1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for R600 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "R600ISelLowering.h" 15 #include "AMDGPU.h" 16 #include "MCTargetDesc/R600MCTargetDesc.h" 17 #include "R600Defines.h" 18 #include "R600InstrInfo.h" 19 #include "R600MachineFunctionInfo.h" 20 #include "R600Subtarget.h" 21 #include "R600TargetMachine.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/IR/IntrinsicsR600.h" 25 26 using namespace llvm; 27 28 #include "R600GenCallingConv.inc" 29 30 R600TargetLowering::R600TargetLowering(const TargetMachine &TM, 31 const R600Subtarget &STI) 32 : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) { 33 addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass); 34 addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass); 35 addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass); 36 addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass); 37 addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass); 38 addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass); 39 40 setBooleanContents(ZeroOrNegativeOneBooleanContent); 41 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 42 43 computeRegisterProperties(Subtarget->getRegisterInfo()); 44 45 // Legalize loads and stores to the private address space. 46 setOperationAction(ISD::LOAD, {MVT::i32, MVT::v2i32, MVT::v4i32}, Custom); 47 48 // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address 49 // spaces, so it is custom lowered to handle those where it isn't. 50 for (auto Op : {ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD}) 51 for (MVT VT : MVT::integer_valuetypes()) { 52 setLoadExtAction(Op, VT, MVT::i1, Promote); 53 setLoadExtAction(Op, VT, MVT::i8, Custom); 54 setLoadExtAction(Op, VT, MVT::i16, Custom); 55 } 56 57 // Workaround for LegalizeDAG asserting on expansion of i1 vector loads. 58 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::v2i32, 59 MVT::v2i1, Expand); 60 61 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::v4i32, 62 MVT::v4i1, Expand); 63 64 setOperationAction(ISD::STORE, {MVT::i8, MVT::i32, MVT::v2i32, MVT::v4i32}, 65 Custom); 66 67 setTruncStoreAction(MVT::i32, MVT::i8, Custom); 68 setTruncStoreAction(MVT::i32, MVT::i16, Custom); 69 // We need to include these since trunc STORES to PRIVATE need 70 // special handling to accommodate RMW 71 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 72 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom); 73 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom); 74 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom); 75 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom); 76 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 77 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 78 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom); 79 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom); 80 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom); 81 82 // Workaround for LegalizeDAG asserting on expansion of i1 vector stores. 83 setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand); 84 setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand); 85 86 // Set condition code actions 87 setCondCodeAction({ISD::SETO, ISD::SETUO, ISD::SETLT, ISD::SETLE, ISD::SETOLT, 88 ISD::SETOLE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGE, 89 ISD::SETUGT, ISD::SETULT, ISD::SETULE}, 90 MVT::f32, Expand); 91 92 setCondCodeAction({ISD::SETLE, ISD::SETLT, ISD::SETULE, ISD::SETULT}, 93 MVT::i32, Expand); 94 95 setOperationAction({ISD::FCOS, ISD::FSIN}, MVT::f32, Custom); 96 97 setOperationAction(ISD::SETCC, {MVT::v4i32, MVT::v2i32}, Expand); 98 99 setOperationAction(ISD::BR_CC, {MVT::i32, MVT::f32}, Expand); 100 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 101 102 setOperationAction(ISD::FSUB, MVT::f32, Expand); 103 104 setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FFLOOR}, 105 MVT::f64, Custom); 106 107 setOperationAction(ISD::SELECT_CC, {MVT::f32, MVT::i32}, Custom); 108 109 setOperationAction(ISD::SETCC, {MVT::i32, MVT::f32}, Expand); 110 setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT}, {MVT::i1, MVT::i64}, 111 Custom); 112 113 setOperationAction(ISD::SELECT, {MVT::i32, MVT::f32, MVT::v2i32, MVT::v4i32}, 114 Expand); 115 116 // ADD, SUB overflow. 117 // TODO: turn these into Legal? 118 if (Subtarget->hasCARRY()) 119 setOperationAction(ISD::UADDO, MVT::i32, Custom); 120 121 if (Subtarget->hasBORROW()) 122 setOperationAction(ISD::USUBO, MVT::i32, Custom); 123 124 // Expand sign extension of vectors 125 if (!Subtarget->hasBFE()) 126 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 127 128 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i1, MVT::v4i1}, Expand); 129 130 if (!Subtarget->hasBFE()) 131 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 132 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i8, MVT::v4i8}, Expand); 133 134 if (!Subtarget->hasBFE()) 135 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 136 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i16, MVT::v4i16}, Expand); 137 138 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); 139 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i32, MVT::v4i32}, Expand); 140 141 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand); 142 143 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 144 145 setOperationAction(ISD::EXTRACT_VECTOR_ELT, 146 {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32}, Custom); 147 148 setOperationAction(ISD::INSERT_VECTOR_ELT, 149 {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32}, Custom); 150 151 // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32 152 // to be Legal/Custom in order to avoid library calls. 153 setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, MVT::i32, 154 Custom); 155 156 if (!Subtarget->hasFMA()) 157 setOperationAction(ISD::FMA, {MVT::f32, MVT::f64}, Expand); 158 159 // FIXME: May need no denormals check 160 setOperationAction(ISD::FMAD, MVT::f32, Legal); 161 162 if (!Subtarget->hasBFI()) 163 // fcopysign can be done in a single instruction with BFI. 164 setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand); 165 166 if (!Subtarget->hasBCNT(32)) 167 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 168 169 if (!Subtarget->hasBCNT(64)) 170 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 171 172 if (Subtarget->hasFFBH()) 173 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 174 175 if (Subtarget->hasFFBL()) 176 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 177 178 // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we 179 // need it for R600. 180 if (Subtarget->hasBFE()) 181 setHasExtractBitsInsn(true); 182 183 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 184 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom); 185 186 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 187 for (MVT VT : ScalarIntVTs) 188 setOperationAction({ISD::ADDC, ISD::SUBC, ISD::ADDE, ISD::SUBE}, VT, 189 Expand); 190 191 // LLVM will expand these to atomic_cmp_swap(0) 192 // and atomic_swap, respectively. 193 setOperationAction({ISD::ATOMIC_LOAD, ISD::ATOMIC_STORE}, MVT::i32, Expand); 194 195 // We need to custom lower some of the intrinsics 196 setOperationAction({ISD::INTRINSIC_VOID, ISD::INTRINSIC_WO_CHAIN}, MVT::Other, 197 Custom); 198 199 setSchedulingPreference(Sched::Source); 200 201 setTargetDAGCombine({ISD::FP_ROUND, ISD::FP_TO_SINT, ISD::EXTRACT_VECTOR_ELT, 202 ISD::SELECT_CC, ISD::INSERT_VECTOR_ELT, ISD::LOAD}); 203 } 204 205 static inline bool isEOP(MachineBasicBlock::iterator I) { 206 if (std::next(I) == I->getParent()->end()) 207 return false; 208 return std::next(I)->getOpcode() == R600::RETURN; 209 } 210 211 MachineBasicBlock * 212 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 213 MachineBasicBlock *BB) const { 214 MachineFunction *MF = BB->getParent(); 215 MachineRegisterInfo &MRI = MF->getRegInfo(); 216 MachineBasicBlock::iterator I = MI; 217 const R600InstrInfo *TII = Subtarget->getInstrInfo(); 218 219 switch (MI.getOpcode()) { 220 default: 221 // Replace LDS_*_RET instruction that don't have any uses with the 222 // equivalent LDS_*_NORET instruction. 223 if (TII->isLDSRetInstr(MI.getOpcode())) { 224 int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst); 225 assert(DstIdx != -1); 226 MachineInstrBuilder NewMI; 227 // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add 228 // LDS_1A2D support and remove this special case. 229 if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) || 230 MI.getOpcode() == R600::LDS_CMPST_RET) 231 return BB; 232 233 NewMI = BuildMI(*BB, I, BB->findDebugLoc(I), 234 TII->get(R600::getLDSNoRetOp(MI.getOpcode()))); 235 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) 236 NewMI.add(MO); 237 } else { 238 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 239 } 240 break; 241 242 case R600::FABS_R600: { 243 MachineInstr *NewMI = TII->buildDefaultInstruction( 244 *BB, I, R600::MOV, MI.getOperand(0).getReg(), 245 MI.getOperand(1).getReg()); 246 TII->addFlag(*NewMI, 0, MO_FLAG_ABS); 247 break; 248 } 249 250 case R600::FNEG_R600: { 251 MachineInstr *NewMI = TII->buildDefaultInstruction( 252 *BB, I, R600::MOV, MI.getOperand(0).getReg(), 253 MI.getOperand(1).getReg()); 254 TII->addFlag(*NewMI, 0, MO_FLAG_NEG); 255 break; 256 } 257 258 case R600::MASK_WRITE: { 259 Register maskedRegister = MI.getOperand(0).getReg(); 260 assert(maskedRegister.isVirtual()); 261 MachineInstr * defInstr = MRI.getVRegDef(maskedRegister); 262 TII->addFlag(*defInstr, 0, MO_FLAG_MASK); 263 break; 264 } 265 266 case R600::MOV_IMM_F32: 267 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1) 268 .getFPImm() 269 ->getValueAPF() 270 .bitcastToAPInt() 271 .getZExtValue()); 272 break; 273 274 case R600::MOV_IMM_I32: 275 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), 276 MI.getOperand(1).getImm()); 277 break; 278 279 case R600::MOV_IMM_GLOBAL_ADDR: { 280 //TODO: Perhaps combine this instruction with the next if possible 281 auto MIB = TII->buildDefaultInstruction( 282 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X); 283 int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal); 284 //TODO: Ugh this is rather ugly 285 const MachineOperand &MO = MI.getOperand(1); 286 MIB->getOperand(Idx).ChangeToGA(MO.getGlobal(), MO.getOffset(), 287 MO.getTargetFlags()); 288 break; 289 } 290 291 case R600::CONST_COPY: { 292 MachineInstr *NewMI = TII->buildDefaultInstruction( 293 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST); 294 TII->setImmOperand(*NewMI, R600::OpName::src0_sel, 295 MI.getOperand(1).getImm()); 296 break; 297 } 298 299 case R600::RAT_WRITE_CACHELESS_32_eg: 300 case R600::RAT_WRITE_CACHELESS_64_eg: 301 case R600::RAT_WRITE_CACHELESS_128_eg: 302 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode())) 303 .add(MI.getOperand(0)) 304 .add(MI.getOperand(1)) 305 .addImm(isEOP(I)); // Set End of program bit 306 break; 307 308 case R600::RAT_STORE_TYPED_eg: 309 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode())) 310 .add(MI.getOperand(0)) 311 .add(MI.getOperand(1)) 312 .add(MI.getOperand(2)) 313 .addImm(isEOP(I)); // Set End of program bit 314 break; 315 316 case R600::BRANCH: 317 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP)) 318 .add(MI.getOperand(0)); 319 break; 320 321 case R600::BRANCH_COND_f32: { 322 MachineInstr *NewMI = 323 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X), 324 R600::PREDICATE_BIT) 325 .add(MI.getOperand(1)) 326 .addImm(R600::PRED_SETNE) 327 .addImm(0); // Flags 328 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH); 329 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND)) 330 .add(MI.getOperand(0)) 331 .addReg(R600::PREDICATE_BIT, RegState::Kill); 332 break; 333 } 334 335 case R600::BRANCH_COND_i32: { 336 MachineInstr *NewMI = 337 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X), 338 R600::PREDICATE_BIT) 339 .add(MI.getOperand(1)) 340 .addImm(R600::PRED_SETNE_INT) 341 .addImm(0); // Flags 342 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH); 343 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND)) 344 .add(MI.getOperand(0)) 345 .addReg(R600::PREDICATE_BIT, RegState::Kill); 346 break; 347 } 348 349 case R600::EG_ExportSwz: 350 case R600::R600_ExportSwz: { 351 // Instruction is left unmodified if its not the last one of its type 352 bool isLastInstructionOfItsType = true; 353 unsigned InstExportType = MI.getOperand(1).getImm(); 354 for (MachineBasicBlock::iterator NextExportInst = std::next(I), 355 EndBlock = BB->end(); NextExportInst != EndBlock; 356 NextExportInst = std::next(NextExportInst)) { 357 if (NextExportInst->getOpcode() == R600::EG_ExportSwz || 358 NextExportInst->getOpcode() == R600::R600_ExportSwz) { 359 unsigned CurrentInstExportType = NextExportInst->getOperand(1) 360 .getImm(); 361 if (CurrentInstExportType == InstExportType) { 362 isLastInstructionOfItsType = false; 363 break; 364 } 365 } 366 } 367 bool EOP = isEOP(I); 368 if (!EOP && !isLastInstructionOfItsType) 369 return BB; 370 unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40; 371 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode())) 372 .add(MI.getOperand(0)) 373 .add(MI.getOperand(1)) 374 .add(MI.getOperand(2)) 375 .add(MI.getOperand(3)) 376 .add(MI.getOperand(4)) 377 .add(MI.getOperand(5)) 378 .add(MI.getOperand(6)) 379 .addImm(CfInst) 380 .addImm(EOP); 381 break; 382 } 383 case R600::RETURN: { 384 return BB; 385 } 386 } 387 388 MI.eraseFromParent(); 389 return BB; 390 } 391 392 //===----------------------------------------------------------------------===// 393 // Custom DAG Lowering Operations 394 //===----------------------------------------------------------------------===// 395 396 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 397 MachineFunction &MF = DAG.getMachineFunction(); 398 R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>(); 399 switch (Op.getOpcode()) { 400 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 401 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 402 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 403 case ISD::SHL_PARTS: 404 case ISD::SRA_PARTS: 405 case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG); 406 case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY); 407 case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW); 408 case ISD::FCOS: 409 case ISD::FSIN: return LowerTrig(Op, DAG); 410 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 411 case ISD::STORE: return LowerSTORE(Op, DAG); 412 case ISD::LOAD: { 413 SDValue Result = LowerLOAD(Op, DAG); 414 assert((!Result.getNode() || 415 Result.getNode()->getNumValues() == 2) && 416 "Load should return a value and a chain"); 417 return Result; 418 } 419 420 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 421 case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG); 422 case ISD::FrameIndex: return lowerFrameIndex(Op, DAG); 423 case ISD::ADDRSPACECAST: 424 return lowerADDRSPACECAST(Op, DAG); 425 case ISD::INTRINSIC_VOID: { 426 SDValue Chain = Op.getOperand(0); 427 unsigned IntrinsicID = 428 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 429 switch (IntrinsicID) { 430 case Intrinsic::r600_store_swizzle: { 431 SDLoc DL(Op); 432 const SDValue Args[8] = { 433 Chain, 434 Op.getOperand(2), // Export Value 435 Op.getOperand(3), // ArrayBase 436 Op.getOperand(4), // Type 437 DAG.getConstant(0, DL, MVT::i32), // SWZ_X 438 DAG.getConstant(1, DL, MVT::i32), // SWZ_Y 439 DAG.getConstant(2, DL, MVT::i32), // SWZ_Z 440 DAG.getConstant(3, DL, MVT::i32) // SWZ_W 441 }; 442 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args); 443 } 444 445 // default for switch(IntrinsicID) 446 default: break; 447 } 448 // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode()) 449 break; 450 } 451 case ISD::INTRINSIC_WO_CHAIN: { 452 unsigned IntrinsicID = 453 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 454 EVT VT = Op.getValueType(); 455 SDLoc DL(Op); 456 switch (IntrinsicID) { 457 case Intrinsic::r600_tex: 458 case Intrinsic::r600_texc: { 459 unsigned TextureOp; 460 switch (IntrinsicID) { 461 case Intrinsic::r600_tex: 462 TextureOp = 0; 463 break; 464 case Intrinsic::r600_texc: 465 TextureOp = 1; 466 break; 467 default: 468 llvm_unreachable("unhandled texture operation"); 469 } 470 471 SDValue TexArgs[19] = { 472 DAG.getConstant(TextureOp, DL, MVT::i32), 473 Op.getOperand(1), 474 DAG.getConstant(0, DL, MVT::i32), 475 DAG.getConstant(1, DL, MVT::i32), 476 DAG.getConstant(2, DL, MVT::i32), 477 DAG.getConstant(3, DL, MVT::i32), 478 Op.getOperand(2), 479 Op.getOperand(3), 480 Op.getOperand(4), 481 DAG.getConstant(0, DL, MVT::i32), 482 DAG.getConstant(1, DL, MVT::i32), 483 DAG.getConstant(2, DL, MVT::i32), 484 DAG.getConstant(3, DL, MVT::i32), 485 Op.getOperand(5), 486 Op.getOperand(6), 487 Op.getOperand(7), 488 Op.getOperand(8), 489 Op.getOperand(9), 490 Op.getOperand(10) 491 }; 492 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs); 493 } 494 case Intrinsic::r600_dot4: { 495 SDValue Args[8] = { 496 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), 497 DAG.getConstant(0, DL, MVT::i32)), 498 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), 499 DAG.getConstant(0, DL, MVT::i32)), 500 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), 501 DAG.getConstant(1, DL, MVT::i32)), 502 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), 503 DAG.getConstant(1, DL, MVT::i32)), 504 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), 505 DAG.getConstant(2, DL, MVT::i32)), 506 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), 507 DAG.getConstant(2, DL, MVT::i32)), 508 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), 509 DAG.getConstant(3, DL, MVT::i32)), 510 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), 511 DAG.getConstant(3, DL, MVT::i32)) 512 }; 513 return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args); 514 } 515 516 case Intrinsic::r600_implicitarg_ptr: { 517 MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS); 518 uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT); 519 return DAG.getConstant(ByteOffset, DL, PtrVT); 520 } 521 case Intrinsic::r600_read_ngroups_x: 522 return LowerImplicitParameter(DAG, VT, DL, 0); 523 case Intrinsic::r600_read_ngroups_y: 524 return LowerImplicitParameter(DAG, VT, DL, 1); 525 case Intrinsic::r600_read_ngroups_z: 526 return LowerImplicitParameter(DAG, VT, DL, 2); 527 case Intrinsic::r600_read_global_size_x: 528 return LowerImplicitParameter(DAG, VT, DL, 3); 529 case Intrinsic::r600_read_global_size_y: 530 return LowerImplicitParameter(DAG, VT, DL, 4); 531 case Intrinsic::r600_read_global_size_z: 532 return LowerImplicitParameter(DAG, VT, DL, 5); 533 case Intrinsic::r600_read_local_size_x: 534 return LowerImplicitParameter(DAG, VT, DL, 6); 535 case Intrinsic::r600_read_local_size_y: 536 return LowerImplicitParameter(DAG, VT, DL, 7); 537 case Intrinsic::r600_read_local_size_z: 538 return LowerImplicitParameter(DAG, VT, DL, 8); 539 540 case Intrinsic::r600_read_tgid_x: 541 case Intrinsic::amdgcn_workgroup_id_x: 542 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 543 R600::T1_X, VT); 544 case Intrinsic::r600_read_tgid_y: 545 case Intrinsic::amdgcn_workgroup_id_y: 546 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 547 R600::T1_Y, VT); 548 case Intrinsic::r600_read_tgid_z: 549 case Intrinsic::amdgcn_workgroup_id_z: 550 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 551 R600::T1_Z, VT); 552 case Intrinsic::r600_read_tidig_x: 553 case Intrinsic::amdgcn_workitem_id_x: 554 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 555 R600::T0_X, VT); 556 case Intrinsic::r600_read_tidig_y: 557 case Intrinsic::amdgcn_workitem_id_y: 558 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 559 R600::T0_Y, VT); 560 case Intrinsic::r600_read_tidig_z: 561 case Intrinsic::amdgcn_workitem_id_z: 562 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 563 R600::T0_Z, VT); 564 565 case Intrinsic::r600_recipsqrt_ieee: 566 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 567 568 case Intrinsic::r600_recipsqrt_clamped: 569 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 570 default: 571 return Op; 572 } 573 574 // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode()) 575 break; 576 } 577 } // end switch(Op.getOpcode()) 578 return SDValue(); 579 } 580 581 void R600TargetLowering::ReplaceNodeResults(SDNode *N, 582 SmallVectorImpl<SDValue> &Results, 583 SelectionDAG &DAG) const { 584 switch (N->getOpcode()) { 585 default: 586 AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG); 587 return; 588 case ISD::FP_TO_UINT: 589 if (N->getValueType(0) == MVT::i1) { 590 Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG)); 591 return; 592 } 593 // Since we don't care about out of bounds values we can use FP_TO_SINT for 594 // uints too. The DAGLegalizer code for uint considers some extra cases 595 // which are not necessary here. 596 [[fallthrough]]; 597 case ISD::FP_TO_SINT: { 598 if (N->getValueType(0) == MVT::i1) { 599 Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG)); 600 return; 601 } 602 603 SDValue Result; 604 if (expandFP_TO_SINT(N, Result, DAG)) 605 Results.push_back(Result); 606 return; 607 } 608 case ISD::SDIVREM: { 609 SDValue Op = SDValue(N, 1); 610 SDValue RES = LowerSDIVREM(Op, DAG); 611 Results.push_back(RES); 612 Results.push_back(RES.getValue(1)); 613 break; 614 } 615 case ISD::UDIVREM: { 616 SDValue Op = SDValue(N, 0); 617 LowerUDIVREM64(Op, DAG, Results); 618 break; 619 } 620 } 621 } 622 623 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG, 624 SDValue Vector) const { 625 SDLoc DL(Vector); 626 EVT VecVT = Vector.getValueType(); 627 EVT EltVT = VecVT.getVectorElementType(); 628 SmallVector<SDValue, 8> Args; 629 630 for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) { 631 Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector, 632 DAG.getVectorIdxConstant(i, DL))); 633 } 634 635 return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args); 636 } 637 638 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 639 SelectionDAG &DAG) const { 640 SDLoc DL(Op); 641 SDValue Vector = Op.getOperand(0); 642 SDValue Index = Op.getOperand(1); 643 644 if (isa<ConstantSDNode>(Index) || 645 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR) 646 return Op; 647 648 Vector = vectorToVerticalVector(DAG, Vector); 649 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(), 650 Vector, Index); 651 } 652 653 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 654 SelectionDAG &DAG) const { 655 SDLoc DL(Op); 656 SDValue Vector = Op.getOperand(0); 657 SDValue Value = Op.getOperand(1); 658 SDValue Index = Op.getOperand(2); 659 660 if (isa<ConstantSDNode>(Index) || 661 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR) 662 return Op; 663 664 Vector = vectorToVerticalVector(DAG, Vector); 665 SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(), 666 Vector, Value, Index); 667 return vectorToVerticalVector(DAG, Insert); 668 } 669 670 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 671 SDValue Op, 672 SelectionDAG &DAG) const { 673 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 674 if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 675 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 676 677 const DataLayout &DL = DAG.getDataLayout(); 678 const GlobalValue *GV = GSD->getGlobal(); 679 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 680 681 SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT); 682 return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA); 683 } 684 685 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 686 // On hw >= R700, COS/SIN input must be between -1. and 1. 687 // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5) 688 EVT VT = Op.getValueType(); 689 SDValue Arg = Op.getOperand(0); 690 SDLoc DL(Op); 691 692 // TODO: Should this propagate fast-math-flags? 693 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT, 694 DAG.getNode(ISD::FADD, DL, VT, 695 DAG.getNode(ISD::FMUL, DL, VT, Arg, 696 DAG.getConstantFP(0.15915494309, DL, MVT::f32)), 697 DAG.getConstantFP(0.5, DL, MVT::f32))); 698 unsigned TrigNode; 699 switch (Op.getOpcode()) { 700 case ISD::FCOS: 701 TrigNode = AMDGPUISD::COS_HW; 702 break; 703 case ISD::FSIN: 704 TrigNode = AMDGPUISD::SIN_HW; 705 break; 706 default: 707 llvm_unreachable("Wrong trig opcode"); 708 } 709 SDValue TrigVal = DAG.getNode(TrigNode, DL, VT, 710 DAG.getNode(ISD::FADD, DL, VT, FractPart, 711 DAG.getConstantFP(-0.5, DL, MVT::f32))); 712 if (Gen >= AMDGPUSubtarget::R700) 713 return TrigVal; 714 // On R600 hw, COS/SIN input must be between -Pi and Pi. 715 return DAG.getNode(ISD::FMUL, DL, VT, TrigVal, 716 DAG.getConstantFP(numbers::pif, DL, MVT::f32)); 717 } 718 719 SDValue R600TargetLowering::LowerShiftParts(SDValue Op, 720 SelectionDAG &DAG) const { 721 SDValue Lo, Hi; 722 expandShiftParts(Op.getNode(), Lo, Hi, DAG); 723 return DAG.getMergeValues({Lo, Hi}, SDLoc(Op)); 724 } 725 726 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG, 727 unsigned mainop, unsigned ovf) const { 728 SDLoc DL(Op); 729 EVT VT = Op.getValueType(); 730 731 SDValue Lo = Op.getOperand(0); 732 SDValue Hi = Op.getOperand(1); 733 734 SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi); 735 // Extend sign. 736 OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF, 737 DAG.getValueType(MVT::i1)); 738 739 SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi); 740 741 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF); 742 } 743 744 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const { 745 SDLoc DL(Op); 746 return DAG.getNode( 747 ISD::SETCC, 748 DL, 749 MVT::i1, 750 Op, DAG.getConstantFP(1.0f, DL, MVT::f32), 751 DAG.getCondCode(ISD::SETEQ)); 752 } 753 754 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const { 755 SDLoc DL(Op); 756 return DAG.getNode( 757 ISD::SETCC, 758 DL, 759 MVT::i1, 760 Op, DAG.getConstantFP(-1.0f, DL, MVT::f32), 761 DAG.getCondCode(ISD::SETEQ)); 762 } 763 764 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT, 765 const SDLoc &DL, 766 unsigned DwordOffset) const { 767 unsigned ByteOffset = DwordOffset * 4; 768 PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()), 769 AMDGPUAS::PARAM_I_ADDRESS); 770 771 // We shouldn't be using an offset wider than 16-bits for implicit parameters. 772 assert(isInt<16>(ByteOffset)); 773 774 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 775 DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR 776 MachinePointerInfo(ConstantPointerNull::get(PtrType))); 777 } 778 779 bool R600TargetLowering::isZero(SDValue Op) const { 780 if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) { 781 return Cst->isZero(); 782 } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){ 783 return CstFP->isZero(); 784 } else { 785 return false; 786 } 787 } 788 789 bool R600TargetLowering::isHWTrueValue(SDValue Op) const { 790 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 791 return CFP->isExactlyValue(1.0); 792 } 793 return isAllOnesConstant(Op); 794 } 795 796 bool R600TargetLowering::isHWFalseValue(SDValue Op) const { 797 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 798 return CFP->getValueAPF().isZero(); 799 } 800 return isNullConstant(Op); 801 } 802 803 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 804 SDLoc DL(Op); 805 EVT VT = Op.getValueType(); 806 807 SDValue LHS = Op.getOperand(0); 808 SDValue RHS = Op.getOperand(1); 809 SDValue True = Op.getOperand(2); 810 SDValue False = Op.getOperand(3); 811 SDValue CC = Op.getOperand(4); 812 SDValue Temp; 813 814 if (VT == MVT::f32) { 815 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 816 SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI); 817 if (MinMax) 818 return MinMax; 819 } 820 821 // LHS and RHS are guaranteed to be the same value type 822 EVT CompareVT = LHS.getValueType(); 823 824 // Check if we can lower this to a native operation. 825 826 // Try to lower to a SET* instruction: 827 // 828 // SET* can match the following patterns: 829 // 830 // select_cc f32, f32, -1, 0, cc_supported 831 // select_cc f32, f32, 1.0f, 0.0f, cc_supported 832 // select_cc i32, i32, -1, 0, cc_supported 833 // 834 835 // Move hardware True/False values to the correct operand. 836 if (isHWTrueValue(False) && isHWFalseValue(True)) { 837 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 838 ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT); 839 if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) { 840 std::swap(False, True); 841 CC = DAG.getCondCode(InverseCC); 842 } else { 843 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC); 844 if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) { 845 std::swap(False, True); 846 std::swap(LHS, RHS); 847 CC = DAG.getCondCode(SwapInvCC); 848 } 849 } 850 } 851 852 if (isHWTrueValue(True) && isHWFalseValue(False) && 853 (CompareVT == VT || VT == MVT::i32)) { 854 // This can be matched by a SET* instruction. 855 return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC); 856 } 857 858 // Try to lower to a CND* instruction: 859 // 860 // CND* can match the following patterns: 861 // 862 // select_cc f32, 0.0, f32, f32, cc_supported 863 // select_cc f32, 0.0, i32, i32, cc_supported 864 // select_cc i32, 0, f32, f32, cc_supported 865 // select_cc i32, 0, i32, i32, cc_supported 866 // 867 868 // Try to move the zero value to the RHS 869 if (isZero(LHS)) { 870 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 871 // Try swapping the operands 872 ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode); 873 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) { 874 std::swap(LHS, RHS); 875 CC = DAG.getCondCode(CCSwapped); 876 } else { 877 // Try inverting the condition and then swapping the operands 878 ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT); 879 CCSwapped = ISD::getSetCCSwappedOperands(CCInv); 880 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) { 881 std::swap(True, False); 882 std::swap(LHS, RHS); 883 CC = DAG.getCondCode(CCSwapped); 884 } 885 } 886 } 887 if (isZero(RHS)) { 888 SDValue Cond = LHS; 889 SDValue Zero = RHS; 890 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 891 if (CompareVT != VT) { 892 // Bitcast True / False to the correct types. This will end up being 893 // a nop, but it allows us to define only a single pattern in the 894 // .TD files for each CND* instruction rather than having to have 895 // one pattern for integer True/False and one for fp True/False 896 True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True); 897 False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False); 898 } 899 900 switch (CCOpcode) { 901 case ISD::SETONE: 902 case ISD::SETUNE: 903 case ISD::SETNE: 904 CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT); 905 Temp = True; 906 True = False; 907 False = Temp; 908 break; 909 default: 910 break; 911 } 912 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, 913 Cond, Zero, 914 True, False, 915 DAG.getCondCode(CCOpcode)); 916 return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode); 917 } 918 919 // If we make it this for it means we have no native instructions to handle 920 // this SELECT_CC, so we must lower it. 921 SDValue HWTrue, HWFalse; 922 923 if (CompareVT == MVT::f32) { 924 HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT); 925 HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT); 926 } else if (CompareVT == MVT::i32) { 927 HWTrue = DAG.getConstant(-1, DL, CompareVT); 928 HWFalse = DAG.getConstant(0, DL, CompareVT); 929 } 930 else { 931 llvm_unreachable("Unhandled value type in LowerSELECT_CC"); 932 } 933 934 // Lower this unsupported SELECT_CC into a combination of two supported 935 // SELECT_CC operations. 936 SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC); 937 938 return DAG.getNode(ISD::SELECT_CC, DL, VT, 939 Cond, HWFalse, 940 True, False, 941 DAG.getCondCode(ISD::SETNE)); 942 } 943 944 SDValue R600TargetLowering::lowerADDRSPACECAST(SDValue Op, 945 SelectionDAG &DAG) const { 946 SDLoc SL(Op); 947 EVT VT = Op.getValueType(); 948 949 const R600TargetMachine &TM = 950 static_cast<const R600TargetMachine &>(getTargetMachine()); 951 952 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op); 953 unsigned SrcAS = ASC->getSrcAddressSpace(); 954 unsigned DestAS = ASC->getDestAddressSpace(); 955 956 if (isNullConstant(Op.getOperand(0)) && SrcAS == AMDGPUAS::FLAT_ADDRESS) 957 return DAG.getConstant(TM.getNullPointerValue(DestAS), SL, VT); 958 959 return Op; 960 } 961 962 /// LLVM generates byte-addressed pointers. For indirect addressing, we need to 963 /// convert these pointers to a register index. Each register holds 964 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the 965 /// \p StackWidth, which tells us how many of the 4 sub-registers will be used 966 /// for indirect addressing. 967 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr, 968 unsigned StackWidth, 969 SelectionDAG &DAG) const { 970 unsigned SRLPad; 971 switch(StackWidth) { 972 case 1: 973 SRLPad = 2; 974 break; 975 case 2: 976 SRLPad = 3; 977 break; 978 case 4: 979 SRLPad = 4; 980 break; 981 default: llvm_unreachable("Invalid stack width"); 982 } 983 984 SDLoc DL(Ptr); 985 return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr, 986 DAG.getConstant(SRLPad, DL, MVT::i32)); 987 } 988 989 void R600TargetLowering::getStackAddress(unsigned StackWidth, 990 unsigned ElemIdx, 991 unsigned &Channel, 992 unsigned &PtrIncr) const { 993 switch (StackWidth) { 994 default: 995 case 1: 996 Channel = 0; 997 if (ElemIdx > 0) { 998 PtrIncr = 1; 999 } else { 1000 PtrIncr = 0; 1001 } 1002 break; 1003 case 2: 1004 Channel = ElemIdx % 2; 1005 if (ElemIdx == 2) { 1006 PtrIncr = 1; 1007 } else { 1008 PtrIncr = 0; 1009 } 1010 break; 1011 case 4: 1012 Channel = ElemIdx; 1013 PtrIncr = 0; 1014 break; 1015 } 1016 } 1017 1018 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store, 1019 SelectionDAG &DAG) const { 1020 SDLoc DL(Store); 1021 //TODO: Who creates the i8 stores? 1022 assert(Store->isTruncatingStore() 1023 || Store->getValue().getValueType() == MVT::i8); 1024 assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS); 1025 1026 SDValue Mask; 1027 if (Store->getMemoryVT() == MVT::i8) { 1028 assert(Store->getAlign() >= 1); 1029 Mask = DAG.getConstant(0xff, DL, MVT::i32); 1030 } else if (Store->getMemoryVT() == MVT::i16) { 1031 assert(Store->getAlign() >= 2); 1032 Mask = DAG.getConstant(0xffff, DL, MVT::i32); 1033 } else { 1034 llvm_unreachable("Unsupported private trunc store"); 1035 } 1036 1037 SDValue OldChain = Store->getChain(); 1038 bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN); 1039 // Skip dummy 1040 SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain; 1041 SDValue BasePtr = Store->getBasePtr(); 1042 SDValue Offset = Store->getOffset(); 1043 EVT MemVT = Store->getMemoryVT(); 1044 1045 SDValue LoadPtr = BasePtr; 1046 if (!Offset.isUndef()) { 1047 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset); 1048 } 1049 1050 // Get dword location 1051 // TODO: this should be eliminated by the future SHR ptr, 2 1052 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr, 1053 DAG.getConstant(0xfffffffc, DL, MVT::i32)); 1054 1055 // Load dword 1056 // TODO: can we be smarter about machine pointer info? 1057 MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS); 1058 SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo); 1059 1060 Chain = Dst.getValue(1); 1061 1062 // Get offset in dword 1063 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr, 1064 DAG.getConstant(0x3, DL, MVT::i32)); 1065 1066 // Convert byte offset to bit shift 1067 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1068 DAG.getConstant(3, DL, MVT::i32)); 1069 1070 // TODO: Contrary to the name of the function, 1071 // it also handles sub i32 non-truncating stores (like i1) 1072 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, 1073 Store->getValue()); 1074 1075 // Mask the value to the right type 1076 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); 1077 1078 // Shift the value in place 1079 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, 1080 MaskedValue, ShiftAmt); 1081 1082 // Shift the mask in place 1083 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt); 1084 1085 // Invert the mask. NOTE: if we had native ROL instructions we could 1086 // use inverted mask 1087 DstMask = DAG.getNOT(DL, DstMask, MVT::i32); 1088 1089 // Cleanup the target bits 1090 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); 1091 1092 // Add the new bits 1093 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); 1094 1095 // Store dword 1096 // TODO: Can we be smarter about MachinePointerInfo? 1097 SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo); 1098 1099 // If we are part of expanded vector, make our neighbors depend on this store 1100 if (VectorTrunc) { 1101 // Make all other vector elements depend on this store 1102 Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore); 1103 DAG.ReplaceAllUsesOfValueWith(OldChain, Chain); 1104 } 1105 return NewStore; 1106 } 1107 1108 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1109 StoreSDNode *StoreNode = cast<StoreSDNode>(Op); 1110 unsigned AS = StoreNode->getAddressSpace(); 1111 1112 SDValue Chain = StoreNode->getChain(); 1113 SDValue Ptr = StoreNode->getBasePtr(); 1114 SDValue Value = StoreNode->getValue(); 1115 1116 EVT VT = Value.getValueType(); 1117 EVT MemVT = StoreNode->getMemoryVT(); 1118 EVT PtrVT = Ptr.getValueType(); 1119 1120 SDLoc DL(Op); 1121 1122 const bool TruncatingStore = StoreNode->isTruncatingStore(); 1123 1124 // Neither LOCAL nor PRIVATE can do vectors at the moment 1125 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS || 1126 TruncatingStore) && 1127 VT.isVector()) { 1128 if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) { 1129 // Add an extra level of chain to isolate this vector 1130 SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain); 1131 // TODO: can the chain be replaced without creating a new store? 1132 SDValue NewStore = DAG.getTruncStore( 1133 NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(), MemVT, 1134 StoreNode->getAlign(), StoreNode->getMemOperand()->getFlags(), 1135 StoreNode->getAAInfo()); 1136 StoreNode = cast<StoreSDNode>(NewStore); 1137 } 1138 1139 return scalarizeVectorStore(StoreNode, DAG); 1140 } 1141 1142 Align Alignment = StoreNode->getAlign(); 1143 if (Alignment < MemVT.getStoreSize() && 1144 !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment, 1145 StoreNode->getMemOperand()->getFlags(), 1146 nullptr)) { 1147 return expandUnalignedStore(StoreNode, DAG); 1148 } 1149 1150 SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr, 1151 DAG.getConstant(2, DL, PtrVT)); 1152 1153 if (AS == AMDGPUAS::GLOBAL_ADDRESS) { 1154 // It is beneficial to create MSKOR here instead of combiner to avoid 1155 // artificial dependencies introduced by RMW 1156 if (TruncatingStore) { 1157 assert(VT.bitsLE(MVT::i32)); 1158 SDValue MaskConstant; 1159 if (MemVT == MVT::i8) { 1160 MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32); 1161 } else { 1162 assert(MemVT == MVT::i16); 1163 assert(StoreNode->getAlign() >= 2); 1164 MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32); 1165 } 1166 1167 SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr, 1168 DAG.getConstant(0x00000003, DL, PtrVT)); 1169 SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex, 1170 DAG.getConstant(3, DL, VT)); 1171 1172 // Put the mask in correct place 1173 SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift); 1174 1175 // Put the value bits in correct place 1176 SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant); 1177 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift); 1178 1179 // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32 1180 // vector instead. 1181 SDValue Src[4] = { 1182 ShiftedValue, 1183 DAG.getConstant(0, DL, MVT::i32), 1184 DAG.getConstant(0, DL, MVT::i32), 1185 Mask 1186 }; 1187 SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src); 1188 SDValue Args[3] = { Chain, Input, DWordAddr }; 1189 return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL, 1190 Op->getVTList(), Args, MemVT, 1191 StoreNode->getMemOperand()); 1192 } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) { 1193 // Convert pointer from byte address to dword address. 1194 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr); 1195 1196 if (StoreNode->isIndexed()) { 1197 llvm_unreachable("Indexed stores not supported yet"); 1198 } else { 1199 Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand()); 1200 } 1201 return Chain; 1202 } 1203 } 1204 1205 // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes 1206 if (AS != AMDGPUAS::PRIVATE_ADDRESS) 1207 return SDValue(); 1208 1209 if (MemVT.bitsLT(MVT::i32)) 1210 return lowerPrivateTruncStore(StoreNode, DAG); 1211 1212 // Standard i32+ store, tag it with DWORDADDR to note that the address 1213 // has been shifted 1214 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) { 1215 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr); 1216 return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand()); 1217 } 1218 1219 // Tagged i32+ stores will be matched by patterns 1220 return SDValue(); 1221 } 1222 1223 // return (512 + (kc_bank << 12) 1224 static int 1225 ConstantAddressBlock(unsigned AddressSpace) { 1226 switch (AddressSpace) { 1227 case AMDGPUAS::CONSTANT_BUFFER_0: 1228 return 512; 1229 case AMDGPUAS::CONSTANT_BUFFER_1: 1230 return 512 + 4096; 1231 case AMDGPUAS::CONSTANT_BUFFER_2: 1232 return 512 + 4096 * 2; 1233 case AMDGPUAS::CONSTANT_BUFFER_3: 1234 return 512 + 4096 * 3; 1235 case AMDGPUAS::CONSTANT_BUFFER_4: 1236 return 512 + 4096 * 4; 1237 case AMDGPUAS::CONSTANT_BUFFER_5: 1238 return 512 + 4096 * 5; 1239 case AMDGPUAS::CONSTANT_BUFFER_6: 1240 return 512 + 4096 * 6; 1241 case AMDGPUAS::CONSTANT_BUFFER_7: 1242 return 512 + 4096 * 7; 1243 case AMDGPUAS::CONSTANT_BUFFER_8: 1244 return 512 + 4096 * 8; 1245 case AMDGPUAS::CONSTANT_BUFFER_9: 1246 return 512 + 4096 * 9; 1247 case AMDGPUAS::CONSTANT_BUFFER_10: 1248 return 512 + 4096 * 10; 1249 case AMDGPUAS::CONSTANT_BUFFER_11: 1250 return 512 + 4096 * 11; 1251 case AMDGPUAS::CONSTANT_BUFFER_12: 1252 return 512 + 4096 * 12; 1253 case AMDGPUAS::CONSTANT_BUFFER_13: 1254 return 512 + 4096 * 13; 1255 case AMDGPUAS::CONSTANT_BUFFER_14: 1256 return 512 + 4096 * 14; 1257 case AMDGPUAS::CONSTANT_BUFFER_15: 1258 return 512 + 4096 * 15; 1259 default: 1260 return -1; 1261 } 1262 } 1263 1264 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op, 1265 SelectionDAG &DAG) const { 1266 SDLoc DL(Op); 1267 LoadSDNode *Load = cast<LoadSDNode>(Op); 1268 ISD::LoadExtType ExtType = Load->getExtensionType(); 1269 EVT MemVT = Load->getMemoryVT(); 1270 assert(Load->getAlign() >= MemVT.getStoreSize()); 1271 1272 SDValue BasePtr = Load->getBasePtr(); 1273 SDValue Chain = Load->getChain(); 1274 SDValue Offset = Load->getOffset(); 1275 1276 SDValue LoadPtr = BasePtr; 1277 if (!Offset.isUndef()) { 1278 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset); 1279 } 1280 1281 // Get dword location 1282 // NOTE: this should be eliminated by the future SHR ptr, 2 1283 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr, 1284 DAG.getConstant(0xfffffffc, DL, MVT::i32)); 1285 1286 // Load dword 1287 // TODO: can we be smarter about machine pointer info? 1288 MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS); 1289 SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo); 1290 1291 // Get offset within the register. 1292 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, 1293 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32)); 1294 1295 // Bit offset of target byte (byteIdx * 8). 1296 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1297 DAG.getConstant(3, DL, MVT::i32)); 1298 1299 // Shift to the right. 1300 SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt); 1301 1302 // Eliminate the upper bits by setting them to ... 1303 EVT MemEltVT = MemVT.getScalarType(); 1304 1305 if (ExtType == ISD::SEXTLOAD) { // ... ones. 1306 SDValue MemEltVTNode = DAG.getValueType(MemEltVT); 1307 Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode); 1308 } else { // ... or zeros. 1309 Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT); 1310 } 1311 1312 SDValue Ops[] = { 1313 Ret, 1314 Read.getValue(1) // This should be our output chain 1315 }; 1316 1317 return DAG.getMergeValues(Ops, DL); 1318 } 1319 1320 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1321 LoadSDNode *LoadNode = cast<LoadSDNode>(Op); 1322 unsigned AS = LoadNode->getAddressSpace(); 1323 EVT MemVT = LoadNode->getMemoryVT(); 1324 ISD::LoadExtType ExtType = LoadNode->getExtensionType(); 1325 1326 if (AS == AMDGPUAS::PRIVATE_ADDRESS && 1327 ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) { 1328 return lowerPrivateExtLoad(Op, DAG); 1329 } 1330 1331 SDLoc DL(Op); 1332 EVT VT = Op.getValueType(); 1333 SDValue Chain = LoadNode->getChain(); 1334 SDValue Ptr = LoadNode->getBasePtr(); 1335 1336 if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1337 LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && 1338 VT.isVector()) { 1339 SDValue Ops[2]; 1340 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG); 1341 return DAG.getMergeValues(Ops, DL); 1342 } 1343 1344 // This is still used for explicit load from addrspace(8) 1345 int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace()); 1346 if (ConstantBlock > -1 && 1347 ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) || 1348 (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) { 1349 SDValue Result; 1350 if (isa<Constant>(LoadNode->getMemOperand()->getValue()) || 1351 isa<ConstantSDNode>(Ptr)) { 1352 return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG); 1353 } else { 1354 //TODO: Does this even work? 1355 // non-constant ptr can't be folded, keeps it as a v4f32 load 1356 Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32, 1357 DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, 1358 DAG.getConstant(4, DL, MVT::i32)), 1359 DAG.getConstant(LoadNode->getAddressSpace() - 1360 AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32) 1361 ); 1362 } 1363 1364 if (!VT.isVector()) { 1365 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result, 1366 DAG.getConstant(0, DL, MVT::i32)); 1367 } 1368 1369 SDValue MergedValues[2] = { 1370 Result, 1371 Chain 1372 }; 1373 return DAG.getMergeValues(MergedValues, DL); 1374 } 1375 1376 // For most operations returning SDValue() will result in the node being 1377 // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we 1378 // need to manually expand loads that may be legal in some address spaces and 1379 // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for 1380 // compute shaders, since the data is sign extended when it is uploaded to the 1381 // buffer. However SEXT loads from other address spaces are not supported, so 1382 // we need to expand them here. 1383 if (LoadNode->getExtensionType() == ISD::SEXTLOAD) { 1384 assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8)); 1385 SDValue NewLoad = DAG.getExtLoad( 1386 ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT, 1387 LoadNode->getAlign(), LoadNode->getMemOperand()->getFlags()); 1388 SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad, 1389 DAG.getValueType(MemVT)); 1390 1391 SDValue MergedValues[2] = { Res, Chain }; 1392 return DAG.getMergeValues(MergedValues, DL); 1393 } 1394 1395 if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) { 1396 return SDValue(); 1397 } 1398 1399 // DWORDADDR ISD marks already shifted address 1400 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) { 1401 assert(VT == MVT::i32); 1402 Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32)); 1403 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr); 1404 return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand()); 1405 } 1406 return SDValue(); 1407 } 1408 1409 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 1410 SDValue Chain = Op.getOperand(0); 1411 SDValue Cond = Op.getOperand(1); 1412 SDValue Jump = Op.getOperand(2); 1413 1414 return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(), 1415 Chain, Jump, Cond); 1416 } 1417 1418 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op, 1419 SelectionDAG &DAG) const { 1420 MachineFunction &MF = DAG.getMachineFunction(); 1421 const R600FrameLowering *TFL = Subtarget->getFrameLowering(); 1422 1423 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 1424 1425 unsigned FrameIndex = FIN->getIndex(); 1426 Register IgnoredFrameReg; 1427 StackOffset Offset = 1428 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); 1429 return DAG.getConstant(Offset.getFixed() * 4 * TFL->getStackWidth(MF), 1430 SDLoc(Op), Op.getValueType()); 1431 } 1432 1433 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1434 bool IsVarArg) const { 1435 switch (CC) { 1436 case CallingConv::AMDGPU_KERNEL: 1437 case CallingConv::SPIR_KERNEL: 1438 case CallingConv::C: 1439 case CallingConv::Fast: 1440 case CallingConv::Cold: 1441 llvm_unreachable("kernels should not be handled here"); 1442 case CallingConv::AMDGPU_VS: 1443 case CallingConv::AMDGPU_GS: 1444 case CallingConv::AMDGPU_PS: 1445 case CallingConv::AMDGPU_CS: 1446 case CallingConv::AMDGPU_HS: 1447 case CallingConv::AMDGPU_ES: 1448 case CallingConv::AMDGPU_LS: 1449 return CC_R600; 1450 default: 1451 report_fatal_error("Unsupported calling convention."); 1452 } 1453 } 1454 1455 /// XXX Only kernel functions are supported, so we can assume for now that 1456 /// every function is a kernel function, but in the future we should use 1457 /// separate calling conventions for kernel and non-kernel functions. 1458 SDValue R600TargetLowering::LowerFormalArguments( 1459 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 1460 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1461 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1462 SmallVector<CCValAssign, 16> ArgLocs; 1463 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1464 *DAG.getContext()); 1465 MachineFunction &MF = DAG.getMachineFunction(); 1466 SmallVector<ISD::InputArg, 8> LocalIns; 1467 1468 if (AMDGPU::isShader(CallConv)) { 1469 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg)); 1470 } else { 1471 analyzeFormalArgumentsCompute(CCInfo, Ins); 1472 } 1473 1474 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 1475 CCValAssign &VA = ArgLocs[i]; 1476 const ISD::InputArg &In = Ins[i]; 1477 EVT VT = In.VT; 1478 EVT MemVT = VA.getLocVT(); 1479 if (!VT.isVector() && MemVT.isVector()) { 1480 // Get load source type if scalarized. 1481 MemVT = MemVT.getVectorElementType(); 1482 } 1483 1484 if (AMDGPU::isShader(CallConv)) { 1485 Register Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass); 1486 SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT); 1487 InVals.push_back(Register); 1488 continue; 1489 } 1490 1491 // i64 isn't a legal type, so the register type used ends up as i32, which 1492 // isn't expected here. It attempts to create this sextload, but it ends up 1493 // being invalid. Somehow this seems to work with i64 arguments, but breaks 1494 // for <1 x i64>. 1495 1496 // The first 36 bytes of the input buffer contains information about 1497 // thread group and global sizes. 1498 ISD::LoadExtType Ext = ISD::NON_EXTLOAD; 1499 if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) { 1500 // FIXME: This should really check the extload type, but the handling of 1501 // extload vector parameters seems to be broken. 1502 1503 // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 1504 Ext = ISD::SEXTLOAD; 1505 } 1506 1507 // Compute the offset from the value. 1508 // XXX - I think PartOffset should give you this, but it seems to give the 1509 // size of the register which isn't useful. 1510 1511 unsigned PartOffset = VA.getLocMemOffset(); 1512 Align Alignment = commonAlignment(Align(VT.getStoreSize()), PartOffset); 1513 1514 MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS); 1515 SDValue Arg = DAG.getLoad( 1516 ISD::UNINDEXED, Ext, VT, DL, Chain, 1517 DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32), 1518 PtrInfo, 1519 MemVT, Alignment, MachineMemOperand::MONonTemporal | 1520 MachineMemOperand::MODereferenceable | 1521 MachineMemOperand::MOInvariant); 1522 1523 InVals.push_back(Arg); 1524 } 1525 return Chain; 1526 } 1527 1528 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1529 EVT VT) const { 1530 if (!VT.isVector()) 1531 return MVT::i32; 1532 return VT.changeVectorElementTypeToInteger(); 1533 } 1534 1535 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1536 const MachineFunction &MF) const { 1537 // Local and Private addresses do not handle vectors. Limit to i32 1538 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) { 1539 return (MemVT.getSizeInBits() <= 32); 1540 } 1541 return true; 1542 } 1543 1544 bool R600TargetLowering::allowsMisalignedMemoryAccesses( 1545 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, 1546 unsigned *IsFast) const { 1547 if (IsFast) 1548 *IsFast = 0; 1549 1550 if (!VT.isSimple() || VT == MVT::Other) 1551 return false; 1552 1553 if (VT.bitsLT(MVT::i32)) 1554 return false; 1555 1556 // TODO: This is a rough estimate. 1557 if (IsFast) 1558 *IsFast = 1; 1559 1560 return VT.bitsGT(MVT::i32) && Alignment >= Align(4); 1561 } 1562 1563 static SDValue CompactSwizzlableVector( 1564 SelectionDAG &DAG, SDValue VectorEntry, 1565 DenseMap<unsigned, unsigned> &RemapSwizzle) { 1566 assert(RemapSwizzle.empty()); 1567 1568 SDLoc DL(VectorEntry); 1569 EVT EltTy = VectorEntry.getValueType().getVectorElementType(); 1570 1571 SDValue NewBldVec[4]; 1572 for (unsigned i = 0; i < 4; i++) 1573 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry, 1574 DAG.getIntPtrConstant(i, DL)); 1575 1576 for (unsigned i = 0; i < 4; i++) { 1577 if (NewBldVec[i].isUndef()) 1578 // We mask write here to teach later passes that the ith element of this 1579 // vector is undef. Thus we can use it to reduce 128 bits reg usage, 1580 // break false dependencies and additionally make assembly easier to read. 1581 RemapSwizzle[i] = 7; // SEL_MASK_WRITE 1582 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) { 1583 if (C->isZero()) { 1584 RemapSwizzle[i] = 4; // SEL_0 1585 NewBldVec[i] = DAG.getUNDEF(MVT::f32); 1586 } else if (C->isExactlyValue(1.0)) { 1587 RemapSwizzle[i] = 5; // SEL_1 1588 NewBldVec[i] = DAG.getUNDEF(MVT::f32); 1589 } 1590 } 1591 1592 if (NewBldVec[i].isUndef()) 1593 continue; 1594 1595 for (unsigned j = 0; j < i; j++) { 1596 if (NewBldVec[i] == NewBldVec[j]) { 1597 NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType()); 1598 RemapSwizzle[i] = j; 1599 break; 1600 } 1601 } 1602 } 1603 1604 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry), 1605 NewBldVec); 1606 } 1607 1608 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry, 1609 DenseMap<unsigned, unsigned> &RemapSwizzle) { 1610 assert(RemapSwizzle.empty()); 1611 1612 SDLoc DL(VectorEntry); 1613 EVT EltTy = VectorEntry.getValueType().getVectorElementType(); 1614 1615 SDValue NewBldVec[4]; 1616 bool isUnmovable[4] = {false, false, false, false}; 1617 for (unsigned i = 0; i < 4; i++) 1618 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry, 1619 DAG.getIntPtrConstant(i, DL)); 1620 1621 for (unsigned i = 0; i < 4; i++) { 1622 RemapSwizzle[i] = i; 1623 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1624 unsigned Idx = cast<ConstantSDNode>(NewBldVec[i].getOperand(1)) 1625 ->getZExtValue(); 1626 if (i == Idx) 1627 isUnmovable[Idx] = true; 1628 } 1629 } 1630 1631 for (unsigned i = 0; i < 4; i++) { 1632 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1633 unsigned Idx = cast<ConstantSDNode>(NewBldVec[i].getOperand(1)) 1634 ->getZExtValue(); 1635 if (isUnmovable[Idx]) 1636 continue; 1637 // Swap i and Idx 1638 std::swap(NewBldVec[Idx], NewBldVec[i]); 1639 std::swap(RemapSwizzle[i], RemapSwizzle[Idx]); 1640 break; 1641 } 1642 } 1643 1644 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry), 1645 NewBldVec); 1646 } 1647 1648 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[], 1649 SelectionDAG &DAG, 1650 const SDLoc &DL) const { 1651 // Old -> New swizzle values 1652 DenseMap<unsigned, unsigned> SwizzleRemap; 1653 1654 BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap); 1655 for (unsigned i = 0; i < 4; i++) { 1656 unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue(); 1657 if (SwizzleRemap.contains(Idx)) 1658 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32); 1659 } 1660 1661 SwizzleRemap.clear(); 1662 BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap); 1663 for (unsigned i = 0; i < 4; i++) { 1664 unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue(); 1665 if (SwizzleRemap.contains(Idx)) 1666 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32); 1667 } 1668 1669 return BuildVector; 1670 } 1671 1672 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block, 1673 SelectionDAG &DAG) const { 1674 SDLoc DL(LoadNode); 1675 EVT VT = LoadNode->getValueType(0); 1676 SDValue Chain = LoadNode->getChain(); 1677 SDValue Ptr = LoadNode->getBasePtr(); 1678 assert (isa<ConstantSDNode>(Ptr)); 1679 1680 //TODO: Support smaller loads 1681 if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode)) 1682 return SDValue(); 1683 1684 if (LoadNode->getAlign() < Align(4)) 1685 return SDValue(); 1686 1687 int ConstantBlock = ConstantAddressBlock(Block); 1688 1689 SDValue Slots[4]; 1690 for (unsigned i = 0; i < 4; i++) { 1691 // We want Const position encoded with the following formula : 1692 // (((512 + (kc_bank << 12) + const_index) << 2) + chan) 1693 // const_index is Ptr computed by llvm using an alignment of 16. 1694 // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and 1695 // then div by 4 at the ISel step 1696 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 1697 DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32)); 1698 Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr); 1699 } 1700 EVT NewVT = MVT::v4i32; 1701 unsigned NumElements = 4; 1702 if (VT.isVector()) { 1703 NewVT = VT; 1704 NumElements = VT.getVectorNumElements(); 1705 } 1706 SDValue Result = DAG.getBuildVector(NewVT, DL, ArrayRef(Slots, NumElements)); 1707 if (!VT.isVector()) { 1708 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result, 1709 DAG.getConstant(0, DL, MVT::i32)); 1710 } 1711 SDValue MergedValues[2] = { 1712 Result, 1713 Chain 1714 }; 1715 return DAG.getMergeValues(MergedValues, DL); 1716 } 1717 1718 //===----------------------------------------------------------------------===// 1719 // Custom DAG Optimizations 1720 //===----------------------------------------------------------------------===// 1721 1722 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N, 1723 DAGCombinerInfo &DCI) const { 1724 SelectionDAG &DAG = DCI.DAG; 1725 SDLoc DL(N); 1726 1727 switch (N->getOpcode()) { 1728 // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a) 1729 case ISD::FP_ROUND: { 1730 SDValue Arg = N->getOperand(0); 1731 if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) { 1732 return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0), 1733 Arg.getOperand(0)); 1734 } 1735 break; 1736 } 1737 1738 // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) -> 1739 // (i32 select_cc f32, f32, -1, 0 cc) 1740 // 1741 // Mesa's GLSL frontend generates the above pattern a lot and we can lower 1742 // this to one of the SET*_DX10 instructions. 1743 case ISD::FP_TO_SINT: { 1744 SDValue FNeg = N->getOperand(0); 1745 if (FNeg.getOpcode() != ISD::FNEG) { 1746 return SDValue(); 1747 } 1748 SDValue SelectCC = FNeg.getOperand(0); 1749 if (SelectCC.getOpcode() != ISD::SELECT_CC || 1750 SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS 1751 SelectCC.getOperand(2).getValueType() != MVT::f32 || // True 1752 !isHWTrueValue(SelectCC.getOperand(2)) || 1753 !isHWFalseValue(SelectCC.getOperand(3))) { 1754 return SDValue(); 1755 } 1756 1757 return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0), 1758 SelectCC.getOperand(0), // LHS 1759 SelectCC.getOperand(1), // RHS 1760 DAG.getConstant(-1, DL, MVT::i32), // True 1761 DAG.getConstant(0, DL, MVT::i32), // False 1762 SelectCC.getOperand(4)); // CC 1763 } 1764 1765 // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx 1766 // => build_vector elt0, ... , NewEltIdx, ... , eltN 1767 case ISD::INSERT_VECTOR_ELT: { 1768 SDValue InVec = N->getOperand(0); 1769 SDValue InVal = N->getOperand(1); 1770 SDValue EltNo = N->getOperand(2); 1771 1772 // If the inserted element is an UNDEF, just use the input vector. 1773 if (InVal.isUndef()) 1774 return InVec; 1775 1776 EVT VT = InVec.getValueType(); 1777 1778 // If we can't generate a legal BUILD_VECTOR, exit 1779 if (!isOperationLegal(ISD::BUILD_VECTOR, VT)) 1780 return SDValue(); 1781 1782 // Check that we know which element is being inserted 1783 if (!isa<ConstantSDNode>(EltNo)) 1784 return SDValue(); 1785 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 1786 1787 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 1788 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 1789 // vector elements. 1790 SmallVector<SDValue, 8> Ops; 1791 if (InVec.getOpcode() == ISD::BUILD_VECTOR) { 1792 Ops.append(InVec.getNode()->op_begin(), 1793 InVec.getNode()->op_end()); 1794 } else if (InVec.isUndef()) { 1795 unsigned NElts = VT.getVectorNumElements(); 1796 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); 1797 } else { 1798 return SDValue(); 1799 } 1800 1801 // Insert the element 1802 if (Elt < Ops.size()) { 1803 // All the operands of BUILD_VECTOR must have the same type; 1804 // we enforce that here. 1805 EVT OpVT = Ops[0].getValueType(); 1806 if (InVal.getValueType() != OpVT) 1807 InVal = OpVT.bitsGT(InVal.getValueType()) ? 1808 DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) : 1809 DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal); 1810 Ops[Elt] = InVal; 1811 } 1812 1813 // Return the new vector 1814 return DAG.getBuildVector(VT, DL, Ops); 1815 } 1816 1817 // Extract_vec (Build_vector) generated by custom lowering 1818 // also needs to be customly combined 1819 case ISD::EXTRACT_VECTOR_ELT: { 1820 SDValue Arg = N->getOperand(0); 1821 if (Arg.getOpcode() == ISD::BUILD_VECTOR) { 1822 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 1823 unsigned Element = Const->getZExtValue(); 1824 return Arg->getOperand(Element); 1825 } 1826 } 1827 if (Arg.getOpcode() == ISD::BITCAST && 1828 Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 1829 (Arg.getOperand(0).getValueType().getVectorNumElements() == 1830 Arg.getValueType().getVectorNumElements())) { 1831 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 1832 unsigned Element = Const->getZExtValue(); 1833 return DAG.getNode(ISD::BITCAST, DL, N->getVTList(), 1834 Arg->getOperand(0).getOperand(Element)); 1835 } 1836 } 1837 break; 1838 } 1839 1840 case ISD::SELECT_CC: { 1841 // Try common optimizations 1842 if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI)) 1843 return Ret; 1844 1845 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq -> 1846 // selectcc x, y, a, b, inv(cc) 1847 // 1848 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne -> 1849 // selectcc x, y, a, b, cc 1850 SDValue LHS = N->getOperand(0); 1851 if (LHS.getOpcode() != ISD::SELECT_CC) { 1852 return SDValue(); 1853 } 1854 1855 SDValue RHS = N->getOperand(1); 1856 SDValue True = N->getOperand(2); 1857 SDValue False = N->getOperand(3); 1858 ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 1859 1860 if (LHS.getOperand(2).getNode() != True.getNode() || 1861 LHS.getOperand(3).getNode() != False.getNode() || 1862 RHS.getNode() != False.getNode()) { 1863 return SDValue(); 1864 } 1865 1866 switch (NCC) { 1867 default: return SDValue(); 1868 case ISD::SETNE: return LHS; 1869 case ISD::SETEQ: { 1870 ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get(); 1871 LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType()); 1872 if (DCI.isBeforeLegalizeOps() || 1873 isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType())) 1874 return DAG.getSelectCC(DL, 1875 LHS.getOperand(0), 1876 LHS.getOperand(1), 1877 LHS.getOperand(2), 1878 LHS.getOperand(3), 1879 LHSCC); 1880 break; 1881 } 1882 } 1883 return SDValue(); 1884 } 1885 1886 case AMDGPUISD::R600_EXPORT: { 1887 SDValue Arg = N->getOperand(1); 1888 if (Arg.getOpcode() != ISD::BUILD_VECTOR) 1889 break; 1890 1891 SDValue NewArgs[8] = { 1892 N->getOperand(0), // Chain 1893 SDValue(), 1894 N->getOperand(2), // ArrayBase 1895 N->getOperand(3), // Type 1896 N->getOperand(4), // SWZ_X 1897 N->getOperand(5), // SWZ_Y 1898 N->getOperand(6), // SWZ_Z 1899 N->getOperand(7) // SWZ_W 1900 }; 1901 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL); 1902 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs); 1903 } 1904 case AMDGPUISD::TEXTURE_FETCH: { 1905 SDValue Arg = N->getOperand(1); 1906 if (Arg.getOpcode() != ISD::BUILD_VECTOR) 1907 break; 1908 1909 SDValue NewArgs[19] = { 1910 N->getOperand(0), 1911 N->getOperand(1), 1912 N->getOperand(2), 1913 N->getOperand(3), 1914 N->getOperand(4), 1915 N->getOperand(5), 1916 N->getOperand(6), 1917 N->getOperand(7), 1918 N->getOperand(8), 1919 N->getOperand(9), 1920 N->getOperand(10), 1921 N->getOperand(11), 1922 N->getOperand(12), 1923 N->getOperand(13), 1924 N->getOperand(14), 1925 N->getOperand(15), 1926 N->getOperand(16), 1927 N->getOperand(17), 1928 N->getOperand(18), 1929 }; 1930 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL); 1931 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs); 1932 } 1933 1934 case ISD::LOAD: { 1935 LoadSDNode *LoadNode = cast<LoadSDNode>(N); 1936 SDValue Ptr = LoadNode->getBasePtr(); 1937 if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS && 1938 isa<ConstantSDNode>(Ptr)) 1939 return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG); 1940 break; 1941 } 1942 1943 default: break; 1944 } 1945 1946 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 1947 } 1948 1949 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx, 1950 SDValue &Src, SDValue &Neg, SDValue &Abs, 1951 SDValue &Sel, SDValue &Imm, 1952 SelectionDAG &DAG) const { 1953 const R600InstrInfo *TII = Subtarget->getInstrInfo(); 1954 if (!Src.isMachineOpcode()) 1955 return false; 1956 1957 switch (Src.getMachineOpcode()) { 1958 case R600::FNEG_R600: 1959 if (!Neg.getNode()) 1960 return false; 1961 Src = Src.getOperand(0); 1962 Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32); 1963 return true; 1964 case R600::FABS_R600: 1965 if (!Abs.getNode()) 1966 return false; 1967 Src = Src.getOperand(0); 1968 Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32); 1969 return true; 1970 case R600::CONST_COPY: { 1971 unsigned Opcode = ParentNode->getMachineOpcode(); 1972 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1; 1973 1974 if (!Sel.getNode()) 1975 return false; 1976 1977 SDValue CstOffset = Src.getOperand(0); 1978 if (ParentNode->getValueType(0).isVector()) 1979 return false; 1980 1981 // Gather constants values 1982 int SrcIndices[] = { 1983 TII->getOperandIdx(Opcode, R600::OpName::src0), 1984 TII->getOperandIdx(Opcode, R600::OpName::src1), 1985 TII->getOperandIdx(Opcode, R600::OpName::src2), 1986 TII->getOperandIdx(Opcode, R600::OpName::src0_X), 1987 TII->getOperandIdx(Opcode, R600::OpName::src0_Y), 1988 TII->getOperandIdx(Opcode, R600::OpName::src0_Z), 1989 TII->getOperandIdx(Opcode, R600::OpName::src0_W), 1990 TII->getOperandIdx(Opcode, R600::OpName::src1_X), 1991 TII->getOperandIdx(Opcode, R600::OpName::src1_Y), 1992 TII->getOperandIdx(Opcode, R600::OpName::src1_Z), 1993 TII->getOperandIdx(Opcode, R600::OpName::src1_W) 1994 }; 1995 std::vector<unsigned> Consts; 1996 for (int OtherSrcIdx : SrcIndices) { 1997 int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx); 1998 if (OtherSrcIdx < 0 || OtherSelIdx < 0) 1999 continue; 2000 if (HasDst) { 2001 OtherSrcIdx--; 2002 OtherSelIdx--; 2003 } 2004 if (RegisterSDNode *Reg = 2005 dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) { 2006 if (Reg->getReg() == R600::ALU_CONST) { 2007 ConstantSDNode *Cst 2008 = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx)); 2009 Consts.push_back(Cst->getZExtValue()); 2010 } 2011 } 2012 } 2013 2014 ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset); 2015 Consts.push_back(Cst->getZExtValue()); 2016 if (!TII->fitsConstReadLimitations(Consts)) { 2017 return false; 2018 } 2019 2020 Sel = CstOffset; 2021 Src = DAG.getRegister(R600::ALU_CONST, MVT::f32); 2022 return true; 2023 } 2024 case R600::MOV_IMM_GLOBAL_ADDR: 2025 // Check if the Imm slot is used. Taken from below. 2026 if (cast<ConstantSDNode>(Imm)->getZExtValue()) 2027 return false; 2028 Imm = Src.getOperand(0); 2029 Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32); 2030 return true; 2031 case R600::MOV_IMM_I32: 2032 case R600::MOV_IMM_F32: { 2033 unsigned ImmReg = R600::ALU_LITERAL_X; 2034 uint64_t ImmValue = 0; 2035 2036 if (Src.getMachineOpcode() == R600::MOV_IMM_F32) { 2037 ConstantFPSDNode *FPC = cast<ConstantFPSDNode>(Src.getOperand(0)); 2038 float FloatValue = FPC->getValueAPF().convertToFloat(); 2039 if (FloatValue == 0.0) { 2040 ImmReg = R600::ZERO; 2041 } else if (FloatValue == 0.5) { 2042 ImmReg = R600::HALF; 2043 } else if (FloatValue == 1.0) { 2044 ImmReg = R600::ONE; 2045 } else { 2046 ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue(); 2047 } 2048 } else { 2049 ConstantSDNode *C = cast<ConstantSDNode>(Src.getOperand(0)); 2050 uint64_t Value = C->getZExtValue(); 2051 if (Value == 0) { 2052 ImmReg = R600::ZERO; 2053 } else if (Value == 1) { 2054 ImmReg = R600::ONE_INT; 2055 } else { 2056 ImmValue = Value; 2057 } 2058 } 2059 2060 // Check that we aren't already using an immediate. 2061 // XXX: It's possible for an instruction to have more than one 2062 // immediate operand, but this is not supported yet. 2063 if (ImmReg == R600::ALU_LITERAL_X) { 2064 if (!Imm.getNode()) 2065 return false; 2066 ConstantSDNode *C = cast<ConstantSDNode>(Imm); 2067 if (C->getZExtValue()) 2068 return false; 2069 Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32); 2070 } 2071 Src = DAG.getRegister(ImmReg, MVT::i32); 2072 return true; 2073 } 2074 default: 2075 return false; 2076 } 2077 } 2078 2079 /// Fold the instructions after selecting them 2080 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node, 2081 SelectionDAG &DAG) const { 2082 const R600InstrInfo *TII = Subtarget->getInstrInfo(); 2083 if (!Node->isMachineOpcode()) 2084 return Node; 2085 2086 unsigned Opcode = Node->getMachineOpcode(); 2087 SDValue FakeOp; 2088 2089 std::vector<SDValue> Ops(Node->op_begin(), Node->op_end()); 2090 2091 if (Opcode == R600::DOT_4) { 2092 int OperandIdx[] = { 2093 TII->getOperandIdx(Opcode, R600::OpName::src0_X), 2094 TII->getOperandIdx(Opcode, R600::OpName::src0_Y), 2095 TII->getOperandIdx(Opcode, R600::OpName::src0_Z), 2096 TII->getOperandIdx(Opcode, R600::OpName::src0_W), 2097 TII->getOperandIdx(Opcode, R600::OpName::src1_X), 2098 TII->getOperandIdx(Opcode, R600::OpName::src1_Y), 2099 TII->getOperandIdx(Opcode, R600::OpName::src1_Z), 2100 TII->getOperandIdx(Opcode, R600::OpName::src1_W) 2101 }; 2102 int NegIdx[] = { 2103 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X), 2104 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y), 2105 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z), 2106 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W), 2107 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X), 2108 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y), 2109 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z), 2110 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W) 2111 }; 2112 int AbsIdx[] = { 2113 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X), 2114 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y), 2115 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z), 2116 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W), 2117 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X), 2118 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y), 2119 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z), 2120 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W) 2121 }; 2122 for (unsigned i = 0; i < 8; i++) { 2123 if (OperandIdx[i] < 0) 2124 return Node; 2125 SDValue &Src = Ops[OperandIdx[i] - 1]; 2126 SDValue &Neg = Ops[NegIdx[i] - 1]; 2127 SDValue &Abs = Ops[AbsIdx[i] - 1]; 2128 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1; 2129 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]); 2130 if (HasDst) 2131 SelIdx--; 2132 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp; 2133 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG)) 2134 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 2135 } 2136 } else if (Opcode == R600::REG_SEQUENCE) { 2137 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) { 2138 SDValue &Src = Ops[i]; 2139 if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG)) 2140 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 2141 } 2142 } else { 2143 if (!TII->hasInstrModifiers(Opcode)) 2144 return Node; 2145 int OperandIdx[] = { 2146 TII->getOperandIdx(Opcode, R600::OpName::src0), 2147 TII->getOperandIdx(Opcode, R600::OpName::src1), 2148 TII->getOperandIdx(Opcode, R600::OpName::src2) 2149 }; 2150 int NegIdx[] = { 2151 TII->getOperandIdx(Opcode, R600::OpName::src0_neg), 2152 TII->getOperandIdx(Opcode, R600::OpName::src1_neg), 2153 TII->getOperandIdx(Opcode, R600::OpName::src2_neg) 2154 }; 2155 int AbsIdx[] = { 2156 TII->getOperandIdx(Opcode, R600::OpName::src0_abs), 2157 TII->getOperandIdx(Opcode, R600::OpName::src1_abs), 2158 -1 2159 }; 2160 for (unsigned i = 0; i < 3; i++) { 2161 if (OperandIdx[i] < 0) 2162 return Node; 2163 SDValue &Src = Ops[OperandIdx[i] - 1]; 2164 SDValue &Neg = Ops[NegIdx[i] - 1]; 2165 SDValue FakeAbs; 2166 SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs; 2167 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1; 2168 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]); 2169 int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal); 2170 if (HasDst) { 2171 SelIdx--; 2172 ImmIdx--; 2173 } 2174 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp; 2175 SDValue &Imm = Ops[ImmIdx]; 2176 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG)) 2177 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 2178 } 2179 } 2180 2181 return Node; 2182 } 2183 2184 TargetLowering::AtomicExpansionKind 2185 R600TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { 2186 switch (RMW->getOperation()) { 2187 case AtomicRMWInst::UIncWrap: 2188 case AtomicRMWInst::UDecWrap: 2189 // FIXME: Cayman at least appears to have instructions for this, but the 2190 // instruction defintions appear to be missing. 2191 return AtomicExpansionKind::CmpXChg; 2192 default: 2193 break; 2194 } 2195 2196 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW); 2197 } 2198