry, MOs] : RegToMO) { 2094 if (MOs.size() == 1) 2095 continue; 2096 2097 const auto [Reg, SubReg] = Entry; 2098 MachineInstr *Def = MRI->getVRegDef(Reg); 2099 MachineBasicBlock *DefMBB = Def->getParent(); 2100 2101 // Create a copy in a VGPR using V_ACCVGPR_READ_B32_e64 so it's not folded 2102 // out. 2103 const TargetRegisterClass *ARC = getRegOpRC(*MRI, *TRI, *MOs.front()); 2104 Register TempVGPR = 2105 MRI->createVirtualRegister(TRI->getEquivalentVGPRClass(ARC)); 2106 MachineInstr *VGPRCopy = 2107 BuildMI(*DefMBB, ++Def->getIterator(), Def->getDebugLoc(), 2108 TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64), TempVGPR) 2109 .addReg(Reg, /* flags */ 0, SubReg); 2110 2111 // Copy back to an AGPR and use that instead of the AGPR subreg in all MOs. 2112 Register TempAGPR = MRI->createVirtualRegister(ARC); 2113 BuildMI(*DefMBB, ++VGPRCopy->getIterator(), Def->getDebugLoc(), 2114 TII->get(AMDGPU::COPY), TempAGPR) 2115 .addReg(TempVGPR); 2116 2117 LLVM_DEBUG(dbgs() << "Caching AGPR into VGPR: " << *VGPRCopy); 2118 for (MachineOperand *MO : MOs) { 2119 MO->setReg(TempAGPR); 2120 MO->setSubReg(AMDGPU::NoSubRegister); 2121 LLVM_DEBUG(dbgs() << " Changed PHI Operand: " << *MO << "\n"); 2122 } 2123 2124 Changed = true; 2125 } 2126 2127 return Changed; 2128 } 2129 2130 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 2131 if (skipFunction(MF.getFunction())) 2132 return false; 2133 2134 MRI = &MF.getRegInfo(); 2135 ST = &MF.getSubtarget<GCNSubtarget>(); 2136 TII = ST->getInstrInfo(); 2137 TRI = &TII->getRegisterInfo(); 2138 MFI = MF.getInfo<SIMachineFunctionInfo>(); 2139 2140 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 2141 // correctly handle signed zeros. 2142 // 2143 // FIXME: Also need to check strictfp 2144 bool IsIEEEMode = MFI->getMode().IEEE; 2145 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 2146 2147 bool Changed = false; 2148 for (MachineBasicBlock *MBB : depth_first(&MF)) { 2149 MachineOperand *CurrentKnownM0Val = nullptr; 2150 for (auto &MI : make_early_inc_range(*MBB)) { 2151 Changed |= tryFoldCndMask(MI); 2152 2153 if (tryFoldZeroHighBits(MI)) { 2154 Changed = true; 2155 continue; 2156 } 2157 2158 if (MI.isRegSequence() && tryFoldRegSequence(MI)) { 2159 Changed = true; 2160 continue; 2161 } 2162 2163 if (MI.isPHI() && tryFoldPhiAGPR(MI)) { 2164 Changed = true; 2165 continue; 2166 } 2167 2168 if (MI.mayLoad() && tryFoldLoad(MI)) { 2169 Changed = true; 2170 continue; 2171 } 2172 2173 if (TII->isFoldableCopy(MI)) { 2174 Changed |= tryFoldFoldableCopy(MI, CurrentKnownM0Val); 2175 continue; 2176 } 2177 2178 // Saw an unknown clobber of m0, so we no longer know what it is. 2179 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 2180 CurrentKnownM0Val = nullptr; 2181 2182 // TODO: Omod might be OK if there is NSZ only on the source 2183 // instruction, and not the omod multiply. 2184 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 2185 !tryFoldOMod(MI)) 2186 Changed |= tryFoldClamp(MI); 2187 } 2188 2189 Changed |= tryOptimizeAGPRPhis(*MBB); 2190 } 2191 2192 return Changed; 2193 } 2194