xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/R600InstrInfo.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- R600InstrInfo.cpp - R600 Instruction Information ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// R600 Implementation of TargetInstrInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "R600InstrInfo.h"
15 #include "AMDGPU.h"
16 #include "MCTargetDesc/R600MCTargetDesc.h"
17 #include "R600.h"
18 #include "R600Defines.h"
19 #include "R600Subtarget.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 
23 using namespace llvm;
24 
25 #define GET_INSTRINFO_CTOR_DTOR
26 #include "R600GenDFAPacketizer.inc"
27 
28 #define GET_INSTRINFO_CTOR_DTOR
29 #define GET_INSTRMAP_INFO
30 #define GET_INSTRINFO_NAMED_OPS
31 #include "R600GenInstrInfo.inc"
32 
33 R600InstrInfo::R600InstrInfo(const R600Subtarget &ST)
34   : R600GenInstrInfo(-1, -1), RI(), ST(ST) {}
35 
36 bool R600InstrInfo::isVector(const MachineInstr &MI) const {
37   return get(MI.getOpcode()).TSFlags & R600_InstFlag::VECTOR;
38 }
39 
40 void R600InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
41                                 MachineBasicBlock::iterator MI,
42                                 const DebugLoc &DL, MCRegister DestReg,
43                                 MCRegister SrcReg, bool KillSrc) const {
44   unsigned VectorComponents = 0;
45   if ((R600::R600_Reg128RegClass.contains(DestReg) ||
46       R600::R600_Reg128VerticalRegClass.contains(DestReg)) &&
47       (R600::R600_Reg128RegClass.contains(SrcReg) ||
48        R600::R600_Reg128VerticalRegClass.contains(SrcReg))) {
49     VectorComponents = 4;
50   } else if((R600::R600_Reg64RegClass.contains(DestReg) ||
51             R600::R600_Reg64VerticalRegClass.contains(DestReg)) &&
52             (R600::R600_Reg64RegClass.contains(SrcReg) ||
53              R600::R600_Reg64VerticalRegClass.contains(SrcReg))) {
54     VectorComponents = 2;
55   }
56 
57   if (VectorComponents > 0) {
58     for (unsigned I = 0; I < VectorComponents; I++) {
59       unsigned SubRegIndex = R600RegisterInfo::getSubRegFromChannel(I);
60       buildDefaultInstruction(MBB, MI, R600::MOV,
61                               RI.getSubReg(DestReg, SubRegIndex),
62                               RI.getSubReg(SrcReg, SubRegIndex))
63                               .addReg(DestReg,
64                                       RegState::Define | RegState::Implicit);
65     }
66   } else {
67     MachineInstr *NewMI = buildDefaultInstruction(MBB, MI, R600::MOV,
68                                                   DestReg, SrcReg);
69     NewMI->getOperand(getOperandIdx(*NewMI, R600::OpName::src0))
70                                     .setIsKill(KillSrc);
71   }
72 }
73 
74 /// \returns true if \p MBBI can be moved into a new basic.
75 bool R600InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB,
76                                        MachineBasicBlock::iterator MBBI) const {
77   for (MachineInstr::const_mop_iterator I = MBBI->operands_begin(),
78                                         E = MBBI->operands_end(); I != E; ++I) {
79     if (I->isReg() && !I->getReg().isVirtual() && I->isUse() &&
80         RI.isPhysRegLiveAcrossClauses(I->getReg()))
81       return false;
82   }
83   return true;
84 }
85 
86 bool R600InstrInfo::isMov(unsigned Opcode) const {
87   switch(Opcode) {
88   default:
89     return false;
90   case R600::MOV:
91   case R600::MOV_IMM_F32:
92   case R600::MOV_IMM_I32:
93     return true;
94   }
95 }
96 
97 bool R600InstrInfo::isReductionOp(unsigned Opcode) const {
98   return false;
99 }
100 
101 bool R600InstrInfo::isCubeOp(unsigned Opcode) const {
102   switch(Opcode) {
103     default: return false;
104     case R600::CUBE_r600_pseudo:
105     case R600::CUBE_r600_real:
106     case R600::CUBE_eg_pseudo:
107     case R600::CUBE_eg_real:
108       return true;
109   }
110 }
111 
112 bool R600InstrInfo::isALUInstr(unsigned Opcode) const {
113   unsigned TargetFlags = get(Opcode).TSFlags;
114 
115   return (TargetFlags & R600_InstFlag::ALU_INST);
116 }
117 
118 bool R600InstrInfo::hasInstrModifiers(unsigned Opcode) const {
119   unsigned TargetFlags = get(Opcode).TSFlags;
120 
121   return ((TargetFlags & R600_InstFlag::OP1) |
122           (TargetFlags & R600_InstFlag::OP2) |
123           (TargetFlags & R600_InstFlag::OP3));
124 }
125 
126 bool R600InstrInfo::isLDSInstr(unsigned Opcode) const {
127   unsigned TargetFlags = get(Opcode).TSFlags;
128 
129   return ((TargetFlags & R600_InstFlag::LDS_1A) |
130           (TargetFlags & R600_InstFlag::LDS_1A1D) |
131           (TargetFlags & R600_InstFlag::LDS_1A2D));
132 }
133 
134 bool R600InstrInfo::isLDSRetInstr(unsigned Opcode) const {
135   return isLDSInstr(Opcode) && getOperandIdx(Opcode, R600::OpName::dst) != -1;
136 }
137 
138 bool R600InstrInfo::canBeConsideredALU(const MachineInstr &MI) const {
139   if (isALUInstr(MI.getOpcode()))
140     return true;
141   if (isVector(MI) || isCubeOp(MI.getOpcode()))
142     return true;
143   switch (MI.getOpcode()) {
144   case R600::PRED_X:
145   case R600::INTERP_PAIR_XY:
146   case R600::INTERP_PAIR_ZW:
147   case R600::INTERP_VEC_LOAD:
148   case R600::COPY:
149   case R600::DOT_4:
150     return true;
151   default:
152     return false;
153   }
154 }
155 
156 bool R600InstrInfo::isTransOnly(unsigned Opcode) const {
157   if (ST.hasCaymanISA())
158     return false;
159   return (get(Opcode).getSchedClass() == R600::Sched::TransALU);
160 }
161 
162 bool R600InstrInfo::isTransOnly(const MachineInstr &MI) const {
163   return isTransOnly(MI.getOpcode());
164 }
165 
166 bool R600InstrInfo::isVectorOnly(unsigned Opcode) const {
167   return (get(Opcode).getSchedClass() == R600::Sched::VecALU);
168 }
169 
170 bool R600InstrInfo::isVectorOnly(const MachineInstr &MI) const {
171   return isVectorOnly(MI.getOpcode());
172 }
173 
174 bool R600InstrInfo::isExport(unsigned Opcode) const {
175   return (get(Opcode).TSFlags & R600_InstFlag::IS_EXPORT);
176 }
177 
178 bool R600InstrInfo::usesVertexCache(unsigned Opcode) const {
179   return ST.hasVertexCache() && IS_VTX(get(Opcode));
180 }
181 
182 bool R600InstrInfo::usesVertexCache(const MachineInstr &MI) const {
183   const MachineFunction *MF = MI.getParent()->getParent();
184   return !AMDGPU::isCompute(MF->getFunction().getCallingConv()) &&
185          usesVertexCache(MI.getOpcode());
186 }
187 
188 bool R600InstrInfo::usesTextureCache(unsigned Opcode) const {
189   return (!ST.hasVertexCache() && IS_VTX(get(Opcode))) || IS_TEX(get(Opcode));
190 }
191 
192 bool R600InstrInfo::usesTextureCache(const MachineInstr &MI) const {
193   const MachineFunction *MF = MI.getParent()->getParent();
194   return (AMDGPU::isCompute(MF->getFunction().getCallingConv()) &&
195           usesVertexCache(MI.getOpcode())) ||
196           usesTextureCache(MI.getOpcode());
197 }
198 
199 bool R600InstrInfo::mustBeLastInClause(unsigned Opcode) const {
200   switch (Opcode) {
201   case R600::KILLGT:
202   case R600::GROUP_BARRIER:
203     return true;
204   default:
205     return false;
206   }
207 }
208 
209 bool R600InstrInfo::usesAddressRegister(MachineInstr &MI) const {
210   return MI.findRegisterUseOperandIdx(R600::AR_X, &RI, false) != -1;
211 }
212 
213 bool R600InstrInfo::definesAddressRegister(MachineInstr &MI) const {
214   return MI.findRegisterDefOperandIdx(R600::AR_X, &RI, false, false) != -1;
215 }
216 
217 bool R600InstrInfo::readsLDSSrcReg(const MachineInstr &MI) const {
218   if (!isALUInstr(MI.getOpcode())) {
219     return false;
220   }
221   for (MachineInstr::const_mop_iterator I = MI.operands_begin(),
222                                         E = MI.operands_end();
223        I != E; ++I) {
224     if (!I->isReg() || !I->isUse() || I->getReg().isVirtual())
225       continue;
226 
227     if (R600::R600_LDS_SRC_REGRegClass.contains(I->getReg()))
228       return true;
229   }
230   return false;
231 }
232 
233 int R600InstrInfo::getSelIdx(unsigned Opcode, unsigned SrcIdx) const {
234   static const unsigned SrcSelTable[][2] = {
235     {R600::OpName::src0, R600::OpName::src0_sel},
236     {R600::OpName::src1, R600::OpName::src1_sel},
237     {R600::OpName::src2, R600::OpName::src2_sel},
238     {R600::OpName::src0_X, R600::OpName::src0_sel_X},
239     {R600::OpName::src0_Y, R600::OpName::src0_sel_Y},
240     {R600::OpName::src0_Z, R600::OpName::src0_sel_Z},
241     {R600::OpName::src0_W, R600::OpName::src0_sel_W},
242     {R600::OpName::src1_X, R600::OpName::src1_sel_X},
243     {R600::OpName::src1_Y, R600::OpName::src1_sel_Y},
244     {R600::OpName::src1_Z, R600::OpName::src1_sel_Z},
245     {R600::OpName::src1_W, R600::OpName::src1_sel_W}
246   };
247 
248   for (const auto &Row : SrcSelTable) {
249     if (getOperandIdx(Opcode, Row[0]) == (int)SrcIdx) {
250       return getOperandIdx(Opcode, Row[1]);
251     }
252   }
253   return -1;
254 }
255 
256 SmallVector<std::pair<MachineOperand *, int64_t>, 3>
257 R600InstrInfo::getSrcs(MachineInstr &MI) const {
258   SmallVector<std::pair<MachineOperand *, int64_t>, 3> Result;
259 
260   if (MI.getOpcode() == R600::DOT_4) {
261     static const unsigned OpTable[8][2] = {
262       {R600::OpName::src0_X, R600::OpName::src0_sel_X},
263       {R600::OpName::src0_Y, R600::OpName::src0_sel_Y},
264       {R600::OpName::src0_Z, R600::OpName::src0_sel_Z},
265       {R600::OpName::src0_W, R600::OpName::src0_sel_W},
266       {R600::OpName::src1_X, R600::OpName::src1_sel_X},
267       {R600::OpName::src1_Y, R600::OpName::src1_sel_Y},
268       {R600::OpName::src1_Z, R600::OpName::src1_sel_Z},
269       {R600::OpName::src1_W, R600::OpName::src1_sel_W},
270     };
271 
272     for (const auto &Op : OpTable) {
273       MachineOperand &MO = MI.getOperand(getOperandIdx(MI.getOpcode(), Op[0]));
274       Register Reg = MO.getReg();
275       if (Reg == R600::ALU_CONST) {
276         MachineOperand &Sel =
277             MI.getOperand(getOperandIdx(MI.getOpcode(), Op[1]));
278         Result.push_back(std::pair(&MO, Sel.getImm()));
279         continue;
280       }
281     }
282     return Result;
283   }
284 
285   static const unsigned OpTable[3][2] = {
286     {R600::OpName::src0, R600::OpName::src0_sel},
287     {R600::OpName::src1, R600::OpName::src1_sel},
288     {R600::OpName::src2, R600::OpName::src2_sel},
289   };
290 
291   for (const auto &Op : OpTable) {
292     int SrcIdx = getOperandIdx(MI.getOpcode(), Op[0]);
293     if (SrcIdx < 0)
294       break;
295     MachineOperand &MO = MI.getOperand(SrcIdx);
296     Register Reg = MO.getReg();
297     if (Reg == R600::ALU_CONST) {
298       MachineOperand &Sel = MI.getOperand(getOperandIdx(MI.getOpcode(), Op[1]));
299       Result.push_back(std::pair(&MO, Sel.getImm()));
300       continue;
301     }
302     if (Reg == R600::ALU_LITERAL_X) {
303       MachineOperand &Operand =
304           MI.getOperand(getOperandIdx(MI.getOpcode(), R600::OpName::literal));
305       if (Operand.isImm()) {
306         Result.push_back(std::pair(&MO, Operand.getImm()));
307         continue;
308       }
309       assert(Operand.isGlobal());
310     }
311     Result.push_back(std::pair(&MO, 0));
312   }
313   return Result;
314 }
315 
316 std::vector<std::pair<int, unsigned>>
317 R600InstrInfo::ExtractSrcs(MachineInstr &MI,
318                            const DenseMap<unsigned, unsigned> &PV,
319                            unsigned &ConstCount) const {
320   ConstCount = 0;
321   const std::pair<int, unsigned> DummyPair(-1, 0);
322   std::vector<std::pair<int, unsigned>> Result;
323   unsigned i = 0;
324   for (const auto &Src : getSrcs(MI)) {
325     ++i;
326     Register Reg = Src.first->getReg();
327     int Index = RI.getEncodingValue(Reg) & 0xff;
328     if (Reg == R600::OQAP) {
329       Result.emplace_back(Index, 0U);
330     }
331     if (PV.contains(Reg)) {
332       // 255 is used to tells its a PS/PV reg
333       Result.emplace_back(255, 0U);
334       continue;
335     }
336     if (Index > 127) {
337       ConstCount++;
338       Result.push_back(DummyPair);
339       continue;
340     }
341     unsigned Chan = RI.getHWRegChan(Reg);
342     Result.emplace_back(Index, Chan);
343   }
344   for (; i < 3; ++i)
345     Result.push_back(DummyPair);
346   return Result;
347 }
348 
349 static std::vector<std::pair<int, unsigned>>
350 Swizzle(std::vector<std::pair<int, unsigned>> Src,
351         R600InstrInfo::BankSwizzle Swz) {
352   if (Src[0] == Src[1])
353     Src[1].first = -1;
354   switch (Swz) {
355   case R600InstrInfo::ALU_VEC_012_SCL_210:
356     break;
357   case R600InstrInfo::ALU_VEC_021_SCL_122:
358     std::swap(Src[1], Src[2]);
359     break;
360   case R600InstrInfo::ALU_VEC_102_SCL_221:
361     std::swap(Src[0], Src[1]);
362     break;
363   case R600InstrInfo::ALU_VEC_120_SCL_212:
364     std::swap(Src[0], Src[1]);
365     std::swap(Src[0], Src[2]);
366     break;
367   case R600InstrInfo::ALU_VEC_201:
368     std::swap(Src[0], Src[2]);
369     std::swap(Src[0], Src[1]);
370     break;
371   case R600InstrInfo::ALU_VEC_210:
372     std::swap(Src[0], Src[2]);
373     break;
374   }
375   return Src;
376 }
377 
378 static unsigned getTransSwizzle(R600InstrInfo::BankSwizzle Swz, unsigned Op) {
379   assert(Op < 3 && "Out of range swizzle index");
380   switch (Swz) {
381   case R600InstrInfo::ALU_VEC_012_SCL_210: {
382     unsigned Cycles[3] = { 2, 1, 0};
383     return Cycles[Op];
384   }
385   case R600InstrInfo::ALU_VEC_021_SCL_122: {
386     unsigned Cycles[3] = { 1, 2, 2};
387     return Cycles[Op];
388   }
389   case R600InstrInfo::ALU_VEC_120_SCL_212: {
390     unsigned Cycles[3] = { 2, 1, 2};
391     return Cycles[Op];
392   }
393   case R600InstrInfo::ALU_VEC_102_SCL_221: {
394     unsigned Cycles[3] = { 2, 2, 1};
395     return Cycles[Op];
396   }
397   default:
398     llvm_unreachable("Wrong Swizzle for Trans Slot");
399   }
400 }
401 
402 /// returns how many MIs (whose inputs are represented by IGSrcs) can be packed
403 /// in the same Instruction Group while meeting read port limitations given a
404 /// Swz swizzle sequence.
405 unsigned  R600InstrInfo::isLegalUpTo(
406     const std::vector<std::vector<std::pair<int, unsigned>>> &IGSrcs,
407     const std::vector<R600InstrInfo::BankSwizzle> &Swz,
408     const std::vector<std::pair<int, unsigned>> &TransSrcs,
409     R600InstrInfo::BankSwizzle TransSwz) const {
410   int Vector[4][3];
411   memset(Vector, -1, sizeof(Vector));
412   for (unsigned i = 0, e = IGSrcs.size(); i < e; i++) {
413     const std::vector<std::pair<int, unsigned>> &Srcs =
414         Swizzle(IGSrcs[i], Swz[i]);
415     for (unsigned j = 0; j < 3; j++) {
416       const std::pair<int, unsigned> &Src = Srcs[j];
417       if (Src.first < 0 || Src.first == 255)
418         continue;
419       if (Src.first == GET_REG_INDEX(RI.getEncodingValue(R600::OQAP))) {
420         if (Swz[i] != R600InstrInfo::ALU_VEC_012_SCL_210 &&
421             Swz[i] != R600InstrInfo::ALU_VEC_021_SCL_122) {
422             // The value from output queue A (denoted by register OQAP) can
423             // only be fetched during the first cycle.
424             return false;
425         }
426         // OQAP does not count towards the normal read port restrictions
427         continue;
428       }
429       if (Vector[Src.second][j] < 0)
430         Vector[Src.second][j] = Src.first;
431       if (Vector[Src.second][j] != Src.first)
432         return i;
433     }
434   }
435   // Now check Trans Alu
436   for (unsigned i = 0, e = TransSrcs.size(); i < e; ++i) {
437     const std::pair<int, unsigned> &Src = TransSrcs[i];
438     unsigned Cycle = getTransSwizzle(TransSwz, i);
439     if (Src.first < 0)
440       continue;
441     if (Src.first == 255)
442       continue;
443     if (Vector[Src.second][Cycle] < 0)
444       Vector[Src.second][Cycle] = Src.first;
445     if (Vector[Src.second][Cycle] != Src.first)
446       return IGSrcs.size() - 1;
447   }
448   return IGSrcs.size();
449 }
450 
451 /// Given a swizzle sequence SwzCandidate and an index Idx, returns the next
452 /// (in lexicographic term) swizzle sequence assuming that all swizzles after
453 /// Idx can be skipped
454 static bool
455 NextPossibleSolution(
456     std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
457     unsigned Idx) {
458   assert(Idx < SwzCandidate.size());
459   int ResetIdx = Idx;
460   while (ResetIdx > -1 && SwzCandidate[ResetIdx] == R600InstrInfo::ALU_VEC_210)
461     ResetIdx --;
462   for (unsigned i = ResetIdx + 1, e = SwzCandidate.size(); i < e; i++) {
463     SwzCandidate[i] = R600InstrInfo::ALU_VEC_012_SCL_210;
464   }
465   if (ResetIdx == -1)
466     return false;
467   int NextSwizzle = SwzCandidate[ResetIdx] + 1;
468   SwzCandidate[ResetIdx] = (R600InstrInfo::BankSwizzle)NextSwizzle;
469   return true;
470 }
471 
472 /// Enumerate all possible Swizzle sequence to find one that can meet all
473 /// read port requirements.
474 bool R600InstrInfo::FindSwizzleForVectorSlot(
475     const std::vector<std::vector<std::pair<int, unsigned>>> &IGSrcs,
476     std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
477     const std::vector<std::pair<int, unsigned>> &TransSrcs,
478     R600InstrInfo::BankSwizzle TransSwz) const {
479   unsigned ValidUpTo = 0;
480   do {
481     ValidUpTo = isLegalUpTo(IGSrcs, SwzCandidate, TransSrcs, TransSwz);
482     if (ValidUpTo == IGSrcs.size())
483       return true;
484   } while (NextPossibleSolution(SwzCandidate, ValidUpTo));
485   return false;
486 }
487 
488 /// Instructions in Trans slot can't read gpr at cycle 0 if they also read
489 /// a const, and can't read a gpr at cycle 1 if they read 2 const.
490 static bool
491 isConstCompatible(R600InstrInfo::BankSwizzle TransSwz,
492                   const std::vector<std::pair<int, unsigned>> &TransOps,
493                   unsigned ConstCount) {
494   // TransALU can't read 3 constants
495   if (ConstCount > 2)
496     return false;
497   for (unsigned i = 0, e = TransOps.size(); i < e; ++i) {
498     const std::pair<int, unsigned> &Src = TransOps[i];
499     unsigned Cycle = getTransSwizzle(TransSwz, i);
500     if (Src.first < 0)
501       continue;
502     if (ConstCount > 0 && Cycle == 0)
503       return false;
504     if (ConstCount > 1 && Cycle == 1)
505       return false;
506   }
507   return true;
508 }
509 
510 bool
511 R600InstrInfo::fitsReadPortLimitations(const std::vector<MachineInstr *> &IG,
512                                        const DenseMap<unsigned, unsigned> &PV,
513                                        std::vector<BankSwizzle> &ValidSwizzle,
514                                        bool isLastAluTrans)
515     const {
516   //Todo : support shared src0 - src1 operand
517 
518   std::vector<std::vector<std::pair<int, unsigned>>> IGSrcs;
519   ValidSwizzle.clear();
520   unsigned ConstCount;
521   BankSwizzle TransBS = ALU_VEC_012_SCL_210;
522   for (MachineInstr *MI : IG) {
523     IGSrcs.push_back(ExtractSrcs(*MI, PV, ConstCount));
524     unsigned Op = getOperandIdx(MI->getOpcode(), R600::OpName::bank_swizzle);
525     ValidSwizzle.push_back(
526         (R600InstrInfo::BankSwizzle)MI->getOperand(Op).getImm());
527   }
528   std::vector<std::pair<int, unsigned>> TransOps;
529   if (!isLastAluTrans)
530     return FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps, TransBS);
531 
532   TransOps = std::move(IGSrcs.back());
533   IGSrcs.pop_back();
534   ValidSwizzle.pop_back();
535 
536   static const R600InstrInfo::BankSwizzle TransSwz[] = {
537     ALU_VEC_012_SCL_210,
538     ALU_VEC_021_SCL_122,
539     ALU_VEC_120_SCL_212,
540     ALU_VEC_102_SCL_221
541   };
542   for (R600InstrInfo::BankSwizzle TransBS : TransSwz) {
543     if (!isConstCompatible(TransBS, TransOps, ConstCount))
544       continue;
545     bool Result = FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps,
546         TransBS);
547     if (Result) {
548       ValidSwizzle.push_back(TransBS);
549       return true;
550     }
551   }
552 
553   return false;
554 }
555 
556 bool
557 R600InstrInfo::fitsConstReadLimitations(const std::vector<unsigned> &Consts)
558     const {
559   assert (Consts.size() <= 12 && "Too many operands in instructions group");
560   unsigned Pair1 = 0, Pair2 = 0;
561   for (unsigned Const : Consts) {
562     unsigned ReadConstHalf = Const & 2;
563     unsigned ReadConstIndex = Const & (~3);
564     unsigned ReadHalfConst = ReadConstIndex | ReadConstHalf;
565     if (!Pair1) {
566       Pair1 = ReadHalfConst;
567       continue;
568     }
569     if (Pair1 == ReadHalfConst)
570       continue;
571     if (!Pair2) {
572       Pair2 = ReadHalfConst;
573       continue;
574     }
575     if (Pair2 != ReadHalfConst)
576       return false;
577   }
578   return true;
579 }
580 
581 bool
582 R600InstrInfo::fitsConstReadLimitations(const std::vector<MachineInstr *> &MIs)
583     const {
584   std::vector<unsigned> Consts;
585   SmallSet<int64_t, 4> Literals;
586   for (MachineInstr *MI : MIs) {
587     if (!isALUInstr(MI->getOpcode()))
588       continue;
589 
590     for (const auto &Src : getSrcs(*MI)) {
591       if (Src.first->getReg() == R600::ALU_LITERAL_X)
592         Literals.insert(Src.second);
593       if (Literals.size() > 4)
594         return false;
595       if (Src.first->getReg() == R600::ALU_CONST)
596         Consts.push_back(Src.second);
597       if (R600::R600_KC0RegClass.contains(Src.first->getReg()) ||
598           R600::R600_KC1RegClass.contains(Src.first->getReg())) {
599         unsigned Index = RI.getEncodingValue(Src.first->getReg()) & 0xff;
600         unsigned Chan = RI.getHWRegChan(Src.first->getReg());
601         Consts.push_back((Index << 2) | Chan);
602       }
603     }
604   }
605   return fitsConstReadLimitations(Consts);
606 }
607 
608 DFAPacketizer *
609 R600InstrInfo::CreateTargetScheduleState(const TargetSubtargetInfo &STI) const {
610   const InstrItineraryData *II = STI.getInstrItineraryData();
611   return static_cast<const R600Subtarget &>(STI).createDFAPacketizer(II);
612 }
613 
614 static bool
615 isPredicateSetter(unsigned Opcode) {
616   switch (Opcode) {
617   case R600::PRED_X:
618     return true;
619   default:
620     return false;
621   }
622 }
623 
624 static MachineInstr *
625 findFirstPredicateSetterFrom(MachineBasicBlock &MBB,
626                              MachineBasicBlock::iterator I) {
627   while (I != MBB.begin()) {
628     --I;
629     MachineInstr &MI = *I;
630     if (isPredicateSetter(MI.getOpcode()))
631       return &MI;
632   }
633 
634   return nullptr;
635 }
636 
637 static
638 bool isJump(unsigned Opcode) {
639   return Opcode == R600::JUMP || Opcode == R600::JUMP_COND;
640 }
641 
642 static bool isBranch(unsigned Opcode) {
643   return Opcode == R600::BRANCH || Opcode == R600::BRANCH_COND_i32 ||
644       Opcode == R600::BRANCH_COND_f32;
645 }
646 
647 bool R600InstrInfo::analyzeBranch(MachineBasicBlock &MBB,
648                                   MachineBasicBlock *&TBB,
649                                   MachineBasicBlock *&FBB,
650                                   SmallVectorImpl<MachineOperand> &Cond,
651                                   bool AllowModify) const {
652   // Most of the following comes from the ARM implementation of analyzeBranch
653 
654   // If the block has no terminators, it just falls into the block after it.
655   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
656   if (I == MBB.end())
657     return false;
658 
659   // R600::BRANCH* instructions are only available after isel and are not
660   // handled
661   if (isBranch(I->getOpcode()))
662     return true;
663   if (!isJump(I->getOpcode())) {
664     return false;
665   }
666 
667   // Remove successive JUMP
668   while (I != MBB.begin() && std::prev(I)->getOpcode() == R600::JUMP) {
669       MachineBasicBlock::iterator PriorI = std::prev(I);
670       if (AllowModify)
671         I->removeFromParent();
672       I = PriorI;
673   }
674   MachineInstr &LastInst = *I;
675 
676   // If there is only one terminator instruction, process it.
677   unsigned LastOpc = LastInst.getOpcode();
678   if (I == MBB.begin() || !isJump((--I)->getOpcode())) {
679     if (LastOpc == R600::JUMP) {
680       TBB = LastInst.getOperand(0).getMBB();
681       return false;
682     }
683     if (LastOpc == R600::JUMP_COND) {
684       auto predSet = I;
685       while (!isPredicateSetter(predSet->getOpcode())) {
686         predSet = --I;
687       }
688       TBB = LastInst.getOperand(0).getMBB();
689       Cond.push_back(predSet->getOperand(1));
690       Cond.push_back(predSet->getOperand(2));
691       Cond.push_back(MachineOperand::CreateReg(R600::PRED_SEL_ONE, false));
692       return false;
693     }
694     return true;  // Can't handle indirect branch.
695   }
696 
697   // Get the instruction before it if it is a terminator.
698   MachineInstr &SecondLastInst = *I;
699   unsigned SecondLastOpc = SecondLastInst.getOpcode();
700 
701   // If the block ends with a B and a Bcc, handle it.
702   if (SecondLastOpc == R600::JUMP_COND && LastOpc == R600::JUMP) {
703     auto predSet = --I;
704     while (!isPredicateSetter(predSet->getOpcode())) {
705       predSet = --I;
706     }
707     TBB = SecondLastInst.getOperand(0).getMBB();
708     FBB = LastInst.getOperand(0).getMBB();
709     Cond.push_back(predSet->getOperand(1));
710     Cond.push_back(predSet->getOperand(2));
711     Cond.push_back(MachineOperand::CreateReg(R600::PRED_SEL_ONE, false));
712     return false;
713   }
714 
715   // Otherwise, can't handle this.
716   return true;
717 }
718 
719 static
720 MachineBasicBlock::iterator FindLastAluClause(MachineBasicBlock &MBB) {
721   for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
722       It != E; ++It) {
723     if (It->getOpcode() == R600::CF_ALU ||
724         It->getOpcode() == R600::CF_ALU_PUSH_BEFORE)
725       return It.getReverse();
726   }
727   return MBB.end();
728 }
729 
730 unsigned R600InstrInfo::insertBranch(MachineBasicBlock &MBB,
731                                      MachineBasicBlock *TBB,
732                                      MachineBasicBlock *FBB,
733                                      ArrayRef<MachineOperand> Cond,
734                                      const DebugLoc &DL,
735                                      int *BytesAdded) const {
736   assert(TBB && "insertBranch must not be told to insert a fallthrough");
737   assert(!BytesAdded && "code size not handled");
738 
739   if (!FBB) {
740     if (Cond.empty()) {
741       BuildMI(&MBB, DL, get(R600::JUMP)).addMBB(TBB);
742       return 1;
743     }
744     MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
745     assert(PredSet && "No previous predicate !");
746     addFlag(*PredSet, 0, MO_FLAG_PUSH);
747     PredSet->getOperand(2).setImm(Cond[1].getImm());
748 
749     BuildMI(&MBB, DL, get(R600::JUMP_COND))
750         .addMBB(TBB)
751         .addReg(R600::PREDICATE_BIT, RegState::Kill);
752     MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
753     if (CfAlu == MBB.end())
754       return 1;
755     assert (CfAlu->getOpcode() == R600::CF_ALU);
756     CfAlu->setDesc(get(R600::CF_ALU_PUSH_BEFORE));
757     return 1;
758   }
759   MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
760   assert(PredSet && "No previous predicate !");
761   addFlag(*PredSet, 0, MO_FLAG_PUSH);
762   PredSet->getOperand(2).setImm(Cond[1].getImm());
763   BuildMI(&MBB, DL, get(R600::JUMP_COND))
764       .addMBB(TBB)
765       .addReg(R600::PREDICATE_BIT, RegState::Kill);
766   BuildMI(&MBB, DL, get(R600::JUMP)).addMBB(FBB);
767   MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
768   if (CfAlu == MBB.end())
769     return 2;
770   assert(CfAlu->getOpcode() == R600::CF_ALU);
771   CfAlu->setDesc(get(R600::CF_ALU_PUSH_BEFORE));
772   return 2;
773 }
774 
775 unsigned R600InstrInfo::removeBranch(MachineBasicBlock &MBB,
776                                      int *BytesRemoved) const {
777   assert(!BytesRemoved && "code size not handled");
778 
779   // Note : we leave PRED* instructions there.
780   // They may be needed when predicating instructions.
781 
782   MachineBasicBlock::iterator I = MBB.end();
783 
784   if (I == MBB.begin()) {
785     return 0;
786   }
787   --I;
788   switch (I->getOpcode()) {
789   default:
790     return 0;
791   case R600::JUMP_COND: {
792     MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
793     clearFlag(*predSet, 0, MO_FLAG_PUSH);
794     I->eraseFromParent();
795     MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
796     if (CfAlu == MBB.end())
797       break;
798     assert (CfAlu->getOpcode() == R600::CF_ALU_PUSH_BEFORE);
799     CfAlu->setDesc(get(R600::CF_ALU));
800     break;
801   }
802   case R600::JUMP:
803     I->eraseFromParent();
804     break;
805   }
806   I = MBB.end();
807 
808   if (I == MBB.begin()) {
809     return 1;
810   }
811   --I;
812   switch (I->getOpcode()) {
813     // FIXME: only one case??
814   default:
815     return 1;
816   case R600::JUMP_COND: {
817     MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
818     clearFlag(*predSet, 0, MO_FLAG_PUSH);
819     I->eraseFromParent();
820     MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
821     if (CfAlu == MBB.end())
822       break;
823     assert (CfAlu->getOpcode() == R600::CF_ALU_PUSH_BEFORE);
824     CfAlu->setDesc(get(R600::CF_ALU));
825     break;
826   }
827   case R600::JUMP:
828     I->eraseFromParent();
829     break;
830   }
831   return 2;
832 }
833 
834 bool R600InstrInfo::isPredicated(const MachineInstr &MI) const {
835   int idx = MI.findFirstPredOperandIdx();
836   if (idx < 0)
837     return false;
838 
839   Register Reg = MI.getOperand(idx).getReg();
840   switch (Reg) {
841   default: return false;
842   case R600::PRED_SEL_ONE:
843   case R600::PRED_SEL_ZERO:
844   case R600::PREDICATE_BIT:
845     return true;
846   }
847 }
848 
849 bool R600InstrInfo::isPredicable(const MachineInstr &MI) const {
850   // XXX: KILL* instructions can be predicated, but they must be the last
851   // instruction in a clause, so this means any instructions after them cannot
852   // be predicated.  Until we have proper support for instruction clauses in the
853   // backend, we will mark KILL* instructions as unpredicable.
854 
855   if (MI.getOpcode() == R600::KILLGT)
856     return false;
857   if (MI.getOpcode() == R600::CF_ALU) {
858     // If the clause start in the middle of MBB then the MBB has more
859     // than a single clause, unable to predicate several clauses.
860     if (MI.getParent()->begin() != MachineBasicBlock::const_iterator(MI))
861       return false;
862     // TODO: We don't support KC merging atm
863     return MI.getOperand(3).getImm() == 0 && MI.getOperand(4).getImm() == 0;
864   }
865   if (isVector(MI))
866     return false;
867   return TargetInstrInfo::isPredicable(MI);
868 }
869 
870 bool
871 R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
872                                    unsigned NumCycles,
873                                    unsigned ExtraPredCycles,
874                                    BranchProbability Probability) const{
875   return true;
876 }
877 
878 bool
879 R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
880                                    unsigned NumTCycles,
881                                    unsigned ExtraTCycles,
882                                    MachineBasicBlock &FMBB,
883                                    unsigned NumFCycles,
884                                    unsigned ExtraFCycles,
885                                    BranchProbability Probability) const {
886   return true;
887 }
888 
889 bool
890 R600InstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
891                                          unsigned NumCycles,
892                                          BranchProbability Probability)
893                                          const {
894   return true;
895 }
896 
897 bool
898 R600InstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
899                                          MachineBasicBlock &FMBB) const {
900   return false;
901 }
902 
903 bool
904 R600InstrInfo::reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
905   MachineOperand &MO = Cond[1];
906   switch (MO.getImm()) {
907   case R600::PRED_SETE_INT:
908     MO.setImm(R600::PRED_SETNE_INT);
909     break;
910   case R600::PRED_SETNE_INT:
911     MO.setImm(R600::PRED_SETE_INT);
912     break;
913   case R600::PRED_SETE:
914     MO.setImm(R600::PRED_SETNE);
915     break;
916   case R600::PRED_SETNE:
917     MO.setImm(R600::PRED_SETE);
918     break;
919   default:
920     return true;
921   }
922 
923   MachineOperand &MO2 = Cond[2];
924   switch (MO2.getReg()) {
925   case R600::PRED_SEL_ZERO:
926     MO2.setReg(R600::PRED_SEL_ONE);
927     break;
928   case R600::PRED_SEL_ONE:
929     MO2.setReg(R600::PRED_SEL_ZERO);
930     break;
931   default:
932     return true;
933   }
934   return false;
935 }
936 
937 bool R600InstrInfo::ClobbersPredicate(MachineInstr &MI,
938                                       std::vector<MachineOperand> &Pred,
939                                       bool SkipDead) const {
940   return isPredicateSetter(MI.getOpcode());
941 }
942 
943 bool R600InstrInfo::PredicateInstruction(MachineInstr &MI,
944                                          ArrayRef<MachineOperand> Pred) const {
945   int PIdx = MI.findFirstPredOperandIdx();
946 
947   if (MI.getOpcode() == R600::CF_ALU) {
948     MI.getOperand(8).setImm(0);
949     return true;
950   }
951 
952   if (MI.getOpcode() == R600::DOT_4) {
953     MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_X))
954         .setReg(Pred[2].getReg());
955     MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_Y))
956         .setReg(Pred[2].getReg());
957     MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_Z))
958         .setReg(Pred[2].getReg());
959     MI.getOperand(getOperandIdx(MI, R600::OpName::pred_sel_W))
960         .setReg(Pred[2].getReg());
961     MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
962     MIB.addReg(R600::PREDICATE_BIT, RegState::Implicit);
963     return true;
964   }
965 
966   if (PIdx != -1) {
967     MachineOperand &PMO = MI.getOperand(PIdx);
968     PMO.setReg(Pred[2].getReg());
969     MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
970     MIB.addReg(R600::PREDICATE_BIT, RegState::Implicit);
971     return true;
972   }
973 
974   return false;
975 }
976 
977 unsigned int R600InstrInfo::getPredicationCost(const MachineInstr &) const {
978   return 2;
979 }
980 
981 unsigned int R600InstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
982                                             const MachineInstr &,
983                                             unsigned *PredCost) const {
984   if (PredCost)
985     *PredCost = 2;
986   return 2;
987 }
988 
989 unsigned R600InstrInfo::calculateIndirectAddress(unsigned RegIndex,
990                                                    unsigned Channel) const {
991   assert(Channel == 0);
992   return RegIndex;
993 }
994 
995 bool R600InstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
996   switch (MI.getOpcode()) {
997   default: {
998     MachineBasicBlock *MBB = MI.getParent();
999     int OffsetOpIdx =
1000         R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::addr);
1001     // addr is a custom operand with multiple MI operands, and only the
1002     // first MI operand is given a name.
1003     int RegOpIdx = OffsetOpIdx + 1;
1004     int ChanOpIdx =
1005         R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::chan);
1006     if (isRegisterLoad(MI)) {
1007       int DstOpIdx =
1008           R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::dst);
1009       unsigned RegIndex = MI.getOperand(RegOpIdx).getImm();
1010       unsigned Channel = MI.getOperand(ChanOpIdx).getImm();
1011       unsigned Address = calculateIndirectAddress(RegIndex, Channel);
1012       Register OffsetReg = MI.getOperand(OffsetOpIdx).getReg();
1013       if (OffsetReg == R600::INDIRECT_BASE_ADDR) {
1014         buildMovInstr(MBB, MI, MI.getOperand(DstOpIdx).getReg(),
1015                       getIndirectAddrRegClass()->getRegister(Address));
1016       } else {
1017         buildIndirectRead(MBB, MI, MI.getOperand(DstOpIdx).getReg(), Address,
1018                           OffsetReg);
1019       }
1020     } else if (isRegisterStore(MI)) {
1021       int ValOpIdx =
1022           R600::getNamedOperandIdx(MI.getOpcode(), R600::OpName::val);
1023       unsigned RegIndex = MI.getOperand(RegOpIdx).getImm();
1024       unsigned Channel = MI.getOperand(ChanOpIdx).getImm();
1025       unsigned Address = calculateIndirectAddress(RegIndex, Channel);
1026       Register OffsetReg = MI.getOperand(OffsetOpIdx).getReg();
1027       if (OffsetReg == R600::INDIRECT_BASE_ADDR) {
1028         buildMovInstr(MBB, MI, getIndirectAddrRegClass()->getRegister(Address),
1029                       MI.getOperand(ValOpIdx).getReg());
1030       } else {
1031         buildIndirectWrite(MBB, MI, MI.getOperand(ValOpIdx).getReg(),
1032                            calculateIndirectAddress(RegIndex, Channel),
1033                            OffsetReg);
1034       }
1035     } else {
1036       return false;
1037     }
1038 
1039     MBB->erase(MI);
1040     return true;
1041   }
1042   case R600::R600_EXTRACT_ELT_V2:
1043   case R600::R600_EXTRACT_ELT_V4:
1044     buildIndirectRead(MI.getParent(), MI, MI.getOperand(0).getReg(),
1045                       RI.getHWRegIndex(MI.getOperand(1).getReg()), //  Address
1046                       MI.getOperand(2).getReg(),
1047                       RI.getHWRegChan(MI.getOperand(1).getReg()));
1048     break;
1049   case R600::R600_INSERT_ELT_V2:
1050   case R600::R600_INSERT_ELT_V4:
1051     buildIndirectWrite(MI.getParent(), MI, MI.getOperand(2).getReg(), // Value
1052                        RI.getHWRegIndex(MI.getOperand(1).getReg()),   // Address
1053                        MI.getOperand(3).getReg(),                     // Offset
1054                        RI.getHWRegChan(MI.getOperand(1).getReg()));   // Channel
1055     break;
1056   }
1057   MI.eraseFromParent();
1058   return true;
1059 }
1060 
1061 void R600InstrInfo::reserveIndirectRegisters(BitVector &Reserved,
1062                                              const MachineFunction &MF,
1063                                              const R600RegisterInfo &TRI) const {
1064   const R600Subtarget &ST = MF.getSubtarget<R600Subtarget>();
1065   const R600FrameLowering *TFL = ST.getFrameLowering();
1066 
1067   unsigned StackWidth = TFL->getStackWidth(MF);
1068   int End = getIndirectIndexEnd(MF);
1069 
1070   if (End == -1)
1071     return;
1072 
1073   for (int Index = getIndirectIndexBegin(MF); Index <= End; ++Index) {
1074     for (unsigned Chan = 0; Chan < StackWidth; ++Chan) {
1075       unsigned Reg = R600::R600_TReg32RegClass.getRegister((4 * Index) + Chan);
1076       TRI.reserveRegisterTuples(Reserved, Reg);
1077     }
1078   }
1079 }
1080 
1081 const TargetRegisterClass *R600InstrInfo::getIndirectAddrRegClass() const {
1082   return &R600::R600_TReg32_XRegClass;
1083 }
1084 
1085 MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
1086                                        MachineBasicBlock::iterator I,
1087                                        unsigned ValueReg, unsigned Address,
1088                                        unsigned OffsetReg) const {
1089   return buildIndirectWrite(MBB, I, ValueReg, Address, OffsetReg, 0);
1090 }
1091 
1092 MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
1093                                        MachineBasicBlock::iterator I,
1094                                        unsigned ValueReg, unsigned Address,
1095                                        unsigned OffsetReg,
1096                                        unsigned AddrChan) const {
1097   unsigned AddrReg;
1098   switch (AddrChan) {
1099     default: llvm_unreachable("Invalid Channel");
1100     case 0: AddrReg = R600::R600_AddrRegClass.getRegister(Address); break;
1101     case 1: AddrReg = R600::R600_Addr_YRegClass.getRegister(Address); break;
1102     case 2: AddrReg = R600::R600_Addr_ZRegClass.getRegister(Address); break;
1103     case 3: AddrReg = R600::R600_Addr_WRegClass.getRegister(Address); break;
1104   }
1105   MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, R600::MOVA_INT_eg,
1106                                                R600::AR_X, OffsetReg);
1107   setImmOperand(*MOVA, R600::OpName::write, 0);
1108 
1109   MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, R600::MOV,
1110                                       AddrReg, ValueReg)
1111                                       .addReg(R600::AR_X,
1112                                            RegState::Implicit | RegState::Kill);
1113   setImmOperand(*Mov, R600::OpName::dst_rel, 1);
1114   return Mov;
1115 }
1116 
1117 MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
1118                                        MachineBasicBlock::iterator I,
1119                                        unsigned ValueReg, unsigned Address,
1120                                        unsigned OffsetReg) const {
1121   return buildIndirectRead(MBB, I, ValueReg, Address, OffsetReg, 0);
1122 }
1123 
1124 MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
1125                                        MachineBasicBlock::iterator I,
1126                                        unsigned ValueReg, unsigned Address,
1127                                        unsigned OffsetReg,
1128                                        unsigned AddrChan) const {
1129   unsigned AddrReg;
1130   switch (AddrChan) {
1131     default: llvm_unreachable("Invalid Channel");
1132     case 0: AddrReg = R600::R600_AddrRegClass.getRegister(Address); break;
1133     case 1: AddrReg = R600::R600_Addr_YRegClass.getRegister(Address); break;
1134     case 2: AddrReg = R600::R600_Addr_ZRegClass.getRegister(Address); break;
1135     case 3: AddrReg = R600::R600_Addr_WRegClass.getRegister(Address); break;
1136   }
1137   MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, R600::MOVA_INT_eg,
1138                                                        R600::AR_X,
1139                                                        OffsetReg);
1140   setImmOperand(*MOVA, R600::OpName::write, 0);
1141   MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, R600::MOV,
1142                                       ValueReg,
1143                                       AddrReg)
1144                                       .addReg(R600::AR_X,
1145                                            RegState::Implicit | RegState::Kill);
1146   setImmOperand(*Mov, R600::OpName::src0_rel, 1);
1147 
1148   return Mov;
1149 }
1150 
1151 int R600InstrInfo::getIndirectIndexBegin(const MachineFunction &MF) const {
1152   const MachineRegisterInfo &MRI = MF.getRegInfo();
1153   const MachineFrameInfo &MFI = MF.getFrameInfo();
1154   int Offset = -1;
1155 
1156   if (MFI.getNumObjects() == 0) {
1157     return -1;
1158   }
1159 
1160   if (MRI.livein_empty()) {
1161     return 0;
1162   }
1163 
1164   const TargetRegisterClass *IndirectRC = getIndirectAddrRegClass();
1165   for (std::pair<unsigned, unsigned> LI : MRI.liveins()) {
1166     Register Reg = LI.first;
1167     if (Reg.isVirtual() || !IndirectRC->contains(Reg))
1168       continue;
1169 
1170     unsigned RegIndex;
1171     unsigned RegEnd;
1172     for (RegIndex = 0, RegEnd = IndirectRC->getNumRegs(); RegIndex != RegEnd;
1173                                                           ++RegIndex) {
1174       if (IndirectRC->getRegister(RegIndex) == (unsigned)Reg)
1175         break;
1176     }
1177     Offset = std::max(Offset, (int)RegIndex);
1178   }
1179 
1180   return Offset + 1;
1181 }
1182 
1183 int R600InstrInfo::getIndirectIndexEnd(const MachineFunction &MF) const {
1184   int Offset = 0;
1185   const MachineFrameInfo &MFI = MF.getFrameInfo();
1186 
1187   // Variable sized objects are not supported
1188   if (MFI.hasVarSizedObjects()) {
1189     return -1;
1190   }
1191 
1192   if (MFI.getNumObjects() == 0) {
1193     return -1;
1194   }
1195 
1196   const R600Subtarget &ST = MF.getSubtarget<R600Subtarget>();
1197   const R600FrameLowering *TFL = ST.getFrameLowering();
1198 
1199   Register IgnoredFrameReg;
1200   Offset = TFL->getFrameIndexReference(MF, -1, IgnoredFrameReg).getFixed();
1201 
1202   return getIndirectIndexBegin(MF) + Offset;
1203 }
1204 
1205 unsigned R600InstrInfo::getMaxAlusPerClause() const {
1206   return 115;
1207 }
1208 
1209 MachineInstrBuilder R600InstrInfo::buildDefaultInstruction(MachineBasicBlock &MBB,
1210                                                   MachineBasicBlock::iterator I,
1211                                                   unsigned Opcode,
1212                                                   unsigned DstReg,
1213                                                   unsigned Src0Reg,
1214                                                   unsigned Src1Reg) const {
1215   MachineInstrBuilder MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opcode),
1216     DstReg);           // $dst
1217 
1218   if (Src1Reg) {
1219     MIB.addImm(0)     // $update_exec_mask
1220        .addImm(0);    // $update_predicate
1221   }
1222   MIB.addImm(1)        // $write
1223      .addImm(0)        // $omod
1224      .addImm(0)        // $dst_rel
1225      .addImm(0)        // $dst_clamp
1226      .addReg(Src0Reg)  // $src0
1227      .addImm(0)        // $src0_neg
1228      .addImm(0)        // $src0_rel
1229      .addImm(0)        // $src0_abs
1230      .addImm(-1);       // $src0_sel
1231 
1232   if (Src1Reg) {
1233     MIB.addReg(Src1Reg) // $src1
1234        .addImm(0)       // $src1_neg
1235        .addImm(0)       // $src1_rel
1236        .addImm(0)       // $src1_abs
1237        .addImm(-1);      // $src1_sel
1238   }
1239 
1240   //XXX: The r600g finalizer expects this to be 1, once we've moved the
1241   //scheduling to the backend, we can change the default to 0.
1242   MIB.addImm(1)        // $last
1243       .addReg(R600::PRED_SEL_OFF) // $pred_sel
1244       .addImm(0)         // $literal
1245       .addImm(0);        // $bank_swizzle
1246 
1247   return MIB;
1248 }
1249 
1250 #define OPERAND_CASE(Label) \
1251   case Label: { \
1252     static const unsigned Ops[] = \
1253     { \
1254       Label##_X, \
1255       Label##_Y, \
1256       Label##_Z, \
1257       Label##_W \
1258     }; \
1259     return Ops[Slot]; \
1260   }
1261 
1262 static unsigned getSlotedOps(unsigned  Op, unsigned Slot) {
1263   switch (Op) {
1264   OPERAND_CASE(R600::OpName::update_exec_mask)
1265   OPERAND_CASE(R600::OpName::update_pred)
1266   OPERAND_CASE(R600::OpName::write)
1267   OPERAND_CASE(R600::OpName::omod)
1268   OPERAND_CASE(R600::OpName::dst_rel)
1269   OPERAND_CASE(R600::OpName::clamp)
1270   OPERAND_CASE(R600::OpName::src0)
1271   OPERAND_CASE(R600::OpName::src0_neg)
1272   OPERAND_CASE(R600::OpName::src0_rel)
1273   OPERAND_CASE(R600::OpName::src0_abs)
1274   OPERAND_CASE(R600::OpName::src0_sel)
1275   OPERAND_CASE(R600::OpName::src1)
1276   OPERAND_CASE(R600::OpName::src1_neg)
1277   OPERAND_CASE(R600::OpName::src1_rel)
1278   OPERAND_CASE(R600::OpName::src1_abs)
1279   OPERAND_CASE(R600::OpName::src1_sel)
1280   OPERAND_CASE(R600::OpName::pred_sel)
1281   default:
1282     llvm_unreachable("Wrong Operand");
1283   }
1284 }
1285 
1286 #undef OPERAND_CASE
1287 
1288 MachineInstr *R600InstrInfo::buildSlotOfVectorInstruction(
1289     MachineBasicBlock &MBB, MachineInstr *MI, unsigned Slot, unsigned DstReg)
1290     const {
1291   assert (MI->getOpcode() == R600::DOT_4 && "Not Implemented");
1292   unsigned Opcode;
1293   if (ST.getGeneration() <= AMDGPUSubtarget::R700)
1294     Opcode = R600::DOT4_r600;
1295   else
1296     Opcode = R600::DOT4_eg;
1297   MachineBasicBlock::iterator I = MI;
1298   MachineOperand &Src0 = MI->getOperand(
1299       getOperandIdx(MI->getOpcode(), getSlotedOps(R600::OpName::src0, Slot)));
1300   MachineOperand &Src1 = MI->getOperand(
1301       getOperandIdx(MI->getOpcode(), getSlotedOps(R600::OpName::src1, Slot)));
1302   MachineInstr *MIB = buildDefaultInstruction(
1303       MBB, I, Opcode, DstReg, Src0.getReg(), Src1.getReg());
1304   static const unsigned  Operands[14] = {
1305     R600::OpName::update_exec_mask,
1306     R600::OpName::update_pred,
1307     R600::OpName::write,
1308     R600::OpName::omod,
1309     R600::OpName::dst_rel,
1310     R600::OpName::clamp,
1311     R600::OpName::src0_neg,
1312     R600::OpName::src0_rel,
1313     R600::OpName::src0_abs,
1314     R600::OpName::src0_sel,
1315     R600::OpName::src1_neg,
1316     R600::OpName::src1_rel,
1317     R600::OpName::src1_abs,
1318     R600::OpName::src1_sel,
1319   };
1320 
1321   MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
1322       getSlotedOps(R600::OpName::pred_sel, Slot)));
1323   MIB->getOperand(getOperandIdx(Opcode, R600::OpName::pred_sel))
1324       .setReg(MO.getReg());
1325 
1326   for (unsigned Operand : Operands) {
1327     MachineOperand &MO = MI->getOperand(
1328         getOperandIdx(MI->getOpcode(), getSlotedOps(Operand, Slot)));
1329     assert (MO.isImm());
1330     setImmOperand(*MIB, Operand, MO.getImm());
1331   }
1332   MIB->getOperand(20).setImm(0);
1333   return MIB;
1334 }
1335 
1336 MachineInstr *R600InstrInfo::buildMovImm(MachineBasicBlock &BB,
1337                                          MachineBasicBlock::iterator I,
1338                                          unsigned DstReg,
1339                                          uint64_t Imm) const {
1340   MachineInstr *MovImm = buildDefaultInstruction(BB, I, R600::MOV, DstReg,
1341                                                   R600::ALU_LITERAL_X);
1342   setImmOperand(*MovImm, R600::OpName::literal, Imm);
1343   return MovImm;
1344 }
1345 
1346 MachineInstr *R600InstrInfo::buildMovInstr(MachineBasicBlock *MBB,
1347                                        MachineBasicBlock::iterator I,
1348                                        unsigned DstReg, unsigned SrcReg) const {
1349   return buildDefaultInstruction(*MBB, I, R600::MOV, DstReg, SrcReg);
1350 }
1351 
1352 int R600InstrInfo::getOperandIdx(const MachineInstr &MI, unsigned Op) const {
1353   return getOperandIdx(MI.getOpcode(), Op);
1354 }
1355 
1356 int R600InstrInfo::getOperandIdx(unsigned Opcode, unsigned Op) const {
1357   return R600::getNamedOperandIdx(Opcode, Op);
1358 }
1359 
1360 void R600InstrInfo::setImmOperand(MachineInstr &MI, unsigned Op,
1361                                   int64_t Imm) const {
1362   int Idx = getOperandIdx(MI, Op);
1363   assert(Idx != -1 && "Operand not supported for this instruction.");
1364   assert(MI.getOperand(Idx).isImm());
1365   MI.getOperand(Idx).setImm(Imm);
1366 }
1367 
1368 //===----------------------------------------------------------------------===//
1369 // Instruction flag getters/setters
1370 //===----------------------------------------------------------------------===//
1371 
1372 MachineOperand &R600InstrInfo::getFlagOp(MachineInstr &MI, unsigned SrcIdx,
1373                                          unsigned Flag) const {
1374   unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
1375   int FlagIndex = 0;
1376   if (Flag != 0) {
1377     // If we pass something other than the default value of Flag to this
1378     // function, it means we are want to set a flag on an instruction
1379     // that uses native encoding.
1380     assert(HAS_NATIVE_OPERANDS(TargetFlags));
1381     bool IsOP3 = (TargetFlags & R600_InstFlag::OP3) == R600_InstFlag::OP3;
1382     switch (Flag) {
1383     case MO_FLAG_CLAMP:
1384       FlagIndex = getOperandIdx(MI, R600::OpName::clamp);
1385       break;
1386     case MO_FLAG_MASK:
1387       FlagIndex = getOperandIdx(MI, R600::OpName::write);
1388       break;
1389     case MO_FLAG_NOT_LAST:
1390     case MO_FLAG_LAST:
1391       FlagIndex = getOperandIdx(MI, R600::OpName::last);
1392       break;
1393     case MO_FLAG_NEG:
1394       switch (SrcIdx) {
1395       case 0:
1396         FlagIndex = getOperandIdx(MI, R600::OpName::src0_neg);
1397         break;
1398       case 1:
1399         FlagIndex = getOperandIdx(MI, R600::OpName::src1_neg);
1400         break;
1401       case 2:
1402         FlagIndex = getOperandIdx(MI, R600::OpName::src2_neg);
1403         break;
1404       }
1405       break;
1406 
1407     case MO_FLAG_ABS:
1408       assert(!IsOP3 && "Cannot set absolute value modifier for OP3 "
1409                        "instructions.");
1410       (void)IsOP3;
1411       switch (SrcIdx) {
1412       case 0:
1413         FlagIndex = getOperandIdx(MI, R600::OpName::src0_abs);
1414         break;
1415       case 1:
1416         FlagIndex = getOperandIdx(MI, R600::OpName::src1_abs);
1417         break;
1418       }
1419       break;
1420 
1421     default:
1422       FlagIndex = -1;
1423       break;
1424     }
1425     assert(FlagIndex != -1 && "Flag not supported for this instruction");
1426   } else {
1427       FlagIndex = GET_FLAG_OPERAND_IDX(TargetFlags);
1428       assert(FlagIndex != 0 &&
1429          "Instruction flags not supported for this instruction");
1430   }
1431 
1432   MachineOperand &FlagOp = MI.getOperand(FlagIndex);
1433   assert(FlagOp.isImm());
1434   return FlagOp;
1435 }
1436 
1437 void R600InstrInfo::addFlag(MachineInstr &MI, unsigned Operand,
1438                             unsigned Flag) const {
1439   unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
1440   if (Flag == 0) {
1441     return;
1442   }
1443   if (HAS_NATIVE_OPERANDS(TargetFlags)) {
1444     MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
1445     if (Flag == MO_FLAG_NOT_LAST) {
1446       clearFlag(MI, Operand, MO_FLAG_LAST);
1447     } else if (Flag == MO_FLAG_MASK) {
1448       clearFlag(MI, Operand, Flag);
1449     } else {
1450       FlagOp.setImm(1);
1451     }
1452   } else {
1453       MachineOperand &FlagOp = getFlagOp(MI, Operand);
1454       FlagOp.setImm(FlagOp.getImm() | (Flag << (NUM_MO_FLAGS * Operand)));
1455   }
1456 }
1457 
1458 void R600InstrInfo::clearFlag(MachineInstr &MI, unsigned Operand,
1459                               unsigned Flag) const {
1460   unsigned TargetFlags = get(MI.getOpcode()).TSFlags;
1461   if (HAS_NATIVE_OPERANDS(TargetFlags)) {
1462     MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
1463     FlagOp.setImm(0);
1464   } else {
1465     MachineOperand &FlagOp = getFlagOp(MI);
1466     unsigned InstFlags = FlagOp.getImm();
1467     InstFlags &= ~(Flag << (NUM_MO_FLAGS * Operand));
1468     FlagOp.setImm(InstFlags);
1469   }
1470 }
1471