1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Custom DAG lowering for R600 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "R600ISelLowering.h" 15 #include "AMDGPUFrameLowering.h" 16 #include "AMDGPUSubtarget.h" 17 #include "R600Defines.h" 18 #include "R600FrameLowering.h" 19 #include "R600InstrInfo.h" 20 #include "R600MachineFunctionInfo.h" 21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "llvm/ADT/APFloat.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/CodeGen/CallingConvLower.h" 29 #include "llvm/CodeGen/DAGCombine.h" 30 #include "llvm/CodeGen/ISDOpcodes.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MachineValueType.h" 44 #include "llvm/Support/MathExtras.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <utility> 49 #include <vector> 50 51 using namespace llvm; 52 53 #include "R600GenCallingConv.inc" 54 55 R600TargetLowering::R600TargetLowering(const TargetMachine &TM, 56 const R600Subtarget &STI) 57 : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) { 58 addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass); 59 addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass); 60 addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass); 61 addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass); 62 addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass); 63 addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass); 64 65 computeRegisterProperties(Subtarget->getRegisterInfo()); 66 67 // Legalize loads and stores to the private address space. 68 setOperationAction(ISD::LOAD, MVT::i32, Custom); 69 setOperationAction(ISD::LOAD, MVT::v2i32, Custom); 70 setOperationAction(ISD::LOAD, MVT::v4i32, Custom); 71 72 // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address 73 // spaces, so it is custom lowered to handle those where it isn't. 74 for (MVT VT : MVT::integer_valuetypes()) { 75 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 76 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom); 77 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom); 78 79 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 80 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom); 81 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom); 82 83 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 84 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom); 85 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom); 86 } 87 88 // Workaround for LegalizeDAG asserting on expansion of i1 vector loads. 89 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand); 90 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand); 91 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand); 92 93 setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand); 94 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand); 95 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand); 96 97 setOperationAction(ISD::STORE, MVT::i8, Custom); 98 setOperationAction(ISD::STORE, MVT::i32, Custom); 99 setOperationAction(ISD::STORE, MVT::v2i32, Custom); 100 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 101 102 setTruncStoreAction(MVT::i32, MVT::i8, Custom); 103 setTruncStoreAction(MVT::i32, MVT::i16, Custom); 104 // We need to include these since trunc STORES to PRIVATE need 105 // special handling to accommodate RMW 106 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 107 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom); 108 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom); 109 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom); 110 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom); 111 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 112 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 113 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom); 114 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom); 115 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom); 116 117 // Workaround for LegalizeDAG asserting on expansion of i1 vector stores. 118 setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand); 119 setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand); 120 121 // Set condition code actions 122 setCondCodeAction(ISD::SETO, MVT::f32, Expand); 123 setCondCodeAction(ISD::SETUO, MVT::f32, Expand); 124 setCondCodeAction(ISD::SETLT, MVT::f32, Expand); 125 setCondCodeAction(ISD::SETLE, MVT::f32, Expand); 126 setCondCodeAction(ISD::SETOLT, MVT::f32, Expand); 127 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); 128 setCondCodeAction(ISD::SETONE, MVT::f32, Expand); 129 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); 130 setCondCodeAction(ISD::SETUGE, MVT::f32, Expand); 131 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 132 setCondCodeAction(ISD::SETULT, MVT::f32, Expand); 133 setCondCodeAction(ISD::SETULE, MVT::f32, Expand); 134 135 setCondCodeAction(ISD::SETLE, MVT::i32, Expand); 136 setCondCodeAction(ISD::SETLT, MVT::i32, Expand); 137 setCondCodeAction(ISD::SETULE, MVT::i32, Expand); 138 setCondCodeAction(ISD::SETULT, MVT::i32, Expand); 139 140 setOperationAction(ISD::FCOS, MVT::f32, Custom); 141 setOperationAction(ISD::FSIN, MVT::f32, Custom); 142 143 setOperationAction(ISD::SETCC, MVT::v4i32, Expand); 144 setOperationAction(ISD::SETCC, MVT::v2i32, Expand); 145 146 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 147 setOperationAction(ISD::BR_CC, MVT::f32, Expand); 148 setOperationAction(ISD::BRCOND, MVT::Other, Custom); 149 150 setOperationAction(ISD::FSUB, MVT::f32, Expand); 151 152 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 153 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 154 setOperationAction(ISD::FRINT, MVT::f64, Custom); 155 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 156 157 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 158 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 159 160 setOperationAction(ISD::SETCC, MVT::i32, Expand); 161 setOperationAction(ISD::SETCC, MVT::f32, Expand); 162 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom); 163 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom); 164 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 165 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 166 167 setOperationAction(ISD::SELECT, MVT::i32, Expand); 168 setOperationAction(ISD::SELECT, MVT::f32, Expand); 169 setOperationAction(ISD::SELECT, MVT::v2i32, Expand); 170 setOperationAction(ISD::SELECT, MVT::v4i32, Expand); 171 172 // ADD, SUB overflow. 173 // TODO: turn these into Legal? 174 if (Subtarget->hasCARRY()) 175 setOperationAction(ISD::UADDO, MVT::i32, Custom); 176 177 if (Subtarget->hasBORROW()) 178 setOperationAction(ISD::USUBO, MVT::i32, Custom); 179 180 // Expand sign extension of vectors 181 if (!Subtarget->hasBFE()) 182 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 183 184 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand); 185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand); 186 187 if (!Subtarget->hasBFE()) 188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 189 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand); 190 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand); 191 192 if (!Subtarget->hasBFE()) 193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand); 195 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand); 196 197 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); 198 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand); 199 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand); 200 201 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand); 202 203 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 204 205 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom); 206 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom); 207 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); 208 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 209 210 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom); 211 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom); 212 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 213 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 214 215 // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32 216 // to be Legal/Custom in order to avoid library calls. 217 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 218 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 219 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 220 221 if (!Subtarget->hasFMA()) { 222 setOperationAction(ISD::FMA, MVT::f32, Expand); 223 setOperationAction(ISD::FMA, MVT::f64, Expand); 224 } 225 226 // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we 227 // need it for R600. 228 if (!Subtarget->hasFP32Denormals()) 229 setOperationAction(ISD::FMAD, MVT::f32, Legal); 230 231 if (!Subtarget->hasBFI()) { 232 // fcopysign can be done in a single instruction with BFI. 233 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 234 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 235 } 236 237 if (!Subtarget->hasBCNT(32)) 238 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 239 240 if (!Subtarget->hasBCNT(64)) 241 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 242 243 if (Subtarget->hasFFBH()) 244 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom); 245 246 if (Subtarget->hasFFBL()) 247 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom); 248 249 // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we 250 // need it for R600. 251 if (Subtarget->hasBFE()) 252 setHasExtractBitsInsn(true); 253 254 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 255 256 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 257 for (MVT VT : ScalarIntVTs) { 258 setOperationAction(ISD::ADDC, VT, Expand); 259 setOperationAction(ISD::SUBC, VT, Expand); 260 setOperationAction(ISD::ADDE, VT, Expand); 261 setOperationAction(ISD::SUBE, VT, Expand); 262 } 263 264 // LLVM will expand these to atomic_cmp_swap(0) 265 // and atomic_swap, respectively. 266 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); 267 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); 268 269 // We need to custom lower some of the intrinsics 270 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 271 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 272 273 setSchedulingPreference(Sched::Source); 274 275 setTargetDAGCombine(ISD::FP_ROUND); 276 setTargetDAGCombine(ISD::FP_TO_SINT); 277 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 278 setTargetDAGCombine(ISD::SELECT_CC); 279 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 280 setTargetDAGCombine(ISD::LOAD); 281 } 282 283 static inline bool isEOP(MachineBasicBlock::iterator I) { 284 if (std::next(I) == I->getParent()->end()) 285 return false; 286 return std::next(I)->getOpcode() == R600::RETURN; 287 } 288 289 MachineBasicBlock * 290 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 291 MachineBasicBlock *BB) const { 292 MachineFunction *MF = BB->getParent(); 293 MachineRegisterInfo &MRI = MF->getRegInfo(); 294 MachineBasicBlock::iterator I = MI; 295 const R600InstrInfo *TII = Subtarget->getInstrInfo(); 296 297 switch (MI.getOpcode()) { 298 default: 299 // Replace LDS_*_RET instruction that don't have any uses with the 300 // equivalent LDS_*_NORET instruction. 301 if (TII->isLDSRetInstr(MI.getOpcode())) { 302 int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst); 303 assert(DstIdx != -1); 304 MachineInstrBuilder NewMI; 305 // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add 306 // LDS_1A2D support and remove this special case. 307 if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) || 308 MI.getOpcode() == R600::LDS_CMPST_RET) 309 return BB; 310 311 NewMI = BuildMI(*BB, I, BB->findDebugLoc(I), 312 TII->get(R600::getLDSNoRetOp(MI.getOpcode()))); 313 for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) { 314 NewMI.add(MI.getOperand(i)); 315 } 316 } else { 317 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); 318 } 319 break; 320 321 case R600::FABS_R600: { 322 MachineInstr *NewMI = TII->buildDefaultInstruction( 323 *BB, I, R600::MOV, MI.getOperand(0).getReg(), 324 MI.getOperand(1).getReg()); 325 TII->addFlag(*NewMI, 0, MO_FLAG_ABS); 326 break; 327 } 328 329 case R600::FNEG_R600: { 330 MachineInstr *NewMI = TII->buildDefaultInstruction( 331 *BB, I, R600::MOV, MI.getOperand(0).getReg(), 332 MI.getOperand(1).getReg()); 333 TII->addFlag(*NewMI, 0, MO_FLAG_NEG); 334 break; 335 } 336 337 case R600::MASK_WRITE: { 338 Register maskedRegister = MI.getOperand(0).getReg(); 339 assert(Register::isVirtualRegister(maskedRegister)); 340 MachineInstr * defInstr = MRI.getVRegDef(maskedRegister); 341 TII->addFlag(*defInstr, 0, MO_FLAG_MASK); 342 break; 343 } 344 345 case R600::MOV_IMM_F32: 346 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1) 347 .getFPImm() 348 ->getValueAPF() 349 .bitcastToAPInt() 350 .getZExtValue()); 351 break; 352 353 case R600::MOV_IMM_I32: 354 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), 355 MI.getOperand(1).getImm()); 356 break; 357 358 case R600::MOV_IMM_GLOBAL_ADDR: { 359 //TODO: Perhaps combine this instruction with the next if possible 360 auto MIB = TII->buildDefaultInstruction( 361 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X); 362 int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal); 363 //TODO: Ugh this is rather ugly 364 MIB->getOperand(Idx) = MI.getOperand(1); 365 break; 366 } 367 368 case R600::CONST_COPY: { 369 MachineInstr *NewMI = TII->buildDefaultInstruction( 370 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST); 371 TII->setImmOperand(*NewMI, R600::OpName::src0_sel, 372 MI.getOperand(1).getImm()); 373 break; 374 } 375 376 case R600::RAT_WRITE_CACHELESS_32_eg: 377 case R600::RAT_WRITE_CACHELESS_64_eg: 378 case R600::RAT_WRITE_CACHELESS_128_eg: 379 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode())) 380 .add(MI.getOperand(0)) 381 .add(MI.getOperand(1)) 382 .addImm(isEOP(I)); // Set End of program bit 383 break; 384 385 case R600::RAT_STORE_TYPED_eg: 386 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode())) 387 .add(MI.getOperand(0)) 388 .add(MI.getOperand(1)) 389 .add(MI.getOperand(2)) 390 .addImm(isEOP(I)); // Set End of program bit 391 break; 392 393 case R600::BRANCH: 394 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP)) 395 .add(MI.getOperand(0)); 396 break; 397 398 case R600::BRANCH_COND_f32: { 399 MachineInstr *NewMI = 400 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X), 401 R600::PREDICATE_BIT) 402 .add(MI.getOperand(1)) 403 .addImm(R600::PRED_SETNE) 404 .addImm(0); // Flags 405 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH); 406 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND)) 407 .add(MI.getOperand(0)) 408 .addReg(R600::PREDICATE_BIT, RegState::Kill); 409 break; 410 } 411 412 case R600::BRANCH_COND_i32: { 413 MachineInstr *NewMI = 414 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X), 415 R600::PREDICATE_BIT) 416 .add(MI.getOperand(1)) 417 .addImm(R600::PRED_SETNE_INT) 418 .addImm(0); // Flags 419 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH); 420 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND)) 421 .add(MI.getOperand(0)) 422 .addReg(R600::PREDICATE_BIT, RegState::Kill); 423 break; 424 } 425 426 case R600::EG_ExportSwz: 427 case R600::R600_ExportSwz: { 428 // Instruction is left unmodified if its not the last one of its type 429 bool isLastInstructionOfItsType = true; 430 unsigned InstExportType = MI.getOperand(1).getImm(); 431 for (MachineBasicBlock::iterator NextExportInst = std::next(I), 432 EndBlock = BB->end(); NextExportInst != EndBlock; 433 NextExportInst = std::next(NextExportInst)) { 434 if (NextExportInst->getOpcode() == R600::EG_ExportSwz || 435 NextExportInst->getOpcode() == R600::R600_ExportSwz) { 436 unsigned CurrentInstExportType = NextExportInst->getOperand(1) 437 .getImm(); 438 if (CurrentInstExportType == InstExportType) { 439 isLastInstructionOfItsType = false; 440 break; 441 } 442 } 443 } 444 bool EOP = isEOP(I); 445 if (!EOP && !isLastInstructionOfItsType) 446 return BB; 447 unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40; 448 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode())) 449 .add(MI.getOperand(0)) 450 .add(MI.getOperand(1)) 451 .add(MI.getOperand(2)) 452 .add(MI.getOperand(3)) 453 .add(MI.getOperand(4)) 454 .add(MI.getOperand(5)) 455 .add(MI.getOperand(6)) 456 .addImm(CfInst) 457 .addImm(EOP); 458 break; 459 } 460 case R600::RETURN: { 461 return BB; 462 } 463 } 464 465 MI.eraseFromParent(); 466 return BB; 467 } 468 469 //===----------------------------------------------------------------------===// 470 // Custom DAG Lowering Operations 471 //===----------------------------------------------------------------------===// 472 473 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 474 MachineFunction &MF = DAG.getMachineFunction(); 475 R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>(); 476 switch (Op.getOpcode()) { 477 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); 478 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 479 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 480 case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG); 481 case ISD::SRA_PARTS: 482 case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG); 483 case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY); 484 case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW); 485 case ISD::FCOS: 486 case ISD::FSIN: return LowerTrig(Op, DAG); 487 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 488 case ISD::STORE: return LowerSTORE(Op, DAG); 489 case ISD::LOAD: { 490 SDValue Result = LowerLOAD(Op, DAG); 491 assert((!Result.getNode() || 492 Result.getNode()->getNumValues() == 2) && 493 "Load should return a value and a chain"); 494 return Result; 495 } 496 497 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 498 case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG); 499 case ISD::FrameIndex: return lowerFrameIndex(Op, DAG); 500 case ISD::INTRINSIC_VOID: { 501 SDValue Chain = Op.getOperand(0); 502 unsigned IntrinsicID = 503 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 504 switch (IntrinsicID) { 505 case Intrinsic::r600_store_swizzle: { 506 SDLoc DL(Op); 507 const SDValue Args[8] = { 508 Chain, 509 Op.getOperand(2), // Export Value 510 Op.getOperand(3), // ArrayBase 511 Op.getOperand(4), // Type 512 DAG.getConstant(0, DL, MVT::i32), // SWZ_X 513 DAG.getConstant(1, DL, MVT::i32), // SWZ_Y 514 DAG.getConstant(2, DL, MVT::i32), // SWZ_Z 515 DAG.getConstant(3, DL, MVT::i32) // SWZ_W 516 }; 517 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args); 518 } 519 520 // default for switch(IntrinsicID) 521 default: break; 522 } 523 // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode()) 524 break; 525 } 526 case ISD::INTRINSIC_WO_CHAIN: { 527 unsigned IntrinsicID = 528 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 529 EVT VT = Op.getValueType(); 530 SDLoc DL(Op); 531 switch (IntrinsicID) { 532 case Intrinsic::r600_tex: 533 case Intrinsic::r600_texc: { 534 unsigned TextureOp; 535 switch (IntrinsicID) { 536 case Intrinsic::r600_tex: 537 TextureOp = 0; 538 break; 539 case Intrinsic::r600_texc: 540 TextureOp = 1; 541 break; 542 default: 543 llvm_unreachable("unhandled texture operation"); 544 } 545 546 SDValue TexArgs[19] = { 547 DAG.getConstant(TextureOp, DL, MVT::i32), 548 Op.getOperand(1), 549 DAG.getConstant(0, DL, MVT::i32), 550 DAG.getConstant(1, DL, MVT::i32), 551 DAG.getConstant(2, DL, MVT::i32), 552 DAG.getConstant(3, DL, MVT::i32), 553 Op.getOperand(2), 554 Op.getOperand(3), 555 Op.getOperand(4), 556 DAG.getConstant(0, DL, MVT::i32), 557 DAG.getConstant(1, DL, MVT::i32), 558 DAG.getConstant(2, DL, MVT::i32), 559 DAG.getConstant(3, DL, MVT::i32), 560 Op.getOperand(5), 561 Op.getOperand(6), 562 Op.getOperand(7), 563 Op.getOperand(8), 564 Op.getOperand(9), 565 Op.getOperand(10) 566 }; 567 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs); 568 } 569 case Intrinsic::r600_dot4: { 570 SDValue Args[8] = { 571 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), 572 DAG.getConstant(0, DL, MVT::i32)), 573 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), 574 DAG.getConstant(0, DL, MVT::i32)), 575 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), 576 DAG.getConstant(1, DL, MVT::i32)), 577 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), 578 DAG.getConstant(1, DL, MVT::i32)), 579 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), 580 DAG.getConstant(2, DL, MVT::i32)), 581 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), 582 DAG.getConstant(2, DL, MVT::i32)), 583 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1), 584 DAG.getConstant(3, DL, MVT::i32)), 585 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2), 586 DAG.getConstant(3, DL, MVT::i32)) 587 }; 588 return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args); 589 } 590 591 case Intrinsic::r600_implicitarg_ptr: { 592 MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS); 593 uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT); 594 return DAG.getConstant(ByteOffset, DL, PtrVT); 595 } 596 case Intrinsic::r600_read_ngroups_x: 597 return LowerImplicitParameter(DAG, VT, DL, 0); 598 case Intrinsic::r600_read_ngroups_y: 599 return LowerImplicitParameter(DAG, VT, DL, 1); 600 case Intrinsic::r600_read_ngroups_z: 601 return LowerImplicitParameter(DAG, VT, DL, 2); 602 case Intrinsic::r600_read_global_size_x: 603 return LowerImplicitParameter(DAG, VT, DL, 3); 604 case Intrinsic::r600_read_global_size_y: 605 return LowerImplicitParameter(DAG, VT, DL, 4); 606 case Intrinsic::r600_read_global_size_z: 607 return LowerImplicitParameter(DAG, VT, DL, 5); 608 case Intrinsic::r600_read_local_size_x: 609 return LowerImplicitParameter(DAG, VT, DL, 6); 610 case Intrinsic::r600_read_local_size_y: 611 return LowerImplicitParameter(DAG, VT, DL, 7); 612 case Intrinsic::r600_read_local_size_z: 613 return LowerImplicitParameter(DAG, VT, DL, 8); 614 615 case Intrinsic::r600_read_tgid_x: 616 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 617 R600::T1_X, VT); 618 case Intrinsic::r600_read_tgid_y: 619 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 620 R600::T1_Y, VT); 621 case Intrinsic::r600_read_tgid_z: 622 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 623 R600::T1_Z, VT); 624 case Intrinsic::r600_read_tidig_x: 625 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 626 R600::T0_X, VT); 627 case Intrinsic::r600_read_tidig_y: 628 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 629 R600::T0_Y, VT); 630 case Intrinsic::r600_read_tidig_z: 631 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass, 632 R600::T0_Z, VT); 633 634 case Intrinsic::r600_recipsqrt_ieee: 635 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 636 637 case Intrinsic::r600_recipsqrt_clamped: 638 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1)); 639 default: 640 return Op; 641 } 642 643 // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode()) 644 break; 645 } 646 } // end switch(Op.getOpcode()) 647 return SDValue(); 648 } 649 650 void R600TargetLowering::ReplaceNodeResults(SDNode *N, 651 SmallVectorImpl<SDValue> &Results, 652 SelectionDAG &DAG) const { 653 switch (N->getOpcode()) { 654 default: 655 AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG); 656 return; 657 case ISD::FP_TO_UINT: 658 if (N->getValueType(0) == MVT::i1) { 659 Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG)); 660 return; 661 } 662 // Since we don't care about out of bounds values we can use FP_TO_SINT for 663 // uints too. The DAGLegalizer code for uint considers some extra cases 664 // which are not necessary here. 665 LLVM_FALLTHROUGH; 666 case ISD::FP_TO_SINT: { 667 if (N->getValueType(0) == MVT::i1) { 668 Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG)); 669 return; 670 } 671 672 SDValue Result; 673 if (expandFP_TO_SINT(N, Result, DAG)) 674 Results.push_back(Result); 675 return; 676 } 677 case ISD::SDIVREM: { 678 SDValue Op = SDValue(N, 1); 679 SDValue RES = LowerSDIVREM(Op, DAG); 680 Results.push_back(RES); 681 Results.push_back(RES.getValue(1)); 682 break; 683 } 684 case ISD::UDIVREM: { 685 SDValue Op = SDValue(N, 0); 686 LowerUDIVREM64(Op, DAG, Results); 687 break; 688 } 689 } 690 } 691 692 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG, 693 SDValue Vector) const { 694 SDLoc DL(Vector); 695 EVT VecVT = Vector.getValueType(); 696 EVT EltVT = VecVT.getVectorElementType(); 697 SmallVector<SDValue, 8> Args; 698 699 for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) { 700 Args.push_back(DAG.getNode( 701 ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector, 702 DAG.getConstant(i, DL, getVectorIdxTy(DAG.getDataLayout())))); 703 } 704 705 return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args); 706 } 707 708 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 709 SelectionDAG &DAG) const { 710 SDLoc DL(Op); 711 SDValue Vector = Op.getOperand(0); 712 SDValue Index = Op.getOperand(1); 713 714 if (isa<ConstantSDNode>(Index) || 715 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR) 716 return Op; 717 718 Vector = vectorToVerticalVector(DAG, Vector); 719 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(), 720 Vector, Index); 721 } 722 723 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 724 SelectionDAG &DAG) const { 725 SDLoc DL(Op); 726 SDValue Vector = Op.getOperand(0); 727 SDValue Value = Op.getOperand(1); 728 SDValue Index = Op.getOperand(2); 729 730 if (isa<ConstantSDNode>(Index) || 731 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR) 732 return Op; 733 734 Vector = vectorToVerticalVector(DAG, Vector); 735 SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(), 736 Vector, Value, Index); 737 return vectorToVerticalVector(DAG, Insert); 738 } 739 740 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, 741 SDValue Op, 742 SelectionDAG &DAG) const { 743 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); 744 if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 745 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); 746 747 const DataLayout &DL = DAG.getDataLayout(); 748 const GlobalValue *GV = GSD->getGlobal(); 749 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 750 751 SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT); 752 return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA); 753 } 754 755 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { 756 // On hw >= R700, COS/SIN input must be between -1. and 1. 757 // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5) 758 EVT VT = Op.getValueType(); 759 SDValue Arg = Op.getOperand(0); 760 SDLoc DL(Op); 761 762 // TODO: Should this propagate fast-math-flags? 763 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT, 764 DAG.getNode(ISD::FADD, DL, VT, 765 DAG.getNode(ISD::FMUL, DL, VT, Arg, 766 DAG.getConstantFP(0.15915494309, DL, MVT::f32)), 767 DAG.getConstantFP(0.5, DL, MVT::f32))); 768 unsigned TrigNode; 769 switch (Op.getOpcode()) { 770 case ISD::FCOS: 771 TrigNode = AMDGPUISD::COS_HW; 772 break; 773 case ISD::FSIN: 774 TrigNode = AMDGPUISD::SIN_HW; 775 break; 776 default: 777 llvm_unreachable("Wrong trig opcode"); 778 } 779 SDValue TrigVal = DAG.getNode(TrigNode, DL, VT, 780 DAG.getNode(ISD::FADD, DL, VT, FractPart, 781 DAG.getConstantFP(-0.5, DL, MVT::f32))); 782 if (Gen >= AMDGPUSubtarget::R700) 783 return TrigVal; 784 // On R600 hw, COS/SIN input must be between -Pi and Pi. 785 return DAG.getNode(ISD::FMUL, DL, VT, TrigVal, 786 DAG.getConstantFP(numbers::pif, DL, MVT::f32)); 787 } 788 789 SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const { 790 SDLoc DL(Op); 791 EVT VT = Op.getValueType(); 792 793 SDValue Lo = Op.getOperand(0); 794 SDValue Hi = Op.getOperand(1); 795 SDValue Shift = Op.getOperand(2); 796 SDValue Zero = DAG.getConstant(0, DL, VT); 797 SDValue One = DAG.getConstant(1, DL, VT); 798 799 SDValue Width = DAG.getConstant(VT.getSizeInBits(), DL, VT); 800 SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT); 801 SDValue BigShift = DAG.getNode(ISD::SUB, DL, VT, Shift, Width); 802 SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift); 803 804 // The dance around Width1 is necessary for 0 special case. 805 // Without it the CompShift might be 32, producing incorrect results in 806 // Overflow. So we do the shift in two steps, the alternative is to 807 // add a conditional to filter the special case. 808 809 SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift); 810 Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One); 811 812 SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift); 813 HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow); 814 SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift); 815 816 SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift); 817 SDValue LoBig = Zero; 818 819 Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT); 820 Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT); 821 822 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi); 823 } 824 825 SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const { 826 SDLoc DL(Op); 827 EVT VT = Op.getValueType(); 828 829 SDValue Lo = Op.getOperand(0); 830 SDValue Hi = Op.getOperand(1); 831 SDValue Shift = Op.getOperand(2); 832 SDValue Zero = DAG.getConstant(0, DL, VT); 833 SDValue One = DAG.getConstant(1, DL, VT); 834 835 const bool SRA = Op.getOpcode() == ISD::SRA_PARTS; 836 837 SDValue Width = DAG.getConstant(VT.getSizeInBits(), DL, VT); 838 SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT); 839 SDValue BigShift = DAG.getNode(ISD::SUB, DL, VT, Shift, Width); 840 SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift); 841 842 // The dance around Width1 is necessary for 0 special case. 843 // Without it the CompShift might be 32, producing incorrect results in 844 // Overflow. So we do the shift in two steps, the alternative is to 845 // add a conditional to filter the special case. 846 847 SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift); 848 Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One); 849 850 SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift); 851 SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift); 852 LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow); 853 854 SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift); 855 SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero; 856 857 Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT); 858 Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT); 859 860 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi); 861 } 862 863 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG, 864 unsigned mainop, unsigned ovf) const { 865 SDLoc DL(Op); 866 EVT VT = Op.getValueType(); 867 868 SDValue Lo = Op.getOperand(0); 869 SDValue Hi = Op.getOperand(1); 870 871 SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi); 872 // Extend sign. 873 OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF, 874 DAG.getValueType(MVT::i1)); 875 876 SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi); 877 878 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF); 879 } 880 881 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const { 882 SDLoc DL(Op); 883 return DAG.getNode( 884 ISD::SETCC, 885 DL, 886 MVT::i1, 887 Op, DAG.getConstantFP(1.0f, DL, MVT::f32), 888 DAG.getCondCode(ISD::SETEQ)); 889 } 890 891 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const { 892 SDLoc DL(Op); 893 return DAG.getNode( 894 ISD::SETCC, 895 DL, 896 MVT::i1, 897 Op, DAG.getConstantFP(-1.0f, DL, MVT::f32), 898 DAG.getCondCode(ISD::SETEQ)); 899 } 900 901 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT, 902 const SDLoc &DL, 903 unsigned DwordOffset) const { 904 unsigned ByteOffset = DwordOffset * 4; 905 PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()), 906 AMDGPUAS::PARAM_I_ADDRESS); 907 908 // We shouldn't be using an offset wider than 16-bits for implicit parameters. 909 assert(isInt<16>(ByteOffset)); 910 911 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 912 DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR 913 MachinePointerInfo(ConstantPointerNull::get(PtrType))); 914 } 915 916 bool R600TargetLowering::isZero(SDValue Op) const { 917 if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) { 918 return Cst->isNullValue(); 919 } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){ 920 return CstFP->isZero(); 921 } else { 922 return false; 923 } 924 } 925 926 bool R600TargetLowering::isHWTrueValue(SDValue Op) const { 927 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 928 return CFP->isExactlyValue(1.0); 929 } 930 return isAllOnesConstant(Op); 931 } 932 933 bool R600TargetLowering::isHWFalseValue(SDValue Op) const { 934 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 935 return CFP->getValueAPF().isZero(); 936 } 937 return isNullConstant(Op); 938 } 939 940 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 941 SDLoc DL(Op); 942 EVT VT = Op.getValueType(); 943 944 SDValue LHS = Op.getOperand(0); 945 SDValue RHS = Op.getOperand(1); 946 SDValue True = Op.getOperand(2); 947 SDValue False = Op.getOperand(3); 948 SDValue CC = Op.getOperand(4); 949 SDValue Temp; 950 951 if (VT == MVT::f32) { 952 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr); 953 SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI); 954 if (MinMax) 955 return MinMax; 956 } 957 958 // LHS and RHS are guaranteed to be the same value type 959 EVT CompareVT = LHS.getValueType(); 960 961 // Check if we can lower this to a native operation. 962 963 // Try to lower to a SET* instruction: 964 // 965 // SET* can match the following patterns: 966 // 967 // select_cc f32, f32, -1, 0, cc_supported 968 // select_cc f32, f32, 1.0f, 0.0f, cc_supported 969 // select_cc i32, i32, -1, 0, cc_supported 970 // 971 972 // Move hardware True/False values to the correct operand. 973 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 974 ISD::CondCode InverseCC = 975 ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32); 976 if (isHWTrueValue(False) && isHWFalseValue(True)) { 977 if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) { 978 std::swap(False, True); 979 CC = DAG.getCondCode(InverseCC); 980 } else { 981 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC); 982 if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) { 983 std::swap(False, True); 984 std::swap(LHS, RHS); 985 CC = DAG.getCondCode(SwapInvCC); 986 } 987 } 988 } 989 990 if (isHWTrueValue(True) && isHWFalseValue(False) && 991 (CompareVT == VT || VT == MVT::i32)) { 992 // This can be matched by a SET* instruction. 993 return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC); 994 } 995 996 // Try to lower to a CND* instruction: 997 // 998 // CND* can match the following patterns: 999 // 1000 // select_cc f32, 0.0, f32, f32, cc_supported 1001 // select_cc f32, 0.0, i32, i32, cc_supported 1002 // select_cc i32, 0, f32, f32, cc_supported 1003 // select_cc i32, 0, i32, i32, cc_supported 1004 // 1005 1006 // Try to move the zero value to the RHS 1007 if (isZero(LHS)) { 1008 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1009 // Try swapping the operands 1010 ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode); 1011 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) { 1012 std::swap(LHS, RHS); 1013 CC = DAG.getCondCode(CCSwapped); 1014 } else { 1015 // Try inverting the conditon and then swapping the operands 1016 ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT.isInteger()); 1017 CCSwapped = ISD::getSetCCSwappedOperands(CCInv); 1018 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) { 1019 std::swap(True, False); 1020 std::swap(LHS, RHS); 1021 CC = DAG.getCondCode(CCSwapped); 1022 } 1023 } 1024 } 1025 if (isZero(RHS)) { 1026 SDValue Cond = LHS; 1027 SDValue Zero = RHS; 1028 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1029 if (CompareVT != VT) { 1030 // Bitcast True / False to the correct types. This will end up being 1031 // a nop, but it allows us to define only a single pattern in the 1032 // .TD files for each CND* instruction rather than having to have 1033 // one pattern for integer True/False and one for fp True/False 1034 True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True); 1035 False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False); 1036 } 1037 1038 switch (CCOpcode) { 1039 case ISD::SETONE: 1040 case ISD::SETUNE: 1041 case ISD::SETNE: 1042 CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32); 1043 Temp = True; 1044 True = False; 1045 False = Temp; 1046 break; 1047 default: 1048 break; 1049 } 1050 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, 1051 Cond, Zero, 1052 True, False, 1053 DAG.getCondCode(CCOpcode)); 1054 return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode); 1055 } 1056 1057 // If we make it this for it means we have no native instructions to handle 1058 // this SELECT_CC, so we must lower it. 1059 SDValue HWTrue, HWFalse; 1060 1061 if (CompareVT == MVT::f32) { 1062 HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT); 1063 HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT); 1064 } else if (CompareVT == MVT::i32) { 1065 HWTrue = DAG.getConstant(-1, DL, CompareVT); 1066 HWFalse = DAG.getConstant(0, DL, CompareVT); 1067 } 1068 else { 1069 llvm_unreachable("Unhandled value type in LowerSELECT_CC"); 1070 } 1071 1072 // Lower this unsupported SELECT_CC into a combination of two supported 1073 // SELECT_CC operations. 1074 SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC); 1075 1076 return DAG.getNode(ISD::SELECT_CC, DL, VT, 1077 Cond, HWFalse, 1078 True, False, 1079 DAG.getCondCode(ISD::SETNE)); 1080 } 1081 1082 /// LLVM generates byte-addressed pointers. For indirect addressing, we need to 1083 /// convert these pointers to a register index. Each register holds 1084 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the 1085 /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used 1086 /// for indirect addressing. 1087 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr, 1088 unsigned StackWidth, 1089 SelectionDAG &DAG) const { 1090 unsigned SRLPad; 1091 switch(StackWidth) { 1092 case 1: 1093 SRLPad = 2; 1094 break; 1095 case 2: 1096 SRLPad = 3; 1097 break; 1098 case 4: 1099 SRLPad = 4; 1100 break; 1101 default: llvm_unreachable("Invalid stack width"); 1102 } 1103 1104 SDLoc DL(Ptr); 1105 return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr, 1106 DAG.getConstant(SRLPad, DL, MVT::i32)); 1107 } 1108 1109 void R600TargetLowering::getStackAddress(unsigned StackWidth, 1110 unsigned ElemIdx, 1111 unsigned &Channel, 1112 unsigned &PtrIncr) const { 1113 switch (StackWidth) { 1114 default: 1115 case 1: 1116 Channel = 0; 1117 if (ElemIdx > 0) { 1118 PtrIncr = 1; 1119 } else { 1120 PtrIncr = 0; 1121 } 1122 break; 1123 case 2: 1124 Channel = ElemIdx % 2; 1125 if (ElemIdx == 2) { 1126 PtrIncr = 1; 1127 } else { 1128 PtrIncr = 0; 1129 } 1130 break; 1131 case 4: 1132 Channel = ElemIdx; 1133 PtrIncr = 0; 1134 break; 1135 } 1136 } 1137 1138 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store, 1139 SelectionDAG &DAG) const { 1140 SDLoc DL(Store); 1141 //TODO: Who creates the i8 stores? 1142 assert(Store->isTruncatingStore() 1143 || Store->getValue().getValueType() == MVT::i8); 1144 assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS); 1145 1146 SDValue Mask; 1147 if (Store->getMemoryVT() == MVT::i8) { 1148 assert(Store->getAlignment() >= 1); 1149 Mask = DAG.getConstant(0xff, DL, MVT::i32); 1150 } else if (Store->getMemoryVT() == MVT::i16) { 1151 assert(Store->getAlignment() >= 2); 1152 Mask = DAG.getConstant(0xffff, DL, MVT::i32); 1153 } else { 1154 llvm_unreachable("Unsupported private trunc store"); 1155 } 1156 1157 SDValue OldChain = Store->getChain(); 1158 bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN); 1159 // Skip dummy 1160 SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain; 1161 SDValue BasePtr = Store->getBasePtr(); 1162 SDValue Offset = Store->getOffset(); 1163 EVT MemVT = Store->getMemoryVT(); 1164 1165 SDValue LoadPtr = BasePtr; 1166 if (!Offset.isUndef()) { 1167 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset); 1168 } 1169 1170 // Get dword location 1171 // TODO: this should be eliminated by the future SHR ptr, 2 1172 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr, 1173 DAG.getConstant(0xfffffffc, DL, MVT::i32)); 1174 1175 // Load dword 1176 // TODO: can we be smarter about machine pointer info? 1177 MachinePointerInfo PtrInfo(UndefValue::get( 1178 Type::getInt32PtrTy(*DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS))); 1179 SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo); 1180 1181 Chain = Dst.getValue(1); 1182 1183 // Get offset in dword 1184 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr, 1185 DAG.getConstant(0x3, DL, MVT::i32)); 1186 1187 // Convert byte offset to bit shift 1188 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1189 DAG.getConstant(3, DL, MVT::i32)); 1190 1191 // TODO: Contrary to the name of the functiom, 1192 // it also handles sub i32 non-truncating stores (like i1) 1193 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, 1194 Store->getValue()); 1195 1196 // Mask the value to the right type 1197 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); 1198 1199 // Shift the value in place 1200 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, 1201 MaskedValue, ShiftAmt); 1202 1203 // Shift the mask in place 1204 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt); 1205 1206 // Invert the mask. NOTE: if we had native ROL instructions we could 1207 // use inverted mask 1208 DstMask = DAG.getNOT(DL, DstMask, MVT::i32); 1209 1210 // Cleanup the target bits 1211 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); 1212 1213 // Add the new bits 1214 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); 1215 1216 // Store dword 1217 // TODO: Can we be smarter about MachinePointerInfo? 1218 SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo); 1219 1220 // If we are part of expanded vector, make our neighbors depend on this store 1221 if (VectorTrunc) { 1222 // Make all other vector elements depend on this store 1223 Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore); 1224 DAG.ReplaceAllUsesOfValueWith(OldChain, Chain); 1225 } 1226 return NewStore; 1227 } 1228 1229 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1230 StoreSDNode *StoreNode = cast<StoreSDNode>(Op); 1231 unsigned AS = StoreNode->getAddressSpace(); 1232 1233 SDValue Chain = StoreNode->getChain(); 1234 SDValue Ptr = StoreNode->getBasePtr(); 1235 SDValue Value = StoreNode->getValue(); 1236 1237 EVT VT = Value.getValueType(); 1238 EVT MemVT = StoreNode->getMemoryVT(); 1239 EVT PtrVT = Ptr.getValueType(); 1240 1241 SDLoc DL(Op); 1242 1243 const bool TruncatingStore = StoreNode->isTruncatingStore(); 1244 1245 // Neither LOCAL nor PRIVATE can do vectors at the moment 1246 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS || 1247 TruncatingStore) && 1248 VT.isVector()) { 1249 if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) { 1250 // Add an extra level of chain to isolate this vector 1251 SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain); 1252 // TODO: can the chain be replaced without creating a new store? 1253 SDValue NewStore = DAG.getTruncStore( 1254 NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(), 1255 MemVT, StoreNode->getAlignment(), 1256 StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo()); 1257 StoreNode = cast<StoreSDNode>(NewStore); 1258 } 1259 1260 return scalarizeVectorStore(StoreNode, DAG); 1261 } 1262 1263 unsigned Align = StoreNode->getAlignment(); 1264 if (Align < MemVT.getStoreSize() && 1265 !allowsMisalignedMemoryAccesses( 1266 MemVT, AS, Align, StoreNode->getMemOperand()->getFlags(), nullptr)) { 1267 return expandUnalignedStore(StoreNode, DAG); 1268 } 1269 1270 SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr, 1271 DAG.getConstant(2, DL, PtrVT)); 1272 1273 if (AS == AMDGPUAS::GLOBAL_ADDRESS) { 1274 // It is beneficial to create MSKOR here instead of combiner to avoid 1275 // artificial dependencies introduced by RMW 1276 if (TruncatingStore) { 1277 assert(VT.bitsLE(MVT::i32)); 1278 SDValue MaskConstant; 1279 if (MemVT == MVT::i8) { 1280 MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32); 1281 } else { 1282 assert(MemVT == MVT::i16); 1283 assert(StoreNode->getAlignment() >= 2); 1284 MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32); 1285 } 1286 1287 SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr, 1288 DAG.getConstant(0x00000003, DL, PtrVT)); 1289 SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex, 1290 DAG.getConstant(3, DL, VT)); 1291 1292 // Put the mask in correct place 1293 SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift); 1294 1295 // Put the value bits in correct place 1296 SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant); 1297 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift); 1298 1299 // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32 1300 // vector instead. 1301 SDValue Src[4] = { 1302 ShiftedValue, 1303 DAG.getConstant(0, DL, MVT::i32), 1304 DAG.getConstant(0, DL, MVT::i32), 1305 Mask 1306 }; 1307 SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src); 1308 SDValue Args[3] = { Chain, Input, DWordAddr }; 1309 return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL, 1310 Op->getVTList(), Args, MemVT, 1311 StoreNode->getMemOperand()); 1312 } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) { 1313 // Convert pointer from byte address to dword address. 1314 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr); 1315 1316 if (StoreNode->isIndexed()) { 1317 llvm_unreachable("Indexed stores not supported yet"); 1318 } else { 1319 Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand()); 1320 } 1321 return Chain; 1322 } 1323 } 1324 1325 // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes 1326 if (AS != AMDGPUAS::PRIVATE_ADDRESS) 1327 return SDValue(); 1328 1329 if (MemVT.bitsLT(MVT::i32)) 1330 return lowerPrivateTruncStore(StoreNode, DAG); 1331 1332 // Standard i32+ store, tag it with DWORDADDR to note that the address 1333 // has been shifted 1334 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) { 1335 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr); 1336 return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand()); 1337 } 1338 1339 // Tagged i32+ stores will be matched by patterns 1340 return SDValue(); 1341 } 1342 1343 // return (512 + (kc_bank << 12) 1344 static int 1345 ConstantAddressBlock(unsigned AddressSpace) { 1346 switch (AddressSpace) { 1347 case AMDGPUAS::CONSTANT_BUFFER_0: 1348 return 512; 1349 case AMDGPUAS::CONSTANT_BUFFER_1: 1350 return 512 + 4096; 1351 case AMDGPUAS::CONSTANT_BUFFER_2: 1352 return 512 + 4096 * 2; 1353 case AMDGPUAS::CONSTANT_BUFFER_3: 1354 return 512 + 4096 * 3; 1355 case AMDGPUAS::CONSTANT_BUFFER_4: 1356 return 512 + 4096 * 4; 1357 case AMDGPUAS::CONSTANT_BUFFER_5: 1358 return 512 + 4096 * 5; 1359 case AMDGPUAS::CONSTANT_BUFFER_6: 1360 return 512 + 4096 * 6; 1361 case AMDGPUAS::CONSTANT_BUFFER_7: 1362 return 512 + 4096 * 7; 1363 case AMDGPUAS::CONSTANT_BUFFER_8: 1364 return 512 + 4096 * 8; 1365 case AMDGPUAS::CONSTANT_BUFFER_9: 1366 return 512 + 4096 * 9; 1367 case AMDGPUAS::CONSTANT_BUFFER_10: 1368 return 512 + 4096 * 10; 1369 case AMDGPUAS::CONSTANT_BUFFER_11: 1370 return 512 + 4096 * 11; 1371 case AMDGPUAS::CONSTANT_BUFFER_12: 1372 return 512 + 4096 * 12; 1373 case AMDGPUAS::CONSTANT_BUFFER_13: 1374 return 512 + 4096 * 13; 1375 case AMDGPUAS::CONSTANT_BUFFER_14: 1376 return 512 + 4096 * 14; 1377 case AMDGPUAS::CONSTANT_BUFFER_15: 1378 return 512 + 4096 * 15; 1379 default: 1380 return -1; 1381 } 1382 } 1383 1384 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op, 1385 SelectionDAG &DAG) const { 1386 SDLoc DL(Op); 1387 LoadSDNode *Load = cast<LoadSDNode>(Op); 1388 ISD::LoadExtType ExtType = Load->getExtensionType(); 1389 EVT MemVT = Load->getMemoryVT(); 1390 assert(Load->getAlignment() >= MemVT.getStoreSize()); 1391 1392 SDValue BasePtr = Load->getBasePtr(); 1393 SDValue Chain = Load->getChain(); 1394 SDValue Offset = Load->getOffset(); 1395 1396 SDValue LoadPtr = BasePtr; 1397 if (!Offset.isUndef()) { 1398 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset); 1399 } 1400 1401 // Get dword location 1402 // NOTE: this should be eliminated by the future SHR ptr, 2 1403 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr, 1404 DAG.getConstant(0xfffffffc, DL, MVT::i32)); 1405 1406 // Load dword 1407 // TODO: can we be smarter about machine pointer info? 1408 MachinePointerInfo PtrInfo(UndefValue::get( 1409 Type::getInt32PtrTy(*DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS))); 1410 SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo); 1411 1412 // Get offset within the register. 1413 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, 1414 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32)); 1415 1416 // Bit offset of target byte (byteIdx * 8). 1417 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1418 DAG.getConstant(3, DL, MVT::i32)); 1419 1420 // Shift to the right. 1421 SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt); 1422 1423 // Eliminate the upper bits by setting them to ... 1424 EVT MemEltVT = MemVT.getScalarType(); 1425 1426 if (ExtType == ISD::SEXTLOAD) { // ... ones. 1427 SDValue MemEltVTNode = DAG.getValueType(MemEltVT); 1428 Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode); 1429 } else { // ... or zeros. 1430 Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT); 1431 } 1432 1433 SDValue Ops[] = { 1434 Ret, 1435 Read.getValue(1) // This should be our output chain 1436 }; 1437 1438 return DAG.getMergeValues(Ops, DL); 1439 } 1440 1441 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1442 LoadSDNode *LoadNode = cast<LoadSDNode>(Op); 1443 unsigned AS = LoadNode->getAddressSpace(); 1444 EVT MemVT = LoadNode->getMemoryVT(); 1445 ISD::LoadExtType ExtType = LoadNode->getExtensionType(); 1446 1447 if (AS == AMDGPUAS::PRIVATE_ADDRESS && 1448 ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) { 1449 return lowerPrivateExtLoad(Op, DAG); 1450 } 1451 1452 SDLoc DL(Op); 1453 EVT VT = Op.getValueType(); 1454 SDValue Chain = LoadNode->getChain(); 1455 SDValue Ptr = LoadNode->getBasePtr(); 1456 1457 if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1458 LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && 1459 VT.isVector()) { 1460 return scalarizeVectorLoad(LoadNode, DAG); 1461 } 1462 1463 // This is still used for explicit load from addrspace(8) 1464 int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace()); 1465 if (ConstantBlock > -1 && 1466 ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) || 1467 (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) { 1468 SDValue Result; 1469 if (isa<Constant>(LoadNode->getMemOperand()->getValue()) || 1470 isa<ConstantSDNode>(Ptr)) { 1471 return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG); 1472 } else { 1473 //TODO: Does this even work? 1474 // non-constant ptr can't be folded, keeps it as a v4f32 load 1475 Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32, 1476 DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, 1477 DAG.getConstant(4, DL, MVT::i32)), 1478 DAG.getConstant(LoadNode->getAddressSpace() - 1479 AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32) 1480 ); 1481 } 1482 1483 if (!VT.isVector()) { 1484 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result, 1485 DAG.getConstant(0, DL, MVT::i32)); 1486 } 1487 1488 SDValue MergedValues[2] = { 1489 Result, 1490 Chain 1491 }; 1492 return DAG.getMergeValues(MergedValues, DL); 1493 } 1494 1495 // For most operations returning SDValue() will result in the node being 1496 // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we 1497 // need to manually expand loads that may be legal in some address spaces and 1498 // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for 1499 // compute shaders, since the data is sign extended when it is uploaded to the 1500 // buffer. However SEXT loads from other address spaces are not supported, so 1501 // we need to expand them here. 1502 if (LoadNode->getExtensionType() == ISD::SEXTLOAD) { 1503 EVT MemVT = LoadNode->getMemoryVT(); 1504 assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8)); 1505 SDValue NewLoad = DAG.getExtLoad( 1506 ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT, 1507 LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags()); 1508 SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad, 1509 DAG.getValueType(MemVT)); 1510 1511 SDValue MergedValues[2] = { Res, Chain }; 1512 return DAG.getMergeValues(MergedValues, DL); 1513 } 1514 1515 if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) { 1516 return SDValue(); 1517 } 1518 1519 // DWORDADDR ISD marks already shifted address 1520 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) { 1521 assert(VT == MVT::i32); 1522 Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32)); 1523 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr); 1524 return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand()); 1525 } 1526 return SDValue(); 1527 } 1528 1529 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 1530 SDValue Chain = Op.getOperand(0); 1531 SDValue Cond = Op.getOperand(1); 1532 SDValue Jump = Op.getOperand(2); 1533 1534 return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(), 1535 Chain, Jump, Cond); 1536 } 1537 1538 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op, 1539 SelectionDAG &DAG) const { 1540 MachineFunction &MF = DAG.getMachineFunction(); 1541 const R600FrameLowering *TFL = Subtarget->getFrameLowering(); 1542 1543 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 1544 1545 unsigned FrameIndex = FIN->getIndex(); 1546 unsigned IgnoredFrameReg; 1547 unsigned Offset = 1548 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); 1549 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), 1550 Op.getValueType()); 1551 } 1552 1553 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC, 1554 bool IsVarArg) const { 1555 switch (CC) { 1556 case CallingConv::AMDGPU_KERNEL: 1557 case CallingConv::SPIR_KERNEL: 1558 case CallingConv::C: 1559 case CallingConv::Fast: 1560 case CallingConv::Cold: 1561 llvm_unreachable("kernels should not be handled here"); 1562 case CallingConv::AMDGPU_VS: 1563 case CallingConv::AMDGPU_GS: 1564 case CallingConv::AMDGPU_PS: 1565 case CallingConv::AMDGPU_CS: 1566 case CallingConv::AMDGPU_HS: 1567 case CallingConv::AMDGPU_ES: 1568 case CallingConv::AMDGPU_LS: 1569 return CC_R600; 1570 default: 1571 report_fatal_error("Unsupported calling convention."); 1572 } 1573 } 1574 1575 /// XXX Only kernel functions are supported, so we can assume for now that 1576 /// every function is a kernel function, but in the future we should use 1577 /// separate calling conventions for kernel and non-kernel functions. 1578 SDValue R600TargetLowering::LowerFormalArguments( 1579 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 1580 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1581 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1582 SmallVector<CCValAssign, 16> ArgLocs; 1583 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1584 *DAG.getContext()); 1585 MachineFunction &MF = DAG.getMachineFunction(); 1586 SmallVector<ISD::InputArg, 8> LocalIns; 1587 1588 if (AMDGPU::isShader(CallConv)) { 1589 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg)); 1590 } else { 1591 analyzeFormalArgumentsCompute(CCInfo, Ins); 1592 } 1593 1594 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 1595 CCValAssign &VA = ArgLocs[i]; 1596 const ISD::InputArg &In = Ins[i]; 1597 EVT VT = In.VT; 1598 EVT MemVT = VA.getLocVT(); 1599 if (!VT.isVector() && MemVT.isVector()) { 1600 // Get load source type if scalarized. 1601 MemVT = MemVT.getVectorElementType(); 1602 } 1603 1604 if (AMDGPU::isShader(CallConv)) { 1605 unsigned Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass); 1606 SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT); 1607 InVals.push_back(Register); 1608 continue; 1609 } 1610 1611 PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()), 1612 AMDGPUAS::PARAM_I_ADDRESS); 1613 1614 // i64 isn't a legal type, so the register type used ends up as i32, which 1615 // isn't expected here. It attempts to create this sextload, but it ends up 1616 // being invalid. Somehow this seems to work with i64 arguments, but breaks 1617 // for <1 x i64>. 1618 1619 // The first 36 bytes of the input buffer contains information about 1620 // thread group and global sizes. 1621 ISD::LoadExtType Ext = ISD::NON_EXTLOAD; 1622 if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) { 1623 // FIXME: This should really check the extload type, but the handling of 1624 // extload vector parameters seems to be broken. 1625 1626 // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD; 1627 Ext = ISD::SEXTLOAD; 1628 } 1629 1630 // Compute the offset from the value. 1631 // XXX - I think PartOffset should give you this, but it seems to give the 1632 // size of the register which isn't useful. 1633 1634 unsigned ValBase = ArgLocs[In.getOrigArgIndex()].getLocMemOffset(); 1635 unsigned PartOffset = VA.getLocMemOffset(); 1636 unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset); 1637 1638 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy), PartOffset - ValBase); 1639 SDValue Arg = DAG.getLoad( 1640 ISD::UNINDEXED, Ext, VT, DL, Chain, 1641 DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32), 1642 PtrInfo, 1643 MemVT, Alignment, MachineMemOperand::MONonTemporal | 1644 MachineMemOperand::MODereferenceable | 1645 MachineMemOperand::MOInvariant); 1646 1647 InVals.push_back(Arg); 1648 } 1649 return Chain; 1650 } 1651 1652 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1653 EVT VT) const { 1654 if (!VT.isVector()) 1655 return MVT::i32; 1656 return VT.changeVectorElementTypeToInteger(); 1657 } 1658 1659 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT, 1660 const SelectionDAG &DAG) const { 1661 // Local and Private addresses do not handle vectors. Limit to i32 1662 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) { 1663 return (MemVT.getSizeInBits() <= 32); 1664 } 1665 return true; 1666 } 1667 1668 bool R600TargetLowering::allowsMisalignedMemoryAccesses( 1669 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags, 1670 bool *IsFast) const { 1671 if (IsFast) 1672 *IsFast = false; 1673 1674 if (!VT.isSimple() || VT == MVT::Other) 1675 return false; 1676 1677 if (VT.bitsLT(MVT::i32)) 1678 return false; 1679 1680 // TODO: This is a rough estimate. 1681 if (IsFast) 1682 *IsFast = true; 1683 1684 return VT.bitsGT(MVT::i32) && Align % 4 == 0; 1685 } 1686 1687 static SDValue CompactSwizzlableVector( 1688 SelectionDAG &DAG, SDValue VectorEntry, 1689 DenseMap<unsigned, unsigned> &RemapSwizzle) { 1690 assert(RemapSwizzle.empty()); 1691 1692 SDLoc DL(VectorEntry); 1693 EVT EltTy = VectorEntry.getValueType().getVectorElementType(); 1694 1695 SDValue NewBldVec[4]; 1696 for (unsigned i = 0; i < 4; i++) 1697 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry, 1698 DAG.getIntPtrConstant(i, DL)); 1699 1700 for (unsigned i = 0; i < 4; i++) { 1701 if (NewBldVec[i].isUndef()) 1702 // We mask write here to teach later passes that the ith element of this 1703 // vector is undef. Thus we can use it to reduce 128 bits reg usage, 1704 // break false dependencies and additionnaly make assembly easier to read. 1705 RemapSwizzle[i] = 7; // SEL_MASK_WRITE 1706 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) { 1707 if (C->isZero()) { 1708 RemapSwizzle[i] = 4; // SEL_0 1709 NewBldVec[i] = DAG.getUNDEF(MVT::f32); 1710 } else if (C->isExactlyValue(1.0)) { 1711 RemapSwizzle[i] = 5; // SEL_1 1712 NewBldVec[i] = DAG.getUNDEF(MVT::f32); 1713 } 1714 } 1715 1716 if (NewBldVec[i].isUndef()) 1717 continue; 1718 // Fix spurious warning with gcc 7.3 -O3 1719 // warning: array subscript is above array bounds [-Warray-bounds] 1720 // if (NewBldVec[i] == NewBldVec[j]) { 1721 // ~~~~~~~~~~~^ 1722 if (i >= 4) 1723 continue; 1724 for (unsigned j = 0; j < i; j++) { 1725 if (NewBldVec[i] == NewBldVec[j]) { 1726 NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType()); 1727 RemapSwizzle[i] = j; 1728 break; 1729 } 1730 } 1731 } 1732 1733 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry), 1734 NewBldVec); 1735 } 1736 1737 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry, 1738 DenseMap<unsigned, unsigned> &RemapSwizzle) { 1739 assert(RemapSwizzle.empty()); 1740 1741 SDLoc DL(VectorEntry); 1742 EVT EltTy = VectorEntry.getValueType().getVectorElementType(); 1743 1744 SDValue NewBldVec[4]; 1745 bool isUnmovable[4] = {false, false, false, false}; 1746 for (unsigned i = 0; i < 4; i++) 1747 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry, 1748 DAG.getIntPtrConstant(i, DL)); 1749 1750 for (unsigned i = 0; i < 4; i++) { 1751 RemapSwizzle[i] = i; 1752 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1753 unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1)) 1754 ->getZExtValue(); 1755 if (i == Idx) 1756 isUnmovable[Idx] = true; 1757 } 1758 } 1759 1760 for (unsigned i = 0; i < 4; i++) { 1761 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1762 unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1)) 1763 ->getZExtValue(); 1764 if (isUnmovable[Idx]) 1765 continue; 1766 // Swap i and Idx 1767 std::swap(NewBldVec[Idx], NewBldVec[i]); 1768 std::swap(RemapSwizzle[i], RemapSwizzle[Idx]); 1769 break; 1770 } 1771 } 1772 1773 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry), 1774 NewBldVec); 1775 } 1776 1777 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4], 1778 SelectionDAG &DAG, 1779 const SDLoc &DL) const { 1780 // Old -> New swizzle values 1781 DenseMap<unsigned, unsigned> SwizzleRemap; 1782 1783 BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap); 1784 for (unsigned i = 0; i < 4; i++) { 1785 unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue(); 1786 if (SwizzleRemap.find(Idx) != SwizzleRemap.end()) 1787 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32); 1788 } 1789 1790 SwizzleRemap.clear(); 1791 BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap); 1792 for (unsigned i = 0; i < 4; i++) { 1793 unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue(); 1794 if (SwizzleRemap.find(Idx) != SwizzleRemap.end()) 1795 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32); 1796 } 1797 1798 return BuildVector; 1799 } 1800 1801 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block, 1802 SelectionDAG &DAG) const { 1803 SDLoc DL(LoadNode); 1804 EVT VT = LoadNode->getValueType(0); 1805 SDValue Chain = LoadNode->getChain(); 1806 SDValue Ptr = LoadNode->getBasePtr(); 1807 assert (isa<ConstantSDNode>(Ptr)); 1808 1809 //TODO: Support smaller loads 1810 if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode)) 1811 return SDValue(); 1812 1813 if (LoadNode->getAlignment() < 4) 1814 return SDValue(); 1815 1816 int ConstantBlock = ConstantAddressBlock(Block); 1817 1818 SDValue Slots[4]; 1819 for (unsigned i = 0; i < 4; i++) { 1820 // We want Const position encoded with the following formula : 1821 // (((512 + (kc_bank << 12) + const_index) << 2) + chan) 1822 // const_index is Ptr computed by llvm using an alignment of 16. 1823 // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and 1824 // then div by 4 at the ISel step 1825 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, 1826 DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32)); 1827 Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr); 1828 } 1829 EVT NewVT = MVT::v4i32; 1830 unsigned NumElements = 4; 1831 if (VT.isVector()) { 1832 NewVT = VT; 1833 NumElements = VT.getVectorNumElements(); 1834 } 1835 SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements)); 1836 if (!VT.isVector()) { 1837 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result, 1838 DAG.getConstant(0, DL, MVT::i32)); 1839 } 1840 SDValue MergedValues[2] = { 1841 Result, 1842 Chain 1843 }; 1844 return DAG.getMergeValues(MergedValues, DL); 1845 } 1846 1847 //===----------------------------------------------------------------------===// 1848 // Custom DAG Optimizations 1849 //===----------------------------------------------------------------------===// 1850 1851 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N, 1852 DAGCombinerInfo &DCI) const { 1853 SelectionDAG &DAG = DCI.DAG; 1854 SDLoc DL(N); 1855 1856 switch (N->getOpcode()) { 1857 // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a) 1858 case ISD::FP_ROUND: { 1859 SDValue Arg = N->getOperand(0); 1860 if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) { 1861 return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0), 1862 Arg.getOperand(0)); 1863 } 1864 break; 1865 } 1866 1867 // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) -> 1868 // (i32 select_cc f32, f32, -1, 0 cc) 1869 // 1870 // Mesa's GLSL frontend generates the above pattern a lot and we can lower 1871 // this to one of the SET*_DX10 instructions. 1872 case ISD::FP_TO_SINT: { 1873 SDValue FNeg = N->getOperand(0); 1874 if (FNeg.getOpcode() != ISD::FNEG) { 1875 return SDValue(); 1876 } 1877 SDValue SelectCC = FNeg.getOperand(0); 1878 if (SelectCC.getOpcode() != ISD::SELECT_CC || 1879 SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS 1880 SelectCC.getOperand(2).getValueType() != MVT::f32 || // True 1881 !isHWTrueValue(SelectCC.getOperand(2)) || 1882 !isHWFalseValue(SelectCC.getOperand(3))) { 1883 return SDValue(); 1884 } 1885 1886 return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0), 1887 SelectCC.getOperand(0), // LHS 1888 SelectCC.getOperand(1), // RHS 1889 DAG.getConstant(-1, DL, MVT::i32), // True 1890 DAG.getConstant(0, DL, MVT::i32), // False 1891 SelectCC.getOperand(4)); // CC 1892 1893 break; 1894 } 1895 1896 // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx 1897 // => build_vector elt0, ... , NewEltIdx, ... , eltN 1898 case ISD::INSERT_VECTOR_ELT: { 1899 SDValue InVec = N->getOperand(0); 1900 SDValue InVal = N->getOperand(1); 1901 SDValue EltNo = N->getOperand(2); 1902 1903 // If the inserted element is an UNDEF, just use the input vector. 1904 if (InVal.isUndef()) 1905 return InVec; 1906 1907 EVT VT = InVec.getValueType(); 1908 1909 // If we can't generate a legal BUILD_VECTOR, exit 1910 if (!isOperationLegal(ISD::BUILD_VECTOR, VT)) 1911 return SDValue(); 1912 1913 // Check that we know which element is being inserted 1914 if (!isa<ConstantSDNode>(EltNo)) 1915 return SDValue(); 1916 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 1917 1918 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially 1919 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the 1920 // vector elements. 1921 SmallVector<SDValue, 8> Ops; 1922 if (InVec.getOpcode() == ISD::BUILD_VECTOR) { 1923 Ops.append(InVec.getNode()->op_begin(), 1924 InVec.getNode()->op_end()); 1925 } else if (InVec.isUndef()) { 1926 unsigned NElts = VT.getVectorNumElements(); 1927 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType())); 1928 } else { 1929 return SDValue(); 1930 } 1931 1932 // Insert the element 1933 if (Elt < Ops.size()) { 1934 // All the operands of BUILD_VECTOR must have the same type; 1935 // we enforce that here. 1936 EVT OpVT = Ops[0].getValueType(); 1937 if (InVal.getValueType() != OpVT) 1938 InVal = OpVT.bitsGT(InVal.getValueType()) ? 1939 DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) : 1940 DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal); 1941 Ops[Elt] = InVal; 1942 } 1943 1944 // Return the new vector 1945 return DAG.getBuildVector(VT, DL, Ops); 1946 } 1947 1948 // Extract_vec (Build_vector) generated by custom lowering 1949 // also needs to be customly combined 1950 case ISD::EXTRACT_VECTOR_ELT: { 1951 SDValue Arg = N->getOperand(0); 1952 if (Arg.getOpcode() == ISD::BUILD_VECTOR) { 1953 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 1954 unsigned Element = Const->getZExtValue(); 1955 return Arg->getOperand(Element); 1956 } 1957 } 1958 if (Arg.getOpcode() == ISD::BITCAST && 1959 Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && 1960 (Arg.getOperand(0).getValueType().getVectorNumElements() == 1961 Arg.getValueType().getVectorNumElements())) { 1962 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 1963 unsigned Element = Const->getZExtValue(); 1964 return DAG.getNode(ISD::BITCAST, DL, N->getVTList(), 1965 Arg->getOperand(0).getOperand(Element)); 1966 } 1967 } 1968 break; 1969 } 1970 1971 case ISD::SELECT_CC: { 1972 // Try common optimizations 1973 if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI)) 1974 return Ret; 1975 1976 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq -> 1977 // selectcc x, y, a, b, inv(cc) 1978 // 1979 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne -> 1980 // selectcc x, y, a, b, cc 1981 SDValue LHS = N->getOperand(0); 1982 if (LHS.getOpcode() != ISD::SELECT_CC) { 1983 return SDValue(); 1984 } 1985 1986 SDValue RHS = N->getOperand(1); 1987 SDValue True = N->getOperand(2); 1988 SDValue False = N->getOperand(3); 1989 ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 1990 1991 if (LHS.getOperand(2).getNode() != True.getNode() || 1992 LHS.getOperand(3).getNode() != False.getNode() || 1993 RHS.getNode() != False.getNode()) { 1994 return SDValue(); 1995 } 1996 1997 switch (NCC) { 1998 default: return SDValue(); 1999 case ISD::SETNE: return LHS; 2000 case ISD::SETEQ: { 2001 ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get(); 2002 LHSCC = ISD::getSetCCInverse(LHSCC, 2003 LHS.getOperand(0).getValueType().isInteger()); 2004 if (DCI.isBeforeLegalizeOps() || 2005 isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType())) 2006 return DAG.getSelectCC(DL, 2007 LHS.getOperand(0), 2008 LHS.getOperand(1), 2009 LHS.getOperand(2), 2010 LHS.getOperand(3), 2011 LHSCC); 2012 break; 2013 } 2014 } 2015 return SDValue(); 2016 } 2017 2018 case AMDGPUISD::R600_EXPORT: { 2019 SDValue Arg = N->getOperand(1); 2020 if (Arg.getOpcode() != ISD::BUILD_VECTOR) 2021 break; 2022 2023 SDValue NewArgs[8] = { 2024 N->getOperand(0), // Chain 2025 SDValue(), 2026 N->getOperand(2), // ArrayBase 2027 N->getOperand(3), // Type 2028 N->getOperand(4), // SWZ_X 2029 N->getOperand(5), // SWZ_Y 2030 N->getOperand(6), // SWZ_Z 2031 N->getOperand(7) // SWZ_W 2032 }; 2033 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL); 2034 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs); 2035 } 2036 case AMDGPUISD::TEXTURE_FETCH: { 2037 SDValue Arg = N->getOperand(1); 2038 if (Arg.getOpcode() != ISD::BUILD_VECTOR) 2039 break; 2040 2041 SDValue NewArgs[19] = { 2042 N->getOperand(0), 2043 N->getOperand(1), 2044 N->getOperand(2), 2045 N->getOperand(3), 2046 N->getOperand(4), 2047 N->getOperand(5), 2048 N->getOperand(6), 2049 N->getOperand(7), 2050 N->getOperand(8), 2051 N->getOperand(9), 2052 N->getOperand(10), 2053 N->getOperand(11), 2054 N->getOperand(12), 2055 N->getOperand(13), 2056 N->getOperand(14), 2057 N->getOperand(15), 2058 N->getOperand(16), 2059 N->getOperand(17), 2060 N->getOperand(18), 2061 }; 2062 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL); 2063 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs); 2064 } 2065 2066 case ISD::LOAD: { 2067 LoadSDNode *LoadNode = cast<LoadSDNode>(N); 2068 SDValue Ptr = LoadNode->getBasePtr(); 2069 if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS && 2070 isa<ConstantSDNode>(Ptr)) 2071 return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG); 2072 break; 2073 } 2074 2075 default: break; 2076 } 2077 2078 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); 2079 } 2080 2081 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx, 2082 SDValue &Src, SDValue &Neg, SDValue &Abs, 2083 SDValue &Sel, SDValue &Imm, 2084 SelectionDAG &DAG) const { 2085 const R600InstrInfo *TII = Subtarget->getInstrInfo(); 2086 if (!Src.isMachineOpcode()) 2087 return false; 2088 2089 switch (Src.getMachineOpcode()) { 2090 case R600::FNEG_R600: 2091 if (!Neg.getNode()) 2092 return false; 2093 Src = Src.getOperand(0); 2094 Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32); 2095 return true; 2096 case R600::FABS_R600: 2097 if (!Abs.getNode()) 2098 return false; 2099 Src = Src.getOperand(0); 2100 Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32); 2101 return true; 2102 case R600::CONST_COPY: { 2103 unsigned Opcode = ParentNode->getMachineOpcode(); 2104 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1; 2105 2106 if (!Sel.getNode()) 2107 return false; 2108 2109 SDValue CstOffset = Src.getOperand(0); 2110 if (ParentNode->getValueType(0).isVector()) 2111 return false; 2112 2113 // Gather constants values 2114 int SrcIndices[] = { 2115 TII->getOperandIdx(Opcode, R600::OpName::src0), 2116 TII->getOperandIdx(Opcode, R600::OpName::src1), 2117 TII->getOperandIdx(Opcode, R600::OpName::src2), 2118 TII->getOperandIdx(Opcode, R600::OpName::src0_X), 2119 TII->getOperandIdx(Opcode, R600::OpName::src0_Y), 2120 TII->getOperandIdx(Opcode, R600::OpName::src0_Z), 2121 TII->getOperandIdx(Opcode, R600::OpName::src0_W), 2122 TII->getOperandIdx(Opcode, R600::OpName::src1_X), 2123 TII->getOperandIdx(Opcode, R600::OpName::src1_Y), 2124 TII->getOperandIdx(Opcode, R600::OpName::src1_Z), 2125 TII->getOperandIdx(Opcode, R600::OpName::src1_W) 2126 }; 2127 std::vector<unsigned> Consts; 2128 for (int OtherSrcIdx : SrcIndices) { 2129 int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx); 2130 if (OtherSrcIdx < 0 || OtherSelIdx < 0) 2131 continue; 2132 if (HasDst) { 2133 OtherSrcIdx--; 2134 OtherSelIdx--; 2135 } 2136 if (RegisterSDNode *Reg = 2137 dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) { 2138 if (Reg->getReg() == R600::ALU_CONST) { 2139 ConstantSDNode *Cst 2140 = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx)); 2141 Consts.push_back(Cst->getZExtValue()); 2142 } 2143 } 2144 } 2145 2146 ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset); 2147 Consts.push_back(Cst->getZExtValue()); 2148 if (!TII->fitsConstReadLimitations(Consts)) { 2149 return false; 2150 } 2151 2152 Sel = CstOffset; 2153 Src = DAG.getRegister(R600::ALU_CONST, MVT::f32); 2154 return true; 2155 } 2156 case R600::MOV_IMM_GLOBAL_ADDR: 2157 // Check if the Imm slot is used. Taken from below. 2158 if (cast<ConstantSDNode>(Imm)->getZExtValue()) 2159 return false; 2160 Imm = Src.getOperand(0); 2161 Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32); 2162 return true; 2163 case R600::MOV_IMM_I32: 2164 case R600::MOV_IMM_F32: { 2165 unsigned ImmReg = R600::ALU_LITERAL_X; 2166 uint64_t ImmValue = 0; 2167 2168 if (Src.getMachineOpcode() == R600::MOV_IMM_F32) { 2169 ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0)); 2170 float FloatValue = FPC->getValueAPF().convertToFloat(); 2171 if (FloatValue == 0.0) { 2172 ImmReg = R600::ZERO; 2173 } else if (FloatValue == 0.5) { 2174 ImmReg = R600::HALF; 2175 } else if (FloatValue == 1.0) { 2176 ImmReg = R600::ONE; 2177 } else { 2178 ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue(); 2179 } 2180 } else { 2181 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0)); 2182 uint64_t Value = C->getZExtValue(); 2183 if (Value == 0) { 2184 ImmReg = R600::ZERO; 2185 } else if (Value == 1) { 2186 ImmReg = R600::ONE_INT; 2187 } else { 2188 ImmValue = Value; 2189 } 2190 } 2191 2192 // Check that we aren't already using an immediate. 2193 // XXX: It's possible for an instruction to have more than one 2194 // immediate operand, but this is not supported yet. 2195 if (ImmReg == R600::ALU_LITERAL_X) { 2196 if (!Imm.getNode()) 2197 return false; 2198 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm); 2199 assert(C); 2200 if (C->getZExtValue()) 2201 return false; 2202 Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32); 2203 } 2204 Src = DAG.getRegister(ImmReg, MVT::i32); 2205 return true; 2206 } 2207 default: 2208 return false; 2209 } 2210 } 2211 2212 /// Fold the instructions after selecting them 2213 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node, 2214 SelectionDAG &DAG) const { 2215 const R600InstrInfo *TII = Subtarget->getInstrInfo(); 2216 if (!Node->isMachineOpcode()) 2217 return Node; 2218 2219 unsigned Opcode = Node->getMachineOpcode(); 2220 SDValue FakeOp; 2221 2222 std::vector<SDValue> Ops(Node->op_begin(), Node->op_end()); 2223 2224 if (Opcode == R600::DOT_4) { 2225 int OperandIdx[] = { 2226 TII->getOperandIdx(Opcode, R600::OpName::src0_X), 2227 TII->getOperandIdx(Opcode, R600::OpName::src0_Y), 2228 TII->getOperandIdx(Opcode, R600::OpName::src0_Z), 2229 TII->getOperandIdx(Opcode, R600::OpName::src0_W), 2230 TII->getOperandIdx(Opcode, R600::OpName::src1_X), 2231 TII->getOperandIdx(Opcode, R600::OpName::src1_Y), 2232 TII->getOperandIdx(Opcode, R600::OpName::src1_Z), 2233 TII->getOperandIdx(Opcode, R600::OpName::src1_W) 2234 }; 2235 int NegIdx[] = { 2236 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X), 2237 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y), 2238 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z), 2239 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W), 2240 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X), 2241 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y), 2242 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z), 2243 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W) 2244 }; 2245 int AbsIdx[] = { 2246 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X), 2247 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y), 2248 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z), 2249 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W), 2250 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X), 2251 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y), 2252 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z), 2253 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W) 2254 }; 2255 for (unsigned i = 0; i < 8; i++) { 2256 if (OperandIdx[i] < 0) 2257 return Node; 2258 SDValue &Src = Ops[OperandIdx[i] - 1]; 2259 SDValue &Neg = Ops[NegIdx[i] - 1]; 2260 SDValue &Abs = Ops[AbsIdx[i] - 1]; 2261 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1; 2262 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]); 2263 if (HasDst) 2264 SelIdx--; 2265 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp; 2266 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG)) 2267 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 2268 } 2269 } else if (Opcode == R600::REG_SEQUENCE) { 2270 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) { 2271 SDValue &Src = Ops[i]; 2272 if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG)) 2273 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 2274 } 2275 } else { 2276 if (!TII->hasInstrModifiers(Opcode)) 2277 return Node; 2278 int OperandIdx[] = { 2279 TII->getOperandIdx(Opcode, R600::OpName::src0), 2280 TII->getOperandIdx(Opcode, R600::OpName::src1), 2281 TII->getOperandIdx(Opcode, R600::OpName::src2) 2282 }; 2283 int NegIdx[] = { 2284 TII->getOperandIdx(Opcode, R600::OpName::src0_neg), 2285 TII->getOperandIdx(Opcode, R600::OpName::src1_neg), 2286 TII->getOperandIdx(Opcode, R600::OpName::src2_neg) 2287 }; 2288 int AbsIdx[] = { 2289 TII->getOperandIdx(Opcode, R600::OpName::src0_abs), 2290 TII->getOperandIdx(Opcode, R600::OpName::src1_abs), 2291 -1 2292 }; 2293 for (unsigned i = 0; i < 3; i++) { 2294 if (OperandIdx[i] < 0) 2295 return Node; 2296 SDValue &Src = Ops[OperandIdx[i] - 1]; 2297 SDValue &Neg = Ops[NegIdx[i] - 1]; 2298 SDValue FakeAbs; 2299 SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs; 2300 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1; 2301 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]); 2302 int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal); 2303 if (HasDst) { 2304 SelIdx--; 2305 ImmIdx--; 2306 } 2307 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp; 2308 SDValue &Imm = Ops[ImmIdx]; 2309 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG)) 2310 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops); 2311 } 2312 } 2313 2314 return Node; 2315 } 2316