xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/R600InstrInfo.cpp (revision d13def78ccef6dbc25c2e197089ee5fc4d7b82c3)
1 //===-- R600InstrInfo.cpp - R600 Instruction Information ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// R600 Implementation of TargetInstrInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "R600InstrInfo.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUSubtarget.h"
18 #include "R600Defines.h"
19 #include "R600FrameLowering.h"
20 #include "R600RegisterInfo.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39 #include <cstring>
40 #include <iterator>
41 #include <utility>
42 #include <vector>
43 
44 using namespace llvm;
45 
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "R600GenDFAPacketizer.inc"
48 
49 #define GET_INSTRINFO_CTOR_DTOR
50 #define GET_INSTRMAP_INFO
51 #define GET_INSTRINFO_NAMED_OPS
52 #include "R600GenInstrInfo.inc"
53 
54 R600InstrInfo::R600InstrInfo(const R600Subtarget &ST)
55   : R600GenInstrInfo(-1, -1), RI(), ST(ST) {}
56 
57 bool R600InstrInfo::isVector(const MachineInstr &MI) const {
58   return get(MI.getOpcode()).TSFlags & R600_InstFlag::VECTOR;
59 }
60 
61 void R600InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
62                                 MachineBasicBlock::iterator MI,
63                                 const DebugLoc &DL, MCRegister DestReg,
64                                 MCRegister SrcReg, bool KillSrc) const {
65   unsigned VectorComponents = 0;
66   if ((R600::R600_Reg128RegClass.contains(DestReg) ||
67       R600::R600_Reg128VerticalRegClass.contains(DestReg)) &&
68       (R600::R600_Reg128RegClass.contains(SrcReg) ||
69        R600::R600_Reg128VerticalRegClass.contains(SrcReg))) {
70     VectorComponents = 4;
71   } else if((R600::R600_Reg64RegClass.contains(DestReg) ||
72             R600::R600_Reg64VerticalRegClass.contains(DestReg)) &&
73             (R600::R600_Reg64RegClass.contains(SrcReg) ||
74              R600::R600_Reg64VerticalRegClass.contains(SrcReg))) {
75     VectorComponents = 2;
76   }
77 
78   if (VectorComponents > 0) {
79     for (unsigned I = 0; I < VectorComponents; I++) {
80       unsigned SubRegIndex = AMDGPURegisterInfo::getSubRegFromChannel(I);
81       buildDefaultInstruction(MBB, MI, R600::MOV,
82                               RI.getSubReg(DestReg, SubRegIndex),
83                               RI.getSubReg(SrcReg, SubRegIndex))
84                               .addReg(DestReg,
85                                       RegState::Define | RegState::Implicit);
86     }
87   } else {
88     MachineInstr *NewMI = buildDefaultInstruction(MBB, MI, R600::MOV,
89                                                   DestReg, SrcReg);
90     NewMI->getOperand(getOperandIdx(*NewMI, R600::OpName::src0))
91                                     .setIsKill(KillSrc);
92   }
93 }
94 
95 /// \returns true if \p MBBI can be moved into a new basic.
96 bool R600InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB,
97                                        MachineBasicBlock::iterator MBBI) const {
98   for (MachineInstr::const_mop_iterator I = MBBI->operands_begin(),
99                                         E = MBBI->operands_end(); I != E; ++I) {
100     if (I->isReg() && !Register::isVirtualRegister(I->getReg()) && I->isUse() &&
101         RI.isPhysRegLiveAcrossClauses(I->getReg()))
102       return false;
103   }
104   return true;
105 }
106 
107 bool R600InstrInfo::isMov(unsigned Opcode) const {
108   switch(Opcode) {
109   default:
110     return false;
111   case R600::MOV:
112   case R600::MOV_IMM_F32:
113   case R600::MOV_IMM_I32:
114     return true;
115   }
116 }
117 
118 bool R600InstrInfo::isReductionOp(unsigned Opcode) const {
119   return false;
120 }
121 
122 bool R600InstrInfo::isCubeOp(unsigned Opcode) const {
123   switch(Opcode) {
124     default: return false;
125     case R600::CUBE_r600_pseudo:
126     case R600::CUBE_r600_real:
127     case R600::CUBE_eg_pseudo:
128     case R600::CUBE_eg_real:
129       return true;
130   }
131 }
132 
133 bool R600InstrInfo::isALUInstr(unsigned Opcode) const {
134   unsigned TargetFlags = get(Opcode).TSFlags;
135 
136   return (TargetFlags & R600_InstFlag::ALU_INST);
137 }
138 
139 bool R600InstrInfo::hasInstrModifiers(unsigned Opcode) const {
140   unsigned TargetFlags = get(Opcode).TSFlags;
141 
142   return ((TargetFlags & R600_InstFlag::OP1) |
143           (TargetFlags & R600_InstFlag::OP2) |
144           (TargetFlags & R600_InstFlag::OP3));
145 }
146 
147 bool R600InstrInfo::isLDSInstr(unsigned Opcode) const {
148   unsigned TargetFlags = get(Opcode).TSFlags;
149 
150   return ((TargetFlags & R600_InstFlag::LDS_1A) |
151           (TargetFlags & R600_InstFlag::LDS_1A1D) |
152           (TargetFlags & R600_InstFlag::LDS_1A2D));
153 }
154 
155 bool R600InstrInfo::isLDSRetInstr(unsigned Opcode) const {
156   return isLDSInstr(Opcode) && getOperandIdx(Opcode, R600::OpName::dst) != -1;
157 }
158 
159 bool R600InstrInfo::canBeConsideredALU(const MachineInstr &MI) const {
160   if (isALUInstr(MI.getOpcode()))
161     return true;
162   if (isVector(MI) || isCubeOp(MI.getOpcode()))
163     return true;
164   switch (MI.getOpcode()) {
165   case R600::PRED_X:
166   case R600::INTERP_PAIR_XY:
167   case R600::INTERP_PAIR_ZW:
168   case R600::INTERP_VEC_LOAD:
169   case R600::COPY:
170   case R600::DOT_4:
171     return true;
172   default:
173     return false;
174   }
175 }
176 
177 bool R600InstrInfo::isTransOnly(unsigned Opcode) const {
178   if (ST.hasCaymanISA())
179     return false;
180   return (get(Opcode).getSchedClass() == R600::Sched::TransALU);
181 }
182 
183 bool R600InstrInfo::isTransOnly(const MachineInstr &MI) const {
184   return isTransOnly(MI.getOpcode());
185 }
186 
187 bool R600InstrInfo::isVectorOnly(unsigned Opcode) const {
188   return (get(Opcode).getSchedClass() == R600::Sched::VecALU);
189 }
190 
191 bool R600InstrInfo::isVectorOnly(const MachineInstr &MI) const {
192   return isVectorOnly(MI.getOpcode());
193 }
194 
195 bool R600InstrInfo::isExport(unsigned Opcode) const {
196   return (get(Opcode).TSFlags & R600_InstFlag::IS_EXPORT);
197 }
198 
199 bool R600InstrInfo::usesVertexCache(unsigned Opcode) const {
200   return ST.hasVertexCache() && IS_VTX(get(Opcode));
201 }
202 
203 bool R600InstrInfo::usesVertexCache(const MachineInstr &MI) const {
204   const MachineFunction *MF = MI.getParent()->getParent();
205   return !AMDGPU::isCompute(MF->getFunction().getCallingConv()) &&
206          usesVertexCache(MI.getOpcode());
207 }
208 
209 bool R600InstrInfo::usesTextureCache(unsigned Opcode) const {
210   return (!ST.hasVertexCache() && IS_VTX(get(Opcode))) || IS_TEX(get(Opcode));
211 }
212 
213 bool R600InstrInfo::usesTextureCache(const MachineInstr &MI) const {
214   const MachineFunction *MF = MI.getParent()->getParent();
215   return (AMDGPU::isCompute(MF->getFunction().getCallingConv()) &&
216           usesVertexCache(MI.getOpcode())) ||
217           usesTextureCache(MI.getOpcode());
218 }
219 
220 bool R600InstrInfo::mustBeLastInClause(unsigned Opcode) const {
221   switch (Opcode) {
222   case R600::KILLGT:
223   case R600::GROUP_BARRIER:
224     return true;
225   default:
226     return false;
227   }
228 }
229 
230 bool R600InstrInfo::usesAddressRegister(MachineInstr &MI) const {
231   return MI.findRegisterUseOperandIdx(R600::AR_X, false, &RI) != -1;
232 }
233 
234 bool R600InstrInfo::definesAddressRegister(MachineInstr &MI) const {
235   return MI.findRegisterDefOperandIdx(R600::AR_X, false, false, &RI) != -1;
236 }
237 
238 bool R600InstrInfo::readsLDSSrcReg(const MachineInstr &MI) const {
239   if (!isALUInstr(MI.getOpcode())) {
240     return false;
241   }
242   for (MachineInstr::const_mop_iterator I = MI.operands_begin(),
243                                         E = MI.operands_end();
244        I != E; ++I) {
245     if (!I->isReg() || !I->isUse() || Register::isVirtualRegister(I->getReg()))
246       continue;
247 
248     if (R600::R600_LDS_SRC_REGRegClass.contains(I->getReg()))
249       return true;
250   }
251   return false;
252 }
253 
254 int R600InstrInfo::getSelIdx(unsigned Opcode, unsigned SrcIdx) const {
255   static const unsigned SrcSelTable[][2] = {
256     {R600::OpName::src0, R600::OpName::src0_sel},
257     {R600::OpName::src1, R600::OpName::src1_sel},
258     {R600::OpName::src2, R600::OpName::src2_sel},
259     {R600::OpName::src0_X, R600::OpName::src0_sel_X},
260     {R600::OpName::src0_Y, R600::OpName::src0_sel_Y},
261     {R600::OpName::src0_Z, R600::OpName::src0_sel_Z},
262     {R600::OpName::src0_W, R600::OpName::src0_sel_W},
263     {R600::OpName::src1_X, R600::OpName::src1_sel_X},
264     {R600::OpName::src1_Y, R600::OpName::src1_sel_Y},
265     {R600::OpName::src1_Z, R600::OpName::src1_sel_Z},
266     {R600::OpName::src1_W, R600::OpName::src1_sel_W}
267   };
268 
269   for (const auto &Row : SrcSelTable) {
270     if (getOperandIdx(Opcode, Row[0]) == (int)SrcIdx) {
271       return getOperandIdx(Opcode, Row[1]);
272     }
273   }
274   return -1;
275 }
276 
277 SmallVector<std::pair<MachineOperand *, int64_t>, 3>
278 R600InstrInfo::getSrcs(MachineInstr &MI) const {
279   SmallVector<std::pair<MachineOperand *, int64_t>, 3> Result;
280 
281   if (MI.getOpcode() == R600::DOT_4) {
282     static const unsigned OpTable[8][2] = {
283       {R600::OpName::src0_X, R600::OpName::src0_sel_X},
284       {R600::OpName::src0_Y, R600::OpName::src0_sel_Y},
285       {R600::OpName::src0_Z, R600::OpName::src0_sel_Z},
286       {R600::OpName::src0_W, R600::OpName::src0_sel_W},
287       {R600::OpName::src1_X, R600::OpName::src1_sel_X},
288       {R600::OpName::src1_Y, R600::OpName::src1_sel_Y},
289       {R600::OpName::src1_Z, R600::OpName::src1_sel_Z},
290       {R600::OpName::src1_W, R600::OpName::src1_sel_W},
291     };
292 
293     for (unsigned j = 0; j < 8; j++) {
294       MachineOperand &MO =
295           MI.getOperand(getOperandIdx(MI.getOpcode(), OpTable[j][0]));
296       Register Reg = MO.getReg();
297       if (Reg == R600::ALU_CONST) {
298         MachineOperand &Sel =
299             MI.getOperand(getOperandIdx(MI.getOpcode(), OpTable[j][1]));
300         Result.push_back(std::make_pair(&MO, Sel.getImm()));
301         continue;
302       }
303 
304     }
305     return Result;
306   }
307 
308   static const unsigned OpTable[3][2] = {
309     {R600::OpName::src0, R600::OpName::src0_sel},
310     {R600::OpName::src1, R600::OpName::src1_sel},
311     {R600::OpName::src2, R600::OpName::src2_sel},
312   };
313 
314   for (unsigned j = 0; j < 3; j++) {
315     int SrcIdx = getOperandIdx(MI.getOpcode(), OpTable[j][0]);
316     if (SrcIdx < 0)
317       break;
318     MachineOperand &MO = MI.getOperand(SrcIdx);
319     Register Reg = MO.getReg();
320     if (Reg == R600::ALU_CONST) {
321       MachineOperand &Sel =
322           MI.getOperand(getOperandIdx(MI.getOpcode(), OpTable[j][1]));
323       Result.push_back(std::make_pair(&MO, Sel.getImm()));
324       continue;
325     }
326     if (Reg == R600::ALU_LITERAL_X) {
327       MachineOperand &Operand =
328           MI.getOperand(getOperandIdx(MI.getOpcode(), R600::OpName::literal));
329       if (Operand.isImm()) {
330         Result.push_back(std::make_pair(&MO, Operand.getImm()));
331         continue;
332       }
333       assert(Operand.isGlobal());
334     }
335     Result.push_back(std::make_pair(&MO, 0));
336   }
337   return Result;
338 }
339 
340 std::vector<std::pair<int, unsigned>>
341 R600InstrInfo::ExtractSrcs(MachineInstr &MI,
342                            const DenseMap<unsigned, unsigned> &PV,
343                            unsigned &ConstCount) const {
344   ConstCount = 0;
345   const std::pair<int, unsigned> DummyPair(-1, 0);
346   std::vector<std::pair<int, unsigned>> Result;
347   unsigned i = 0;
348   for (const auto &Src : getSrcs(MI)) {
349     ++i;
350     Register Reg = Src.first->getReg();
351     int Index = RI.getEncodingValue(Reg) & 0xff;
352     if (Reg == R600::OQAP) {
353       Result.push_back(std::make_pair(Index, 0U));
354     }
355     if (PV.find(Reg) != PV.end()) {
356       // 255 is used to tells its a PS/PV reg
357       Result.push_back(std::make_pair(255, 0U));
358       continue;
359     }
360     if (Index > 127) {
361       ConstCount++;
362       Result.push_back(DummyPair);
363       continue;
364     }
365     unsigned Chan = RI.getHWRegChan(Reg);
366     Result.push_back(std::make_pair(Index, Chan));
367   }
368   for (; i < 3; ++i)
369     Result.push_back(DummyPair);
370   return Result;
371 }
372 
373 static std::vector<std::pair<int, unsigned>>
374 Swizzle(std::vector<std::pair<int, unsigned>> Src,
375         R600InstrInfo::BankSwizzle Swz) {
376   if (Src[0] == Src[1])
377     Src[1].first = -1;
378   switch (Swz) {
379   case R600InstrInfo::ALU_VEC_012_SCL_210:
380     break;
381   case R600InstrInfo::ALU_VEC_021_SCL_122:
382     std::swap(Src[1], Src[2]);
383     break;
384   case R600InstrInfo::ALU_VEC_102_SCL_221:
385     std::swap(Src[0], Src[1]);
386     break;
387   case R600InstrInfo::ALU_VEC_120_SCL_212:
388     std::swap(Src[0], Src[1]);
389     std::swap(Src[0], Src[2]);
390     break;
391   case R600InstrInfo::ALU_VEC_201:
392     std::swap(Src[0], Src[2]);
393     std::swap(Src[0], Src[1]);
394     break;
395   case R600InstrInfo::ALU_VEC_210:
396     std::swap(Src[0], Src[2]);
397     break;
398   }
399   return Src;
400 }
401 
402 static unsigned getTransSwizzle(R600InstrInfo::BankSwizzle Swz, unsigned Op) {
403   assert(Op < 3 && "Out of range swizzle index");
404   switch (Swz) {
405   case R600InstrInfo::ALU_VEC_012_SCL_210: {
406     unsigned Cycles[3] = { 2, 1, 0};
407     return Cycles[Op];
408   }
409   case R600InstrInfo::ALU_VEC_021_SCL_122: {
410     unsigned Cycles[3] = { 1, 2, 2};
411     return Cycles[Op];
412   }
413   case R600InstrInfo::ALU_VEC_120_SCL_212: {
414     unsigned Cycles[3] = { 2, 1, 2};
415     return Cycles[Op];
416   }
417   case R600InstrInfo::ALU_VEC_102_SCL_221: {
418     unsigned Cycles[3] = { 2, 2, 1};
419     return Cycles[Op];
420   }
421   default:
422     llvm_unreachable("Wrong Swizzle for Trans Slot");
423   }
424 }
425 
426 /// returns how many MIs (whose inputs are represented by IGSrcs) can be packed
427 /// in the same Instruction Group while meeting read port limitations given a
428 /// Swz swizzle sequence.
429 unsigned  R600InstrInfo::isLegalUpTo(
430     const std::vector<std::vector<std::pair<int, unsigned>>> &IGSrcs,
431     const std::vector<R600InstrInfo::BankSwizzle> &Swz,
432     const std::vector<std::pair<int, unsigned>> &TransSrcs,
433     R600InstrInfo::BankSwizzle TransSwz) const {
434   int Vector[4][3];
435   memset(Vector, -1, sizeof(Vector));
436   for (unsigned i = 0, e = IGSrcs.size(); i < e; i++) {
437     const std::vector<std::pair<int, unsigned>> &Srcs =
438         Swizzle(IGSrcs[i], Swz[i]);
439     for (unsigned j = 0; j < 3; j++) {
440       const std::pair<int, unsigned> &Src = Srcs[j];
441       if (Src.first < 0 || Src.first == 255)
442         continue;
443       if (Src.first == GET_REG_INDEX(RI.getEncodingValue(R600::OQAP))) {
444         if (Swz[i] != R600InstrInfo::ALU_VEC_012_SCL_210 &&
445             Swz[i] != R600InstrInfo::ALU_VEC_021_SCL_122) {
446             // The value from output queue A (denoted by register OQAP) can
447             // only be fetched during the first cycle.
448             return false;
449         }
450         // OQAP does not count towards the normal read port restrictions
451         continue;
452       }
453       if (Vector[Src.second][j] < 0)
454         Vector[Src.second][j] = Src.first;
455       if (Vector[Src.second][j] != Src.first)
456         return i;
457     }
458   }
459   // Now check Trans Alu
460   for (unsigned i = 0, e = TransSrcs.size(); i < e; ++i) {
461     const std::pair<int, unsigned> &Src = TransSrcs[i];
462     unsigned Cycle = getTransSwizzle(TransSwz, i);
463     if (Src.first < 0)
464       continue;
465     if (Src.first == 255)
466       continue;
467     if (Vector[Src.second][Cycle] < 0)
468       Vector[Src.second][Cycle] = Src.first;
469     if (Vector[Src.second][Cycle] != Src.first)
470       return IGSrcs.size() - 1;
471   }
472   return IGSrcs.size();
473 }
474 
475 /// Given a swizzle sequence SwzCandidate and an index Idx, returns the next
476 /// (in lexicographic term) swizzle sequence assuming that all swizzles after
477 /// Idx can be skipped
478 static bool
479 NextPossibleSolution(
480     std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
481     unsigned Idx) {
482   assert(Idx < SwzCandidate.size());
483   int ResetIdx = Idx;
484   while (ResetIdx > -1 && SwzCandidate[ResetIdx] == R600InstrInfo::ALU_VEC_210)
485     ResetIdx --;
486   for (unsigned i = ResetIdx + 1, e = SwzCandidate.size(); i < e; i++) {
487     SwzCandidate[i] = R600InstrInfo::ALU_VEC_012_SCL_210;
488   }
489   if (ResetIdx == -1)
490     return false;
491   int NextSwizzle = SwzCandidate[ResetIdx] + 1;
492   SwzCandidate[ResetIdx] = (R600InstrInfo::BankSwizzle)NextSwizzle;
493   return true;
494 }
495 
496 /// Enumerate all possible Swizzle sequence to find one that can meet all
497 /// read port requirements.
498 bool R600InstrInfo::FindSwizzleForVectorSlot(
499     const std::vector<std::vector<std::pair<int, unsigned>>> &IGSrcs,
500     std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
501     const std::vector<std::pair<int, unsigned>> &TransSrcs,
502     R600InstrInfo::BankSwizzle TransSwz) const {
503   unsigned ValidUpTo = 0;
504   do {
505     ValidUpTo = isLegalUpTo(IGSrcs, SwzCandidate, TransSrcs, TransSwz);
506     if (ValidUpTo == IGSrcs.size())
507       return true;
508   } while (NextPossibleSolution(SwzCandidate, ValidUpTo));
509   return false;
510 }
511 
512 /// Instructions in Trans slot can't read gpr at cycle 0 if they also read
513 /// a const, and can't read a gpr at cycle 1 if they read 2 const.
514 static bool
515 isConstCompatible(R600InstrInfo::BankSwizzle TransSwz,
516                   const std::vector<std::pair<int, unsigned>> &TransOps,
517                   unsigned ConstCount) {
518   // TransALU can't read 3 constants
519   if (ConstCount > 2)
520     return false;
521   for (unsigned i = 0, e = TransOps.size(); i < e; ++i) {
522     const std::pair<int, unsigned> &Src = TransOps[i];
523     unsigned Cycle = getTransSwizzle(TransSwz, i);
524     if (Src.first < 0)
525       continue;
526     if (ConstCount > 0 && Cycle == 0)
527       return false;
528     if (ConstCount > 1 && Cycle == 1)
529       return false;
530   }
531   return true;
532 }
533 
534 bool
535 R600InstrInfo::fitsReadPortLimitations(const std::vector<MachineInstr *> &IG,
536                                        const DenseMap<unsigned, unsigned> &PV,
537                                        std::vector<BankSwizzle> &ValidSwizzle,
538                                        bool isLastAluTrans)
539     const {
540   //Todo : support shared src0 - src1 operand
541 
542   std::vector<std::vector<std::pair<int, unsigned>>> IGSrcs;
543   ValidSwizzle.clear();
544   unsigned ConstCount = 0;
545   BankSwizzle TransBS = ALU_VEC_012_SCL_210;
546   for (unsigned i = 0, e = IG.size(); i < e; ++i) {
547     IGSrcs.push_back(ExtractSrcs(*IG[i], PV, ConstCount));
548     unsigned Op = getOperandIdx(IG[i]->getOpcode(),
549         R600::OpName::bank_swizzle);
550     ValidSwizzle.push_back( (R600InstrInfo::BankSwizzle)
551         IG[i]->getOperand(Op).getImm());
552   }
553   std::vector<std::pair<int, unsigned>> TransOps;
554   if (!isLastAluTrans)
555     return FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps, TransBS);
556 
557   TransOps = std::move(IGSrcs.back());
558   IGSrcs.pop_back();
559   ValidSwizzle.pop_back();
560 
561   static const R600InstrInfo::BankSwizzle TransSwz[] = {
562     ALU_VEC_012_SCL_210,
563     ALU_VEC_021_SCL_122,
564     ALU_VEC_120_SCL_212,
565     ALU_VEC_102_SCL_221
566   };
567   for (unsigned i = 0; i < 4; i++) {
568     TransBS = TransSwz[i];
569     if (!isConstCompatible(TransBS, TransOps, ConstCount))
570       continue;
571     bool Result = FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps,
572         TransBS);
573     if (Result) {
574       ValidSwizzle.push_back(TransBS);
575       return true;
576     }
577   }
578 
579   return false;
580 }
581 
582 bool
583 R600InstrInfo::fitsConstReadLimitations(const std::vector<unsigned> &Consts)
584     const {
585   assert (Consts.size() <= 12 && "Too many operands in instructions group");
586   unsigned Pair1 = 0, Pair2 = 0;
587   for (unsigned i = 0, n = Consts.size(); i < n; ++i) {
588     unsigned ReadConstHalf = Consts[i] & 2;
589     unsigned ReadConstIndex = Consts[i] & (~3);
590     unsigned ReadHalfConst = ReadConstIndex | ReadConstHalf;
591     if (!Pair1) {
592       Pair1 = ReadHalfConst;
593       continue;
594     }
595     if (Pair1 == ReadHalfConst)
596       continue;
597     if (!Pair2) {
598       Pair2 = ReadHalfConst;
599       continue;
600     }
601     if (Pair2 != ReadHalfConst)
602       return false;
603   }
604   return true;
605 }
606 
607 bool
608 R600InstrInfo::fitsConstReadLimitations(const std::vector<MachineInstr *> &MIs)
609     const {
610   std::vector<unsigned> Consts;
611   SmallSet<int64_t, 4> Literals;
612   for (unsigned i = 0, n = MIs.size(); i < n; i++) {
613     MachineInstr &MI = *MIs[i];
614     if (!isALUInstr(MI.getOpcode()))
615       continue;
616 
617     for (const auto &Src : getSrcs(MI)) {
618       if (Src.first->getReg() == R600::ALU_LITERAL_X)
619         Literals.insert(Src.second);
620       if (Literals.size() > 4)
621         return false;
622       if (Src.first->getReg() == R600::ALU_CONST)
623         Consts.push_back(Src.second);
624       if (R600::R600_KC0RegClass.contains(Src.first->getReg()) ||
625           R600::R600_KC1RegClass.contains(Src.first->getReg())) {
626         unsigned Index = RI.getEncodingValue(Src.first->getReg()) & 0xff;
627         unsigned Chan = RI.getHWRegChan(Src.first->getReg());
628         Consts.push_back((Index << 2) | Chan);
629       }
630     }
631   }
632   return fitsConstReadLimitations(Consts);
633 }
634 
635 DFAPacketizer *
636 R600InstrInfo::CreateTargetScheduleState(const TargetSubtargetInfo &STI) const {
637   const InstrItineraryData *II = STI.getInstrItineraryData();
638   return static_cast<const R600Subtarget &>(STI).createDFAPacketizer(II);
639 }
640 
641 static bool
642 isPredicateSetter(unsigned Opcode) {
643   switch (Opcode) {
644   case R600::PRED_X:
645     return true;
646   default:
647     return false;
648   }
649 }
650 
651 static MachineInstr *
652 findFirstPredicateSetterFrom(MachineBasicBlock &MBB,
653                              MachineBasicBlock::iterator I) {
654   while (I != MBB.begin()) {
655     --I;
656     MachineInstr &MI = *I;
657     if (isPredicateSetter(MI.getOpcode()))
658       return &MI;
659   }
660 
661   return nullptr;
662 }
663 
664 static
665 bool isJump(unsigned Opcode) {
666   return Opcode == R600::JUMP || Opcode == R600::JUMP_COND;
667 }
668 
669 static bool isBranch(unsigned Opcode) {
670   return Opcode == R600::BRANCH || Opcode == R600::BRANCH_COND_i32 ||
671       Opcode == R600::BRANCH_COND_f32;
672 }
673 
674 bool R600InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
675                                   MachineBasicBlock *&TBB,
676                                   MachineBasicBlock *&FBB,
677                                   SmallVectorImpl<MachineOperand> &Cond,
678                                   bool AllowModify) const {
679   // Most of the following comes from the ARM implementation of AnalyzeBranch
680 
681   // If the block has no terminators, it just falls into the block after it.
682   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
683   if (I == MBB.end())
684     return false;
685 
686   // R600::BRANCH* instructions are only available after isel and are not
687   // handled
688   if (isBranch(I->getOpcode()))
689     return true;
690   if (!isJump(I->getOpcode())) {
691     return false;
692   }
693 
694   // Remove successive JUMP
695   while (I != MBB.begin() && std::prev(I)->getOpcode() == R600::JUMP) {
696       MachineBasicBlock::iterator PriorI = std::prev(I);
697       if (AllowModify)
698         I->removeFromParent();
699       I = PriorI;
700   }
701   MachineInstr &LastInst = *I;
702 
703   // If there is only one terminator instruction, process it.
704   unsigned LastOpc = LastInst.getOpcode();
705   if (I == MBB.begin() || !isJump((--I)->getOpcode())) {
706     if (LastOpc == R600::JUMP) {
707       TBB = LastInst.getOperand(0).getMBB();
708       return false;
709     } else if (LastOpc == R600::JUMP_COND) {
710       auto predSet = I;
711       while (!isPredicateSetter(predSet->getOpcode())) {
712         predSet = --I;
713       }
714       TBB = LastInst.getOperand(0).getMBB();
715       Cond.push_back(predSet->getOperand(1));
716       Cond.push_back(predSet->getOperand(2));
717       Cond.push_back(MachineOperand::CreateReg(R600::PRED_SEL_ONE, false));
718       return false;
719     }
720     return true;  // Can't handle indirect branch.
721   }
722 
723   // Get the instruction before it if it is a terminator.
724   MachineInstr &SecondLastInst = *I;
725   unsigned SecondLastOpc = SecondLastInst.getOpcode();
726 
727   // If the block ends with a B and a Bcc, handle it.
728   if (SecondLastOpc == R600::JUMP_COND && LastOpc == R600::JUMP) {
729     auto predSet = --I;
730     while (!isPredicateSetter(predSet->getOpcode())) {
731       predSet = --I;
732     }
733     TBB = SecondLastInst.getOperand(0).getMBB();
734     FBB = LastInst.getOperand(0).getMBB();
735     Cond.push_back(predSet->getOperand(1));
736     Cond.push_back(predSet->getOperand(2));
737     Cond.push_back(MachineOperand::CreateReg(R600::PRED_SEL_ONE, false));
738     return false;
739   }
740 
741   // Otherwise, can't handle this.
742   return true;
743 }
744 
745 static
746 MachineBasicBlock::iterator FindLastAluClause(MachineBasicBlock &MBB) {
747   for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
748       It != E; ++It) {
749     if (It->getOpcode() == R600::CF_ALU ||
750         It->getOpcode() == R600::CF_ALU_PUSH_BEFORE)
751       return It.getReverse();
752   }
753   return MBB.end();
754 }
755 
756 unsigned R600InstrInfo::insertBranch(MachineBasicBlock &MBB,
757                                      MachineBasicBlock *TBB,
758                                      MachineBasicBlock *FBB,
759                                      ArrayRef<MachineOperand> Cond,
760                                      const DebugLoc &DL,
761                                      int *BytesAdded) const {
762   assert(TBB && "insertBranch must not be told to insert a fallthrough");
763   assert(!BytesAdded && "code size not handled");
764 
765   if (!FBB) {
766     if (Cond.empty()) {
767       BuildMI(&MBB, DL, get(R600::JUMP)).addMBB(TBB);
768       return 1;
769     } else {
770       MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
771       assert(PredSet && "No previous predicate !");
772       addFlag(*PredSet, 0, MO_FLAG_PUSH);
773       PredSet->getOperand(2).setImm(Cond[1].getImm());
774 
775       BuildMI(&MBB, DL, get(R600::JUMP_COND))
776              .addMBB(TBB)
777              .addReg(R600::PREDICATE_BIT, RegState::Kill);
778       MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
779       if (CfAlu == MBB.end())
780         return 1;
781       assert (CfAlu->getOpcode() == R600::CF_ALU);
782       CfAlu->setDesc(get(R600::CF_ALU_PUSH_BEFORE));
783       return 1;
784     }
785   } else {
786     MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
787     assert(PredSet && "No previous predicate !");
788     addFlag(*PredSet, 0, MO_FLAG_PUSH);
789     PredSet->getOperand(2).setImm(Cond[1].getImm());
790     BuildMI(&MBB, DL, get(R600::JUMP_COND))
791             .addMBB(TBB)
792             .addReg(R600::PREDICATE_BIT, RegState::Kill);
793     BuildMI(&MBB, DL, get(R600::JUMP)).addMBB(FBB);
794     MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
795     if (CfAlu == MBB.end())
796       return 2;
797     assert (CfAlu->getOpcode() == R600::CF_ALU);
798     CfAlu->setDesc(get(R600::CF_ALU_PUSH_BEFORE));
799     return 2;
800   }
801 }
802 
803 unsigned R600InstrInfo::removeBranch(MachineBasicBlock &MBB,
804                                      int *BytesRemoved) const {
805   assert(!BytesRemoved && "code size not handled");
806 
807   // Note : we leave PRED* instructions there.
808   // They may be needed when predicating instructions.
809 
810   MachineBasicBlock::iterator I = MBB.end();
811 
812   if (I == MBB.begin()) {
813     return 0;
814   }
815   --I;
816   switch (I->getOpcode()) {
817   default:
818     return 0;
819   case R600::JUMP_COND: {
820     MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
821     clearFlag(*predSet, 0, MO_FLAG_PUSH);
822     I->eraseFromParent();
823     MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
824     if (CfAlu == MBB.end())
825       break;
826     assert (CfAlu->getOpcode() == R600::CF_ALU_PUSH_BEFORE);
827     CfAlu->setDesc(get(R600::CF_ALU));
828     break;
829   }
830   case R600::JUMP:
831     I->eraseFromParent();
832     break;
833   }
834   I = MBB.end();
835 
836   if (I == MBB.begin()) {
837     return 1;
838   }
839   --I;
840   switch (I->getOpcode()) {
841     // FIXME: only one case??
842   default:
843     return 1;
844   case R600::JUMP_COND: {
845     MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
846     clearFlag(*predSet, 0, MO_FLAG_PUSH);
847     I->eraseFromParent();
848     MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
849     if (CfAlu == MBB.end())
850       break;
851     assert (CfAlu->getOpcode() == R600::CF_ALU_PUSH_BEFORE);
852     CfAlu->setDesc(get(R600::CF_ALU));
853     break;
854   }
855   case R600::JUMP:
856     I->eraseFromParent();
857     break;
858   }
859   return 2;
860 }
861 
862 bool R600InstrInfo::isPredicated(const MachineInstr &MI) const {
863   int idx = MI.findFirstPredOperandIdx();
864   if (idx < 0)
865     return false;
866 
867   Register Reg = MI.getOperand(idx).getReg();
868   switch (Reg) {
869   default: return false;
870   case R600::PRED_SEL_ONE:
871   case R600::PRED_SEL_ZERO:
872   case R600::PREDICATE_BIT:
873     return true;
874   }
875 }
876 
877 bool R600InstrInfo::isPredicable(const MachineInstr &MI) const {
878   // XXX: KILL* instructions can be predicated, but they must be the last
879   // instruction in a clause, so this means any instructions after them cannot
880   // be predicated.  Until we have proper support for instruction clauses in the
881   // backend, we will mark KILL* instructions as unpredicable.
882 
883   if (MI.getOpcode() == R600::KILLGT) {
884     return false;
885   } else if (MI.getOpcode() == R600::CF_ALU) {
886     // If the clause start in the middle of MBB then the MBB has more
887     // than a single clause, unable to predicate several clauses.
888     if (MI.getParent()->begin() != MachineBasicBlock::const_iterator(MI))
889       return false;
890     // TODO: We don't support KC merging atm
891     return MI.getOperand(3).getImm() == 0 && MI.getOperand(4).getImm() == 0;
892   } else if (isVector(MI)) {
893     return false;
894   } else {
895     return TargetInstrInfo::isPredicable(MI);
896   }
897 }
898 
899 bool
900 R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
901                                    unsigned NumCycles,
902                                    unsigned ExtraPredCycles,
903                                    BranchProbability Probability) const{
904   return true;
905 }
906 
907 bool
908 R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
909                                    unsigned NumTCycles,
910                                    unsigned ExtraTCycles,
911                                    MachineBasicBlock &FMBB,
912                                    unsigned NumFCycles,
913                                    unsigned ExtraFCycles,
914                                    BranchProbability Probability) const {
915   return true;
916 }
917 
918 bool
919 R600InstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
920                                          unsigned NumCycles,
921                                          BranchProbability Probability)
922                                          const {
923   return true;
924 }
925 
926 bool
927 R600InstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
928                                          MachineBasicBlock &FMBB) const {
929   return false;
930 }
931 
932 bool
933 R600InstrInfo::reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
934   MachineOperand &MO = Cond[1];
935   switch (MO.getImm()) {
936   case R600::PRED_SETE_INT:
937     MO.setImm(R600::PRED_SETNE_INT);
938     break;
939   case R600::PRED_SETNE_INT:
940     MO.setImm(R600::PRED_SETE_INT);
941     break;
942   case R600::PRED_SETE:
943     MO.setImm(R600::PRED_SETNE);
944     break;
945   case R600::PRED_SETNE:
946     MO.setImm(R600::PRED_SETE);
947     break;
948   default:
949     return true;
950   }
951 
952   MachineOperand &MO2 = Cond[2];
953   switch (MO2.getReg()) {
954   case R600::PRED_SEL_ZERO:
955     MO2.setReg(R600::PRED_SEL_ONE);
956     break;
957   case R600::PRED_SEL_ONE:
958     MO2.setReg(R600::PRED_SEL_ZERO);
959     break;
960   default:
961     return true;
962   }
963   return false;
964 }
965 
966 bool R600InstrInfo::DefinesPredicate(MachineInstr &MI,
967                                      std::vector<MachineOperand> &Pred) const {
968   return isPredicateSetter(MI.getOpcode());
969 }
970 
971 bool R600InstrInfo::PredicateInstruction(MachineInstr &MI,
972                                          ArrayRef<MachineOperand> Pred) const {
973   int PIdx = MI.findFirstPredOperandIdx();
974 
975   if (MI.getOpcode() == R600::CF_ALU) {
976     MI.getOperand(8).setImm(0);
977     return true;
978   }
979 
980   if (MI.getOpcode() == R600::DOT_4) {
981     MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_X))
982         .setReg(Pred[2].getReg());
983     MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_Y))
984         .setReg(Pred[2].getReg());
985     MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_Z))
986         .setReg(Pred[2].getReg());
987     MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_W))
988         .setReg(Pred[2].getReg());
989     MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
990     MIB.addReg(R600::PREDICATE_BIT, RegState::Implicit);
991     return true;
992   }
993 
994   if (PIdx != -1) {
995     MachineOperand &PMO = MI.getOperand(PIdx);
996     PMO.setReg(Pred[2].getReg());
997     MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
998     MIB.addReg(R600::PREDICATE_BIT, RegState::Implicit);
999     return true;
1000   }
1001 
1002   return false;
1003 }
1004 
1005 unsigned int R600InstrInfo::getPredicationCost(const MachineInstr &) const {
1006   return 2;
1007 }
1008 
1009 unsigned int R600InstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1010                                             const MachineInstr &,
1011                                             unsigned *PredCost) const {
1012   if (PredCost)
1013     *PredCost = 2;
1014   return 2;
1015 }
1016 
1017 unsigned R600InstrInfo::calculateIndirectAddress(unsigned RegIndex,
1018                                                    unsigned Channel) const {
1019   assert(Channel == 0);
1020   return RegIndex;
1021 }
1022 
1023 bool R600InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1024   switch (MI.getOpcode()) {
1025   default: {
1026     MachineBasicBlock *MBB = MI.getParent();
1027     int OffsetOpIdx =
1028         R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::addr);
1029     // addr is a custom operand with multiple MI operands, and only the
1030     // first MI operand is given a name.
1031     int RegOpIdx = OffsetOpIdx + 1;
1032     int ChanOpIdx =
1033         R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::chan);
1034     if (isRegisterLoad(MI)) {
1035       int DstOpIdx =
1036           R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::dst);
1037       unsigned RegIndex = MI.getOperand(RegOpIdx).getImm();
1038       unsigned Channel = MI.getOperand(ChanOpIdx).getImm();
1039       unsigned Address = calculateIndirectAddress(RegIndex, Channel);
1040       Register OffsetReg = MI.getOperand(OffsetOpIdx).getReg();
1041       if (OffsetReg == R600::INDIRECT_BASE_ADDR) {
1042         buildMovInstr(MBB, MI, MI.getOperand(DstOpIdx).getReg(),
1043                       getIndirectAddrRegClass()->getRegister(Address));
1044       } else {
1045         buildIndirectRead(MBB, MI, MI.getOperand(DstOpIdx).getReg(), Address,
1046                           OffsetReg);
1047       }
1048     } else if (isRegisterStore(MI)) {
1049       int ValOpIdx =
1050           R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::val);
1051       unsigned RegIndex = MI.getOperand(RegOpIdx).getImm();
1052       unsigned Channel = MI.getOperand(ChanOpIdx).getImm();
1053       unsigned Address = calculateIndirectAddress(RegIndex, Channel);
1054       Register OffsetReg = MI.getOperand(OffsetOpIdx).getReg();
1055       if (OffsetReg == R600::INDIRECT_BASE_ADDR) {
1056         buildMovInstr(MBB, MI, getIndirectAddrRegClass()->getRegister(Address),
1057                       MI.getOperand(ValOpIdx).getReg());
1058       } else {
1059         buildIndirectWrite(MBB, MI, MI.getOperand(ValOpIdx).getReg(),
1060                            calculateIndirectAddress(RegIndex, Channel),
1061                            OffsetReg);
1062       }
1063     } else {
1064       return false;
1065     }
1066 
1067     MBB->erase(MI);
1068     return true;
1069   }
1070   case R600::R600_EXTRACT_ELT_V2:
1071   case R600::R600_EXTRACT_ELT_V4:
1072     buildIndirectRead(MI.getParent(), MI, MI.getOperand(0).getReg(),
1073                       RI.getHWRegIndex(MI.getOperand(1).getReg()), //  Address
1074                       MI.getOperand(2).getReg(),
1075                       RI.getHWRegChan(MI.getOperand(1).getReg()));
1076     break;
1077   case R600::R600_INSERT_ELT_V2:
1078   case R600::R600_INSERT_ELT_V4:
1079     buildIndirectWrite(MI.getParent(), MI, MI.getOperand(2).getReg(), // Value
1080                        RI.getHWRegIndex(MI.getOperand(1).getReg()),   // Address
1081                        MI.getOperand(3).getReg(),                     // Offset
1082                        RI.getHWRegChan(MI.getOperand(1).getReg()));   // Channel
1083     break;
1084   }
1085   MI.eraseFromParent();
1086   return true;
1087 }
1088 
1089 void R600InstrInfo::reserveIndirectRegisters(BitVector &Reserved,
1090                                              const MachineFunction &MF,
1091                                              const R600RegisterInfo &TRI) const {
1092   const R600Subtarget &ST = MF.getSubtarget<R600Subtarget>();
1093   const R600FrameLowering *TFL = ST.getFrameLowering();
1094 
1095   unsigned StackWidth = TFL->getStackWidth(MF);
1096   int End = getIndirectIndexEnd(MF);
1097 
1098   if (End == -1)
1099     return;
1100 
1101   for (int Index = getIndirectIndexBegin(MF); Index <= End; ++Index) {
1102     for (unsigned Chan = 0; Chan < StackWidth; ++Chan) {
1103       unsigned Reg = R600::R600_TReg32RegClass.getRegister((4 * Index) + Chan);
1104       TRI.reserveRegisterTuples(Reserved, Reg);
1105     }
1106   }
1107 }
1108 
1109 const TargetRegisterClass *R600InstrInfo::getIndirectAddrRegClass() const {
1110   return &R600::R600_TReg32_XRegClass;
1111 }
1112 
1113 MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
1114                                        MachineBasicBlock::iterator I,
1115                                        unsigned ValueReg, unsigned Address,
1116                                        unsigned OffsetReg) const {
1117   return buildIndirectWrite(MBB, I, ValueReg, Address, OffsetReg, 0);
1118 }
1119 
1120 MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
1121                                        MachineBasicBlock::iterator I,
1122                                        unsigned ValueReg, unsigned Address,
1123                                        unsigned OffsetReg,
1124                                        unsigned AddrChan) const {
1125   unsigned AddrReg;
1126   switch (AddrChan) {
1127     default: llvm_unreachable("Invalid Channel");
1128     case 0: AddrReg = R600::R600_AddrRegClass.getRegister(Address); break;
1129     case 1: AddrReg = R600::R600_Addr_YRegClass.getRegister(Address); break;
1130     case 2: AddrReg = R600::R600_Addr_ZRegClass.getRegister(Address); break;
1131     case 3: AddrReg = R600::R600_Addr_WRegClass.getRegister(Address); break;
1132   }
1133   MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, R600::MOVA_INT_eg,
1134                                                R600::AR_X, OffsetReg);
1135   setImmOperand(*MOVA, R600::OpName::write, 0);
1136 
1137   MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, R600::MOV,
1138                                       AddrReg, ValueReg)
1139                                       .addReg(R600::AR_X,
1140                                            RegState::Implicit | RegState::Kill);
1141   setImmOperand(*Mov, R600::OpName::dst_rel, 1);
1142   return Mov;
1143 }
1144 
1145 MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
1146                                        MachineBasicBlock::iterator I,
1147                                        unsigned ValueReg, unsigned Address,
1148                                        unsigned OffsetReg) const {
1149   return buildIndirectRead(MBB, I, ValueReg, Address, OffsetReg, 0);
1150 }
1151 
1152 MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
1153                                        MachineBasicBlock::iterator I,
1154                                        unsigned ValueReg, unsigned Address,
1155                                        unsigned OffsetReg,
1156                                        unsigned AddrChan) const {
1157   unsigned AddrReg;
1158   switch (AddrChan) {
1159     default: llvm_unreachable("Invalid Channel");
1160     case 0: AddrReg = R600::R600_AddrRegClass.getRegister(Address); break;
1161     case 1: AddrReg = R600::R600_Addr_YRegClass.getRegister(Address); break;
1162     case 2: AddrReg = R600::R600_Addr_ZRegClass.getRegister(Address); break;
1163     case 3: AddrReg = R600::R600_Addr_WRegClass.getRegister(Address); break;
1164   }
1165   MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, R600::MOVA_INT_eg,
1166                                                        R600::AR_X,
1167                                                        OffsetReg);
1168   setImmOperand(*MOVA, R600::OpName::write, 0);
1169   MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, R600::MOV,
1170                                       ValueReg,
1171                                       AddrReg)
1172                                       .addReg(R600::AR_X,
1173                                            RegState::Implicit | RegState::Kill);
1174   setImmOperand(*Mov, R600::OpName::src0_rel, 1);
1175 
1176   return Mov;
1177 }
1178 
1179 int R600InstrInfo::getIndirectIndexBegin(const MachineFunction &MF) const {
1180   const MachineRegisterInfo &MRI = MF.getRegInfo();
1181   const MachineFrameInfo &MFI = MF.getFrameInfo();
1182   int Offset = -1;
1183 
1184   if (MFI.getNumObjects() == 0) {
1185     return -1;
1186   }
1187 
1188   if (MRI.livein_empty()) {
1189     return 0;
1190   }
1191 
1192   const TargetRegisterClass *IndirectRC = getIndirectAddrRegClass();
1193   for (std::pair<unsigned, unsigned> LI : MRI.liveins()) {
1194     unsigned Reg = LI.first;
1195     if (Register::isVirtualRegister(Reg) || !IndirectRC->contains(Reg))
1196       continue;
1197 
1198     unsigned RegIndex;
1199     unsigned RegEnd;
1200     for (RegIndex = 0, RegEnd = IndirectRC->getNumRegs(); RegIndex != RegEnd;
1201                                                           ++RegIndex) {
1202       if (IndirectRC->getRegister(RegIndex) == Reg)
1203         break;
1204     }
1205     Offset = std::max(Offset, (int)RegIndex);
1206   }
1207 
1208   return Offset + 1;
1209 }
1210 
1211 int R600InstrInfo::getIndirectIndexEnd(const MachineFunction &MF) const {
1212   int Offset = 0;
1213   const MachineFrameInfo &MFI = MF.getFrameInfo();
1214 
1215   // Variable sized objects are not supported
1216   if (MFI.hasVarSizedObjects()) {
1217     return -1;
1218   }
1219 
1220   if (MFI.getNumObjects() == 0) {
1221     return -1;
1222   }
1223 
1224   const R600Subtarget &ST = MF.getSubtarget<R600Subtarget>();
1225   const R600FrameLowering *TFL = ST.getFrameLowering();
1226 
1227   unsigned IgnoredFrameReg;
1228   Offset = TFL->getFrameIndexReference(MF, -1, IgnoredFrameReg);
1229 
1230   return getIndirectIndexBegin(MF) + Offset;
1231 }
1232 
1233 unsigned R600InstrInfo::getMaxAlusPerClause() const {
1234   return 115;
1235 }
1236 
1237 MachineInstrBuilder R600InstrInfo::buildDefaultInstruction(MachineBasicBlock &MBB,
1238                                                   MachineBasicBlock::iterator I,
1239                                                   unsigned Opcode,
1240                                                   unsigned DstReg,
1241                                                   unsigned Src0Reg,
1242                                                   unsigned Src1Reg) const {
1243   MachineInstrBuilder MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opcode),
1244     DstReg);           // $dst
1245 
1246   if (Src1Reg) {
1247     MIB.addImm(0)     // $update_exec_mask
1248        .addImm(0);    // $update_predicate
1249   }
1250   MIB.addImm(1)        // $write
1251      .addImm(0)        // $omod
1252      .addImm(0)        // $dst_rel
1253      .addImm(0)        // $dst_clamp
1254      .addReg(Src0Reg)  // $src0
1255      .addImm(0)        // $src0_neg
1256      .addImm(0)        // $src0_rel
1257      .addImm(0)        // $src0_abs
1258      .addImm(-1);       // $src0_sel
1259 
1260   if (Src1Reg) {
1261     MIB.addReg(Src1Reg) // $src1
1262        .addImm(0)       // $src1_neg
1263        .addImm(0)       // $src1_rel
1264        .addImm(0)       // $src1_abs
1265        .addImm(-1);      // $src1_sel
1266   }
1267 
1268   //XXX: The r600g finalizer expects this to be 1, once we've moved the
1269   //scheduling to the backend, we can change the default to 0.
1270   MIB.addImm(1)        // $last
1271       .addReg(R600::PRED_SEL_OFF) // $pred_sel
1272       .addImm(0)         // $literal
1273       .addImm(0);        // $bank_swizzle
1274 
1275   return MIB;
1276 }
1277 
1278 #define OPERAND_CASE(Label) \
1279   case Label: { \
1280     static const unsigned Ops[] = \
1281     { \
1282       Label##_X, \
1283       Label##_Y, \
1284       Label##_Z, \
1285       Label##_W \
1286     }; \
1287     return Ops[Slot]; \
1288   }
1289 
1290 static unsigned getSlotedOps(unsigned  Op, unsigned Slot) {
1291   switch (Op) {
1292   OPERAND_CASE(R600::OpName::update_exec_mask)
1293   OPERAND_CASE(R600::OpName::update_pred)
1294   OPERAND_CASE(R600::OpName::write)
1295   OPERAND_CASE(R600::OpName::omod)
1296   OPERAND_CASE(R600::OpName::dst_rel)
1297   OPERAND_CASE(R600::OpName::clamp)
1298   OPERAND_CASE(R600::OpName::src0)
1299   OPERAND_CASE(R600::OpName::src0_neg)
1300   OPERAND_CASE(R600::OpName::src0_rel)
1301   OPERAND_CASE(R600::OpName::src0_abs)
1302   OPERAND_CASE(R600::OpName::src0_sel)
1303   OPERAND_CASE(R600::OpName::src1)
1304   OPERAND_CASE(R600::OpName::src1_neg)
1305   OPERAND_CASE(R600::OpName::src1_rel)
1306   OPERAND_CASE(R600::OpName::src1_abs)
1307   OPERAND_CASE(R600::OpName::src1_sel)
1308   OPERAND_CASE(R600::OpName::pred_sel)
1309   default:
1310     llvm_unreachable("Wrong Operand");
1311   }
1312 }
1313 
1314 #undef OPERAND_CASE
1315 
1316 MachineInstr *R600InstrInfo::buildSlotOfVectorInstruction(
1317     MachineBasicBlock &MBB, MachineInstr *MI, unsigned Slot, unsigned DstReg)
1318     const {
1319   assert (MI->getOpcode() == R600::DOT_4 && "Not Implemented");
1320   unsigned Opcode;
1321   if (ST.getGeneration() <= AMDGPUSubtarget::R700)
1322     Opcode = R600::DOT4_r600;
1323   else
1324     Opcode = R600::DOT4_eg;
1325   MachineBasicBlock::iterator I = MI;
1326   MachineOperand &Src0 = MI->getOperand(
1327       getOperandIdx(MI->getOpcode(), getSlotedOps(R600::OpName::src0, Slot)));
1328   MachineOperand &Src1 = MI->getOperand(
1329       getOperandIdx(MI->getOpcode(), getSlotedOps(R600::OpName::src1, Slot)));
1330   MachineInstr *MIB = buildDefaultInstruction(
1331       MBB, I, Opcode, DstReg, Src0.getReg(), Src1.getReg());
1332   static const unsigned  Operands[14] = {
1333     R600::OpName::update_exec_mask,
1334     R600::OpName::update_pred,
1335     R600::OpName::write,
1336     R600::OpName::omod,
1337     R600::OpName::dst_rel,
1338     R600::OpName::clamp,
1339     R600::OpName::src0_neg,
1340     R600::OpName::src0_rel,
1341     R600::OpName::src0_abs,
1342     R600::OpName::src0_sel,
1343     R600::OpName::src1_neg,
1344     R600::OpName::src1_rel,
1345     R600::OpName::src1_abs,
1346     R600::OpName::src1_sel,
1347   };
1348 
1349   MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
1350       getSlotedOps(R600::OpName::pred_sel, Slot)));
1351   MIB->getOperand(getOperandIdx(Opcode, R600::OpName::pred_sel))
1352       .setReg(MO.getReg());
1353 
1354   for (unsigned i = 0; i < 14; i++) {
1355     MachineOperand &MO = MI->getOperand(
1356         getOperandIdx(MI->getOpcode(), getSlotedOps(Operands[i], Slot)));
1357     assert (MO.isImm());
1358     setImmOperand(*MIB, Operands[i], MO.getImm());
1359   }
1360   MIB->getOperand(20).setImm(0);
1361   return MIB;
1362 }
1363 
1364 MachineInstr *R600InstrInfo::buildMovImm(MachineBasicBlock &BB,
1365                                          MachineBasicBlock::iterator I,
1366                                          unsigned DstReg,
1367                                          uint64_t Imm) const {
1368   MachineInstr *MovImm = buildDefaultInstruction(BB, I, R600::MOV, DstReg,
1369                                                   R600::ALU_LITERAL_X);
1370   setImmOperand(*MovImm, R600::OpName::literal, Imm);
1371   return MovImm;
1372 }
1373 
1374 MachineInstr *R600InstrInfo::buildMovInstr(MachineBasicBlock *MBB,
1375                                        MachineBasicBlock::iterator I,
1376                                        unsigned DstReg, unsigned SrcReg) const {
1377   return buildDefaultInstruction(*MBB, I, R600::MOV, DstReg, SrcReg);
1378 }
1379 
1380 int R600InstrInfo::getOperandIdx(const MachineInstr &MI, unsigned Op) const {
1381   return getOperandIdx(MI.getOpcode(), Op);
1382 }
1383 
1384 int R600InstrInfo::getOperandIdx(unsigned Opcode, unsigned Op) const {
1385   return R600::getNamedOperandIdx(Opcode, Op);
1386 }
1387 
1388 void R600InstrInfo::setImmOperand(MachineInstr &MI, unsigned Op,
1389                                   int64_t Imm) const {
1390   int Idx = getOperandIdx(MI, Op);
1391   assert(Idx != -1 && "Operand not supported for this instruction.");
1392   assert(MI.getOperand(Idx).isImm());
1393   MI.getOperand(Idx).setImm(Imm);
1394 }
1395 
1396 //===----------------------------------------------------------------------===//
1397 // Instruction flag getters/setters
1398 //===----------------------------------------------------------------------===//
1399 
1400 MachineOperand &R600InstrInfo::getFlagOp(MachineInstr &MI, unsigned SrcIdx,
1401                                          unsigned Flag) const {
1402   unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
1403   int FlagIndex = 0;
1404   if (Flag != 0) {
1405     // If we pass something other than the default value of Flag to this
1406     // function, it means we are want to set a flag on an instruction
1407     // that uses native encoding.
1408     assert(HAS_NATIVE_OPERANDS(TargetFlags));
1409     bool IsOP3 = (TargetFlags & R600_InstFlag::OP3) == R600_InstFlag::OP3;
1410     switch (Flag) {
1411     case MO_FLAG_CLAMP:
1412       FlagIndex = getOperandIdx(MI, R600::OpName::clamp);
1413       break;
1414     case MO_FLAG_MASK:
1415       FlagIndex = getOperandIdx(MI, R600::OpName::write);
1416       break;
1417     case MO_FLAG_NOT_LAST:
1418     case MO_FLAG_LAST:
1419       FlagIndex = getOperandIdx(MI, R600::OpName::last);
1420       break;
1421     case MO_FLAG_NEG:
1422       switch (SrcIdx) {
1423       case 0:
1424         FlagIndex = getOperandIdx(MI, R600::OpName::src0_neg);
1425         break;
1426       case 1:
1427         FlagIndex = getOperandIdx(MI, R600::OpName::src1_neg);
1428         break;
1429       case 2:
1430         FlagIndex = getOperandIdx(MI, R600::OpName::src2_neg);
1431         break;
1432       }
1433       break;
1434 
1435     case MO_FLAG_ABS:
1436       assert(!IsOP3 && "Cannot set absolute value modifier for OP3 "
1437                        "instructions.");
1438       (void)IsOP3;
1439       switch (SrcIdx) {
1440       case 0:
1441         FlagIndex = getOperandIdx(MI, R600::OpName::src0_abs);
1442         break;
1443       case 1:
1444         FlagIndex = getOperandIdx(MI, R600::OpName::src1_abs);
1445         break;
1446       }
1447       break;
1448 
1449     default:
1450       FlagIndex = -1;
1451       break;
1452     }
1453     assert(FlagIndex != -1 && "Flag not supported for this instruction");
1454   } else {
1455       FlagIndex = GET_FLAG_OPERAND_IDX(TargetFlags);
1456       assert(FlagIndex != 0 &&
1457          "Instruction flags not supported for this instruction");
1458   }
1459 
1460   MachineOperand &FlagOp = MI.getOperand(FlagIndex);
1461   assert(FlagOp.isImm());
1462   return FlagOp;
1463 }
1464 
1465 void R600InstrInfo::addFlag(MachineInstr &MI, unsigned Operand,
1466                             unsigned Flag) const {
1467   unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
1468   if (Flag == 0) {
1469     return;
1470   }
1471   if (HAS_NATIVE_OPERANDS(TargetFlags)) {
1472     MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
1473     if (Flag == MO_FLAG_NOT_LAST) {
1474       clearFlag(MI, Operand, MO_FLAG_LAST);
1475     } else if (Flag == MO_FLAG_MASK) {
1476       clearFlag(MI, Operand, Flag);
1477     } else {
1478       FlagOp.setImm(1);
1479     }
1480   } else {
1481       MachineOperand &FlagOp = getFlagOp(MI, Operand);
1482       FlagOp.setImm(FlagOp.getImm() | (Flag << (NUM_MO_FLAGS * Operand)));
1483   }
1484 }
1485 
1486 void R600InstrInfo::clearFlag(MachineInstr &MI, unsigned Operand,
1487                               unsigned Flag) const {
1488   unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
1489   if (HAS_NATIVE_OPERANDS(TargetFlags)) {
1490     MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
1491     FlagOp.setImm(0);
1492   } else {
1493     MachineOperand &FlagOp = getFlagOp(MI);
1494     unsigned InstFlags = FlagOp.getImm();
1495     InstFlags &= ~(Flag << (NUM_MO_FLAGS * Operand));
1496     FlagOp.setImm(InstFlags);
1497   }
1498 }
1499 
1500 unsigned R600InstrInfo::getAddressSpaceForPseudoSourceKind(
1501     unsigned Kind) const {
1502   switch (Kind) {
1503   case PseudoSourceValue::Stack:
1504   case PseudoSourceValue::FixedStack:
1505     return AMDGPUAS::PRIVATE_ADDRESS;
1506   case PseudoSourceValue::ConstantPool:
1507   case PseudoSourceValue::GOT:
1508   case PseudoSourceValue::JumpTable:
1509   case PseudoSourceValue::GlobalValueCallEntry:
1510   case PseudoSourceValue::ExternalSymbolCallEntry:
1511   case PseudoSourceValue::TargetCustom:
1512     return AMDGPUAS::CONSTANT_ADDRESS;
1513   }
1514 
1515   llvm_unreachable("Invalid pseudo source kind");
1516 }
1517