xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/R600InstrInfo.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===-- R600InstrInfo.cpp - R600 Instruction Information ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// R600 Implementation of TargetInstrInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "R600InstrInfo.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUSubtarget.h"
18 #include "R600Defines.h"
19 #include "R600FrameLowering.h"
20 #include "R600RegisterInfo.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include <algorithm>
37 #include <cassert>
38 #include <cstdint>
39 #include <cstring>
40 #include <iterator>
41 #include <utility>
42 #include <vector>
43 
44 using namespace llvm;
45 
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "R600GenDFAPacketizer.inc"
48 
49 #define GET_INSTRINFO_CTOR_DTOR
50 #define GET_INSTRMAP_INFO
51 #define GET_INSTRINFO_NAMED_OPS
52 #include "R600GenInstrInfo.inc"
53 
54 R600InstrInfo::R600InstrInfo(const R600Subtarget &ST)
55   : R600GenInstrInfo(-1, -1), RI(), ST(ST) {}
56 
57 bool R600InstrInfo::isVector(const MachineInstr &MI) const {
58   return get(MI.getOpcode()).TSFlags & R600_InstFlag::VECTOR;
59 }
60 
61 void R600InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
62                                 MachineBasicBlock::iterator MI,
63                                 const DebugLoc &DL, unsigned DestReg,
64                                 unsigned SrcReg, bool KillSrc) const {
65   unsigned VectorComponents = 0;
66   if ((R600::R600_Reg128RegClass.contains(DestReg) ||
67       R600::R600_Reg128VerticalRegClass.contains(DestReg)) &&
68       (R600::R600_Reg128RegClass.contains(SrcReg) ||
69        R600::R600_Reg128VerticalRegClass.contains(SrcReg))) {
70     VectorComponents = 4;
71   } else if((R600::R600_Reg64RegClass.contains(DestReg) ||
72             R600::R600_Reg64VerticalRegClass.contains(DestReg)) &&
73             (R600::R600_Reg64RegClass.contains(SrcReg) ||
74              R600::R600_Reg64VerticalRegClass.contains(SrcReg))) {
75     VectorComponents = 2;
76   }
77 
78   if (VectorComponents > 0) {
79     for (unsigned I = 0; I < VectorComponents; I++) {
80       unsigned SubRegIndex = AMDGPURegisterInfo::getSubRegFromChannel(I);
81       buildDefaultInstruction(MBB, MI, R600::MOV,
82                               RI.getSubReg(DestReg, SubRegIndex),
83                               RI.getSubReg(SrcReg, SubRegIndex))
84                               .addReg(DestReg,
85                                       RegState::Define | RegState::Implicit);
86     }
87   } else {
88     MachineInstr *NewMI = buildDefaultInstruction(MBB, MI, R600::MOV,
89                                                   DestReg, SrcReg);
90     NewMI->getOperand(getOperandIdx(*NewMI, R600::OpName::src0))
91                                     .setIsKill(KillSrc);
92   }
93 }
94 
95 /// \returns true if \p MBBI can be moved into a new basic.
96 bool R600InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB,
97                                        MachineBasicBlock::iterator MBBI) const {
98   for (MachineInstr::const_mop_iterator I = MBBI->operands_begin(),
99                                         E = MBBI->operands_end(); I != E; ++I) {
100     if (I->isReg() && !TargetRegisterInfo::isVirtualRegister(I->getReg()) &&
101         I->isUse() && RI.isPhysRegLiveAcrossClauses(I->getReg()))
102       return false;
103   }
104   return true;
105 }
106 
107 bool R600InstrInfo::isMov(unsigned Opcode) const {
108   switch(Opcode) {
109   default:
110     return false;
111   case R600::MOV:
112   case R600::MOV_IMM_F32:
113   case R600::MOV_IMM_I32:
114     return true;
115   }
116 }
117 
118 bool R600InstrInfo::isReductionOp(unsigned Opcode) const {
119   return false;
120 }
121 
122 bool R600InstrInfo::isCubeOp(unsigned Opcode) const {
123   switch(Opcode) {
124     default: return false;
125     case R600::CUBE_r600_pseudo:
126     case R600::CUBE_r600_real:
127     case R600::CUBE_eg_pseudo:
128     case R600::CUBE_eg_real:
129       return true;
130   }
131 }
132 
133 bool R600InstrInfo::isALUInstr(unsigned Opcode) const {
134   unsigned TargetFlags = get(Opcode).TSFlags;
135 
136   return (TargetFlags & R600_InstFlag::ALU_INST);
137 }
138 
139 bool R600InstrInfo::hasInstrModifiers(unsigned Opcode) const {
140   unsigned TargetFlags = get(Opcode).TSFlags;
141 
142   return ((TargetFlags & R600_InstFlag::OP1) |
143           (TargetFlags & R600_InstFlag::OP2) |
144           (TargetFlags & R600_InstFlag::OP3));
145 }
146 
147 bool R600InstrInfo::isLDSInstr(unsigned Opcode) const {
148   unsigned TargetFlags = get(Opcode).TSFlags;
149 
150   return ((TargetFlags & R600_InstFlag::LDS_1A) |
151           (TargetFlags & R600_InstFlag::LDS_1A1D) |
152           (TargetFlags & R600_InstFlag::LDS_1A2D));
153 }
154 
155 bool R600InstrInfo::isLDSRetInstr(unsigned Opcode) const {
156   return isLDSInstr(Opcode) && getOperandIdx(Opcode, R600::OpName::dst) != -1;
157 }
158 
159 bool R600InstrInfo::canBeConsideredALU(const MachineInstr &MI) const {
160   if (isALUInstr(MI.getOpcode()))
161     return true;
162   if (isVector(MI) || isCubeOp(MI.getOpcode()))
163     return true;
164   switch (MI.getOpcode()) {
165   case R600::PRED_X:
166   case R600::INTERP_PAIR_XY:
167   case R600::INTERP_PAIR_ZW:
168   case R600::INTERP_VEC_LOAD:
169   case R600::COPY:
170   case R600::DOT_4:
171     return true;
172   default:
173     return false;
174   }
175 }
176 
177 bool R600InstrInfo::isTransOnly(unsigned Opcode) const {
178   if (ST.hasCaymanISA())
179     return false;
180   return (get(Opcode).getSchedClass() == R600::Sched::TransALU);
181 }
182 
183 bool R600InstrInfo::isTransOnly(const MachineInstr &MI) const {
184   return isTransOnly(MI.getOpcode());
185 }
186 
187 bool R600InstrInfo::isVectorOnly(unsigned Opcode) const {
188   return (get(Opcode).getSchedClass() == R600::Sched::VecALU);
189 }
190 
191 bool R600InstrInfo::isVectorOnly(const MachineInstr &MI) const {
192   return isVectorOnly(MI.getOpcode());
193 }
194 
195 bool R600InstrInfo::isExport(unsigned Opcode) const {
196   return (get(Opcode).TSFlags & R600_InstFlag::IS_EXPORT);
197 }
198 
199 bool R600InstrInfo::usesVertexCache(unsigned Opcode) const {
200   return ST.hasVertexCache() && IS_VTX(get(Opcode));
201 }
202 
203 bool R600InstrInfo::usesVertexCache(const MachineInstr &MI) const {
204   const MachineFunction *MF = MI.getParent()->getParent();
205   return !AMDGPU::isCompute(MF->getFunction().getCallingConv()) &&
206          usesVertexCache(MI.getOpcode());
207 }
208 
209 bool R600InstrInfo::usesTextureCache(unsigned Opcode) const {
210   return (!ST.hasVertexCache() && IS_VTX(get(Opcode))) || IS_TEX(get(Opcode));
211 }
212 
213 bool R600InstrInfo::usesTextureCache(const MachineInstr &MI) const {
214   const MachineFunction *MF = MI.getParent()->getParent();
215   return (AMDGPU::isCompute(MF->getFunction().getCallingConv()) &&
216           usesVertexCache(MI.getOpcode())) ||
217           usesTextureCache(MI.getOpcode());
218 }
219 
220 bool R600InstrInfo::mustBeLastInClause(unsigned Opcode) const {
221   switch (Opcode) {
222   case R600::KILLGT:
223   case R600::GROUP_BARRIER:
224     return true;
225   default:
226     return false;
227   }
228 }
229 
230 bool R600InstrInfo::usesAddressRegister(MachineInstr &MI) const {
231   return MI.findRegisterUseOperandIdx(R600::AR_X, false, &RI) != -1;
232 }
233 
234 bool R600InstrInfo::definesAddressRegister(MachineInstr &MI) const {
235   return MI.findRegisterDefOperandIdx(R600::AR_X, false, false, &RI) != -1;
236 }
237 
238 bool R600InstrInfo::readsLDSSrcReg(const MachineInstr &MI) const {
239   if (!isALUInstr(MI.getOpcode())) {
240     return false;
241   }
242   for (MachineInstr::const_mop_iterator I = MI.operands_begin(),
243                                         E = MI.operands_end();
244        I != E; ++I) {
245     if (!I->isReg() || !I->isUse() ||
246         TargetRegisterInfo::isVirtualRegister(I->getReg()))
247       continue;
248 
249     if (R600::R600_LDS_SRC_REGRegClass.contains(I->getReg()))
250       return true;
251   }
252   return false;
253 }
254 
255 int R600InstrInfo::getSelIdx(unsigned Opcode, unsigned SrcIdx) const {
256   static const unsigned SrcSelTable[][2] = {
257     {R600::OpName::src0, R600::OpName::src0_sel},
258     {R600::OpName::src1, R600::OpName::src1_sel},
259     {R600::OpName::src2, R600::OpName::src2_sel},
260     {R600::OpName::src0_X, R600::OpName::src0_sel_X},
261     {R600::OpName::src0_Y, R600::OpName::src0_sel_Y},
262     {R600::OpName::src0_Z, R600::OpName::src0_sel_Z},
263     {R600::OpName::src0_W, R600::OpName::src0_sel_W},
264     {R600::OpName::src1_X, R600::OpName::src1_sel_X},
265     {R600::OpName::src1_Y, R600::OpName::src1_sel_Y},
266     {R600::OpName::src1_Z, R600::OpName::src1_sel_Z},
267     {R600::OpName::src1_W, R600::OpName::src1_sel_W}
268   };
269 
270   for (const auto &Row : SrcSelTable) {
271     if (getOperandIdx(Opcode, Row[0]) == (int)SrcIdx) {
272       return getOperandIdx(Opcode, Row[1]);
273     }
274   }
275   return -1;
276 }
277 
278 SmallVector<std::pair<MachineOperand *, int64_t>, 3>
279 R600InstrInfo::getSrcs(MachineInstr &MI) const {
280   SmallVector<std::pair<MachineOperand *, int64_t>, 3> Result;
281 
282   if (MI.getOpcode() == R600::DOT_4) {
283     static const unsigned OpTable[8][2] = {
284       {R600::OpName::src0_X, R600::OpName::src0_sel_X},
285       {R600::OpName::src0_Y, R600::OpName::src0_sel_Y},
286       {R600::OpName::src0_Z, R600::OpName::src0_sel_Z},
287       {R600::OpName::src0_W, R600::OpName::src0_sel_W},
288       {R600::OpName::src1_X, R600::OpName::src1_sel_X},
289       {R600::OpName::src1_Y, R600::OpName::src1_sel_Y},
290       {R600::OpName::src1_Z, R600::OpName::src1_sel_Z},
291       {R600::OpName::src1_W, R600::OpName::src1_sel_W},
292     };
293 
294     for (unsigned j = 0; j < 8; j++) {
295       MachineOperand &MO =
296           MI.getOperand(getOperandIdx(MI.getOpcode(), OpTable[j][0]));
297       unsigned Reg = MO.getReg();
298       if (Reg == R600::ALU_CONST) {
299         MachineOperand &Sel =
300             MI.getOperand(getOperandIdx(MI.getOpcode(), OpTable[j][1]));
301         Result.push_back(std::make_pair(&MO, Sel.getImm()));
302         continue;
303       }
304 
305     }
306     return Result;
307   }
308 
309   static const unsigned OpTable[3][2] = {
310     {R600::OpName::src0, R600::OpName::src0_sel},
311     {R600::OpName::src1, R600::OpName::src1_sel},
312     {R600::OpName::src2, R600::OpName::src2_sel},
313   };
314 
315   for (unsigned j = 0; j < 3; j++) {
316     int SrcIdx = getOperandIdx(MI.getOpcode(), OpTable[j][0]);
317     if (SrcIdx < 0)
318       break;
319     MachineOperand &MO = MI.getOperand(SrcIdx);
320     unsigned Reg = MO.getReg();
321     if (Reg == R600::ALU_CONST) {
322       MachineOperand &Sel =
323           MI.getOperand(getOperandIdx(MI.getOpcode(), OpTable[j][1]));
324       Result.push_back(std::make_pair(&MO, Sel.getImm()));
325       continue;
326     }
327     if (Reg == R600::ALU_LITERAL_X) {
328       MachineOperand &Operand =
329           MI.getOperand(getOperandIdx(MI.getOpcode(), R600::OpName::literal));
330       if (Operand.isImm()) {
331         Result.push_back(std::make_pair(&MO, Operand.getImm()));
332         continue;
333       }
334       assert(Operand.isGlobal());
335     }
336     Result.push_back(std::make_pair(&MO, 0));
337   }
338   return Result;
339 }
340 
341 std::vector<std::pair<int, unsigned>>
342 R600InstrInfo::ExtractSrcs(MachineInstr &MI,
343                            const DenseMap<unsigned, unsigned> &PV,
344                            unsigned &ConstCount) const {
345   ConstCount = 0;
346   const std::pair<int, unsigned> DummyPair(-1, 0);
347   std::vector<std::pair<int, unsigned>> Result;
348   unsigned i = 0;
349   for (const auto &Src : getSrcs(MI)) {
350     ++i;
351     unsigned Reg = Src.first->getReg();
352     int Index = RI.getEncodingValue(Reg) & 0xff;
353     if (Reg == R600::OQAP) {
354       Result.push_back(std::make_pair(Index, 0U));
355     }
356     if (PV.find(Reg) != PV.end()) {
357       // 255 is used to tells its a PS/PV reg
358       Result.push_back(std::make_pair(255, 0U));
359       continue;
360     }
361     if (Index > 127) {
362       ConstCount++;
363       Result.push_back(DummyPair);
364       continue;
365     }
366     unsigned Chan = RI.getHWRegChan(Reg);
367     Result.push_back(std::make_pair(Index, Chan));
368   }
369   for (; i < 3; ++i)
370     Result.push_back(DummyPair);
371   return Result;
372 }
373 
374 static std::vector<std::pair<int, unsigned>>
375 Swizzle(std::vector<std::pair<int, unsigned>> Src,
376         R600InstrInfo::BankSwizzle Swz) {
377   if (Src[0] == Src[1])
378     Src[1].first = -1;
379   switch (Swz) {
380   case R600InstrInfo::ALU_VEC_012_SCL_210:
381     break;
382   case R600InstrInfo::ALU_VEC_021_SCL_122:
383     std::swap(Src[1], Src[2]);
384     break;
385   case R600InstrInfo::ALU_VEC_102_SCL_221:
386     std::swap(Src[0], Src[1]);
387     break;
388   case R600InstrInfo::ALU_VEC_120_SCL_212:
389     std::swap(Src[0], Src[1]);
390     std::swap(Src[0], Src[2]);
391     break;
392   case R600InstrInfo::ALU_VEC_201:
393     std::swap(Src[0], Src[2]);
394     std::swap(Src[0], Src[1]);
395     break;
396   case R600InstrInfo::ALU_VEC_210:
397     std::swap(Src[0], Src[2]);
398     break;
399   }
400   return Src;
401 }
402 
403 static unsigned getTransSwizzle(R600InstrInfo::BankSwizzle Swz, unsigned Op) {
404   assert(Op < 3 && "Out of range swizzle index");
405   switch (Swz) {
406   case R600InstrInfo::ALU_VEC_012_SCL_210: {
407     unsigned Cycles[3] = { 2, 1, 0};
408     return Cycles[Op];
409   }
410   case R600InstrInfo::ALU_VEC_021_SCL_122: {
411     unsigned Cycles[3] = { 1, 2, 2};
412     return Cycles[Op];
413   }
414   case R600InstrInfo::ALU_VEC_120_SCL_212: {
415     unsigned Cycles[3] = { 2, 1, 2};
416     return Cycles[Op];
417   }
418   case R600InstrInfo::ALU_VEC_102_SCL_221: {
419     unsigned Cycles[3] = { 2, 2, 1};
420     return Cycles[Op];
421   }
422   default:
423     llvm_unreachable("Wrong Swizzle for Trans Slot");
424   }
425 }
426 
427 /// returns how many MIs (whose inputs are represented by IGSrcs) can be packed
428 /// in the same Instruction Group while meeting read port limitations given a
429 /// Swz swizzle sequence.
430 unsigned  R600InstrInfo::isLegalUpTo(
431     const std::vector<std::vector<std::pair<int, unsigned>>> &IGSrcs,
432     const std::vector<R600InstrInfo::BankSwizzle> &Swz,
433     const std::vector<std::pair<int, unsigned>> &TransSrcs,
434     R600InstrInfo::BankSwizzle TransSwz) const {
435   int Vector[4][3];
436   memset(Vector, -1, sizeof(Vector));
437   for (unsigned i = 0, e = IGSrcs.size(); i < e; i++) {
438     const std::vector<std::pair<int, unsigned>> &Srcs =
439         Swizzle(IGSrcs[i], Swz[i]);
440     for (unsigned j = 0; j < 3; j++) {
441       const std::pair<int, unsigned> &Src = Srcs[j];
442       if (Src.first < 0 || Src.first == 255)
443         continue;
444       if (Src.first == GET_REG_INDEX(RI.getEncodingValue(R600::OQAP))) {
445         if (Swz[i] != R600InstrInfo::ALU_VEC_012_SCL_210 &&
446             Swz[i] != R600InstrInfo::ALU_VEC_021_SCL_122) {
447             // The value from output queue A (denoted by register OQAP) can
448             // only be fetched during the first cycle.
449             return false;
450         }
451         // OQAP does not count towards the normal read port restrictions
452         continue;
453       }
454       if (Vector[Src.second][j] < 0)
455         Vector[Src.second][j] = Src.first;
456       if (Vector[Src.second][j] != Src.first)
457         return i;
458     }
459   }
460   // Now check Trans Alu
461   for (unsigned i = 0, e = TransSrcs.size(); i < e; ++i) {
462     const std::pair<int, unsigned> &Src = TransSrcs[i];
463     unsigned Cycle = getTransSwizzle(TransSwz, i);
464     if (Src.first < 0)
465       continue;
466     if (Src.first == 255)
467       continue;
468     if (Vector[Src.second][Cycle] < 0)
469       Vector[Src.second][Cycle] = Src.first;
470     if (Vector[Src.second][Cycle] != Src.first)
471       return IGSrcs.size() - 1;
472   }
473   return IGSrcs.size();
474 }
475 
476 /// Given a swizzle sequence SwzCandidate and an index Idx, returns the next
477 /// (in lexicographic term) swizzle sequence assuming that all swizzles after
478 /// Idx can be skipped
479 static bool
480 NextPossibleSolution(
481     std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
482     unsigned Idx) {
483   assert(Idx < SwzCandidate.size());
484   int ResetIdx = Idx;
485   while (ResetIdx > -1 && SwzCandidate[ResetIdx] == R600InstrInfo::ALU_VEC_210)
486     ResetIdx --;
487   for (unsigned i = ResetIdx + 1, e = SwzCandidate.size(); i < e; i++) {
488     SwzCandidate[i] = R600InstrInfo::ALU_VEC_012_SCL_210;
489   }
490   if (ResetIdx == -1)
491     return false;
492   int NextSwizzle = SwzCandidate[ResetIdx] + 1;
493   SwzCandidate[ResetIdx] = (R600InstrInfo::BankSwizzle)NextSwizzle;
494   return true;
495 }
496 
497 /// Enumerate all possible Swizzle sequence to find one that can meet all
498 /// read port requirements.
499 bool R600InstrInfo::FindSwizzleForVectorSlot(
500     const std::vector<std::vector<std::pair<int, unsigned>>> &IGSrcs,
501     std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
502     const std::vector<std::pair<int, unsigned>> &TransSrcs,
503     R600InstrInfo::BankSwizzle TransSwz) const {
504   unsigned ValidUpTo = 0;
505   do {
506     ValidUpTo = isLegalUpTo(IGSrcs, SwzCandidate, TransSrcs, TransSwz);
507     if (ValidUpTo == IGSrcs.size())
508       return true;
509   } while (NextPossibleSolution(SwzCandidate, ValidUpTo));
510   return false;
511 }
512 
513 /// Instructions in Trans slot can't read gpr at cycle 0 if they also read
514 /// a const, and can't read a gpr at cycle 1 if they read 2 const.
515 static bool
516 isConstCompatible(R600InstrInfo::BankSwizzle TransSwz,
517                   const std::vector<std::pair<int, unsigned>> &TransOps,
518                   unsigned ConstCount) {
519   // TransALU can't read 3 constants
520   if (ConstCount > 2)
521     return false;
522   for (unsigned i = 0, e = TransOps.size(); i < e; ++i) {
523     const std::pair<int, unsigned> &Src = TransOps[i];
524     unsigned Cycle = getTransSwizzle(TransSwz, i);
525     if (Src.first < 0)
526       continue;
527     if (ConstCount > 0 && Cycle == 0)
528       return false;
529     if (ConstCount > 1 && Cycle == 1)
530       return false;
531   }
532   return true;
533 }
534 
535 bool
536 R600InstrInfo::fitsReadPortLimitations(const std::vector<MachineInstr *> &IG,
537                                        const DenseMap<unsigned, unsigned> &PV,
538                                        std::vector<BankSwizzle> &ValidSwizzle,
539                                        bool isLastAluTrans)
540     const {
541   //Todo : support shared src0 - src1 operand
542 
543   std::vector<std::vector<std::pair<int, unsigned>>> IGSrcs;
544   ValidSwizzle.clear();
545   unsigned ConstCount;
546   BankSwizzle TransBS = ALU_VEC_012_SCL_210;
547   for (unsigned i = 0, e = IG.size(); i < e; ++i) {
548     IGSrcs.push_back(ExtractSrcs(*IG[i], PV, ConstCount));
549     unsigned Op = getOperandIdx(IG[i]->getOpcode(),
550         R600::OpName::bank_swizzle);
551     ValidSwizzle.push_back( (R600InstrInfo::BankSwizzle)
552         IG[i]->getOperand(Op).getImm());
553   }
554   std::vector<std::pair<int, unsigned>> TransOps;
555   if (!isLastAluTrans)
556     return FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps, TransBS);
557 
558   TransOps = std::move(IGSrcs.back());
559   IGSrcs.pop_back();
560   ValidSwizzle.pop_back();
561 
562   static const R600InstrInfo::BankSwizzle TransSwz[] = {
563     ALU_VEC_012_SCL_210,
564     ALU_VEC_021_SCL_122,
565     ALU_VEC_120_SCL_212,
566     ALU_VEC_102_SCL_221
567   };
568   for (unsigned i = 0; i < 4; i++) {
569     TransBS = TransSwz[i];
570     if (!isConstCompatible(TransBS, TransOps, ConstCount))
571       continue;
572     bool Result = FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps,
573         TransBS);
574     if (Result) {
575       ValidSwizzle.push_back(TransBS);
576       return true;
577     }
578   }
579 
580   return false;
581 }
582 
583 bool
584 R600InstrInfo::fitsConstReadLimitations(const std::vector<unsigned> &Consts)
585     const {
586   assert (Consts.size() <= 12 && "Too many operands in instructions group");
587   unsigned Pair1 = 0, Pair2 = 0;
588   for (unsigned i = 0, n = Consts.size(); i < n; ++i) {
589     unsigned ReadConstHalf = Consts[i] & 2;
590     unsigned ReadConstIndex = Consts[i] & (~3);
591     unsigned ReadHalfConst = ReadConstIndex | ReadConstHalf;
592     if (!Pair1) {
593       Pair1 = ReadHalfConst;
594       continue;
595     }
596     if (Pair1 == ReadHalfConst)
597       continue;
598     if (!Pair2) {
599       Pair2 = ReadHalfConst;
600       continue;
601     }
602     if (Pair2 != ReadHalfConst)
603       return false;
604   }
605   return true;
606 }
607 
608 bool
609 R600InstrInfo::fitsConstReadLimitations(const std::vector<MachineInstr *> &MIs)
610     const {
611   std::vector<unsigned> Consts;
612   SmallSet<int64_t, 4> Literals;
613   for (unsigned i = 0, n = MIs.size(); i < n; i++) {
614     MachineInstr &MI = *MIs[i];
615     if (!isALUInstr(MI.getOpcode()))
616       continue;
617 
618     for (const auto &Src : getSrcs(MI)) {
619       if (Src.first->getReg() == R600::ALU_LITERAL_X)
620         Literals.insert(Src.second);
621       if (Literals.size() > 4)
622         return false;
623       if (Src.first->getReg() == R600::ALU_CONST)
624         Consts.push_back(Src.second);
625       if (R600::R600_KC0RegClass.contains(Src.first->getReg()) ||
626           R600::R600_KC1RegClass.contains(Src.first->getReg())) {
627         unsigned Index = RI.getEncodingValue(Src.first->getReg()) & 0xff;
628         unsigned Chan = RI.getHWRegChan(Src.first->getReg());
629         Consts.push_back((Index << 2) | Chan);
630       }
631     }
632   }
633   return fitsConstReadLimitations(Consts);
634 }
635 
636 DFAPacketizer *
637 R600InstrInfo::CreateTargetScheduleState(const TargetSubtargetInfo &STI) const {
638   const InstrItineraryData *II = STI.getInstrItineraryData();
639   return static_cast<const R600Subtarget &>(STI).createDFAPacketizer(II);
640 }
641 
642 static bool
643 isPredicateSetter(unsigned Opcode) {
644   switch (Opcode) {
645   case R600::PRED_X:
646     return true;
647   default:
648     return false;
649   }
650 }
651 
652 static MachineInstr *
653 findFirstPredicateSetterFrom(MachineBasicBlock &MBB,
654                              MachineBasicBlock::iterator I) {
655   while (I != MBB.begin()) {
656     --I;
657     MachineInstr &MI = *I;
658     if (isPredicateSetter(MI.getOpcode()))
659       return &MI;
660   }
661 
662   return nullptr;
663 }
664 
665 static
666 bool isJump(unsigned Opcode) {
667   return Opcode == R600::JUMP || Opcode == R600::JUMP_COND;
668 }
669 
670 static bool isBranch(unsigned Opcode) {
671   return Opcode == R600::BRANCH || Opcode == R600::BRANCH_COND_i32 ||
672       Opcode == R600::BRANCH_COND_f32;
673 }
674 
675 bool R600InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
676                                   MachineBasicBlock *&TBB,
677                                   MachineBasicBlock *&FBB,
678                                   SmallVectorImpl<MachineOperand> &Cond,
679                                   bool AllowModify) const {
680   // Most of the following comes from the ARM implementation of AnalyzeBranch
681 
682   // If the block has no terminators, it just falls into the block after it.
683   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
684   if (I == MBB.end())
685     return false;
686 
687   // R600::BRANCH* instructions are only available after isel and are not
688   // handled
689   if (isBranch(I->getOpcode()))
690     return true;
691   if (!isJump(I->getOpcode())) {
692     return false;
693   }
694 
695   // Remove successive JUMP
696   while (I != MBB.begin() && std::prev(I)->getOpcode() == R600::JUMP) {
697       MachineBasicBlock::iterator PriorI = std::prev(I);
698       if (AllowModify)
699         I->removeFromParent();
700       I = PriorI;
701   }
702   MachineInstr &LastInst = *I;
703 
704   // If there is only one terminator instruction, process it.
705   unsigned LastOpc = LastInst.getOpcode();
706   if (I == MBB.begin() || !isJump((--I)->getOpcode())) {
707     if (LastOpc == R600::JUMP) {
708       TBB = LastInst.getOperand(0).getMBB();
709       return false;
710     } else if (LastOpc == R600::JUMP_COND) {
711       auto predSet = I;
712       while (!isPredicateSetter(predSet->getOpcode())) {
713         predSet = --I;
714       }
715       TBB = LastInst.getOperand(0).getMBB();
716       Cond.push_back(predSet->getOperand(1));
717       Cond.push_back(predSet->getOperand(2));
718       Cond.push_back(MachineOperand::CreateReg(R600::PRED_SEL_ONE, false));
719       return false;
720     }
721     return true;  // Can't handle indirect branch.
722   }
723 
724   // Get the instruction before it if it is a terminator.
725   MachineInstr &SecondLastInst = *I;
726   unsigned SecondLastOpc = SecondLastInst.getOpcode();
727 
728   // If the block ends with a B and a Bcc, handle it.
729   if (SecondLastOpc == R600::JUMP_COND && LastOpc == R600::JUMP) {
730     auto predSet = --I;
731     while (!isPredicateSetter(predSet->getOpcode())) {
732       predSet = --I;
733     }
734     TBB = SecondLastInst.getOperand(0).getMBB();
735     FBB = LastInst.getOperand(0).getMBB();
736     Cond.push_back(predSet->getOperand(1));
737     Cond.push_back(predSet->getOperand(2));
738     Cond.push_back(MachineOperand::CreateReg(R600::PRED_SEL_ONE, false));
739     return false;
740   }
741 
742   // Otherwise, can't handle this.
743   return true;
744 }
745 
746 static
747 MachineBasicBlock::iterator FindLastAluClause(MachineBasicBlock &MBB) {
748   for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
749       It != E; ++It) {
750     if (It->getOpcode() == R600::CF_ALU ||
751         It->getOpcode() == R600::CF_ALU_PUSH_BEFORE)
752       return It.getReverse();
753   }
754   return MBB.end();
755 }
756 
757 unsigned R600InstrInfo::insertBranch(MachineBasicBlock &MBB,
758                                      MachineBasicBlock *TBB,
759                                      MachineBasicBlock *FBB,
760                                      ArrayRef<MachineOperand> Cond,
761                                      const DebugLoc &DL,
762                                      int *BytesAdded) const {
763   assert(TBB && "insertBranch must not be told to insert a fallthrough");
764   assert(!BytesAdded && "code size not handled");
765 
766   if (!FBB) {
767     if (Cond.empty()) {
768       BuildMI(&MBB, DL, get(R600::JUMP)).addMBB(TBB);
769       return 1;
770     } else {
771       MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
772       assert(PredSet && "No previous predicate !");
773       addFlag(*PredSet, 0, MO_FLAG_PUSH);
774       PredSet->getOperand(2).setImm(Cond[1].getImm());
775 
776       BuildMI(&MBB, DL, get(R600::JUMP_COND))
777              .addMBB(TBB)
778              .addReg(R600::PREDICATE_BIT, RegState::Kill);
779       MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
780       if (CfAlu == MBB.end())
781         return 1;
782       assert (CfAlu->getOpcode() == R600::CF_ALU);
783       CfAlu->setDesc(get(R600::CF_ALU_PUSH_BEFORE));
784       return 1;
785     }
786   } else {
787     MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
788     assert(PredSet && "No previous predicate !");
789     addFlag(*PredSet, 0, MO_FLAG_PUSH);
790     PredSet->getOperand(2).setImm(Cond[1].getImm());
791     BuildMI(&MBB, DL, get(R600::JUMP_COND))
792             .addMBB(TBB)
793             .addReg(R600::PREDICATE_BIT, RegState::Kill);
794     BuildMI(&MBB, DL, get(R600::JUMP)).addMBB(FBB);
795     MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
796     if (CfAlu == MBB.end())
797       return 2;
798     assert (CfAlu->getOpcode() == R600::CF_ALU);
799     CfAlu->setDesc(get(R600::CF_ALU_PUSH_BEFORE));
800     return 2;
801   }
802 }
803 
804 unsigned R600InstrInfo::removeBranch(MachineBasicBlock &MBB,
805                                      int *BytesRemoved) const {
806   assert(!BytesRemoved && "code size not handled");
807 
808   // Note : we leave PRED* instructions there.
809   // They may be needed when predicating instructions.
810 
811   MachineBasicBlock::iterator I = MBB.end();
812 
813   if (I == MBB.begin()) {
814     return 0;
815   }
816   --I;
817   switch (I->getOpcode()) {
818   default:
819     return 0;
820   case R600::JUMP_COND: {
821     MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
822     clearFlag(*predSet, 0, MO_FLAG_PUSH);
823     I->eraseFromParent();
824     MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
825     if (CfAlu == MBB.end())
826       break;
827     assert (CfAlu->getOpcode() == R600::CF_ALU_PUSH_BEFORE);
828     CfAlu->setDesc(get(R600::CF_ALU));
829     break;
830   }
831   case R600::JUMP:
832     I->eraseFromParent();
833     break;
834   }
835   I = MBB.end();
836 
837   if (I == MBB.begin()) {
838     return 1;
839   }
840   --I;
841   switch (I->getOpcode()) {
842     // FIXME: only one case??
843   default:
844     return 1;
845   case R600::JUMP_COND: {
846     MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
847     clearFlag(*predSet, 0, MO_FLAG_PUSH);
848     I->eraseFromParent();
849     MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
850     if (CfAlu == MBB.end())
851       break;
852     assert (CfAlu->getOpcode() == R600::CF_ALU_PUSH_BEFORE);
853     CfAlu->setDesc(get(R600::CF_ALU));
854     break;
855   }
856   case R600::JUMP:
857     I->eraseFromParent();
858     break;
859   }
860   return 2;
861 }
862 
863 bool R600InstrInfo::isPredicated(const MachineInstr &MI) const {
864   int idx = MI.findFirstPredOperandIdx();
865   if (idx < 0)
866     return false;
867 
868   unsigned Reg = MI.getOperand(idx).getReg();
869   switch (Reg) {
870   default: return false;
871   case R600::PRED_SEL_ONE:
872   case R600::PRED_SEL_ZERO:
873   case R600::PREDICATE_BIT:
874     return true;
875   }
876 }
877 
878 bool R600InstrInfo::isPredicable(const MachineInstr &MI) const {
879   // XXX: KILL* instructions can be predicated, but they must be the last
880   // instruction in a clause, so this means any instructions after them cannot
881   // be predicated.  Until we have proper support for instruction clauses in the
882   // backend, we will mark KILL* instructions as unpredicable.
883 
884   if (MI.getOpcode() == R600::KILLGT) {
885     return false;
886   } else if (MI.getOpcode() == R600::CF_ALU) {
887     // If the clause start in the middle of MBB then the MBB has more
888     // than a single clause, unable to predicate several clauses.
889     if (MI.getParent()->begin() != MachineBasicBlock::const_iterator(MI))
890       return false;
891     // TODO: We don't support KC merging atm
892     return MI.getOperand(3).getImm() == 0 && MI.getOperand(4).getImm() == 0;
893   } else if (isVector(MI)) {
894     return false;
895   } else {
896     return TargetInstrInfo::isPredicable(MI);
897   }
898 }
899 
900 bool
901 R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
902                                    unsigned NumCycles,
903                                    unsigned ExtraPredCycles,
904                                    BranchProbability Probability) const{
905   return true;
906 }
907 
908 bool
909 R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
910                                    unsigned NumTCycles,
911                                    unsigned ExtraTCycles,
912                                    MachineBasicBlock &FMBB,
913                                    unsigned NumFCycles,
914                                    unsigned ExtraFCycles,
915                                    BranchProbability Probability) const {
916   return true;
917 }
918 
919 bool
920 R600InstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
921                                          unsigned NumCycles,
922                                          BranchProbability Probability)
923                                          const {
924   return true;
925 }
926 
927 bool
928 R600InstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
929                                          MachineBasicBlock &FMBB) const {
930   return false;
931 }
932 
933 bool
934 R600InstrInfo::reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
935   MachineOperand &MO = Cond[1];
936   switch (MO.getImm()) {
937   case R600::PRED_SETE_INT:
938     MO.setImm(R600::PRED_SETNE_INT);
939     break;
940   case R600::PRED_SETNE_INT:
941     MO.setImm(R600::PRED_SETE_INT);
942     break;
943   case R600::PRED_SETE:
944     MO.setImm(R600::PRED_SETNE);
945     break;
946   case R600::PRED_SETNE:
947     MO.setImm(R600::PRED_SETE);
948     break;
949   default:
950     return true;
951   }
952 
953   MachineOperand &MO2 = Cond[2];
954   switch (MO2.getReg()) {
955   case R600::PRED_SEL_ZERO:
956     MO2.setReg(R600::PRED_SEL_ONE);
957     break;
958   case R600::PRED_SEL_ONE:
959     MO2.setReg(R600::PRED_SEL_ZERO);
960     break;
961   default:
962     return true;
963   }
964   return false;
965 }
966 
967 bool R600InstrInfo::DefinesPredicate(MachineInstr &MI,
968                                      std::vector<MachineOperand> &Pred) const {
969   return isPredicateSetter(MI.getOpcode());
970 }
971 
972 bool R600InstrInfo::PredicateInstruction(MachineInstr &MI,
973                                          ArrayRef<MachineOperand> Pred) const {
974   int PIdx = MI.findFirstPredOperandIdx();
975 
976   if (MI.getOpcode() == R600::CF_ALU) {
977     MI.getOperand(8).setImm(0);
978     return true;
979   }
980 
981   if (MI.getOpcode() == R600::DOT_4) {
982     MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_X))
983         .setReg(Pred[2].getReg());
984     MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_Y))
985         .setReg(Pred[2].getReg());
986     MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_Z))
987         .setReg(Pred[2].getReg());
988     MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_W))
989         .setReg(Pred[2].getReg());
990     MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
991     MIB.addReg(R600::PREDICATE_BIT, RegState::Implicit);
992     return true;
993   }
994 
995   if (PIdx != -1) {
996     MachineOperand &PMO = MI.getOperand(PIdx);
997     PMO.setReg(Pred[2].getReg());
998     MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
999     MIB.addReg(R600::PREDICATE_BIT, RegState::Implicit);
1000     return true;
1001   }
1002 
1003   return false;
1004 }
1005 
1006 unsigned int R600InstrInfo::getPredicationCost(const MachineInstr &) const {
1007   return 2;
1008 }
1009 
1010 unsigned int R600InstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1011                                             const MachineInstr &,
1012                                             unsigned *PredCost) const {
1013   if (PredCost)
1014     *PredCost = 2;
1015   return 2;
1016 }
1017 
1018 unsigned R600InstrInfo::calculateIndirectAddress(unsigned RegIndex,
1019                                                    unsigned Channel) const {
1020   assert(Channel == 0);
1021   return RegIndex;
1022 }
1023 
1024 bool R600InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1025   switch (MI.getOpcode()) {
1026   default: {
1027     MachineBasicBlock *MBB = MI.getParent();
1028     int OffsetOpIdx =
1029         R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::addr);
1030     // addr is a custom operand with multiple MI operands, and only the
1031     // first MI operand is given a name.
1032     int RegOpIdx = OffsetOpIdx + 1;
1033     int ChanOpIdx =
1034         R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::chan);
1035     if (isRegisterLoad(MI)) {
1036       int DstOpIdx =
1037           R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::dst);
1038       unsigned RegIndex = MI.getOperand(RegOpIdx).getImm();
1039       unsigned Channel = MI.getOperand(ChanOpIdx).getImm();
1040       unsigned Address = calculateIndirectAddress(RegIndex, Channel);
1041       unsigned OffsetReg = MI.getOperand(OffsetOpIdx).getReg();
1042       if (OffsetReg == R600::INDIRECT_BASE_ADDR) {
1043         buildMovInstr(MBB, MI, MI.getOperand(DstOpIdx).getReg(),
1044                       getIndirectAddrRegClass()->getRegister(Address));
1045       } else {
1046         buildIndirectRead(MBB, MI, MI.getOperand(DstOpIdx).getReg(), Address,
1047                           OffsetReg);
1048       }
1049     } else if (isRegisterStore(MI)) {
1050       int ValOpIdx =
1051           R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::val);
1052       unsigned RegIndex = MI.getOperand(RegOpIdx).getImm();
1053       unsigned Channel = MI.getOperand(ChanOpIdx).getImm();
1054       unsigned Address = calculateIndirectAddress(RegIndex, Channel);
1055       unsigned OffsetReg = MI.getOperand(OffsetOpIdx).getReg();
1056       if (OffsetReg == R600::INDIRECT_BASE_ADDR) {
1057         buildMovInstr(MBB, MI, getIndirectAddrRegClass()->getRegister(Address),
1058                       MI.getOperand(ValOpIdx).getReg());
1059       } else {
1060         buildIndirectWrite(MBB, MI, MI.getOperand(ValOpIdx).getReg(),
1061                            calculateIndirectAddress(RegIndex, Channel),
1062                            OffsetReg);
1063       }
1064     } else {
1065       return false;
1066     }
1067 
1068     MBB->erase(MI);
1069     return true;
1070   }
1071   case R600::R600_EXTRACT_ELT_V2:
1072   case R600::R600_EXTRACT_ELT_V4:
1073     buildIndirectRead(MI.getParent(), MI, MI.getOperand(0).getReg(),
1074                       RI.getHWRegIndex(MI.getOperand(1).getReg()), //  Address
1075                       MI.getOperand(2).getReg(),
1076                       RI.getHWRegChan(MI.getOperand(1).getReg()));
1077     break;
1078   case R600::R600_INSERT_ELT_V2:
1079   case R600::R600_INSERT_ELT_V4:
1080     buildIndirectWrite(MI.getParent(), MI, MI.getOperand(2).getReg(), // Value
1081                        RI.getHWRegIndex(MI.getOperand(1).getReg()),   // Address
1082                        MI.getOperand(3).getReg(),                     // Offset
1083                        RI.getHWRegChan(MI.getOperand(1).getReg()));   // Channel
1084     break;
1085   }
1086   MI.eraseFromParent();
1087   return true;
1088 }
1089 
1090 void R600InstrInfo::reserveIndirectRegisters(BitVector &Reserved,
1091                                              const MachineFunction &MF,
1092                                              const R600RegisterInfo &TRI) const {
1093   const R600Subtarget &ST = MF.getSubtarget<R600Subtarget>();
1094   const R600FrameLowering *TFL = ST.getFrameLowering();
1095 
1096   unsigned StackWidth = TFL->getStackWidth(MF);
1097   int End = getIndirectIndexEnd(MF);
1098 
1099   if (End == -1)
1100     return;
1101 
1102   for (int Index = getIndirectIndexBegin(MF); Index <= End; ++Index) {
1103     for (unsigned Chan = 0; Chan < StackWidth; ++Chan) {
1104       unsigned Reg = R600::R600_TReg32RegClass.getRegister((4 * Index) + Chan);
1105       TRI.reserveRegisterTuples(Reserved, Reg);
1106     }
1107   }
1108 }
1109 
1110 const TargetRegisterClass *R600InstrInfo::getIndirectAddrRegClass() const {
1111   return &R600::R600_TReg32_XRegClass;
1112 }
1113 
1114 MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
1115                                        MachineBasicBlock::iterator I,
1116                                        unsigned ValueReg, unsigned Address,
1117                                        unsigned OffsetReg) const {
1118   return buildIndirectWrite(MBB, I, ValueReg, Address, OffsetReg, 0);
1119 }
1120 
1121 MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
1122                                        MachineBasicBlock::iterator I,
1123                                        unsigned ValueReg, unsigned Address,
1124                                        unsigned OffsetReg,
1125                                        unsigned AddrChan) const {
1126   unsigned AddrReg;
1127   switch (AddrChan) {
1128     default: llvm_unreachable("Invalid Channel");
1129     case 0: AddrReg = R600::R600_AddrRegClass.getRegister(Address); break;
1130     case 1: AddrReg = R600::R600_Addr_YRegClass.getRegister(Address); break;
1131     case 2: AddrReg = R600::R600_Addr_ZRegClass.getRegister(Address); break;
1132     case 3: AddrReg = R600::R600_Addr_WRegClass.getRegister(Address); break;
1133   }
1134   MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, R600::MOVA_INT_eg,
1135                                                R600::AR_X, OffsetReg);
1136   setImmOperand(*MOVA, R600::OpName::write, 0);
1137 
1138   MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, R600::MOV,
1139                                       AddrReg, ValueReg)
1140                                       .addReg(R600::AR_X,
1141                                            RegState::Implicit | RegState::Kill);
1142   setImmOperand(*Mov, R600::OpName::dst_rel, 1);
1143   return Mov;
1144 }
1145 
1146 MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
1147                                        MachineBasicBlock::iterator I,
1148                                        unsigned ValueReg, unsigned Address,
1149                                        unsigned OffsetReg) const {
1150   return buildIndirectRead(MBB, I, ValueReg, Address, OffsetReg, 0);
1151 }
1152 
1153 MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
1154                                        MachineBasicBlock::iterator I,
1155                                        unsigned ValueReg, unsigned Address,
1156                                        unsigned OffsetReg,
1157                                        unsigned AddrChan) const {
1158   unsigned AddrReg;
1159   switch (AddrChan) {
1160     default: llvm_unreachable("Invalid Channel");
1161     case 0: AddrReg = R600::R600_AddrRegClass.getRegister(Address); break;
1162     case 1: AddrReg = R600::R600_Addr_YRegClass.getRegister(Address); break;
1163     case 2: AddrReg = R600::R600_Addr_ZRegClass.getRegister(Address); break;
1164     case 3: AddrReg = R600::R600_Addr_WRegClass.getRegister(Address); break;
1165   }
1166   MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, R600::MOVA_INT_eg,
1167                                                        R600::AR_X,
1168                                                        OffsetReg);
1169   setImmOperand(*MOVA, R600::OpName::write, 0);
1170   MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, R600::MOV,
1171                                       ValueReg,
1172                                       AddrReg)
1173                                       .addReg(R600::AR_X,
1174                                            RegState::Implicit | RegState::Kill);
1175   setImmOperand(*Mov, R600::OpName::src0_rel, 1);
1176 
1177   return Mov;
1178 }
1179 
1180 int R600InstrInfo::getIndirectIndexBegin(const MachineFunction &MF) const {
1181   const MachineRegisterInfo &MRI = MF.getRegInfo();
1182   const MachineFrameInfo &MFI = MF.getFrameInfo();
1183   int Offset = -1;
1184 
1185   if (MFI.getNumObjects() == 0) {
1186     return -1;
1187   }
1188 
1189   if (MRI.livein_empty()) {
1190     return 0;
1191   }
1192 
1193   const TargetRegisterClass *IndirectRC = getIndirectAddrRegClass();
1194   for (std::pair<unsigned, unsigned> LI : MRI.liveins()) {
1195     unsigned Reg = LI.first;
1196     if (TargetRegisterInfo::isVirtualRegister(Reg) ||
1197         !IndirectRC->contains(Reg))
1198       continue;
1199 
1200     unsigned RegIndex;
1201     unsigned RegEnd;
1202     for (RegIndex = 0, RegEnd = IndirectRC->getNumRegs(); RegIndex != RegEnd;
1203                                                           ++RegIndex) {
1204       if (IndirectRC->getRegister(RegIndex) == Reg)
1205         break;
1206     }
1207     Offset = std::max(Offset, (int)RegIndex);
1208   }
1209 
1210   return Offset + 1;
1211 }
1212 
1213 int R600InstrInfo::getIndirectIndexEnd(const MachineFunction &MF) const {
1214   int Offset = 0;
1215   const MachineFrameInfo &MFI = MF.getFrameInfo();
1216 
1217   // Variable sized objects are not supported
1218   if (MFI.hasVarSizedObjects()) {
1219     return -1;
1220   }
1221 
1222   if (MFI.getNumObjects() == 0) {
1223     return -1;
1224   }
1225 
1226   const R600Subtarget &ST = MF.getSubtarget<R600Subtarget>();
1227   const R600FrameLowering *TFL = ST.getFrameLowering();
1228 
1229   unsigned IgnoredFrameReg;
1230   Offset = TFL->getFrameIndexReference(MF, -1, IgnoredFrameReg);
1231 
1232   return getIndirectIndexBegin(MF) + Offset;
1233 }
1234 
1235 unsigned R600InstrInfo::getMaxAlusPerClause() const {
1236   return 115;
1237 }
1238 
1239 MachineInstrBuilder R600InstrInfo::buildDefaultInstruction(MachineBasicBlock &MBB,
1240                                                   MachineBasicBlock::iterator I,
1241                                                   unsigned Opcode,
1242                                                   unsigned DstReg,
1243                                                   unsigned Src0Reg,
1244                                                   unsigned Src1Reg) const {
1245   MachineInstrBuilder MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opcode),
1246     DstReg);           // $dst
1247 
1248   if (Src1Reg) {
1249     MIB.addImm(0)     // $update_exec_mask
1250        .addImm(0);    // $update_predicate
1251   }
1252   MIB.addImm(1)        // $write
1253      .addImm(0)        // $omod
1254      .addImm(0)        // $dst_rel
1255      .addImm(0)        // $dst_clamp
1256      .addReg(Src0Reg)  // $src0
1257      .addImm(0)        // $src0_neg
1258      .addImm(0)        // $src0_rel
1259      .addImm(0)        // $src0_abs
1260      .addImm(-1);       // $src0_sel
1261 
1262   if (Src1Reg) {
1263     MIB.addReg(Src1Reg) // $src1
1264        .addImm(0)       // $src1_neg
1265        .addImm(0)       // $src1_rel
1266        .addImm(0)       // $src1_abs
1267        .addImm(-1);      // $src1_sel
1268   }
1269 
1270   //XXX: The r600g finalizer expects this to be 1, once we've moved the
1271   //scheduling to the backend, we can change the default to 0.
1272   MIB.addImm(1)        // $last
1273       .addReg(R600::PRED_SEL_OFF) // $pred_sel
1274       .addImm(0)         // $literal
1275       .addImm(0);        // $bank_swizzle
1276 
1277   return MIB;
1278 }
1279 
1280 #define OPERAND_CASE(Label) \
1281   case Label: { \
1282     static const unsigned Ops[] = \
1283     { \
1284       Label##_X, \
1285       Label##_Y, \
1286       Label##_Z, \
1287       Label##_W \
1288     }; \
1289     return Ops[Slot]; \
1290   }
1291 
1292 static unsigned getSlotedOps(unsigned  Op, unsigned Slot) {
1293   switch (Op) {
1294   OPERAND_CASE(R600::OpName::update_exec_mask)
1295   OPERAND_CASE(R600::OpName::update_pred)
1296   OPERAND_CASE(R600::OpName::write)
1297   OPERAND_CASE(R600::OpName::omod)
1298   OPERAND_CASE(R600::OpName::dst_rel)
1299   OPERAND_CASE(R600::OpName::clamp)
1300   OPERAND_CASE(R600::OpName::src0)
1301   OPERAND_CASE(R600::OpName::src0_neg)
1302   OPERAND_CASE(R600::OpName::src0_rel)
1303   OPERAND_CASE(R600::OpName::src0_abs)
1304   OPERAND_CASE(R600::OpName::src0_sel)
1305   OPERAND_CASE(R600::OpName::src1)
1306   OPERAND_CASE(R600::OpName::src1_neg)
1307   OPERAND_CASE(R600::OpName::src1_rel)
1308   OPERAND_CASE(R600::OpName::src1_abs)
1309   OPERAND_CASE(R600::OpName::src1_sel)
1310   OPERAND_CASE(R600::OpName::pred_sel)
1311   default:
1312     llvm_unreachable("Wrong Operand");
1313   }
1314 }
1315 
1316 #undef OPERAND_CASE
1317 
1318 MachineInstr *R600InstrInfo::buildSlotOfVectorInstruction(
1319     MachineBasicBlock &MBB, MachineInstr *MI, unsigned Slot, unsigned DstReg)
1320     const {
1321   assert (MI->getOpcode() == R600::DOT_4 && "Not Implemented");
1322   unsigned Opcode;
1323   if (ST.getGeneration() <= AMDGPUSubtarget::R700)
1324     Opcode = R600::DOT4_r600;
1325   else
1326     Opcode = R600::DOT4_eg;
1327   MachineBasicBlock::iterator I = MI;
1328   MachineOperand &Src0 = MI->getOperand(
1329       getOperandIdx(MI->getOpcode(), getSlotedOps(R600::OpName::src0, Slot)));
1330   MachineOperand &Src1 = MI->getOperand(
1331       getOperandIdx(MI->getOpcode(), getSlotedOps(R600::OpName::src1, Slot)));
1332   MachineInstr *MIB = buildDefaultInstruction(
1333       MBB, I, Opcode, DstReg, Src0.getReg(), Src1.getReg());
1334   static const unsigned  Operands[14] = {
1335     R600::OpName::update_exec_mask,
1336     R600::OpName::update_pred,
1337     R600::OpName::write,
1338     R600::OpName::omod,
1339     R600::OpName::dst_rel,
1340     R600::OpName::clamp,
1341     R600::OpName::src0_neg,
1342     R600::OpName::src0_rel,
1343     R600::OpName::src0_abs,
1344     R600::OpName::src0_sel,
1345     R600::OpName::src1_neg,
1346     R600::OpName::src1_rel,
1347     R600::OpName::src1_abs,
1348     R600::OpName::src1_sel,
1349   };
1350 
1351   MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
1352       getSlotedOps(R600::OpName::pred_sel, Slot)));
1353   MIB->getOperand(getOperandIdx(Opcode, R600::OpName::pred_sel))
1354       .setReg(MO.getReg());
1355 
1356   for (unsigned i = 0; i < 14; i++) {
1357     MachineOperand &MO = MI->getOperand(
1358         getOperandIdx(MI->getOpcode(), getSlotedOps(Operands[i], Slot)));
1359     assert (MO.isImm());
1360     setImmOperand(*MIB, Operands[i], MO.getImm());
1361   }
1362   MIB->getOperand(20).setImm(0);
1363   return MIB;
1364 }
1365 
1366 MachineInstr *R600InstrInfo::buildMovImm(MachineBasicBlock &BB,
1367                                          MachineBasicBlock::iterator I,
1368                                          unsigned DstReg,
1369                                          uint64_t Imm) const {
1370   MachineInstr *MovImm = buildDefaultInstruction(BB, I, R600::MOV, DstReg,
1371                                                   R600::ALU_LITERAL_X);
1372   setImmOperand(*MovImm, R600::OpName::literal, Imm);
1373   return MovImm;
1374 }
1375 
1376 MachineInstr *R600InstrInfo::buildMovInstr(MachineBasicBlock *MBB,
1377                                        MachineBasicBlock::iterator I,
1378                                        unsigned DstReg, unsigned SrcReg) const {
1379   return buildDefaultInstruction(*MBB, I, R600::MOV, DstReg, SrcReg);
1380 }
1381 
1382 int R600InstrInfo::getOperandIdx(const MachineInstr &MI, unsigned Op) const {
1383   return getOperandIdx(MI.getOpcode(), Op);
1384 }
1385 
1386 int R600InstrInfo::getOperandIdx(unsigned Opcode, unsigned Op) const {
1387   return R600::getNamedOperandIdx(Opcode, Op);
1388 }
1389 
1390 void R600InstrInfo::setImmOperand(MachineInstr &MI, unsigned Op,
1391                                   int64_t Imm) const {
1392   int Idx = getOperandIdx(MI, Op);
1393   assert(Idx != -1 && "Operand not supported for this instruction.");
1394   assert(MI.getOperand(Idx).isImm());
1395   MI.getOperand(Idx).setImm(Imm);
1396 }
1397 
1398 //===----------------------------------------------------------------------===//
1399 // Instruction flag getters/setters
1400 //===----------------------------------------------------------------------===//
1401 
1402 MachineOperand &R600InstrInfo::getFlagOp(MachineInstr &MI, unsigned SrcIdx,
1403                                          unsigned Flag) const {
1404   unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
1405   int FlagIndex = 0;
1406   if (Flag != 0) {
1407     // If we pass something other than the default value of Flag to this
1408     // function, it means we are want to set a flag on an instruction
1409     // that uses native encoding.
1410     assert(HAS_NATIVE_OPERANDS(TargetFlags));
1411     bool IsOP3 = (TargetFlags & R600_InstFlag::OP3) == R600_InstFlag::OP3;
1412     switch (Flag) {
1413     case MO_FLAG_CLAMP:
1414       FlagIndex = getOperandIdx(MI, R600::OpName::clamp);
1415       break;
1416     case MO_FLAG_MASK:
1417       FlagIndex = getOperandIdx(MI, R600::OpName::write);
1418       break;
1419     case MO_FLAG_NOT_LAST:
1420     case MO_FLAG_LAST:
1421       FlagIndex = getOperandIdx(MI, R600::OpName::last);
1422       break;
1423     case MO_FLAG_NEG:
1424       switch (SrcIdx) {
1425       case 0:
1426         FlagIndex = getOperandIdx(MI, R600::OpName::src0_neg);
1427         break;
1428       case 1:
1429         FlagIndex = getOperandIdx(MI, R600::OpName::src1_neg);
1430         break;
1431       case 2:
1432         FlagIndex = getOperandIdx(MI, R600::OpName::src2_neg);
1433         break;
1434       }
1435       break;
1436 
1437     case MO_FLAG_ABS:
1438       assert(!IsOP3 && "Cannot set absolute value modifier for OP3 "
1439                        "instructions.");
1440       (void)IsOP3;
1441       switch (SrcIdx) {
1442       case 0:
1443         FlagIndex = getOperandIdx(MI, R600::OpName::src0_abs);
1444         break;
1445       case 1:
1446         FlagIndex = getOperandIdx(MI, R600::OpName::src1_abs);
1447         break;
1448       }
1449       break;
1450 
1451     default:
1452       FlagIndex = -1;
1453       break;
1454     }
1455     assert(FlagIndex != -1 && "Flag not supported for this instruction");
1456   } else {
1457       FlagIndex = GET_FLAG_OPERAND_IDX(TargetFlags);
1458       assert(FlagIndex != 0 &&
1459          "Instruction flags not supported for this instruction");
1460   }
1461 
1462   MachineOperand &FlagOp = MI.getOperand(FlagIndex);
1463   assert(FlagOp.isImm());
1464   return FlagOp;
1465 }
1466 
1467 void R600InstrInfo::addFlag(MachineInstr &MI, unsigned Operand,
1468                             unsigned Flag) const {
1469   unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
1470   if (Flag == 0) {
1471     return;
1472   }
1473   if (HAS_NATIVE_OPERANDS(TargetFlags)) {
1474     MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
1475     if (Flag == MO_FLAG_NOT_LAST) {
1476       clearFlag(MI, Operand, MO_FLAG_LAST);
1477     } else if (Flag == MO_FLAG_MASK) {
1478       clearFlag(MI, Operand, Flag);
1479     } else {
1480       FlagOp.setImm(1);
1481     }
1482   } else {
1483       MachineOperand &FlagOp = getFlagOp(MI, Operand);
1484       FlagOp.setImm(FlagOp.getImm() | (Flag << (NUM_MO_FLAGS * Operand)));
1485   }
1486 }
1487 
1488 void R600InstrInfo::clearFlag(MachineInstr &MI, unsigned Operand,
1489                               unsigned Flag) const {
1490   unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
1491   if (HAS_NATIVE_OPERANDS(TargetFlags)) {
1492     MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
1493     FlagOp.setImm(0);
1494   } else {
1495     MachineOperand &FlagOp = getFlagOp(MI);
1496     unsigned InstFlags = FlagOp.getImm();
1497     InstFlags &= ~(Flag << (NUM_MO_FLAGS * Operand));
1498     FlagOp.setImm(InstFlags);
1499   }
1500 }
1501 
1502 unsigned R600InstrInfo::getAddressSpaceForPseudoSourceKind(
1503     unsigned Kind) const {
1504   switch (Kind) {
1505   case PseudoSourceValue::Stack:
1506   case PseudoSourceValue::FixedStack:
1507     return AMDGPUAS::PRIVATE_ADDRESS;
1508   case PseudoSourceValue::ConstantPool:
1509   case PseudoSourceValue::GOT:
1510   case PseudoSourceValue::JumpTable:
1511   case PseudoSourceValue::GlobalValueCallEntry:
1512   case PseudoSourceValue::ExternalSymbolCallEntry:
1513   case PseudoSourceValue::TargetCustom:
1514     return AMDGPUAS::CONSTANT_ADDRESS;
1515   }
1516 
1517   llvm_unreachable("Invalid pseudo source kind");
1518 }
1519