xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/R600ISelLowering.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for R600
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "R600ISelLowering.h"
15 #include "AMDGPU.h"
16 #include "MCTargetDesc/R600MCTargetDesc.h"
17 #include "R600Defines.h"
18 #include "R600InstrInfo.h"
19 #include "R600MachineFunctionInfo.h"
20 #include "R600Subtarget.h"
21 #include "R600TargetMachine.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/IR/IntrinsicsR600.h"
25 
26 using namespace llvm;
27 
28 #include "R600GenCallingConv.inc"
29 
30 R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
31                                        const R600Subtarget &STI)
32     : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
33   addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
34   addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
35   addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
36   addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
37   addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
38   addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
39 
40   setBooleanContents(ZeroOrNegativeOneBooleanContent);
41   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
42 
43   computeRegisterProperties(Subtarget->getRegisterInfo());
44 
45   // Legalize loads and stores to the private address space.
46   setOperationAction(ISD::LOAD, {MVT::i32, MVT::v2i32, MVT::v4i32}, Custom);
47 
48   // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
49   // spaces, so it is custom lowered to handle those where it isn't.
50   for (auto Op : {ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD})
51     for (MVT VT : MVT::integer_valuetypes()) {
52       setLoadExtAction(Op, VT, MVT::i1, Promote);
53       setLoadExtAction(Op, VT, MVT::i8, Custom);
54       setLoadExtAction(Op, VT, MVT::i16, Custom);
55     }
56 
57   // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
58   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::v2i32,
59                    MVT::v2i1, Expand);
60 
61   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::v4i32,
62                    MVT::v4i1, Expand);
63 
64   setOperationAction(ISD::STORE, {MVT::i8, MVT::i32, MVT::v2i32, MVT::v4i32},
65                      Custom);
66 
67   setTruncStoreAction(MVT::i32, MVT::i8, Custom);
68   setTruncStoreAction(MVT::i32, MVT::i16, Custom);
69   // We need to include these since trunc STORES to PRIVATE need
70   // special handling to accommodate RMW
71   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
72   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
73   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
74   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
75   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
76   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
77   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
78   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
79   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
80   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
81 
82   // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
83   setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
84   setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
85 
86   // Set condition code actions
87   setCondCodeAction({ISD::SETO, ISD::SETUO, ISD::SETLT, ISD::SETLE, ISD::SETOLT,
88                      ISD::SETOLE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGE,
89                      ISD::SETUGT, ISD::SETULT, ISD::SETULE},
90                     MVT::f32, Expand);
91 
92   setCondCodeAction({ISD::SETLE, ISD::SETLT, ISD::SETULE, ISD::SETULT},
93                     MVT::i32, Expand);
94 
95   setOperationAction({ISD::FCOS, ISD::FSIN}, MVT::f32, Custom);
96 
97   setOperationAction(ISD::SETCC, {MVT::v4i32, MVT::v2i32}, Expand);
98 
99   setOperationAction(ISD::BR_CC, {MVT::i32, MVT::f32}, Expand);
100   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
101 
102   setOperationAction(ISD::FSUB, MVT::f32, Expand);
103 
104   setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FROUNDEVEN, ISD::FFLOOR},
105                      MVT::f64, Custom);
106 
107   setOperationAction(ISD::SELECT_CC, {MVT::f32, MVT::i32}, Custom);
108 
109   setOperationAction(ISD::SETCC, {MVT::i32, MVT::f32}, Expand);
110   setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT}, {MVT::i1, MVT::i64},
111                      Custom);
112 
113   setOperationAction(ISD::SELECT, {MVT::i32, MVT::f32, MVT::v2i32, MVT::v4i32},
114                      Expand);
115 
116   // ADD, SUB overflow.
117   // TODO: turn these into Legal?
118   if (Subtarget->hasCARRY())
119     setOperationAction(ISD::UADDO, MVT::i32, Custom);
120 
121   if (Subtarget->hasBORROW())
122     setOperationAction(ISD::USUBO, MVT::i32, Custom);
123 
124   // Expand sign extension of vectors
125   if (!Subtarget->hasBFE())
126     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
127 
128   setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i1, MVT::v4i1}, Expand);
129 
130   if (!Subtarget->hasBFE())
131     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
132   setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i8, MVT::v4i8}, Expand);
133 
134   if (!Subtarget->hasBFE())
135     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
136   setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i16, MVT::v4i16}, Expand);
137 
138   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
139   setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i32, MVT::v4i32}, Expand);
140 
141   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
142 
143   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
144 
145   setOperationAction(ISD::EXTRACT_VECTOR_ELT,
146                      {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32}, Custom);
147 
148   setOperationAction(ISD::INSERT_VECTOR_ELT,
149                      {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32}, Custom);
150 
151   // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
152   //  to be Legal/Custom in order to avoid library calls.
153   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, MVT::i32,
154                      Custom);
155 
156   if (!Subtarget->hasFMA())
157     setOperationAction(ISD::FMA, {MVT::f32, MVT::f64}, Expand);
158 
159   // FIXME: May need no denormals check
160   setOperationAction(ISD::FMAD, MVT::f32, Legal);
161 
162   if (!Subtarget->hasBFI())
163     // fcopysign can be done in a single instruction with BFI.
164     setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand);
165 
166   if (!Subtarget->hasBCNT(32))
167     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
168 
169   if (!Subtarget->hasBCNT(64))
170     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
171 
172   if (Subtarget->hasFFBH())
173     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
174 
175   if (Subtarget->hasFFBL())
176     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
177 
178   // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
179   // need it for R600.
180   if (Subtarget->hasBFE())
181     setHasExtractBitsInsn(true);
182 
183   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
184   setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
185 
186   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
187   for (MVT VT : ScalarIntVTs)
188     setOperationAction({ISD::ADDC, ISD::SUBC, ISD::ADDE, ISD::SUBE}, VT,
189                        Expand);
190 
191   // LLVM will expand these to atomic_cmp_swap(0)
192   // and atomic_swap, respectively.
193   setOperationAction({ISD::ATOMIC_LOAD, ISD::ATOMIC_STORE}, MVT::i32, Expand);
194 
195   // We need to custom lower some of the intrinsics
196   setOperationAction({ISD::INTRINSIC_VOID, ISD::INTRINSIC_WO_CHAIN}, MVT::Other,
197                      Custom);
198 
199   setSchedulingPreference(Sched::Source);
200 
201   setTargetDAGCombine({ISD::FP_ROUND, ISD::FP_TO_SINT, ISD::EXTRACT_VECTOR_ELT,
202                        ISD::SELECT_CC, ISD::INSERT_VECTOR_ELT, ISD::LOAD});
203 }
204 
205 static inline bool isEOP(MachineBasicBlock::iterator I) {
206   if (std::next(I) == I->getParent()->end())
207     return false;
208   return std::next(I)->getOpcode() == R600::RETURN;
209 }
210 
211 MachineBasicBlock *
212 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
213                                                 MachineBasicBlock *BB) const {
214   MachineFunction *MF = BB->getParent();
215   MachineRegisterInfo &MRI = MF->getRegInfo();
216   MachineBasicBlock::iterator I = MI;
217   const R600InstrInfo *TII = Subtarget->getInstrInfo();
218 
219   switch (MI.getOpcode()) {
220   default:
221     // Replace LDS_*_RET instruction that don't have any uses with the
222     // equivalent LDS_*_NORET instruction.
223     if (TII->isLDSRetInstr(MI.getOpcode())) {
224       int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
225       assert(DstIdx != -1);
226       MachineInstrBuilder NewMI;
227       // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
228       //        LDS_1A2D support and remove this special case.
229       if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
230           MI.getOpcode() == R600::LDS_CMPST_RET)
231         return BB;
232 
233       NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
234                       TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
235       for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
236         NewMI.add(MO);
237     } else {
238       return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
239     }
240     break;
241 
242   case R600::FABS_R600: {
243     MachineInstr *NewMI = TII->buildDefaultInstruction(
244         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
245         MI.getOperand(1).getReg());
246     TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
247     break;
248   }
249 
250   case R600::FNEG_R600: {
251     MachineInstr *NewMI = TII->buildDefaultInstruction(
252         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
253         MI.getOperand(1).getReg());
254     TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
255     break;
256   }
257 
258   case R600::MASK_WRITE: {
259     Register maskedRegister = MI.getOperand(0).getReg();
260     assert(maskedRegister.isVirtual());
261     MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
262     TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
263     break;
264   }
265 
266   case R600::MOV_IMM_F32:
267     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
268                                                             .getFPImm()
269                                                             ->getValueAPF()
270                                                             .bitcastToAPInt()
271                                                             .getZExtValue());
272     break;
273 
274   case R600::MOV_IMM_I32:
275     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
276                      MI.getOperand(1).getImm());
277     break;
278 
279   case R600::MOV_IMM_GLOBAL_ADDR: {
280     //TODO: Perhaps combine this instruction with the next if possible
281     auto MIB = TII->buildDefaultInstruction(
282         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
283     int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
284     //TODO: Ugh this is rather ugly
285     const MachineOperand &MO = MI.getOperand(1);
286     MIB->getOperand(Idx).ChangeToGA(MO.getGlobal(), MO.getOffset(),
287                                     MO.getTargetFlags());
288     break;
289   }
290 
291   case R600::CONST_COPY: {
292     MachineInstr *NewMI = TII->buildDefaultInstruction(
293         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
294     TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
295                        MI.getOperand(1).getImm());
296     break;
297   }
298 
299   case R600::RAT_WRITE_CACHELESS_32_eg:
300   case R600::RAT_WRITE_CACHELESS_64_eg:
301   case R600::RAT_WRITE_CACHELESS_128_eg:
302     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
303         .add(MI.getOperand(0))
304         .add(MI.getOperand(1))
305         .addImm(isEOP(I)); // Set End of program bit
306     break;
307 
308   case R600::RAT_STORE_TYPED_eg:
309     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
310         .add(MI.getOperand(0))
311         .add(MI.getOperand(1))
312         .add(MI.getOperand(2))
313         .addImm(isEOP(I)); // Set End of program bit
314     break;
315 
316   case R600::BRANCH:
317     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
318         .add(MI.getOperand(0));
319     break;
320 
321   case R600::BRANCH_COND_f32: {
322     MachineInstr *NewMI =
323         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
324                 R600::PREDICATE_BIT)
325             .add(MI.getOperand(1))
326             .addImm(R600::PRED_SETNE)
327             .addImm(0); // Flags
328     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
329     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
330         .add(MI.getOperand(0))
331         .addReg(R600::PREDICATE_BIT, RegState::Kill);
332     break;
333   }
334 
335   case R600::BRANCH_COND_i32: {
336     MachineInstr *NewMI =
337         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
338                 R600::PREDICATE_BIT)
339             .add(MI.getOperand(1))
340             .addImm(R600::PRED_SETNE_INT)
341             .addImm(0); // Flags
342     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
343     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
344         .add(MI.getOperand(0))
345         .addReg(R600::PREDICATE_BIT, RegState::Kill);
346     break;
347   }
348 
349   case R600::EG_ExportSwz:
350   case R600::R600_ExportSwz: {
351     // Instruction is left unmodified if its not the last one of its type
352     bool isLastInstructionOfItsType = true;
353     unsigned InstExportType = MI.getOperand(1).getImm();
354     for (MachineBasicBlock::iterator NextExportInst = std::next(I),
355          EndBlock = BB->end(); NextExportInst != EndBlock;
356          NextExportInst = std::next(NextExportInst)) {
357       if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
358           NextExportInst->getOpcode() == R600::R600_ExportSwz) {
359         unsigned CurrentInstExportType = NextExportInst->getOperand(1)
360             .getImm();
361         if (CurrentInstExportType == InstExportType) {
362           isLastInstructionOfItsType = false;
363           break;
364         }
365       }
366     }
367     bool EOP = isEOP(I);
368     if (!EOP && !isLastInstructionOfItsType)
369       return BB;
370     unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
371     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
372         .add(MI.getOperand(0))
373         .add(MI.getOperand(1))
374         .add(MI.getOperand(2))
375         .add(MI.getOperand(3))
376         .add(MI.getOperand(4))
377         .add(MI.getOperand(5))
378         .add(MI.getOperand(6))
379         .addImm(CfInst)
380         .addImm(EOP);
381     break;
382   }
383   case R600::RETURN: {
384     return BB;
385   }
386   }
387 
388   MI.eraseFromParent();
389   return BB;
390 }
391 
392 //===----------------------------------------------------------------------===//
393 // Custom DAG Lowering Operations
394 //===----------------------------------------------------------------------===//
395 
396 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
397   MachineFunction &MF = DAG.getMachineFunction();
398   R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
399   switch (Op.getOpcode()) {
400   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
401   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
402   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
403   case ISD::SHL_PARTS:
404   case ISD::SRA_PARTS:
405   case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
406   case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
407   case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
408   case ISD::FCOS:
409   case ISD::FSIN: return LowerTrig(Op, DAG);
410   case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
411   case ISD::STORE: return LowerSTORE(Op, DAG);
412   case ISD::LOAD: {
413     SDValue Result = LowerLOAD(Op, DAG);
414     assert((!Result.getNode() ||
415             Result.getNode()->getNumValues() == 2) &&
416            "Load should return a value and a chain");
417     return Result;
418   }
419 
420   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
421   case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
422   case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
423   case ISD::ADDRSPACECAST:
424     return lowerADDRSPACECAST(Op, DAG);
425   case ISD::INTRINSIC_VOID: {
426     SDValue Chain = Op.getOperand(0);
427     unsigned IntrinsicID = Op.getConstantOperandVal(1);
428     switch (IntrinsicID) {
429     case Intrinsic::r600_store_swizzle: {
430       SDLoc DL(Op);
431       const SDValue Args[8] = {
432         Chain,
433         Op.getOperand(2), // Export Value
434         Op.getOperand(3), // ArrayBase
435         Op.getOperand(4), // Type
436         DAG.getConstant(0, DL, MVT::i32), // SWZ_X
437         DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
438         DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
439         DAG.getConstant(3, DL, MVT::i32) // SWZ_W
440       };
441       return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
442     }
443 
444     // default for switch(IntrinsicID)
445     default: break;
446     }
447     // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
448     break;
449   }
450   case ISD::INTRINSIC_WO_CHAIN: {
451     unsigned IntrinsicID = Op.getConstantOperandVal(0);
452     EVT VT = Op.getValueType();
453     SDLoc DL(Op);
454     switch (IntrinsicID) {
455     case Intrinsic::r600_tex:
456     case Intrinsic::r600_texc: {
457       unsigned TextureOp;
458       switch (IntrinsicID) {
459       case Intrinsic::r600_tex:
460         TextureOp = 0;
461         break;
462       case Intrinsic::r600_texc:
463         TextureOp = 1;
464         break;
465       default:
466         llvm_unreachable("unhandled texture operation");
467       }
468 
469       SDValue TexArgs[19] = {
470         DAG.getConstant(TextureOp, DL, MVT::i32),
471         Op.getOperand(1),
472         DAG.getConstant(0, DL, MVT::i32),
473         DAG.getConstant(1, DL, MVT::i32),
474         DAG.getConstant(2, DL, MVT::i32),
475         DAG.getConstant(3, DL, MVT::i32),
476         Op.getOperand(2),
477         Op.getOperand(3),
478         Op.getOperand(4),
479         DAG.getConstant(0, DL, MVT::i32),
480         DAG.getConstant(1, DL, MVT::i32),
481         DAG.getConstant(2, DL, MVT::i32),
482         DAG.getConstant(3, DL, MVT::i32),
483         Op.getOperand(5),
484         Op.getOperand(6),
485         Op.getOperand(7),
486         Op.getOperand(8),
487         Op.getOperand(9),
488         Op.getOperand(10)
489       };
490       return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
491     }
492     case Intrinsic::r600_dot4: {
493       SDValue Args[8] = {
494       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
495           DAG.getConstant(0, DL, MVT::i32)),
496       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
497           DAG.getConstant(0, DL, MVT::i32)),
498       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
499           DAG.getConstant(1, DL, MVT::i32)),
500       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
501           DAG.getConstant(1, DL, MVT::i32)),
502       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
503           DAG.getConstant(2, DL, MVT::i32)),
504       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
505           DAG.getConstant(2, DL, MVT::i32)),
506       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
507           DAG.getConstant(3, DL, MVT::i32)),
508       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
509           DAG.getConstant(3, DL, MVT::i32))
510       };
511       return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
512     }
513 
514     case Intrinsic::r600_implicitarg_ptr: {
515       MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS);
516       uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
517       return DAG.getConstant(ByteOffset, DL, PtrVT);
518     }
519     case Intrinsic::r600_read_ngroups_x:
520       return LowerImplicitParameter(DAG, VT, DL, 0);
521     case Intrinsic::r600_read_ngroups_y:
522       return LowerImplicitParameter(DAG, VT, DL, 1);
523     case Intrinsic::r600_read_ngroups_z:
524       return LowerImplicitParameter(DAG, VT, DL, 2);
525     case Intrinsic::r600_read_global_size_x:
526       return LowerImplicitParameter(DAG, VT, DL, 3);
527     case Intrinsic::r600_read_global_size_y:
528       return LowerImplicitParameter(DAG, VT, DL, 4);
529     case Intrinsic::r600_read_global_size_z:
530       return LowerImplicitParameter(DAG, VT, DL, 5);
531     case Intrinsic::r600_read_local_size_x:
532       return LowerImplicitParameter(DAG, VT, DL, 6);
533     case Intrinsic::r600_read_local_size_y:
534       return LowerImplicitParameter(DAG, VT, DL, 7);
535     case Intrinsic::r600_read_local_size_z:
536       return LowerImplicitParameter(DAG, VT, DL, 8);
537 
538     case Intrinsic::r600_read_tgid_x:
539     case Intrinsic::amdgcn_workgroup_id_x:
540       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
541                                      R600::T1_X, VT);
542     case Intrinsic::r600_read_tgid_y:
543     case Intrinsic::amdgcn_workgroup_id_y:
544       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
545                                      R600::T1_Y, VT);
546     case Intrinsic::r600_read_tgid_z:
547     case Intrinsic::amdgcn_workgroup_id_z:
548       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
549                                      R600::T1_Z, VT);
550     case Intrinsic::r600_read_tidig_x:
551     case Intrinsic::amdgcn_workitem_id_x:
552       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
553                                      R600::T0_X, VT);
554     case Intrinsic::r600_read_tidig_y:
555     case Intrinsic::amdgcn_workitem_id_y:
556       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
557                                      R600::T0_Y, VT);
558     case Intrinsic::r600_read_tidig_z:
559     case Intrinsic::amdgcn_workitem_id_z:
560       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
561                                      R600::T0_Z, VT);
562 
563     case Intrinsic::r600_recipsqrt_ieee:
564       return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
565 
566     case Intrinsic::r600_recipsqrt_clamped:
567       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
568     default:
569       return Op;
570     }
571 
572     // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
573     break;
574   }
575   } // end switch(Op.getOpcode())
576   return SDValue();
577 }
578 
579 void R600TargetLowering::ReplaceNodeResults(SDNode *N,
580                                             SmallVectorImpl<SDValue> &Results,
581                                             SelectionDAG &DAG) const {
582   switch (N->getOpcode()) {
583   default:
584     AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
585     return;
586   case ISD::FP_TO_UINT:
587     if (N->getValueType(0) == MVT::i1) {
588       Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
589       return;
590     }
591     // Since we don't care about out of bounds values we can use FP_TO_SINT for
592     // uints too. The DAGLegalizer code for uint considers some extra cases
593     // which are not necessary here.
594     [[fallthrough]];
595   case ISD::FP_TO_SINT: {
596     if (N->getValueType(0) == MVT::i1) {
597       Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
598       return;
599     }
600 
601     SDValue Result;
602     if (expandFP_TO_SINT(N, Result, DAG))
603       Results.push_back(Result);
604     return;
605   }
606   case ISD::SDIVREM: {
607     SDValue Op = SDValue(N, 1);
608     SDValue RES = LowerSDIVREM(Op, DAG);
609     Results.push_back(RES);
610     Results.push_back(RES.getValue(1));
611     break;
612   }
613   case ISD::UDIVREM: {
614     SDValue Op = SDValue(N, 0);
615     LowerUDIVREM64(Op, DAG, Results);
616     break;
617   }
618   }
619 }
620 
621 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
622                                                    SDValue Vector) const {
623   SDLoc DL(Vector);
624   EVT VecVT = Vector.getValueType();
625   EVT EltVT = VecVT.getVectorElementType();
626   SmallVector<SDValue, 8> Args;
627 
628   for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
629     Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
630                                DAG.getVectorIdxConstant(i, DL)));
631   }
632 
633   return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
634 }
635 
636 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
637                                                     SelectionDAG &DAG) const {
638   SDLoc DL(Op);
639   SDValue Vector = Op.getOperand(0);
640   SDValue Index = Op.getOperand(1);
641 
642   if (isa<ConstantSDNode>(Index) ||
643       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
644     return Op;
645 
646   Vector = vectorToVerticalVector(DAG, Vector);
647   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
648                      Vector, Index);
649 }
650 
651 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
652                                                    SelectionDAG &DAG) const {
653   SDLoc DL(Op);
654   SDValue Vector = Op.getOperand(0);
655   SDValue Value = Op.getOperand(1);
656   SDValue Index = Op.getOperand(2);
657 
658   if (isa<ConstantSDNode>(Index) ||
659       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
660     return Op;
661 
662   Vector = vectorToVerticalVector(DAG, Vector);
663   SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
664                                Vector, Value, Index);
665   return vectorToVerticalVector(DAG, Insert);
666 }
667 
668 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
669                                                SDValue Op,
670                                                SelectionDAG &DAG) const {
671   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
672   if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
673     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
674 
675   const DataLayout &DL = DAG.getDataLayout();
676   const GlobalValue *GV = GSD->getGlobal();
677   MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
678 
679   SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
680   return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
681 }
682 
683 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
684   // On hw >= R700, COS/SIN input must be between -1. and 1.
685   // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
686   EVT VT = Op.getValueType();
687   SDValue Arg = Op.getOperand(0);
688   SDLoc DL(Op);
689 
690   // TODO: Should this propagate fast-math-flags?
691   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
692       DAG.getNode(ISD::FADD, DL, VT,
693         DAG.getNode(ISD::FMUL, DL, VT, Arg,
694           DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
695         DAG.getConstantFP(0.5, DL, MVT::f32)));
696   unsigned TrigNode;
697   switch (Op.getOpcode()) {
698   case ISD::FCOS:
699     TrigNode = AMDGPUISD::COS_HW;
700     break;
701   case ISD::FSIN:
702     TrigNode = AMDGPUISD::SIN_HW;
703     break;
704   default:
705     llvm_unreachable("Wrong trig opcode");
706   }
707   SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
708       DAG.getNode(ISD::FADD, DL, VT, FractPart,
709         DAG.getConstantFP(-0.5, DL, MVT::f32)));
710   if (Gen >= AMDGPUSubtarget::R700)
711     return TrigVal;
712   // On R600 hw, COS/SIN input must be between -Pi and Pi.
713   return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
714       DAG.getConstantFP(numbers::pif, DL, MVT::f32));
715 }
716 
717 SDValue R600TargetLowering::LowerShiftParts(SDValue Op,
718                                             SelectionDAG &DAG) const {
719   SDValue Lo, Hi;
720   expandShiftParts(Op.getNode(), Lo, Hi, DAG);
721   return DAG.getMergeValues({Lo, Hi}, SDLoc(Op));
722 }
723 
724 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
725                                           unsigned mainop, unsigned ovf) const {
726   SDLoc DL(Op);
727   EVT VT = Op.getValueType();
728 
729   SDValue Lo = Op.getOperand(0);
730   SDValue Hi = Op.getOperand(1);
731 
732   SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
733   // Extend sign.
734   OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
735                     DAG.getValueType(MVT::i1));
736 
737   SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
738 
739   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
740 }
741 
742 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
743   SDLoc DL(Op);
744   return DAG.getNode(
745       ISD::SETCC,
746       DL,
747       MVT::i1,
748       Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
749       DAG.getCondCode(ISD::SETEQ));
750 }
751 
752 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
753   SDLoc DL(Op);
754   return DAG.getNode(
755       ISD::SETCC,
756       DL,
757       MVT::i1,
758       Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
759       DAG.getCondCode(ISD::SETEQ));
760 }
761 
762 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
763                                                    const SDLoc &DL,
764                                                    unsigned DwordOffset) const {
765   unsigned ByteOffset = DwordOffset * 4;
766   PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
767                                       AMDGPUAS::PARAM_I_ADDRESS);
768 
769   // We shouldn't be using an offset wider than 16-bits for implicit parameters.
770   assert(isInt<16>(ByteOffset));
771 
772   return DAG.getLoad(VT, DL, DAG.getEntryNode(),
773                      DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
774                      MachinePointerInfo(ConstantPointerNull::get(PtrType)));
775 }
776 
777 bool R600TargetLowering::isZero(SDValue Op) const {
778   if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op))
779     return Cst->isZero();
780   if (ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op))
781     return CstFP->isZero();
782   return false;
783 }
784 
785 bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
786   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
787     return CFP->isExactlyValue(1.0);
788   }
789   return isAllOnesConstant(Op);
790 }
791 
792 bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
793   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
794     return CFP->getValueAPF().isZero();
795   }
796   return isNullConstant(Op);
797 }
798 
799 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
800   SDLoc DL(Op);
801   EVT VT = Op.getValueType();
802 
803   SDValue LHS = Op.getOperand(0);
804   SDValue RHS = Op.getOperand(1);
805   SDValue True = Op.getOperand(2);
806   SDValue False = Op.getOperand(3);
807   SDValue CC = Op.getOperand(4);
808   SDValue Temp;
809 
810   if (VT == MVT::f32) {
811     DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
812     SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
813     if (MinMax)
814       return MinMax;
815   }
816 
817   // LHS and RHS are guaranteed to be the same value type
818   EVT CompareVT = LHS.getValueType();
819 
820   // Check if we can lower this to a native operation.
821 
822   // Try to lower to a SET* instruction:
823   //
824   // SET* can match the following patterns:
825   //
826   // select_cc f32, f32, -1,  0, cc_supported
827   // select_cc f32, f32, 1.0f, 0.0f, cc_supported
828   // select_cc i32, i32, -1,  0, cc_supported
829   //
830 
831   // Move hardware True/False values to the correct operand.
832   if (isHWTrueValue(False) && isHWFalseValue(True)) {
833     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
834     ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT);
835     if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
836       std::swap(False, True);
837       CC = DAG.getCondCode(InverseCC);
838     } else {
839       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
840       if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
841         std::swap(False, True);
842         std::swap(LHS, RHS);
843         CC = DAG.getCondCode(SwapInvCC);
844       }
845     }
846   }
847 
848   if (isHWTrueValue(True) && isHWFalseValue(False) &&
849       (CompareVT == VT || VT == MVT::i32)) {
850     // This can be matched by a SET* instruction.
851     return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
852   }
853 
854   // Try to lower to a CND* instruction:
855   //
856   // CND* can match the following patterns:
857   //
858   // select_cc f32, 0.0, f32, f32, cc_supported
859   // select_cc f32, 0.0, i32, i32, cc_supported
860   // select_cc i32, 0,   f32, f32, cc_supported
861   // select_cc i32, 0,   i32, i32, cc_supported
862   //
863 
864   // Try to move the zero value to the RHS
865   if (isZero(LHS)) {
866     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
867     // Try swapping the operands
868     ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
869     if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
870       std::swap(LHS, RHS);
871       CC = DAG.getCondCode(CCSwapped);
872     } else {
873       // Try inverting the condition and then swapping the operands
874       ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT);
875       CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
876       if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
877         std::swap(True, False);
878         std::swap(LHS, RHS);
879         CC = DAG.getCondCode(CCSwapped);
880       }
881     }
882   }
883   if (isZero(RHS)) {
884     SDValue Cond = LHS;
885     SDValue Zero = RHS;
886     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
887     if (CompareVT != VT) {
888       // Bitcast True / False to the correct types.  This will end up being
889       // a nop, but it allows us to define only a single pattern in the
890       // .TD files for each CND* instruction rather than having to have
891       // one pattern for integer True/False and one for fp True/False
892       True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
893       False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
894     }
895 
896     switch (CCOpcode) {
897     case ISD::SETONE:
898     case ISD::SETUNE:
899     case ISD::SETNE:
900       CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT);
901       Temp = True;
902       True = False;
903       False = Temp;
904       break;
905     default:
906       break;
907     }
908     SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
909         Cond, Zero,
910         True, False,
911         DAG.getCondCode(CCOpcode));
912     return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
913   }
914 
915   // If we make it this for it means we have no native instructions to handle
916   // this SELECT_CC, so we must lower it.
917   SDValue HWTrue, HWFalse;
918 
919   if (CompareVT == MVT::f32) {
920     HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
921     HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
922   } else if (CompareVT == MVT::i32) {
923     HWTrue = DAG.getConstant(-1, DL, CompareVT);
924     HWFalse = DAG.getConstant(0, DL, CompareVT);
925   }
926   else {
927     llvm_unreachable("Unhandled value type in LowerSELECT_CC");
928   }
929 
930   // Lower this unsupported SELECT_CC into a combination of two supported
931   // SELECT_CC operations.
932   SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
933 
934   return DAG.getNode(ISD::SELECT_CC, DL, VT,
935       Cond, HWFalse,
936       True, False,
937       DAG.getCondCode(ISD::SETNE));
938 }
939 
940 SDValue R600TargetLowering::lowerADDRSPACECAST(SDValue Op,
941                                                SelectionDAG &DAG) const {
942   SDLoc SL(Op);
943   EVT VT = Op.getValueType();
944 
945   const R600TargetMachine &TM =
946       static_cast<const R600TargetMachine &>(getTargetMachine());
947 
948   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
949   unsigned SrcAS = ASC->getSrcAddressSpace();
950   unsigned DestAS = ASC->getDestAddressSpace();
951 
952   if (isNullConstant(Op.getOperand(0)) && SrcAS == AMDGPUAS::FLAT_ADDRESS)
953     return DAG.getConstant(TM.getNullPointerValue(DestAS), SL, VT);
954 
955   return Op;
956 }
957 
958 /// LLVM generates byte-addressed pointers.  For indirect addressing, we need to
959 /// convert these pointers to a register index.  Each register holds
960 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
961 /// \p StackWidth, which tells us how many of the 4 sub-registers will be used
962 /// for indirect addressing.
963 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
964                                                unsigned StackWidth,
965                                                SelectionDAG &DAG) const {
966   unsigned SRLPad;
967   switch(StackWidth) {
968   case 1:
969     SRLPad = 2;
970     break;
971   case 2:
972     SRLPad = 3;
973     break;
974   case 4:
975     SRLPad = 4;
976     break;
977   default: llvm_unreachable("Invalid stack width");
978   }
979 
980   SDLoc DL(Ptr);
981   return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
982                      DAG.getConstant(SRLPad, DL, MVT::i32));
983 }
984 
985 void R600TargetLowering::getStackAddress(unsigned StackWidth,
986                                          unsigned ElemIdx,
987                                          unsigned &Channel,
988                                          unsigned &PtrIncr) const {
989   switch (StackWidth) {
990   default:
991   case 1:
992     Channel = 0;
993     if (ElemIdx > 0) {
994       PtrIncr = 1;
995     } else {
996       PtrIncr = 0;
997     }
998     break;
999   case 2:
1000     Channel = ElemIdx % 2;
1001     if (ElemIdx == 2) {
1002       PtrIncr = 1;
1003     } else {
1004       PtrIncr = 0;
1005     }
1006     break;
1007   case 4:
1008     Channel = ElemIdx;
1009     PtrIncr = 0;
1010     break;
1011   }
1012 }
1013 
1014 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1015                                                    SelectionDAG &DAG) const {
1016   SDLoc DL(Store);
1017   //TODO: Who creates the i8 stores?
1018   assert(Store->isTruncatingStore()
1019          || Store->getValue().getValueType() == MVT::i8);
1020   assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS);
1021 
1022   SDValue Mask;
1023   if (Store->getMemoryVT() == MVT::i8) {
1024     assert(Store->getAlign() >= 1);
1025     Mask = DAG.getConstant(0xff, DL, MVT::i32);
1026   } else if (Store->getMemoryVT() == MVT::i16) {
1027     assert(Store->getAlign() >= 2);
1028     Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1029   } else {
1030     llvm_unreachable("Unsupported private trunc store");
1031   }
1032 
1033   SDValue OldChain = Store->getChain();
1034   bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1035   // Skip dummy
1036   SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1037   SDValue BasePtr = Store->getBasePtr();
1038   SDValue Offset = Store->getOffset();
1039   EVT MemVT = Store->getMemoryVT();
1040 
1041   SDValue LoadPtr = BasePtr;
1042   if (!Offset.isUndef()) {
1043     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1044   }
1045 
1046   // Get dword location
1047   // TODO: this should be eliminated by the future SHR ptr, 2
1048   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1049                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1050 
1051   // Load dword
1052   // TODO: can we be smarter about machine pointer info?
1053   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1054   SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1055 
1056   Chain = Dst.getValue(1);
1057 
1058   // Get offset in dword
1059   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1060                                 DAG.getConstant(0x3, DL, MVT::i32));
1061 
1062   // Convert byte offset to bit shift
1063   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1064                                  DAG.getConstant(3, DL, MVT::i32));
1065 
1066   // TODO: Contrary to the name of the function,
1067   // it also handles sub i32 non-truncating stores (like i1)
1068   SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1069                                   Store->getValue());
1070 
1071   // Mask the value to the right type
1072   SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1073 
1074   // Shift the value in place
1075   SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1076                                      MaskedValue, ShiftAmt);
1077 
1078   // Shift the mask in place
1079   SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1080 
1081   // Invert the mask. NOTE: if we had native ROL instructions we could
1082   // use inverted mask
1083   DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1084 
1085   // Cleanup the target bits
1086   Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1087 
1088   // Add the new bits
1089   SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1090 
1091   // Store dword
1092   // TODO: Can we be smarter about MachinePointerInfo?
1093   SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1094 
1095   // If we are part of expanded vector, make our neighbors depend on this store
1096   if (VectorTrunc) {
1097     // Make all other vector elements depend on this store
1098     Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1099     DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1100   }
1101   return NewStore;
1102 }
1103 
1104 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1105   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1106   unsigned AS = StoreNode->getAddressSpace();
1107 
1108   SDValue Chain = StoreNode->getChain();
1109   SDValue Ptr = StoreNode->getBasePtr();
1110   SDValue Value = StoreNode->getValue();
1111 
1112   EVT VT = Value.getValueType();
1113   EVT MemVT = StoreNode->getMemoryVT();
1114   EVT PtrVT = Ptr.getValueType();
1115 
1116   SDLoc DL(Op);
1117 
1118   const bool TruncatingStore = StoreNode->isTruncatingStore();
1119 
1120   // Neither LOCAL nor PRIVATE can do vectors at the moment
1121   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS ||
1122        TruncatingStore) &&
1123       VT.isVector()) {
1124     if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) {
1125       // Add an extra level of chain to isolate this vector
1126       SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1127       // TODO: can the chain be replaced without creating a new store?
1128       SDValue NewStore = DAG.getTruncStore(
1129           NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(), MemVT,
1130           StoreNode->getAlign(), StoreNode->getMemOperand()->getFlags(),
1131           StoreNode->getAAInfo());
1132       StoreNode = cast<StoreSDNode>(NewStore);
1133     }
1134 
1135     return scalarizeVectorStore(StoreNode, DAG);
1136   }
1137 
1138   Align Alignment = StoreNode->getAlign();
1139   if (Alignment < MemVT.getStoreSize() &&
1140       !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment,
1141                                       StoreNode->getMemOperand()->getFlags(),
1142                                       nullptr)) {
1143     return expandUnalignedStore(StoreNode, DAG);
1144   }
1145 
1146   SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1147                                   DAG.getConstant(2, DL, PtrVT));
1148 
1149   if (AS == AMDGPUAS::GLOBAL_ADDRESS) {
1150     // It is beneficial to create MSKOR here instead of combiner to avoid
1151     // artificial dependencies introduced by RMW
1152     if (TruncatingStore) {
1153       assert(VT.bitsLE(MVT::i32));
1154       SDValue MaskConstant;
1155       if (MemVT == MVT::i8) {
1156         MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1157       } else {
1158         assert(MemVT == MVT::i16);
1159         assert(StoreNode->getAlign() >= 2);
1160         MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1161       }
1162 
1163       SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1164                                       DAG.getConstant(0x00000003, DL, PtrVT));
1165       SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1166                                      DAG.getConstant(3, DL, VT));
1167 
1168       // Put the mask in correct place
1169       SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1170 
1171       // Put the value bits in correct place
1172       SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1173       SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1174 
1175       // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1176       // vector instead.
1177       SDValue Src[4] = {
1178         ShiftedValue,
1179         DAG.getConstant(0, DL, MVT::i32),
1180         DAG.getConstant(0, DL, MVT::i32),
1181         Mask
1182       };
1183       SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1184       SDValue Args[3] = { Chain, Input, DWordAddr };
1185       return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
1186                                      Op->getVTList(), Args, MemVT,
1187                                      StoreNode->getMemOperand());
1188     }
1189     if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1190       // Convert pointer from byte address to dword address.
1191       Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1192 
1193       if (StoreNode->isIndexed()) {
1194         llvm_unreachable("Indexed stores not supported yet");
1195       } else {
1196         Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1197       }
1198       return Chain;
1199     }
1200   }
1201 
1202   // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1203   if (AS != AMDGPUAS::PRIVATE_ADDRESS)
1204     return SDValue();
1205 
1206   if (MemVT.bitsLT(MVT::i32))
1207     return lowerPrivateTruncStore(StoreNode, DAG);
1208 
1209   // Standard i32+ store, tag it with DWORDADDR to note that the address
1210   // has been shifted
1211   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1212     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1213     return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1214   }
1215 
1216   // Tagged i32+ stores will be matched by patterns
1217   return SDValue();
1218 }
1219 
1220 // return (512 + (kc_bank << 12)
1221 static int
1222 ConstantAddressBlock(unsigned AddressSpace) {
1223   switch (AddressSpace) {
1224   case AMDGPUAS::CONSTANT_BUFFER_0:
1225     return 512;
1226   case AMDGPUAS::CONSTANT_BUFFER_1:
1227     return 512 + 4096;
1228   case AMDGPUAS::CONSTANT_BUFFER_2:
1229     return 512 + 4096 * 2;
1230   case AMDGPUAS::CONSTANT_BUFFER_3:
1231     return 512 + 4096 * 3;
1232   case AMDGPUAS::CONSTANT_BUFFER_4:
1233     return 512 + 4096 * 4;
1234   case AMDGPUAS::CONSTANT_BUFFER_5:
1235     return 512 + 4096 * 5;
1236   case AMDGPUAS::CONSTANT_BUFFER_6:
1237     return 512 + 4096 * 6;
1238   case AMDGPUAS::CONSTANT_BUFFER_7:
1239     return 512 + 4096 * 7;
1240   case AMDGPUAS::CONSTANT_BUFFER_8:
1241     return 512 + 4096 * 8;
1242   case AMDGPUAS::CONSTANT_BUFFER_9:
1243     return 512 + 4096 * 9;
1244   case AMDGPUAS::CONSTANT_BUFFER_10:
1245     return 512 + 4096 * 10;
1246   case AMDGPUAS::CONSTANT_BUFFER_11:
1247     return 512 + 4096 * 11;
1248   case AMDGPUAS::CONSTANT_BUFFER_12:
1249     return 512 + 4096 * 12;
1250   case AMDGPUAS::CONSTANT_BUFFER_13:
1251     return 512 + 4096 * 13;
1252   case AMDGPUAS::CONSTANT_BUFFER_14:
1253     return 512 + 4096 * 14;
1254   case AMDGPUAS::CONSTANT_BUFFER_15:
1255     return 512 + 4096 * 15;
1256   default:
1257     return -1;
1258   }
1259 }
1260 
1261 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1262                                                 SelectionDAG &DAG) const {
1263   SDLoc DL(Op);
1264   LoadSDNode *Load = cast<LoadSDNode>(Op);
1265   ISD::LoadExtType ExtType = Load->getExtensionType();
1266   EVT MemVT = Load->getMemoryVT();
1267   assert(Load->getAlign() >= MemVT.getStoreSize());
1268 
1269   SDValue BasePtr = Load->getBasePtr();
1270   SDValue Chain = Load->getChain();
1271   SDValue Offset = Load->getOffset();
1272 
1273   SDValue LoadPtr = BasePtr;
1274   if (!Offset.isUndef()) {
1275     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1276   }
1277 
1278   // Get dword location
1279   // NOTE: this should be eliminated by the future SHR ptr, 2
1280   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1281                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1282 
1283   // Load dword
1284   // TODO: can we be smarter about machine pointer info?
1285   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1286   SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1287 
1288   // Get offset within the register.
1289   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1290                                 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1291 
1292   // Bit offset of target byte (byteIdx * 8).
1293   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1294                                  DAG.getConstant(3, DL, MVT::i32));
1295 
1296   // Shift to the right.
1297   SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1298 
1299   // Eliminate the upper bits by setting them to ...
1300   EVT MemEltVT = MemVT.getScalarType();
1301 
1302   if (ExtType == ISD::SEXTLOAD) { // ... ones.
1303     SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1304     Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1305   } else { // ... or zeros.
1306     Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1307   }
1308 
1309   SDValue Ops[] = {
1310     Ret,
1311     Read.getValue(1) // This should be our output chain
1312   };
1313 
1314   return DAG.getMergeValues(Ops, DL);
1315 }
1316 
1317 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1318   LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1319   unsigned AS = LoadNode->getAddressSpace();
1320   EVT MemVT = LoadNode->getMemoryVT();
1321   ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1322 
1323   if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
1324       ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1325     return lowerPrivateExtLoad(Op, DAG);
1326   }
1327 
1328   SDLoc DL(Op);
1329   EVT VT = Op.getValueType();
1330   SDValue Chain = LoadNode->getChain();
1331   SDValue Ptr = LoadNode->getBasePtr();
1332 
1333   if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1334       LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1335       VT.isVector()) {
1336     SDValue Ops[2];
1337     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG);
1338     return DAG.getMergeValues(Ops, DL);
1339   }
1340 
1341   // This is still used for explicit load from addrspace(8)
1342   int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1343   if (ConstantBlock > -1 &&
1344       ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1345        (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1346     SDValue Result;
1347     if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1348         isa<ConstantSDNode>(Ptr)) {
1349       return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1350     }
1351     // TODO: Does this even work?
1352     //  non-constant ptr can't be folded, keeps it as a v4f32 load
1353     Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1354                          DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1355                                      DAG.getConstant(4, DL, MVT::i32)),
1356                          DAG.getConstant(LoadNode->getAddressSpace() -
1357                                              AMDGPUAS::CONSTANT_BUFFER_0,
1358                                          DL, MVT::i32));
1359 
1360     if (!VT.isVector()) {
1361       Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1362                            DAG.getConstant(0, DL, MVT::i32));
1363     }
1364 
1365     SDValue MergedValues[2] = {
1366       Result,
1367       Chain
1368     };
1369     return DAG.getMergeValues(MergedValues, DL);
1370   }
1371 
1372   // For most operations returning SDValue() will result in the node being
1373   // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1374   // need to manually expand loads that may be legal in some address spaces and
1375   // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1376   // compute shaders, since the data is sign extended when it is uploaded to the
1377   // buffer. However SEXT loads from other address spaces are not supported, so
1378   // we need to expand them here.
1379   if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1380     assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1381     SDValue NewLoad = DAG.getExtLoad(
1382         ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1383         LoadNode->getAlign(), LoadNode->getMemOperand()->getFlags());
1384     SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1385                               DAG.getValueType(MemVT));
1386 
1387     SDValue MergedValues[2] = { Res, Chain };
1388     return DAG.getMergeValues(MergedValues, DL);
1389   }
1390 
1391   if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
1392     return SDValue();
1393   }
1394 
1395   // DWORDADDR ISD marks already shifted address
1396   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1397     assert(VT == MVT::i32);
1398     Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1399     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1400     return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1401   }
1402   return SDValue();
1403 }
1404 
1405 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1406   SDValue Chain = Op.getOperand(0);
1407   SDValue Cond  = Op.getOperand(1);
1408   SDValue Jump  = Op.getOperand(2);
1409 
1410   return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1411                      Chain, Jump, Cond);
1412 }
1413 
1414 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1415                                             SelectionDAG &DAG) const {
1416   MachineFunction &MF = DAG.getMachineFunction();
1417   const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1418 
1419   FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1420 
1421   unsigned FrameIndex = FIN->getIndex();
1422   Register IgnoredFrameReg;
1423   StackOffset Offset =
1424       TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1425   return DAG.getConstant(Offset.getFixed() * 4 * TFL->getStackWidth(MF),
1426                          SDLoc(Op), Op.getValueType());
1427 }
1428 
1429 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1430                                                   bool IsVarArg) const {
1431   switch (CC) {
1432   case CallingConv::AMDGPU_KERNEL:
1433   case CallingConv::SPIR_KERNEL:
1434   case CallingConv::C:
1435   case CallingConv::Fast:
1436   case CallingConv::Cold:
1437     llvm_unreachable("kernels should not be handled here");
1438   case CallingConv::AMDGPU_VS:
1439   case CallingConv::AMDGPU_GS:
1440   case CallingConv::AMDGPU_PS:
1441   case CallingConv::AMDGPU_CS:
1442   case CallingConv::AMDGPU_HS:
1443   case CallingConv::AMDGPU_ES:
1444   case CallingConv::AMDGPU_LS:
1445     return CC_R600;
1446   default:
1447     report_fatal_error("Unsupported calling convention.");
1448   }
1449 }
1450 
1451 /// XXX Only kernel functions are supported, so we can assume for now that
1452 /// every function is a kernel function, but in the future we should use
1453 /// separate calling conventions for kernel and non-kernel functions.
1454 SDValue R600TargetLowering::LowerFormalArguments(
1455     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1456     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1457     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1458   SmallVector<CCValAssign, 16> ArgLocs;
1459   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1460                  *DAG.getContext());
1461   MachineFunction &MF = DAG.getMachineFunction();
1462   SmallVector<ISD::InputArg, 8> LocalIns;
1463 
1464   if (AMDGPU::isShader(CallConv)) {
1465     CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1466   } else {
1467     analyzeFormalArgumentsCompute(CCInfo, Ins);
1468   }
1469 
1470   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1471     CCValAssign &VA = ArgLocs[i];
1472     const ISD::InputArg &In = Ins[i];
1473     EVT VT = In.VT;
1474     EVT MemVT = VA.getLocVT();
1475     if (!VT.isVector() && MemVT.isVector()) {
1476       // Get load source type if scalarized.
1477       MemVT = MemVT.getVectorElementType();
1478     }
1479 
1480     if (AMDGPU::isShader(CallConv)) {
1481       Register Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1482       SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1483       InVals.push_back(Register);
1484       continue;
1485     }
1486 
1487     // i64 isn't a legal type, so the register type used ends up as i32, which
1488     // isn't expected here. It attempts to create this sextload, but it ends up
1489     // being invalid. Somehow this seems to work with i64 arguments, but breaks
1490     // for <1 x i64>.
1491 
1492     // The first 36 bytes of the input buffer contains information about
1493     // thread group and global sizes.
1494     ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
1495     if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1496       // FIXME: This should really check the extload type, but the handling of
1497       // extload vector parameters seems to be broken.
1498 
1499       // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1500       Ext = ISD::SEXTLOAD;
1501     }
1502 
1503     // Compute the offset from the value.
1504     // XXX - I think PartOffset should give you this, but it seems to give the
1505     // size of the register which isn't useful.
1506 
1507     unsigned PartOffset = VA.getLocMemOffset();
1508     Align Alignment = commonAlignment(Align(VT.getStoreSize()), PartOffset);
1509 
1510     MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS);
1511     SDValue Arg = DAG.getLoad(
1512         ISD::UNINDEXED, Ext, VT, DL, Chain,
1513         DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1514         PtrInfo,
1515         MemVT, Alignment, MachineMemOperand::MONonTemporal |
1516                                         MachineMemOperand::MODereferenceable |
1517                                         MachineMemOperand::MOInvariant);
1518 
1519     InVals.push_back(Arg);
1520   }
1521   return Chain;
1522 }
1523 
1524 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1525                                            EVT VT) const {
1526    if (!VT.isVector())
1527      return MVT::i32;
1528    return VT.changeVectorElementTypeToInteger();
1529 }
1530 
1531 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1532                                           const MachineFunction &MF) const {
1533   // Local and Private addresses do not handle vectors. Limit to i32
1534   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) {
1535     return (MemVT.getSizeInBits() <= 32);
1536   }
1537   return true;
1538 }
1539 
1540 bool R600TargetLowering::allowsMisalignedMemoryAccesses(
1541     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1542     unsigned *IsFast) const {
1543   if (IsFast)
1544     *IsFast = 0;
1545 
1546   if (!VT.isSimple() || VT == MVT::Other)
1547     return false;
1548 
1549   if (VT.bitsLT(MVT::i32))
1550     return false;
1551 
1552   // TODO: This is a rough estimate.
1553   if (IsFast)
1554     *IsFast = 1;
1555 
1556   return VT.bitsGT(MVT::i32) && Alignment >= Align(4);
1557 }
1558 
1559 static SDValue CompactSwizzlableVector(
1560   SelectionDAG &DAG, SDValue VectorEntry,
1561   DenseMap<unsigned, unsigned> &RemapSwizzle) {
1562   assert(RemapSwizzle.empty());
1563 
1564   SDLoc DL(VectorEntry);
1565   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1566 
1567   SDValue NewBldVec[4];
1568   for (unsigned i = 0; i < 4; i++)
1569     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1570                                DAG.getIntPtrConstant(i, DL));
1571 
1572   for (unsigned i = 0; i < 4; i++) {
1573     if (NewBldVec[i].isUndef())
1574       // We mask write here to teach later passes that the ith element of this
1575       // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1576       // break false dependencies and additionally make assembly easier to read.
1577       RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1578     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1579       if (C->isZero()) {
1580         RemapSwizzle[i] = 4; // SEL_0
1581         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1582       } else if (C->isExactlyValue(1.0)) {
1583         RemapSwizzle[i] = 5; // SEL_1
1584         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1585       }
1586     }
1587 
1588     if (NewBldVec[i].isUndef())
1589       continue;
1590 
1591     for (unsigned j = 0; j < i; j++) {
1592       if (NewBldVec[i] == NewBldVec[j]) {
1593         NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1594         RemapSwizzle[i] = j;
1595         break;
1596       }
1597     }
1598   }
1599 
1600   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1601                             NewBldVec);
1602 }
1603 
1604 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
1605                                 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1606   assert(RemapSwizzle.empty());
1607 
1608   SDLoc DL(VectorEntry);
1609   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1610 
1611   SDValue NewBldVec[4];
1612   bool isUnmovable[4] = {false, false, false, false};
1613   for (unsigned i = 0; i < 4; i++)
1614     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1615                                DAG.getIntPtrConstant(i, DL));
1616 
1617   for (unsigned i = 0; i < 4; i++) {
1618     RemapSwizzle[i] = i;
1619     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1620       unsigned Idx = NewBldVec[i].getConstantOperandVal(1);
1621       if (i == Idx)
1622         isUnmovable[Idx] = true;
1623     }
1624   }
1625 
1626   for (unsigned i = 0; i < 4; i++) {
1627     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1628       unsigned Idx = NewBldVec[i].getConstantOperandVal(1);
1629       if (isUnmovable[Idx])
1630         continue;
1631       // Swap i and Idx
1632       std::swap(NewBldVec[Idx], NewBldVec[i]);
1633       std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1634       break;
1635     }
1636   }
1637 
1638   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1639                             NewBldVec);
1640 }
1641 
1642 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[],
1643                                             SelectionDAG &DAG,
1644                                             const SDLoc &DL) const {
1645   // Old -> New swizzle values
1646   DenseMap<unsigned, unsigned> SwizzleRemap;
1647 
1648   BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1649   for (unsigned i = 0; i < 4; i++) {
1650     unsigned Idx = Swz[i]->getAsZExtVal();
1651     if (SwizzleRemap.contains(Idx))
1652       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1653   }
1654 
1655   SwizzleRemap.clear();
1656   BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1657   for (unsigned i = 0; i < 4; i++) {
1658     unsigned Idx = Swz[i]->getAsZExtVal();
1659     if (SwizzleRemap.contains(Idx))
1660       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1661   }
1662 
1663   return BuildVector;
1664 }
1665 
1666 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1667                                             SelectionDAG &DAG) const {
1668   SDLoc DL(LoadNode);
1669   EVT VT = LoadNode->getValueType(0);
1670   SDValue Chain = LoadNode->getChain();
1671   SDValue Ptr = LoadNode->getBasePtr();
1672   assert (isa<ConstantSDNode>(Ptr));
1673 
1674   //TODO: Support smaller loads
1675   if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1676     return SDValue();
1677 
1678   if (LoadNode->getAlign() < Align(4))
1679     return SDValue();
1680 
1681   int ConstantBlock = ConstantAddressBlock(Block);
1682 
1683   SDValue Slots[4];
1684   for (unsigned i = 0; i < 4; i++) {
1685     // We want Const position encoded with the following formula :
1686     // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1687     // const_index is Ptr computed by llvm using an alignment of 16.
1688     // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1689     // then div by 4 at the ISel step
1690     SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1691         DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1692     Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1693   }
1694   EVT NewVT = MVT::v4i32;
1695   unsigned NumElements = 4;
1696   if (VT.isVector()) {
1697     NewVT = VT;
1698     NumElements = VT.getVectorNumElements();
1699   }
1700   SDValue Result = DAG.getBuildVector(NewVT, DL, ArrayRef(Slots, NumElements));
1701   if (!VT.isVector()) {
1702     Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1703                          DAG.getConstant(0, DL, MVT::i32));
1704   }
1705   SDValue MergedValues[2] = {
1706     Result,
1707     Chain
1708   };
1709   return DAG.getMergeValues(MergedValues, DL);
1710 }
1711 
1712 //===----------------------------------------------------------------------===//
1713 // Custom DAG Optimizations
1714 //===----------------------------------------------------------------------===//
1715 
1716 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
1717                                               DAGCombinerInfo &DCI) const {
1718   SelectionDAG &DAG = DCI.DAG;
1719   SDLoc DL(N);
1720 
1721   switch (N->getOpcode()) {
1722   // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1723   case ISD::FP_ROUND: {
1724       SDValue Arg = N->getOperand(0);
1725       if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1726         return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1727                            Arg.getOperand(0));
1728       }
1729       break;
1730     }
1731 
1732   // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1733   // (i32 select_cc f32, f32, -1, 0 cc)
1734   //
1735   // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1736   // this to one of the SET*_DX10 instructions.
1737   case ISD::FP_TO_SINT: {
1738     SDValue FNeg = N->getOperand(0);
1739     if (FNeg.getOpcode() != ISD::FNEG) {
1740       return SDValue();
1741     }
1742     SDValue SelectCC = FNeg.getOperand(0);
1743     if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1744         SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1745         SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1746         !isHWTrueValue(SelectCC.getOperand(2)) ||
1747         !isHWFalseValue(SelectCC.getOperand(3))) {
1748       return SDValue();
1749     }
1750 
1751     return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1752                            SelectCC.getOperand(0), // LHS
1753                            SelectCC.getOperand(1), // RHS
1754                            DAG.getConstant(-1, DL, MVT::i32), // True
1755                            DAG.getConstant(0, DL, MVT::i32),  // False
1756                            SelectCC.getOperand(4)); // CC
1757   }
1758 
1759   // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1760   // => build_vector elt0, ... , NewEltIdx, ... , eltN
1761   case ISD::INSERT_VECTOR_ELT: {
1762     SDValue InVec = N->getOperand(0);
1763     SDValue InVal = N->getOperand(1);
1764     SDValue EltNo = N->getOperand(2);
1765 
1766     // If the inserted element is an UNDEF, just use the input vector.
1767     if (InVal.isUndef())
1768       return InVec;
1769 
1770     EVT VT = InVec.getValueType();
1771 
1772     // If we can't generate a legal BUILD_VECTOR, exit
1773     if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
1774       return SDValue();
1775 
1776     // Check that we know which element is being inserted
1777     if (!isa<ConstantSDNode>(EltNo))
1778       return SDValue();
1779     unsigned Elt = EltNo->getAsZExtVal();
1780 
1781     // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1782     // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
1783     // vector elements.
1784     SmallVector<SDValue, 8> Ops;
1785     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1786       Ops.append(InVec.getNode()->op_begin(),
1787                  InVec.getNode()->op_end());
1788     } else if (InVec.isUndef()) {
1789       unsigned NElts = VT.getVectorNumElements();
1790       Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1791     } else {
1792       return SDValue();
1793     }
1794 
1795     // Insert the element
1796     if (Elt < Ops.size()) {
1797       // All the operands of BUILD_VECTOR must have the same type;
1798       // we enforce that here.
1799       EVT OpVT = Ops[0].getValueType();
1800       if (InVal.getValueType() != OpVT)
1801         InVal = OpVT.bitsGT(InVal.getValueType()) ?
1802           DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1803           DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1804       Ops[Elt] = InVal;
1805     }
1806 
1807     // Return the new vector
1808     return DAG.getBuildVector(VT, DL, Ops);
1809   }
1810 
1811   // Extract_vec (Build_vector) generated by custom lowering
1812   // also needs to be customly combined
1813   case ISD::EXTRACT_VECTOR_ELT: {
1814     SDValue Arg = N->getOperand(0);
1815     if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1816       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1817         unsigned Element = Const->getZExtValue();
1818         return Arg->getOperand(Element);
1819       }
1820     }
1821     if (Arg.getOpcode() == ISD::BITCAST &&
1822         Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
1823         (Arg.getOperand(0).getValueType().getVectorNumElements() ==
1824          Arg.getValueType().getVectorNumElements())) {
1825       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1826         unsigned Element = Const->getZExtValue();
1827         return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1828                            Arg->getOperand(0).getOperand(Element));
1829       }
1830     }
1831     break;
1832   }
1833 
1834   case ISD::SELECT_CC: {
1835     // Try common optimizations
1836     if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
1837       return Ret;
1838 
1839     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1840     //      selectcc x, y, a, b, inv(cc)
1841     //
1842     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1843     //      selectcc x, y, a, b, cc
1844     SDValue LHS = N->getOperand(0);
1845     if (LHS.getOpcode() != ISD::SELECT_CC) {
1846       return SDValue();
1847     }
1848 
1849     SDValue RHS = N->getOperand(1);
1850     SDValue True = N->getOperand(2);
1851     SDValue False = N->getOperand(3);
1852     ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1853 
1854     if (LHS.getOperand(2).getNode() != True.getNode() ||
1855         LHS.getOperand(3).getNode() != False.getNode() ||
1856         RHS.getNode() != False.getNode()) {
1857       return SDValue();
1858     }
1859 
1860     switch (NCC) {
1861     default: return SDValue();
1862     case ISD::SETNE: return LHS;
1863     case ISD::SETEQ: {
1864       ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
1865       LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType());
1866       if (DCI.isBeforeLegalizeOps() ||
1867           isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
1868         return DAG.getSelectCC(DL,
1869                                LHS.getOperand(0),
1870                                LHS.getOperand(1),
1871                                LHS.getOperand(2),
1872                                LHS.getOperand(3),
1873                                LHSCC);
1874       break;
1875     }
1876     }
1877     return SDValue();
1878   }
1879 
1880   case AMDGPUISD::R600_EXPORT: {
1881     SDValue Arg = N->getOperand(1);
1882     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
1883       break;
1884 
1885     SDValue NewArgs[8] = {
1886       N->getOperand(0), // Chain
1887       SDValue(),
1888       N->getOperand(2), // ArrayBase
1889       N->getOperand(3), // Type
1890       N->getOperand(4), // SWZ_X
1891       N->getOperand(5), // SWZ_Y
1892       N->getOperand(6), // SWZ_Z
1893       N->getOperand(7) // SWZ_W
1894     };
1895     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
1896     return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
1897   }
1898   case AMDGPUISD::TEXTURE_FETCH: {
1899     SDValue Arg = N->getOperand(1);
1900     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
1901       break;
1902 
1903     SDValue NewArgs[19] = {
1904       N->getOperand(0),
1905       N->getOperand(1),
1906       N->getOperand(2),
1907       N->getOperand(3),
1908       N->getOperand(4),
1909       N->getOperand(5),
1910       N->getOperand(6),
1911       N->getOperand(7),
1912       N->getOperand(8),
1913       N->getOperand(9),
1914       N->getOperand(10),
1915       N->getOperand(11),
1916       N->getOperand(12),
1917       N->getOperand(13),
1918       N->getOperand(14),
1919       N->getOperand(15),
1920       N->getOperand(16),
1921       N->getOperand(17),
1922       N->getOperand(18),
1923     };
1924     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
1925     return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
1926   }
1927 
1928   case ISD::LOAD: {
1929     LoadSDNode *LoadNode = cast<LoadSDNode>(N);
1930     SDValue Ptr = LoadNode->getBasePtr();
1931     if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
1932          isa<ConstantSDNode>(Ptr))
1933       return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
1934     break;
1935   }
1936 
1937   default: break;
1938   }
1939 
1940   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1941 }
1942 
1943 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
1944                                      SDValue &Src, SDValue &Neg, SDValue &Abs,
1945                                      SDValue &Sel, SDValue &Imm,
1946                                      SelectionDAG &DAG) const {
1947   const R600InstrInfo *TII = Subtarget->getInstrInfo();
1948   if (!Src.isMachineOpcode())
1949     return false;
1950 
1951   switch (Src.getMachineOpcode()) {
1952   case R600::FNEG_R600:
1953     if (!Neg.getNode())
1954       return false;
1955     Src = Src.getOperand(0);
1956     Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
1957     return true;
1958   case R600::FABS_R600:
1959     if (!Abs.getNode())
1960       return false;
1961     Src = Src.getOperand(0);
1962     Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
1963     return true;
1964   case R600::CONST_COPY: {
1965     unsigned Opcode = ParentNode->getMachineOpcode();
1966     bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
1967 
1968     if (!Sel.getNode())
1969       return false;
1970 
1971     SDValue CstOffset = Src.getOperand(0);
1972     if (ParentNode->getValueType(0).isVector())
1973       return false;
1974 
1975     // Gather constants values
1976     int SrcIndices[] = {
1977       TII->getOperandIdx(Opcode, R600::OpName::src0),
1978       TII->getOperandIdx(Opcode, R600::OpName::src1),
1979       TII->getOperandIdx(Opcode, R600::OpName::src2),
1980       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
1981       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
1982       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
1983       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
1984       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
1985       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
1986       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
1987       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
1988     };
1989     std::vector<unsigned> Consts;
1990     for (int OtherSrcIdx : SrcIndices) {
1991       int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
1992       if (OtherSrcIdx < 0 || OtherSelIdx < 0)
1993         continue;
1994       if (HasDst) {
1995         OtherSrcIdx--;
1996         OtherSelIdx--;
1997       }
1998       if (RegisterSDNode *Reg =
1999           dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2000         if (Reg->getReg() == R600::ALU_CONST) {
2001           Consts.push_back(ParentNode->getConstantOperandVal(OtherSelIdx));
2002         }
2003       }
2004     }
2005 
2006     ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2007     Consts.push_back(Cst->getZExtValue());
2008     if (!TII->fitsConstReadLimitations(Consts)) {
2009       return false;
2010     }
2011 
2012     Sel = CstOffset;
2013     Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2014     return true;
2015   }
2016   case R600::MOV_IMM_GLOBAL_ADDR:
2017     // Check if the Imm slot is used. Taken from below.
2018     if (Imm->getAsZExtVal())
2019       return false;
2020     Imm = Src.getOperand(0);
2021     Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2022     return true;
2023   case R600::MOV_IMM_I32:
2024   case R600::MOV_IMM_F32: {
2025     unsigned ImmReg = R600::ALU_LITERAL_X;
2026     uint64_t ImmValue = 0;
2027 
2028     if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2029       ConstantFPSDNode *FPC = cast<ConstantFPSDNode>(Src.getOperand(0));
2030       float FloatValue = FPC->getValueAPF().convertToFloat();
2031       if (FloatValue == 0.0) {
2032         ImmReg = R600::ZERO;
2033       } else if (FloatValue == 0.5) {
2034         ImmReg = R600::HALF;
2035       } else if (FloatValue == 1.0) {
2036         ImmReg = R600::ONE;
2037       } else {
2038         ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2039       }
2040     } else {
2041       uint64_t Value = Src.getConstantOperandVal(0);
2042       if (Value == 0) {
2043         ImmReg = R600::ZERO;
2044       } else if (Value == 1) {
2045         ImmReg = R600::ONE_INT;
2046       } else {
2047         ImmValue = Value;
2048       }
2049     }
2050 
2051     // Check that we aren't already using an immediate.
2052     // XXX: It's possible for an instruction to have more than one
2053     // immediate operand, but this is not supported yet.
2054     if (ImmReg == R600::ALU_LITERAL_X) {
2055       if (!Imm.getNode())
2056         return false;
2057       ConstantSDNode *C = cast<ConstantSDNode>(Imm);
2058       if (C->getZExtValue())
2059         return false;
2060       Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2061     }
2062     Src = DAG.getRegister(ImmReg, MVT::i32);
2063     return true;
2064   }
2065   default:
2066     return false;
2067   }
2068 }
2069 
2070 /// Fold the instructions after selecting them
2071 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2072                                             SelectionDAG &DAG) const {
2073   const R600InstrInfo *TII = Subtarget->getInstrInfo();
2074   if (!Node->isMachineOpcode())
2075     return Node;
2076 
2077   unsigned Opcode = Node->getMachineOpcode();
2078   SDValue FakeOp;
2079 
2080   std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2081 
2082   if (Opcode == R600::DOT_4) {
2083     int OperandIdx[] = {
2084       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2085       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2086       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2087       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2088       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2089       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2090       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2091       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2092         };
2093     int NegIdx[] = {
2094       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2095       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2096       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2097       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2098       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2099       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2100       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2101       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2102     };
2103     int AbsIdx[] = {
2104       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2105       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2106       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2107       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2108       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2109       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2110       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2111       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2112     };
2113     for (unsigned i = 0; i < 8; i++) {
2114       if (OperandIdx[i] < 0)
2115         return Node;
2116       SDValue &Src = Ops[OperandIdx[i] - 1];
2117       SDValue &Neg = Ops[NegIdx[i] - 1];
2118       SDValue &Abs = Ops[AbsIdx[i] - 1];
2119       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2120       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2121       if (HasDst)
2122         SelIdx--;
2123       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2124       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2125         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2126     }
2127   } else if (Opcode == R600::REG_SEQUENCE) {
2128     for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2129       SDValue &Src = Ops[i];
2130       if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2131         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2132     }
2133   } else {
2134     if (!TII->hasInstrModifiers(Opcode))
2135       return Node;
2136     int OperandIdx[] = {
2137       TII->getOperandIdx(Opcode, R600::OpName::src0),
2138       TII->getOperandIdx(Opcode, R600::OpName::src1),
2139       TII->getOperandIdx(Opcode, R600::OpName::src2)
2140     };
2141     int NegIdx[] = {
2142       TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2143       TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2144       TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2145     };
2146     int AbsIdx[] = {
2147       TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2148       TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2149       -1
2150     };
2151     for (unsigned i = 0; i < 3; i++) {
2152       if (OperandIdx[i] < 0)
2153         return Node;
2154       SDValue &Src = Ops[OperandIdx[i] - 1];
2155       SDValue &Neg = Ops[NegIdx[i] - 1];
2156       SDValue FakeAbs;
2157       SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2158       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2159       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2160       int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2161       if (HasDst) {
2162         SelIdx--;
2163         ImmIdx--;
2164       }
2165       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2166       SDValue &Imm = Ops[ImmIdx];
2167       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2168         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2169     }
2170   }
2171 
2172   return Node;
2173 }
2174 
2175 TargetLowering::AtomicExpansionKind
2176 R600TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
2177   switch (RMW->getOperation()) {
2178   case AtomicRMWInst::UIncWrap:
2179   case AtomicRMWInst::UDecWrap:
2180     // FIXME: Cayman at least appears to have instructions for this, but the
2181     // instruction defintions appear to be missing.
2182     return AtomicExpansionKind::CmpXChg;
2183   default:
2184     break;
2185   }
2186 
2187   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
2188 }
2189