xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/R600ISelLowering.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for R600
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "R600ISelLowering.h"
15 #include "AMDGPU.h"
16 #include "MCTargetDesc/R600MCTargetDesc.h"
17 #include "R600Defines.h"
18 #include "R600InstrInfo.h"
19 #include "R600MachineFunctionInfo.h"
20 #include "R600Subtarget.h"
21 #include "R600TargetMachine.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/IR/IntrinsicsR600.h"
25 
26 using namespace llvm;
27 
28 #include "R600GenCallingConv.inc"
29 
30 R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
31                                        const R600Subtarget &STI)
32     : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
33   addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
34   addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
35   addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
36   addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
37   addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
38   addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
39 
40   setBooleanContents(ZeroOrNegativeOneBooleanContent);
41   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
42 
43   computeRegisterProperties(Subtarget->getRegisterInfo());
44 
45   // Legalize loads and stores to the private address space.
46   setOperationAction(ISD::LOAD, {MVT::i32, MVT::v2i32, MVT::v4i32}, Custom);
47 
48   // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
49   // spaces, so it is custom lowered to handle those where it isn't.
50   for (auto Op : {ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD})
51     for (MVT VT : MVT::integer_valuetypes()) {
52       setLoadExtAction(Op, VT, MVT::i1, Promote);
53       setLoadExtAction(Op, VT, MVT::i8, Custom);
54       setLoadExtAction(Op, VT, MVT::i16, Custom);
55     }
56 
57   // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
58   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::v2i32,
59                    MVT::v2i1, Expand);
60 
61   setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::v4i32,
62                    MVT::v4i1, Expand);
63 
64   setOperationAction(ISD::STORE, {MVT::i8, MVT::i32, MVT::v2i32, MVT::v4i32},
65                      Custom);
66 
67   setTruncStoreAction(MVT::i32, MVT::i8, Custom);
68   setTruncStoreAction(MVT::i32, MVT::i16, Custom);
69   // We need to include these since trunc STORES to PRIVATE need
70   // special handling to accommodate RMW
71   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
72   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
73   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
74   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
75   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
76   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
77   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
78   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
79   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
80   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
81 
82   // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
83   setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
84   setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
85 
86   // Set condition code actions
87   setCondCodeAction({ISD::SETO, ISD::SETUO, ISD::SETLT, ISD::SETLE, ISD::SETOLT,
88                      ISD::SETOLE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGE,
89                      ISD::SETUGT, ISD::SETULT, ISD::SETULE},
90                     MVT::f32, Expand);
91 
92   setCondCodeAction({ISD::SETLE, ISD::SETLT, ISD::SETULE, ISD::SETULT},
93                     MVT::i32, Expand);
94 
95   setOperationAction({ISD::FCOS, ISD::FSIN}, MVT::f32, Custom);
96 
97   setOperationAction(ISD::SETCC, {MVT::v4i32, MVT::v2i32}, Expand);
98 
99   setOperationAction(ISD::BR_CC, {MVT::i32, MVT::f32}, Expand);
100   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
101 
102   setOperationAction(ISD::FSUB, MVT::f32, Expand);
103 
104   setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FROUNDEVEN, ISD::FFLOOR},
105                      MVT::f64, Custom);
106 
107   setOperationAction(ISD::SELECT_CC, {MVT::f32, MVT::i32}, Custom);
108 
109   setOperationAction(ISD::SETCC, {MVT::i32, MVT::f32}, Expand);
110   setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT}, {MVT::i1, MVT::i64},
111                      Custom);
112 
113   setOperationAction(ISD::SELECT, {MVT::i32, MVT::f32, MVT::v2i32, MVT::v4i32},
114                      Expand);
115 
116   // ADD, SUB overflow.
117   // TODO: turn these into Legal?
118   if (Subtarget->hasCARRY())
119     setOperationAction(ISD::UADDO, MVT::i32, Custom);
120 
121   if (Subtarget->hasBORROW())
122     setOperationAction(ISD::USUBO, MVT::i32, Custom);
123 
124   // Expand sign extension of vectors
125   if (!Subtarget->hasBFE())
126     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
127 
128   setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i1, MVT::v4i1}, Expand);
129 
130   if (!Subtarget->hasBFE())
131     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
132   setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i8, MVT::v4i8}, Expand);
133 
134   if (!Subtarget->hasBFE())
135     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
136   setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i16, MVT::v4i16}, Expand);
137 
138   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
139   setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::v2i32, MVT::v4i32}, Expand);
140 
141   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
142 
143   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
144 
145   setOperationAction(ISD::EXTRACT_VECTOR_ELT,
146                      {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32}, Custom);
147 
148   setOperationAction(ISD::INSERT_VECTOR_ELT,
149                      {MVT::v2i32, MVT::v2f32, MVT::v4i32, MVT::v4f32}, Custom);
150 
151   // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
152   //  to be Legal/Custom in order to avoid library calls.
153   setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, MVT::i32,
154                      Custom);
155 
156   if (!Subtarget->hasFMA())
157     setOperationAction(ISD::FMA, {MVT::f32, MVT::f64}, Expand);
158 
159   // FIXME: May need no denormals check
160   setOperationAction(ISD::FMAD, MVT::f32, Legal);
161 
162   if (!Subtarget->hasBFI())
163     // fcopysign can be done in a single instruction with BFI.
164     setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand);
165 
166   if (!Subtarget->hasBCNT(32))
167     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
168 
169   if (!Subtarget->hasBCNT(64))
170     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
171 
172   if (Subtarget->hasFFBH())
173     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
174 
175   if (Subtarget->hasFFBL())
176     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
177 
178   // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
179   // need it for R600.
180   if (Subtarget->hasBFE())
181     setHasExtractBitsInsn(true);
182 
183   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
184   setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
185 
186   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
187   for (MVT VT : ScalarIntVTs)
188     setOperationAction({ISD::ADDC, ISD::SUBC, ISD::ADDE, ISD::SUBE}, VT,
189                        Expand);
190 
191   // LLVM will expand these to atomic_cmp_swap(0)
192   // and atomic_swap, respectively.
193   setOperationAction({ISD::ATOMIC_LOAD, ISD::ATOMIC_STORE}, MVT::i32, Expand);
194 
195   // We need to custom lower some of the intrinsics
196   setOperationAction({ISD::INTRINSIC_VOID, ISD::INTRINSIC_WO_CHAIN}, MVT::Other,
197                      Custom);
198 
199   setSchedulingPreference(Sched::Source);
200 
201   setTargetDAGCombine({ISD::FP_ROUND, ISD::FP_TO_SINT, ISD::EXTRACT_VECTOR_ELT,
202                        ISD::SELECT_CC, ISD::INSERT_VECTOR_ELT, ISD::LOAD});
203 }
204 
205 static inline bool isEOP(MachineBasicBlock::iterator I) {
206   if (std::next(I) == I->getParent()->end())
207     return false;
208   return std::next(I)->getOpcode() == R600::RETURN;
209 }
210 
211 MachineBasicBlock *
212 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
213                                                 MachineBasicBlock *BB) const {
214   MachineFunction *MF = BB->getParent();
215   MachineRegisterInfo &MRI = MF->getRegInfo();
216   MachineBasicBlock::iterator I = MI;
217   const R600InstrInfo *TII = Subtarget->getInstrInfo();
218 
219   switch (MI.getOpcode()) {
220   default:
221     // Replace LDS_*_RET instruction that don't have any uses with the
222     // equivalent LDS_*_NORET instruction.
223     if (TII->isLDSRetInstr(MI.getOpcode())) {
224       int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
225       assert(DstIdx != -1);
226       MachineInstrBuilder NewMI;
227       // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
228       //        LDS_1A2D support and remove this special case.
229       if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
230           MI.getOpcode() == R600::LDS_CMPST_RET)
231         return BB;
232 
233       NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
234                       TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
235       for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
236         NewMI.add(MO);
237     } else {
238       return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
239     }
240     break;
241 
242   case R600::FABS_R600: {
243     MachineInstr *NewMI = TII->buildDefaultInstruction(
244         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
245         MI.getOperand(1).getReg());
246     TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
247     break;
248   }
249 
250   case R600::FNEG_R600: {
251     MachineInstr *NewMI = TII->buildDefaultInstruction(
252         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
253         MI.getOperand(1).getReg());
254     TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
255     break;
256   }
257 
258   case R600::MASK_WRITE: {
259     Register maskedRegister = MI.getOperand(0).getReg();
260     assert(maskedRegister.isVirtual());
261     MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
262     TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
263     break;
264   }
265 
266   case R600::MOV_IMM_F32:
267     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
268                                                             .getFPImm()
269                                                             ->getValueAPF()
270                                                             .bitcastToAPInt()
271                                                             .getZExtValue());
272     break;
273 
274   case R600::MOV_IMM_I32:
275     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
276                      MI.getOperand(1).getImm());
277     break;
278 
279   case R600::MOV_IMM_GLOBAL_ADDR: {
280     //TODO: Perhaps combine this instruction with the next if possible
281     auto MIB = TII->buildDefaultInstruction(
282         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
283     int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
284     //TODO: Ugh this is rather ugly
285     const MachineOperand &MO = MI.getOperand(1);
286     MIB->getOperand(Idx).ChangeToGA(MO.getGlobal(), MO.getOffset(),
287                                     MO.getTargetFlags());
288     break;
289   }
290 
291   case R600::CONST_COPY: {
292     MachineInstr *NewMI = TII->buildDefaultInstruction(
293         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
294     TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
295                        MI.getOperand(1).getImm());
296     break;
297   }
298 
299   case R600::RAT_WRITE_CACHELESS_32_eg:
300   case R600::RAT_WRITE_CACHELESS_64_eg:
301   case R600::RAT_WRITE_CACHELESS_128_eg:
302     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
303         .add(MI.getOperand(0))
304         .add(MI.getOperand(1))
305         .addImm(isEOP(I)); // Set End of program bit
306     break;
307 
308   case R600::RAT_STORE_TYPED_eg:
309     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
310         .add(MI.getOperand(0))
311         .add(MI.getOperand(1))
312         .add(MI.getOperand(2))
313         .addImm(isEOP(I)); // Set End of program bit
314     break;
315 
316   case R600::BRANCH:
317     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
318         .add(MI.getOperand(0));
319     break;
320 
321   case R600::BRANCH_COND_f32: {
322     MachineInstr *NewMI =
323         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
324                 R600::PREDICATE_BIT)
325             .add(MI.getOperand(1))
326             .addImm(R600::PRED_SETNE)
327             .addImm(0); // Flags
328     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
329     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
330         .add(MI.getOperand(0))
331         .addReg(R600::PREDICATE_BIT, RegState::Kill);
332     break;
333   }
334 
335   case R600::BRANCH_COND_i32: {
336     MachineInstr *NewMI =
337         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
338                 R600::PREDICATE_BIT)
339             .add(MI.getOperand(1))
340             .addImm(R600::PRED_SETNE_INT)
341             .addImm(0); // Flags
342     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
343     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
344         .add(MI.getOperand(0))
345         .addReg(R600::PREDICATE_BIT, RegState::Kill);
346     break;
347   }
348 
349   case R600::EG_ExportSwz:
350   case R600::R600_ExportSwz: {
351     // Instruction is left unmodified if its not the last one of its type
352     bool isLastInstructionOfItsType = true;
353     unsigned InstExportType = MI.getOperand(1).getImm();
354     for (MachineBasicBlock::iterator NextExportInst = std::next(I),
355          EndBlock = BB->end(); NextExportInst != EndBlock;
356          NextExportInst = std::next(NextExportInst)) {
357       if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
358           NextExportInst->getOpcode() == R600::R600_ExportSwz) {
359         unsigned CurrentInstExportType = NextExportInst->getOperand(1)
360             .getImm();
361         if (CurrentInstExportType == InstExportType) {
362           isLastInstructionOfItsType = false;
363           break;
364         }
365       }
366     }
367     bool EOP = isEOP(I);
368     if (!EOP && !isLastInstructionOfItsType)
369       return BB;
370     unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
371     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
372         .add(MI.getOperand(0))
373         .add(MI.getOperand(1))
374         .add(MI.getOperand(2))
375         .add(MI.getOperand(3))
376         .add(MI.getOperand(4))
377         .add(MI.getOperand(5))
378         .add(MI.getOperand(6))
379         .addImm(CfInst)
380         .addImm(EOP);
381     break;
382   }
383   case R600::RETURN: {
384     return BB;
385   }
386   }
387 
388   MI.eraseFromParent();
389   return BB;
390 }
391 
392 //===----------------------------------------------------------------------===//
393 // Custom DAG Lowering Operations
394 //===----------------------------------------------------------------------===//
395 
396 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
397   MachineFunction &MF = DAG.getMachineFunction();
398   R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
399   switch (Op.getOpcode()) {
400   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
401   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
402   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
403   case ISD::SHL_PARTS:
404   case ISD::SRA_PARTS:
405   case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
406   case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
407   case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
408   case ISD::FCOS:
409   case ISD::FSIN: return LowerTrig(Op, DAG);
410   case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
411   case ISD::STORE: return LowerSTORE(Op, DAG);
412   case ISD::LOAD: {
413     SDValue Result = LowerLOAD(Op, DAG);
414     assert((!Result.getNode() ||
415             Result.getNode()->getNumValues() == 2) &&
416            "Load should return a value and a chain");
417     return Result;
418   }
419 
420   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
421   case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
422   case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
423   case ISD::ADDRSPACECAST:
424     return lowerADDRSPACECAST(Op, DAG);
425   case ISD::INTRINSIC_VOID: {
426     SDValue Chain = Op.getOperand(0);
427     unsigned IntrinsicID = Op.getConstantOperandVal(1);
428     switch (IntrinsicID) {
429     case Intrinsic::r600_store_swizzle: {
430       SDLoc DL(Op);
431       const SDValue Args[8] = {
432         Chain,
433         Op.getOperand(2), // Export Value
434         Op.getOperand(3), // ArrayBase
435         Op.getOperand(4), // Type
436         DAG.getConstant(0, DL, MVT::i32), // SWZ_X
437         DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
438         DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
439         DAG.getConstant(3, DL, MVT::i32) // SWZ_W
440       };
441       return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
442     }
443 
444     // default for switch(IntrinsicID)
445     default: break;
446     }
447     // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
448     break;
449   }
450   case ISD::INTRINSIC_WO_CHAIN: {
451     unsigned IntrinsicID = Op.getConstantOperandVal(0);
452     EVT VT = Op.getValueType();
453     SDLoc DL(Op);
454     switch (IntrinsicID) {
455     case Intrinsic::r600_tex:
456     case Intrinsic::r600_texc: {
457       unsigned TextureOp;
458       switch (IntrinsicID) {
459       case Intrinsic::r600_tex:
460         TextureOp = 0;
461         break;
462       case Intrinsic::r600_texc:
463         TextureOp = 1;
464         break;
465       default:
466         llvm_unreachable("unhandled texture operation");
467       }
468 
469       SDValue TexArgs[19] = {
470         DAG.getConstant(TextureOp, DL, MVT::i32),
471         Op.getOperand(1),
472         DAG.getConstant(0, DL, MVT::i32),
473         DAG.getConstant(1, DL, MVT::i32),
474         DAG.getConstant(2, DL, MVT::i32),
475         DAG.getConstant(3, DL, MVT::i32),
476         Op.getOperand(2),
477         Op.getOperand(3),
478         Op.getOperand(4),
479         DAG.getConstant(0, DL, MVT::i32),
480         DAG.getConstant(1, DL, MVT::i32),
481         DAG.getConstant(2, DL, MVT::i32),
482         DAG.getConstant(3, DL, MVT::i32),
483         Op.getOperand(5),
484         Op.getOperand(6),
485         Op.getOperand(7),
486         Op.getOperand(8),
487         Op.getOperand(9),
488         Op.getOperand(10)
489       };
490       return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
491     }
492     case Intrinsic::r600_dot4: {
493       SDValue Args[8] = {
494       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
495           DAG.getConstant(0, DL, MVT::i32)),
496       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
497           DAG.getConstant(0, DL, MVT::i32)),
498       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
499           DAG.getConstant(1, DL, MVT::i32)),
500       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
501           DAG.getConstant(1, DL, MVT::i32)),
502       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
503           DAG.getConstant(2, DL, MVT::i32)),
504       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
505           DAG.getConstant(2, DL, MVT::i32)),
506       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
507           DAG.getConstant(3, DL, MVT::i32)),
508       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
509           DAG.getConstant(3, DL, MVT::i32))
510       };
511       return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
512     }
513 
514     case Intrinsic::r600_implicitarg_ptr: {
515       MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS);
516       uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
517       return DAG.getConstant(ByteOffset, DL, PtrVT);
518     }
519     case Intrinsic::r600_read_ngroups_x:
520       return LowerImplicitParameter(DAG, VT, DL, 0);
521     case Intrinsic::r600_read_ngroups_y:
522       return LowerImplicitParameter(DAG, VT, DL, 1);
523     case Intrinsic::r600_read_ngroups_z:
524       return LowerImplicitParameter(DAG, VT, DL, 2);
525     case Intrinsic::r600_read_global_size_x:
526       return LowerImplicitParameter(DAG, VT, DL, 3);
527     case Intrinsic::r600_read_global_size_y:
528       return LowerImplicitParameter(DAG, VT, DL, 4);
529     case Intrinsic::r600_read_global_size_z:
530       return LowerImplicitParameter(DAG, VT, DL, 5);
531     case Intrinsic::r600_read_local_size_x:
532       return LowerImplicitParameter(DAG, VT, DL, 6);
533     case Intrinsic::r600_read_local_size_y:
534       return LowerImplicitParameter(DAG, VT, DL, 7);
535     case Intrinsic::r600_read_local_size_z:
536       return LowerImplicitParameter(DAG, VT, DL, 8);
537 
538     case Intrinsic::r600_read_tgid_x:
539     case Intrinsic::amdgcn_workgroup_id_x:
540       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
541                                      R600::T1_X, VT);
542     case Intrinsic::r600_read_tgid_y:
543     case Intrinsic::amdgcn_workgroup_id_y:
544       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
545                                      R600::T1_Y, VT);
546     case Intrinsic::r600_read_tgid_z:
547     case Intrinsic::amdgcn_workgroup_id_z:
548       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
549                                      R600::T1_Z, VT);
550     case Intrinsic::r600_read_tidig_x:
551     case Intrinsic::amdgcn_workitem_id_x:
552       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
553                                      R600::T0_X, VT);
554     case Intrinsic::r600_read_tidig_y:
555     case Intrinsic::amdgcn_workitem_id_y:
556       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
557                                      R600::T0_Y, VT);
558     case Intrinsic::r600_read_tidig_z:
559     case Intrinsic::amdgcn_workitem_id_z:
560       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
561                                      R600::T0_Z, VT);
562 
563     case Intrinsic::r600_recipsqrt_ieee:
564       return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
565 
566     case Intrinsic::r600_recipsqrt_clamped:
567       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
568     default:
569       return Op;
570     }
571 
572     // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
573     break;
574   }
575   } // end switch(Op.getOpcode())
576   return SDValue();
577 }
578 
579 void R600TargetLowering::ReplaceNodeResults(SDNode *N,
580                                             SmallVectorImpl<SDValue> &Results,
581                                             SelectionDAG &DAG) const {
582   switch (N->getOpcode()) {
583   default:
584     AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
585     return;
586   case ISD::FP_TO_UINT:
587     if (N->getValueType(0) == MVT::i1) {
588       Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
589       return;
590     }
591     // Since we don't care about out of bounds values we can use FP_TO_SINT for
592     // uints too. The DAGLegalizer code for uint considers some extra cases
593     // which are not necessary here.
594     [[fallthrough]];
595   case ISD::FP_TO_SINT: {
596     if (N->getValueType(0) == MVT::i1) {
597       Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
598       return;
599     }
600 
601     SDValue Result;
602     if (expandFP_TO_SINT(N, Result, DAG))
603       Results.push_back(Result);
604     return;
605   }
606   case ISD::SDIVREM: {
607     SDValue Op = SDValue(N, 1);
608     SDValue RES = LowerSDIVREM(Op, DAG);
609     Results.push_back(RES);
610     Results.push_back(RES.getValue(1));
611     break;
612   }
613   case ISD::UDIVREM: {
614     SDValue Op = SDValue(N, 0);
615     LowerUDIVREM64(Op, DAG, Results);
616     break;
617   }
618   }
619 }
620 
621 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
622                                                    SDValue Vector) const {
623   SDLoc DL(Vector);
624   EVT VecVT = Vector.getValueType();
625   EVT EltVT = VecVT.getVectorElementType();
626   SmallVector<SDValue, 8> Args;
627 
628   for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
629     Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
630                                DAG.getVectorIdxConstant(i, DL)));
631   }
632 
633   return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
634 }
635 
636 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
637                                                     SelectionDAG &DAG) const {
638   SDLoc DL(Op);
639   SDValue Vector = Op.getOperand(0);
640   SDValue Index = Op.getOperand(1);
641 
642   if (isa<ConstantSDNode>(Index) ||
643       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
644     return Op;
645 
646   Vector = vectorToVerticalVector(DAG, Vector);
647   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
648                      Vector, Index);
649 }
650 
651 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
652                                                    SelectionDAG &DAG) const {
653   SDLoc DL(Op);
654   SDValue Vector = Op.getOperand(0);
655   SDValue Value = Op.getOperand(1);
656   SDValue Index = Op.getOperand(2);
657 
658   if (isa<ConstantSDNode>(Index) ||
659       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
660     return Op;
661 
662   Vector = vectorToVerticalVector(DAG, Vector);
663   SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
664                                Vector, Value, Index);
665   return vectorToVerticalVector(DAG, Insert);
666 }
667 
668 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
669                                                SDValue Op,
670                                                SelectionDAG &DAG) const {
671   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
672   if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
673     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
674 
675   const DataLayout &DL = DAG.getDataLayout();
676   const GlobalValue *GV = GSD->getGlobal();
677   MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
678 
679   SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
680   return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
681 }
682 
683 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
684   // On hw >= R700, COS/SIN input must be between -1. and 1.
685   // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
686   EVT VT = Op.getValueType();
687   SDValue Arg = Op.getOperand(0);
688   SDLoc DL(Op);
689 
690   // TODO: Should this propagate fast-math-flags?
691   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
692       DAG.getNode(ISD::FADD, DL, VT,
693         DAG.getNode(ISD::FMUL, DL, VT, Arg,
694           DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
695         DAG.getConstantFP(0.5, DL, MVT::f32)));
696   unsigned TrigNode;
697   switch (Op.getOpcode()) {
698   case ISD::FCOS:
699     TrigNode = AMDGPUISD::COS_HW;
700     break;
701   case ISD::FSIN:
702     TrigNode = AMDGPUISD::SIN_HW;
703     break;
704   default:
705     llvm_unreachable("Wrong trig opcode");
706   }
707   SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
708       DAG.getNode(ISD::FADD, DL, VT, FractPart,
709         DAG.getConstantFP(-0.5, DL, MVT::f32)));
710   if (Gen >= AMDGPUSubtarget::R700)
711     return TrigVal;
712   // On R600 hw, COS/SIN input must be between -Pi and Pi.
713   return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
714       DAG.getConstantFP(numbers::pif, DL, MVT::f32));
715 }
716 
717 SDValue R600TargetLowering::LowerShiftParts(SDValue Op,
718                                             SelectionDAG &DAG) const {
719   SDValue Lo, Hi;
720   expandShiftParts(Op.getNode(), Lo, Hi, DAG);
721   return DAG.getMergeValues({Lo, Hi}, SDLoc(Op));
722 }
723 
724 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
725                                           unsigned mainop, unsigned ovf) const {
726   SDLoc DL(Op);
727   EVT VT = Op.getValueType();
728 
729   SDValue Lo = Op.getOperand(0);
730   SDValue Hi = Op.getOperand(1);
731 
732   SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
733   // Extend sign.
734   OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
735                     DAG.getValueType(MVT::i1));
736 
737   SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
738 
739   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
740 }
741 
742 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
743   SDLoc DL(Op);
744   return DAG.getNode(
745       ISD::SETCC,
746       DL,
747       MVT::i1,
748       Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
749       DAG.getCondCode(ISD::SETEQ));
750 }
751 
752 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
753   SDLoc DL(Op);
754   return DAG.getNode(
755       ISD::SETCC,
756       DL,
757       MVT::i1,
758       Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
759       DAG.getCondCode(ISD::SETEQ));
760 }
761 
762 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
763                                                    const SDLoc &DL,
764                                                    unsigned DwordOffset) const {
765   unsigned ByteOffset = DwordOffset * 4;
766   PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
767                                       AMDGPUAS::PARAM_I_ADDRESS);
768 
769   // We shouldn't be using an offset wider than 16-bits for implicit parameters.
770   assert(isInt<16>(ByteOffset));
771 
772   return DAG.getLoad(VT, DL, DAG.getEntryNode(),
773                      DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
774                      MachinePointerInfo(ConstantPointerNull::get(PtrType)));
775 }
776 
777 bool R600TargetLowering::isZero(SDValue Op) const {
778   if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
779     return Cst->isZero();
780   } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
781     return CstFP->isZero();
782   } else {
783     return false;
784   }
785 }
786 
787 bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
788   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
789     return CFP->isExactlyValue(1.0);
790   }
791   return isAllOnesConstant(Op);
792 }
793 
794 bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
795   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
796     return CFP->getValueAPF().isZero();
797   }
798   return isNullConstant(Op);
799 }
800 
801 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
802   SDLoc DL(Op);
803   EVT VT = Op.getValueType();
804 
805   SDValue LHS = Op.getOperand(0);
806   SDValue RHS = Op.getOperand(1);
807   SDValue True = Op.getOperand(2);
808   SDValue False = Op.getOperand(3);
809   SDValue CC = Op.getOperand(4);
810   SDValue Temp;
811 
812   if (VT == MVT::f32) {
813     DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
814     SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
815     if (MinMax)
816       return MinMax;
817   }
818 
819   // LHS and RHS are guaranteed to be the same value type
820   EVT CompareVT = LHS.getValueType();
821 
822   // Check if we can lower this to a native operation.
823 
824   // Try to lower to a SET* instruction:
825   //
826   // SET* can match the following patterns:
827   //
828   // select_cc f32, f32, -1,  0, cc_supported
829   // select_cc f32, f32, 1.0f, 0.0f, cc_supported
830   // select_cc i32, i32, -1,  0, cc_supported
831   //
832 
833   // Move hardware True/False values to the correct operand.
834   if (isHWTrueValue(False) && isHWFalseValue(True)) {
835     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
836     ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT);
837     if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
838       std::swap(False, True);
839       CC = DAG.getCondCode(InverseCC);
840     } else {
841       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
842       if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
843         std::swap(False, True);
844         std::swap(LHS, RHS);
845         CC = DAG.getCondCode(SwapInvCC);
846       }
847     }
848   }
849 
850   if (isHWTrueValue(True) && isHWFalseValue(False) &&
851       (CompareVT == VT || VT == MVT::i32)) {
852     // This can be matched by a SET* instruction.
853     return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
854   }
855 
856   // Try to lower to a CND* instruction:
857   //
858   // CND* can match the following patterns:
859   //
860   // select_cc f32, 0.0, f32, f32, cc_supported
861   // select_cc f32, 0.0, i32, i32, cc_supported
862   // select_cc i32, 0,   f32, f32, cc_supported
863   // select_cc i32, 0,   i32, i32, cc_supported
864   //
865 
866   // Try to move the zero value to the RHS
867   if (isZero(LHS)) {
868     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
869     // Try swapping the operands
870     ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
871     if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
872       std::swap(LHS, RHS);
873       CC = DAG.getCondCode(CCSwapped);
874     } else {
875       // Try inverting the condition and then swapping the operands
876       ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT);
877       CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
878       if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
879         std::swap(True, False);
880         std::swap(LHS, RHS);
881         CC = DAG.getCondCode(CCSwapped);
882       }
883     }
884   }
885   if (isZero(RHS)) {
886     SDValue Cond = LHS;
887     SDValue Zero = RHS;
888     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
889     if (CompareVT != VT) {
890       // Bitcast True / False to the correct types.  This will end up being
891       // a nop, but it allows us to define only a single pattern in the
892       // .TD files for each CND* instruction rather than having to have
893       // one pattern for integer True/False and one for fp True/False
894       True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
895       False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
896     }
897 
898     switch (CCOpcode) {
899     case ISD::SETONE:
900     case ISD::SETUNE:
901     case ISD::SETNE:
902       CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT);
903       Temp = True;
904       True = False;
905       False = Temp;
906       break;
907     default:
908       break;
909     }
910     SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
911         Cond, Zero,
912         True, False,
913         DAG.getCondCode(CCOpcode));
914     return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
915   }
916 
917   // If we make it this for it means we have no native instructions to handle
918   // this SELECT_CC, so we must lower it.
919   SDValue HWTrue, HWFalse;
920 
921   if (CompareVT == MVT::f32) {
922     HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
923     HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
924   } else if (CompareVT == MVT::i32) {
925     HWTrue = DAG.getConstant(-1, DL, CompareVT);
926     HWFalse = DAG.getConstant(0, DL, CompareVT);
927   }
928   else {
929     llvm_unreachable("Unhandled value type in LowerSELECT_CC");
930   }
931 
932   // Lower this unsupported SELECT_CC into a combination of two supported
933   // SELECT_CC operations.
934   SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
935 
936   return DAG.getNode(ISD::SELECT_CC, DL, VT,
937       Cond, HWFalse,
938       True, False,
939       DAG.getCondCode(ISD::SETNE));
940 }
941 
942 SDValue R600TargetLowering::lowerADDRSPACECAST(SDValue Op,
943                                                SelectionDAG &DAG) const {
944   SDLoc SL(Op);
945   EVT VT = Op.getValueType();
946 
947   const R600TargetMachine &TM =
948       static_cast<const R600TargetMachine &>(getTargetMachine());
949 
950   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
951   unsigned SrcAS = ASC->getSrcAddressSpace();
952   unsigned DestAS = ASC->getDestAddressSpace();
953 
954   if (isNullConstant(Op.getOperand(0)) && SrcAS == AMDGPUAS::FLAT_ADDRESS)
955     return DAG.getConstant(TM.getNullPointerValue(DestAS), SL, VT);
956 
957   return Op;
958 }
959 
960 /// LLVM generates byte-addressed pointers.  For indirect addressing, we need to
961 /// convert these pointers to a register index.  Each register holds
962 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
963 /// \p StackWidth, which tells us how many of the 4 sub-registers will be used
964 /// for indirect addressing.
965 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
966                                                unsigned StackWidth,
967                                                SelectionDAG &DAG) const {
968   unsigned SRLPad;
969   switch(StackWidth) {
970   case 1:
971     SRLPad = 2;
972     break;
973   case 2:
974     SRLPad = 3;
975     break;
976   case 4:
977     SRLPad = 4;
978     break;
979   default: llvm_unreachable("Invalid stack width");
980   }
981 
982   SDLoc DL(Ptr);
983   return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
984                      DAG.getConstant(SRLPad, DL, MVT::i32));
985 }
986 
987 void R600TargetLowering::getStackAddress(unsigned StackWidth,
988                                          unsigned ElemIdx,
989                                          unsigned &Channel,
990                                          unsigned &PtrIncr) const {
991   switch (StackWidth) {
992   default:
993   case 1:
994     Channel = 0;
995     if (ElemIdx > 0) {
996       PtrIncr = 1;
997     } else {
998       PtrIncr = 0;
999     }
1000     break;
1001   case 2:
1002     Channel = ElemIdx % 2;
1003     if (ElemIdx == 2) {
1004       PtrIncr = 1;
1005     } else {
1006       PtrIncr = 0;
1007     }
1008     break;
1009   case 4:
1010     Channel = ElemIdx;
1011     PtrIncr = 0;
1012     break;
1013   }
1014 }
1015 
1016 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1017                                                    SelectionDAG &DAG) const {
1018   SDLoc DL(Store);
1019   //TODO: Who creates the i8 stores?
1020   assert(Store->isTruncatingStore()
1021          || Store->getValue().getValueType() == MVT::i8);
1022   assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS);
1023 
1024   SDValue Mask;
1025   if (Store->getMemoryVT() == MVT::i8) {
1026     assert(Store->getAlign() >= 1);
1027     Mask = DAG.getConstant(0xff, DL, MVT::i32);
1028   } else if (Store->getMemoryVT() == MVT::i16) {
1029     assert(Store->getAlign() >= 2);
1030     Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1031   } else {
1032     llvm_unreachable("Unsupported private trunc store");
1033   }
1034 
1035   SDValue OldChain = Store->getChain();
1036   bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1037   // Skip dummy
1038   SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1039   SDValue BasePtr = Store->getBasePtr();
1040   SDValue Offset = Store->getOffset();
1041   EVT MemVT = Store->getMemoryVT();
1042 
1043   SDValue LoadPtr = BasePtr;
1044   if (!Offset.isUndef()) {
1045     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1046   }
1047 
1048   // Get dword location
1049   // TODO: this should be eliminated by the future SHR ptr, 2
1050   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1051                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1052 
1053   // Load dword
1054   // TODO: can we be smarter about machine pointer info?
1055   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1056   SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1057 
1058   Chain = Dst.getValue(1);
1059 
1060   // Get offset in dword
1061   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1062                                 DAG.getConstant(0x3, DL, MVT::i32));
1063 
1064   // Convert byte offset to bit shift
1065   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1066                                  DAG.getConstant(3, DL, MVT::i32));
1067 
1068   // TODO: Contrary to the name of the function,
1069   // it also handles sub i32 non-truncating stores (like i1)
1070   SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1071                                   Store->getValue());
1072 
1073   // Mask the value to the right type
1074   SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1075 
1076   // Shift the value in place
1077   SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1078                                      MaskedValue, ShiftAmt);
1079 
1080   // Shift the mask in place
1081   SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1082 
1083   // Invert the mask. NOTE: if we had native ROL instructions we could
1084   // use inverted mask
1085   DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1086 
1087   // Cleanup the target bits
1088   Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1089 
1090   // Add the new bits
1091   SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1092 
1093   // Store dword
1094   // TODO: Can we be smarter about MachinePointerInfo?
1095   SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1096 
1097   // If we are part of expanded vector, make our neighbors depend on this store
1098   if (VectorTrunc) {
1099     // Make all other vector elements depend on this store
1100     Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1101     DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1102   }
1103   return NewStore;
1104 }
1105 
1106 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1107   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1108   unsigned AS = StoreNode->getAddressSpace();
1109 
1110   SDValue Chain = StoreNode->getChain();
1111   SDValue Ptr = StoreNode->getBasePtr();
1112   SDValue Value = StoreNode->getValue();
1113 
1114   EVT VT = Value.getValueType();
1115   EVT MemVT = StoreNode->getMemoryVT();
1116   EVT PtrVT = Ptr.getValueType();
1117 
1118   SDLoc DL(Op);
1119 
1120   const bool TruncatingStore = StoreNode->isTruncatingStore();
1121 
1122   // Neither LOCAL nor PRIVATE can do vectors at the moment
1123   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS ||
1124        TruncatingStore) &&
1125       VT.isVector()) {
1126     if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) {
1127       // Add an extra level of chain to isolate this vector
1128       SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1129       // TODO: can the chain be replaced without creating a new store?
1130       SDValue NewStore = DAG.getTruncStore(
1131           NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(), MemVT,
1132           StoreNode->getAlign(), StoreNode->getMemOperand()->getFlags(),
1133           StoreNode->getAAInfo());
1134       StoreNode = cast<StoreSDNode>(NewStore);
1135     }
1136 
1137     return scalarizeVectorStore(StoreNode, DAG);
1138   }
1139 
1140   Align Alignment = StoreNode->getAlign();
1141   if (Alignment < MemVT.getStoreSize() &&
1142       !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment,
1143                                       StoreNode->getMemOperand()->getFlags(),
1144                                       nullptr)) {
1145     return expandUnalignedStore(StoreNode, DAG);
1146   }
1147 
1148   SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1149                                   DAG.getConstant(2, DL, PtrVT));
1150 
1151   if (AS == AMDGPUAS::GLOBAL_ADDRESS) {
1152     // It is beneficial to create MSKOR here instead of combiner to avoid
1153     // artificial dependencies introduced by RMW
1154     if (TruncatingStore) {
1155       assert(VT.bitsLE(MVT::i32));
1156       SDValue MaskConstant;
1157       if (MemVT == MVT::i8) {
1158         MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1159       } else {
1160         assert(MemVT == MVT::i16);
1161         assert(StoreNode->getAlign() >= 2);
1162         MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1163       }
1164 
1165       SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1166                                       DAG.getConstant(0x00000003, DL, PtrVT));
1167       SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1168                                      DAG.getConstant(3, DL, VT));
1169 
1170       // Put the mask in correct place
1171       SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1172 
1173       // Put the value bits in correct place
1174       SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1175       SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1176 
1177       // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1178       // vector instead.
1179       SDValue Src[4] = {
1180         ShiftedValue,
1181         DAG.getConstant(0, DL, MVT::i32),
1182         DAG.getConstant(0, DL, MVT::i32),
1183         Mask
1184       };
1185       SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1186       SDValue Args[3] = { Chain, Input, DWordAddr };
1187       return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
1188                                      Op->getVTList(), Args, MemVT,
1189                                      StoreNode->getMemOperand());
1190     } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1191       // Convert pointer from byte address to dword address.
1192       Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1193 
1194       if (StoreNode->isIndexed()) {
1195         llvm_unreachable("Indexed stores not supported yet");
1196       } else {
1197         Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1198       }
1199       return Chain;
1200     }
1201   }
1202 
1203   // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1204   if (AS != AMDGPUAS::PRIVATE_ADDRESS)
1205     return SDValue();
1206 
1207   if (MemVT.bitsLT(MVT::i32))
1208     return lowerPrivateTruncStore(StoreNode, DAG);
1209 
1210   // Standard i32+ store, tag it with DWORDADDR to note that the address
1211   // has been shifted
1212   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1213     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1214     return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1215   }
1216 
1217   // Tagged i32+ stores will be matched by patterns
1218   return SDValue();
1219 }
1220 
1221 // return (512 + (kc_bank << 12)
1222 static int
1223 ConstantAddressBlock(unsigned AddressSpace) {
1224   switch (AddressSpace) {
1225   case AMDGPUAS::CONSTANT_BUFFER_0:
1226     return 512;
1227   case AMDGPUAS::CONSTANT_BUFFER_1:
1228     return 512 + 4096;
1229   case AMDGPUAS::CONSTANT_BUFFER_2:
1230     return 512 + 4096 * 2;
1231   case AMDGPUAS::CONSTANT_BUFFER_3:
1232     return 512 + 4096 * 3;
1233   case AMDGPUAS::CONSTANT_BUFFER_4:
1234     return 512 + 4096 * 4;
1235   case AMDGPUAS::CONSTANT_BUFFER_5:
1236     return 512 + 4096 * 5;
1237   case AMDGPUAS::CONSTANT_BUFFER_6:
1238     return 512 + 4096 * 6;
1239   case AMDGPUAS::CONSTANT_BUFFER_7:
1240     return 512 + 4096 * 7;
1241   case AMDGPUAS::CONSTANT_BUFFER_8:
1242     return 512 + 4096 * 8;
1243   case AMDGPUAS::CONSTANT_BUFFER_9:
1244     return 512 + 4096 * 9;
1245   case AMDGPUAS::CONSTANT_BUFFER_10:
1246     return 512 + 4096 * 10;
1247   case AMDGPUAS::CONSTANT_BUFFER_11:
1248     return 512 + 4096 * 11;
1249   case AMDGPUAS::CONSTANT_BUFFER_12:
1250     return 512 + 4096 * 12;
1251   case AMDGPUAS::CONSTANT_BUFFER_13:
1252     return 512 + 4096 * 13;
1253   case AMDGPUAS::CONSTANT_BUFFER_14:
1254     return 512 + 4096 * 14;
1255   case AMDGPUAS::CONSTANT_BUFFER_15:
1256     return 512 + 4096 * 15;
1257   default:
1258     return -1;
1259   }
1260 }
1261 
1262 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1263                                                 SelectionDAG &DAG) const {
1264   SDLoc DL(Op);
1265   LoadSDNode *Load = cast<LoadSDNode>(Op);
1266   ISD::LoadExtType ExtType = Load->getExtensionType();
1267   EVT MemVT = Load->getMemoryVT();
1268   assert(Load->getAlign() >= MemVT.getStoreSize());
1269 
1270   SDValue BasePtr = Load->getBasePtr();
1271   SDValue Chain = Load->getChain();
1272   SDValue Offset = Load->getOffset();
1273 
1274   SDValue LoadPtr = BasePtr;
1275   if (!Offset.isUndef()) {
1276     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1277   }
1278 
1279   // Get dword location
1280   // NOTE: this should be eliminated by the future SHR ptr, 2
1281   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1282                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1283 
1284   // Load dword
1285   // TODO: can we be smarter about machine pointer info?
1286   MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
1287   SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1288 
1289   // Get offset within the register.
1290   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1291                                 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1292 
1293   // Bit offset of target byte (byteIdx * 8).
1294   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1295                                  DAG.getConstant(3, DL, MVT::i32));
1296 
1297   // Shift to the right.
1298   SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1299 
1300   // Eliminate the upper bits by setting them to ...
1301   EVT MemEltVT = MemVT.getScalarType();
1302 
1303   if (ExtType == ISD::SEXTLOAD) { // ... ones.
1304     SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1305     Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1306   } else { // ... or zeros.
1307     Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1308   }
1309 
1310   SDValue Ops[] = {
1311     Ret,
1312     Read.getValue(1) // This should be our output chain
1313   };
1314 
1315   return DAG.getMergeValues(Ops, DL);
1316 }
1317 
1318 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1319   LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1320   unsigned AS = LoadNode->getAddressSpace();
1321   EVT MemVT = LoadNode->getMemoryVT();
1322   ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1323 
1324   if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
1325       ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1326     return lowerPrivateExtLoad(Op, DAG);
1327   }
1328 
1329   SDLoc DL(Op);
1330   EVT VT = Op.getValueType();
1331   SDValue Chain = LoadNode->getChain();
1332   SDValue Ptr = LoadNode->getBasePtr();
1333 
1334   if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1335       LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1336       VT.isVector()) {
1337     SDValue Ops[2];
1338     std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG);
1339     return DAG.getMergeValues(Ops, DL);
1340   }
1341 
1342   // This is still used for explicit load from addrspace(8)
1343   int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1344   if (ConstantBlock > -1 &&
1345       ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1346        (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1347     SDValue Result;
1348     if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1349         isa<ConstantSDNode>(Ptr)) {
1350       return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1351     } else {
1352       //TODO: Does this even work?
1353       // non-constant ptr can't be folded, keeps it as a v4f32 load
1354       Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1355           DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1356                       DAG.getConstant(4, DL, MVT::i32)),
1357                       DAG.getConstant(LoadNode->getAddressSpace() -
1358                                       AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32)
1359           );
1360     }
1361 
1362     if (!VT.isVector()) {
1363       Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1364                            DAG.getConstant(0, DL, MVT::i32));
1365     }
1366 
1367     SDValue MergedValues[2] = {
1368       Result,
1369       Chain
1370     };
1371     return DAG.getMergeValues(MergedValues, DL);
1372   }
1373 
1374   // For most operations returning SDValue() will result in the node being
1375   // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1376   // need to manually expand loads that may be legal in some address spaces and
1377   // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1378   // compute shaders, since the data is sign extended when it is uploaded to the
1379   // buffer. However SEXT loads from other address spaces are not supported, so
1380   // we need to expand them here.
1381   if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1382     assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1383     SDValue NewLoad = DAG.getExtLoad(
1384         ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1385         LoadNode->getAlign(), LoadNode->getMemOperand()->getFlags());
1386     SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1387                               DAG.getValueType(MemVT));
1388 
1389     SDValue MergedValues[2] = { Res, Chain };
1390     return DAG.getMergeValues(MergedValues, DL);
1391   }
1392 
1393   if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
1394     return SDValue();
1395   }
1396 
1397   // DWORDADDR ISD marks already shifted address
1398   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1399     assert(VT == MVT::i32);
1400     Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1401     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1402     return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1403   }
1404   return SDValue();
1405 }
1406 
1407 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1408   SDValue Chain = Op.getOperand(0);
1409   SDValue Cond  = Op.getOperand(1);
1410   SDValue Jump  = Op.getOperand(2);
1411 
1412   return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1413                      Chain, Jump, Cond);
1414 }
1415 
1416 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1417                                             SelectionDAG &DAG) const {
1418   MachineFunction &MF = DAG.getMachineFunction();
1419   const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1420 
1421   FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1422 
1423   unsigned FrameIndex = FIN->getIndex();
1424   Register IgnoredFrameReg;
1425   StackOffset Offset =
1426       TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1427   return DAG.getConstant(Offset.getFixed() * 4 * TFL->getStackWidth(MF),
1428                          SDLoc(Op), Op.getValueType());
1429 }
1430 
1431 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1432                                                   bool IsVarArg) const {
1433   switch (CC) {
1434   case CallingConv::AMDGPU_KERNEL:
1435   case CallingConv::SPIR_KERNEL:
1436   case CallingConv::C:
1437   case CallingConv::Fast:
1438   case CallingConv::Cold:
1439     llvm_unreachable("kernels should not be handled here");
1440   case CallingConv::AMDGPU_VS:
1441   case CallingConv::AMDGPU_GS:
1442   case CallingConv::AMDGPU_PS:
1443   case CallingConv::AMDGPU_CS:
1444   case CallingConv::AMDGPU_HS:
1445   case CallingConv::AMDGPU_ES:
1446   case CallingConv::AMDGPU_LS:
1447     return CC_R600;
1448   default:
1449     report_fatal_error("Unsupported calling convention.");
1450   }
1451 }
1452 
1453 /// XXX Only kernel functions are supported, so we can assume for now that
1454 /// every function is a kernel function, but in the future we should use
1455 /// separate calling conventions for kernel and non-kernel functions.
1456 SDValue R600TargetLowering::LowerFormalArguments(
1457     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1458     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1459     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1460   SmallVector<CCValAssign, 16> ArgLocs;
1461   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1462                  *DAG.getContext());
1463   MachineFunction &MF = DAG.getMachineFunction();
1464   SmallVector<ISD::InputArg, 8> LocalIns;
1465 
1466   if (AMDGPU::isShader(CallConv)) {
1467     CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1468   } else {
1469     analyzeFormalArgumentsCompute(CCInfo, Ins);
1470   }
1471 
1472   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1473     CCValAssign &VA = ArgLocs[i];
1474     const ISD::InputArg &In = Ins[i];
1475     EVT VT = In.VT;
1476     EVT MemVT = VA.getLocVT();
1477     if (!VT.isVector() && MemVT.isVector()) {
1478       // Get load source type if scalarized.
1479       MemVT = MemVT.getVectorElementType();
1480     }
1481 
1482     if (AMDGPU::isShader(CallConv)) {
1483       Register Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1484       SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1485       InVals.push_back(Register);
1486       continue;
1487     }
1488 
1489     // i64 isn't a legal type, so the register type used ends up as i32, which
1490     // isn't expected here. It attempts to create this sextload, but it ends up
1491     // being invalid. Somehow this seems to work with i64 arguments, but breaks
1492     // for <1 x i64>.
1493 
1494     // The first 36 bytes of the input buffer contains information about
1495     // thread group and global sizes.
1496     ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
1497     if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1498       // FIXME: This should really check the extload type, but the handling of
1499       // extload vector parameters seems to be broken.
1500 
1501       // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1502       Ext = ISD::SEXTLOAD;
1503     }
1504 
1505     // Compute the offset from the value.
1506     // XXX - I think PartOffset should give you this, but it seems to give the
1507     // size of the register which isn't useful.
1508 
1509     unsigned PartOffset = VA.getLocMemOffset();
1510     Align Alignment = commonAlignment(Align(VT.getStoreSize()), PartOffset);
1511 
1512     MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS);
1513     SDValue Arg = DAG.getLoad(
1514         ISD::UNINDEXED, Ext, VT, DL, Chain,
1515         DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1516         PtrInfo,
1517         MemVT, Alignment, MachineMemOperand::MONonTemporal |
1518                                         MachineMemOperand::MODereferenceable |
1519                                         MachineMemOperand::MOInvariant);
1520 
1521     InVals.push_back(Arg);
1522   }
1523   return Chain;
1524 }
1525 
1526 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1527                                            EVT VT) const {
1528    if (!VT.isVector())
1529      return MVT::i32;
1530    return VT.changeVectorElementTypeToInteger();
1531 }
1532 
1533 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1534                                           const MachineFunction &MF) const {
1535   // Local and Private addresses do not handle vectors. Limit to i32
1536   if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) {
1537     return (MemVT.getSizeInBits() <= 32);
1538   }
1539   return true;
1540 }
1541 
1542 bool R600TargetLowering::allowsMisalignedMemoryAccesses(
1543     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1544     unsigned *IsFast) const {
1545   if (IsFast)
1546     *IsFast = 0;
1547 
1548   if (!VT.isSimple() || VT == MVT::Other)
1549     return false;
1550 
1551   if (VT.bitsLT(MVT::i32))
1552     return false;
1553 
1554   // TODO: This is a rough estimate.
1555   if (IsFast)
1556     *IsFast = 1;
1557 
1558   return VT.bitsGT(MVT::i32) && Alignment >= Align(4);
1559 }
1560 
1561 static SDValue CompactSwizzlableVector(
1562   SelectionDAG &DAG, SDValue VectorEntry,
1563   DenseMap<unsigned, unsigned> &RemapSwizzle) {
1564   assert(RemapSwizzle.empty());
1565 
1566   SDLoc DL(VectorEntry);
1567   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1568 
1569   SDValue NewBldVec[4];
1570   for (unsigned i = 0; i < 4; i++)
1571     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1572                                DAG.getIntPtrConstant(i, DL));
1573 
1574   for (unsigned i = 0; i < 4; i++) {
1575     if (NewBldVec[i].isUndef())
1576       // We mask write here to teach later passes that the ith element of this
1577       // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1578       // break false dependencies and additionally make assembly easier to read.
1579       RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1580     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1581       if (C->isZero()) {
1582         RemapSwizzle[i] = 4; // SEL_0
1583         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1584       } else if (C->isExactlyValue(1.0)) {
1585         RemapSwizzle[i] = 5; // SEL_1
1586         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1587       }
1588     }
1589 
1590     if (NewBldVec[i].isUndef())
1591       continue;
1592 
1593     for (unsigned j = 0; j < i; j++) {
1594       if (NewBldVec[i] == NewBldVec[j]) {
1595         NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1596         RemapSwizzle[i] = j;
1597         break;
1598       }
1599     }
1600   }
1601 
1602   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1603                             NewBldVec);
1604 }
1605 
1606 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
1607                                 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1608   assert(RemapSwizzle.empty());
1609 
1610   SDLoc DL(VectorEntry);
1611   EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1612 
1613   SDValue NewBldVec[4];
1614   bool isUnmovable[4] = {false, false, false, false};
1615   for (unsigned i = 0; i < 4; i++)
1616     NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1617                                DAG.getIntPtrConstant(i, DL));
1618 
1619   for (unsigned i = 0; i < 4; i++) {
1620     RemapSwizzle[i] = i;
1621     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1622       unsigned Idx = NewBldVec[i].getConstantOperandVal(1);
1623       if (i == Idx)
1624         isUnmovable[Idx] = true;
1625     }
1626   }
1627 
1628   for (unsigned i = 0; i < 4; i++) {
1629     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1630       unsigned Idx = NewBldVec[i].getConstantOperandVal(1);
1631       if (isUnmovable[Idx])
1632         continue;
1633       // Swap i and Idx
1634       std::swap(NewBldVec[Idx], NewBldVec[i]);
1635       std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1636       break;
1637     }
1638   }
1639 
1640   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1641                             NewBldVec);
1642 }
1643 
1644 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[],
1645                                             SelectionDAG &DAG,
1646                                             const SDLoc &DL) const {
1647   // Old -> New swizzle values
1648   DenseMap<unsigned, unsigned> SwizzleRemap;
1649 
1650   BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1651   for (unsigned i = 0; i < 4; i++) {
1652     unsigned Idx = Swz[i]->getAsZExtVal();
1653     if (SwizzleRemap.contains(Idx))
1654       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1655   }
1656 
1657   SwizzleRemap.clear();
1658   BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1659   for (unsigned i = 0; i < 4; i++) {
1660     unsigned Idx = Swz[i]->getAsZExtVal();
1661     if (SwizzleRemap.contains(Idx))
1662       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1663   }
1664 
1665   return BuildVector;
1666 }
1667 
1668 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1669                                             SelectionDAG &DAG) const {
1670   SDLoc DL(LoadNode);
1671   EVT VT = LoadNode->getValueType(0);
1672   SDValue Chain = LoadNode->getChain();
1673   SDValue Ptr = LoadNode->getBasePtr();
1674   assert (isa<ConstantSDNode>(Ptr));
1675 
1676   //TODO: Support smaller loads
1677   if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1678     return SDValue();
1679 
1680   if (LoadNode->getAlign() < Align(4))
1681     return SDValue();
1682 
1683   int ConstantBlock = ConstantAddressBlock(Block);
1684 
1685   SDValue Slots[4];
1686   for (unsigned i = 0; i < 4; i++) {
1687     // We want Const position encoded with the following formula :
1688     // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1689     // const_index is Ptr computed by llvm using an alignment of 16.
1690     // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1691     // then div by 4 at the ISel step
1692     SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1693         DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1694     Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1695   }
1696   EVT NewVT = MVT::v4i32;
1697   unsigned NumElements = 4;
1698   if (VT.isVector()) {
1699     NewVT = VT;
1700     NumElements = VT.getVectorNumElements();
1701   }
1702   SDValue Result = DAG.getBuildVector(NewVT, DL, ArrayRef(Slots, NumElements));
1703   if (!VT.isVector()) {
1704     Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1705                          DAG.getConstant(0, DL, MVT::i32));
1706   }
1707   SDValue MergedValues[2] = {
1708     Result,
1709     Chain
1710   };
1711   return DAG.getMergeValues(MergedValues, DL);
1712 }
1713 
1714 //===----------------------------------------------------------------------===//
1715 // Custom DAG Optimizations
1716 //===----------------------------------------------------------------------===//
1717 
1718 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
1719                                               DAGCombinerInfo &DCI) const {
1720   SelectionDAG &DAG = DCI.DAG;
1721   SDLoc DL(N);
1722 
1723   switch (N->getOpcode()) {
1724   // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1725   case ISD::FP_ROUND: {
1726       SDValue Arg = N->getOperand(0);
1727       if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1728         return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1729                            Arg.getOperand(0));
1730       }
1731       break;
1732     }
1733 
1734   // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1735   // (i32 select_cc f32, f32, -1, 0 cc)
1736   //
1737   // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1738   // this to one of the SET*_DX10 instructions.
1739   case ISD::FP_TO_SINT: {
1740     SDValue FNeg = N->getOperand(0);
1741     if (FNeg.getOpcode() != ISD::FNEG) {
1742       return SDValue();
1743     }
1744     SDValue SelectCC = FNeg.getOperand(0);
1745     if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1746         SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1747         SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1748         !isHWTrueValue(SelectCC.getOperand(2)) ||
1749         !isHWFalseValue(SelectCC.getOperand(3))) {
1750       return SDValue();
1751     }
1752 
1753     return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1754                            SelectCC.getOperand(0), // LHS
1755                            SelectCC.getOperand(1), // RHS
1756                            DAG.getConstant(-1, DL, MVT::i32), // True
1757                            DAG.getConstant(0, DL, MVT::i32),  // False
1758                            SelectCC.getOperand(4)); // CC
1759   }
1760 
1761   // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1762   // => build_vector elt0, ... , NewEltIdx, ... , eltN
1763   case ISD::INSERT_VECTOR_ELT: {
1764     SDValue InVec = N->getOperand(0);
1765     SDValue InVal = N->getOperand(1);
1766     SDValue EltNo = N->getOperand(2);
1767 
1768     // If the inserted element is an UNDEF, just use the input vector.
1769     if (InVal.isUndef())
1770       return InVec;
1771 
1772     EVT VT = InVec.getValueType();
1773 
1774     // If we can't generate a legal BUILD_VECTOR, exit
1775     if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
1776       return SDValue();
1777 
1778     // Check that we know which element is being inserted
1779     if (!isa<ConstantSDNode>(EltNo))
1780       return SDValue();
1781     unsigned Elt = EltNo->getAsZExtVal();
1782 
1783     // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1784     // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
1785     // vector elements.
1786     SmallVector<SDValue, 8> Ops;
1787     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1788       Ops.append(InVec.getNode()->op_begin(),
1789                  InVec.getNode()->op_end());
1790     } else if (InVec.isUndef()) {
1791       unsigned NElts = VT.getVectorNumElements();
1792       Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1793     } else {
1794       return SDValue();
1795     }
1796 
1797     // Insert the element
1798     if (Elt < Ops.size()) {
1799       // All the operands of BUILD_VECTOR must have the same type;
1800       // we enforce that here.
1801       EVT OpVT = Ops[0].getValueType();
1802       if (InVal.getValueType() != OpVT)
1803         InVal = OpVT.bitsGT(InVal.getValueType()) ?
1804           DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1805           DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1806       Ops[Elt] = InVal;
1807     }
1808 
1809     // Return the new vector
1810     return DAG.getBuildVector(VT, DL, Ops);
1811   }
1812 
1813   // Extract_vec (Build_vector) generated by custom lowering
1814   // also needs to be customly combined
1815   case ISD::EXTRACT_VECTOR_ELT: {
1816     SDValue Arg = N->getOperand(0);
1817     if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1818       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1819         unsigned Element = Const->getZExtValue();
1820         return Arg->getOperand(Element);
1821       }
1822     }
1823     if (Arg.getOpcode() == ISD::BITCAST &&
1824         Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
1825         (Arg.getOperand(0).getValueType().getVectorNumElements() ==
1826          Arg.getValueType().getVectorNumElements())) {
1827       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1828         unsigned Element = Const->getZExtValue();
1829         return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1830                            Arg->getOperand(0).getOperand(Element));
1831       }
1832     }
1833     break;
1834   }
1835 
1836   case ISD::SELECT_CC: {
1837     // Try common optimizations
1838     if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
1839       return Ret;
1840 
1841     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1842     //      selectcc x, y, a, b, inv(cc)
1843     //
1844     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1845     //      selectcc x, y, a, b, cc
1846     SDValue LHS = N->getOperand(0);
1847     if (LHS.getOpcode() != ISD::SELECT_CC) {
1848       return SDValue();
1849     }
1850 
1851     SDValue RHS = N->getOperand(1);
1852     SDValue True = N->getOperand(2);
1853     SDValue False = N->getOperand(3);
1854     ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1855 
1856     if (LHS.getOperand(2).getNode() != True.getNode() ||
1857         LHS.getOperand(3).getNode() != False.getNode() ||
1858         RHS.getNode() != False.getNode()) {
1859       return SDValue();
1860     }
1861 
1862     switch (NCC) {
1863     default: return SDValue();
1864     case ISD::SETNE: return LHS;
1865     case ISD::SETEQ: {
1866       ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
1867       LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType());
1868       if (DCI.isBeforeLegalizeOps() ||
1869           isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
1870         return DAG.getSelectCC(DL,
1871                                LHS.getOperand(0),
1872                                LHS.getOperand(1),
1873                                LHS.getOperand(2),
1874                                LHS.getOperand(3),
1875                                LHSCC);
1876       break;
1877     }
1878     }
1879     return SDValue();
1880   }
1881 
1882   case AMDGPUISD::R600_EXPORT: {
1883     SDValue Arg = N->getOperand(1);
1884     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
1885       break;
1886 
1887     SDValue NewArgs[8] = {
1888       N->getOperand(0), // Chain
1889       SDValue(),
1890       N->getOperand(2), // ArrayBase
1891       N->getOperand(3), // Type
1892       N->getOperand(4), // SWZ_X
1893       N->getOperand(5), // SWZ_Y
1894       N->getOperand(6), // SWZ_Z
1895       N->getOperand(7) // SWZ_W
1896     };
1897     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
1898     return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
1899   }
1900   case AMDGPUISD::TEXTURE_FETCH: {
1901     SDValue Arg = N->getOperand(1);
1902     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
1903       break;
1904 
1905     SDValue NewArgs[19] = {
1906       N->getOperand(0),
1907       N->getOperand(1),
1908       N->getOperand(2),
1909       N->getOperand(3),
1910       N->getOperand(4),
1911       N->getOperand(5),
1912       N->getOperand(6),
1913       N->getOperand(7),
1914       N->getOperand(8),
1915       N->getOperand(9),
1916       N->getOperand(10),
1917       N->getOperand(11),
1918       N->getOperand(12),
1919       N->getOperand(13),
1920       N->getOperand(14),
1921       N->getOperand(15),
1922       N->getOperand(16),
1923       N->getOperand(17),
1924       N->getOperand(18),
1925     };
1926     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
1927     return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
1928   }
1929 
1930   case ISD::LOAD: {
1931     LoadSDNode *LoadNode = cast<LoadSDNode>(N);
1932     SDValue Ptr = LoadNode->getBasePtr();
1933     if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
1934          isa<ConstantSDNode>(Ptr))
1935       return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
1936     break;
1937   }
1938 
1939   default: break;
1940   }
1941 
1942   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1943 }
1944 
1945 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
1946                                      SDValue &Src, SDValue &Neg, SDValue &Abs,
1947                                      SDValue &Sel, SDValue &Imm,
1948                                      SelectionDAG &DAG) const {
1949   const R600InstrInfo *TII = Subtarget->getInstrInfo();
1950   if (!Src.isMachineOpcode())
1951     return false;
1952 
1953   switch (Src.getMachineOpcode()) {
1954   case R600::FNEG_R600:
1955     if (!Neg.getNode())
1956       return false;
1957     Src = Src.getOperand(0);
1958     Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
1959     return true;
1960   case R600::FABS_R600:
1961     if (!Abs.getNode())
1962       return false;
1963     Src = Src.getOperand(0);
1964     Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
1965     return true;
1966   case R600::CONST_COPY: {
1967     unsigned Opcode = ParentNode->getMachineOpcode();
1968     bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
1969 
1970     if (!Sel.getNode())
1971       return false;
1972 
1973     SDValue CstOffset = Src.getOperand(0);
1974     if (ParentNode->getValueType(0).isVector())
1975       return false;
1976 
1977     // Gather constants values
1978     int SrcIndices[] = {
1979       TII->getOperandIdx(Opcode, R600::OpName::src0),
1980       TII->getOperandIdx(Opcode, R600::OpName::src1),
1981       TII->getOperandIdx(Opcode, R600::OpName::src2),
1982       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
1983       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
1984       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
1985       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
1986       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
1987       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
1988       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
1989       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
1990     };
1991     std::vector<unsigned> Consts;
1992     for (int OtherSrcIdx : SrcIndices) {
1993       int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
1994       if (OtherSrcIdx < 0 || OtherSelIdx < 0)
1995         continue;
1996       if (HasDst) {
1997         OtherSrcIdx--;
1998         OtherSelIdx--;
1999       }
2000       if (RegisterSDNode *Reg =
2001           dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2002         if (Reg->getReg() == R600::ALU_CONST) {
2003           Consts.push_back(ParentNode->getConstantOperandVal(OtherSelIdx));
2004         }
2005       }
2006     }
2007 
2008     ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2009     Consts.push_back(Cst->getZExtValue());
2010     if (!TII->fitsConstReadLimitations(Consts)) {
2011       return false;
2012     }
2013 
2014     Sel = CstOffset;
2015     Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2016     return true;
2017   }
2018   case R600::MOV_IMM_GLOBAL_ADDR:
2019     // Check if the Imm slot is used. Taken from below.
2020     if (Imm->getAsZExtVal())
2021       return false;
2022     Imm = Src.getOperand(0);
2023     Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2024     return true;
2025   case R600::MOV_IMM_I32:
2026   case R600::MOV_IMM_F32: {
2027     unsigned ImmReg = R600::ALU_LITERAL_X;
2028     uint64_t ImmValue = 0;
2029 
2030     if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2031       ConstantFPSDNode *FPC = cast<ConstantFPSDNode>(Src.getOperand(0));
2032       float FloatValue = FPC->getValueAPF().convertToFloat();
2033       if (FloatValue == 0.0) {
2034         ImmReg = R600::ZERO;
2035       } else if (FloatValue == 0.5) {
2036         ImmReg = R600::HALF;
2037       } else if (FloatValue == 1.0) {
2038         ImmReg = R600::ONE;
2039       } else {
2040         ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2041       }
2042     } else {
2043       uint64_t Value = Src.getConstantOperandVal(0);
2044       if (Value == 0) {
2045         ImmReg = R600::ZERO;
2046       } else if (Value == 1) {
2047         ImmReg = R600::ONE_INT;
2048       } else {
2049         ImmValue = Value;
2050       }
2051     }
2052 
2053     // Check that we aren't already using an immediate.
2054     // XXX: It's possible for an instruction to have more than one
2055     // immediate operand, but this is not supported yet.
2056     if (ImmReg == R600::ALU_LITERAL_X) {
2057       if (!Imm.getNode())
2058         return false;
2059       ConstantSDNode *C = cast<ConstantSDNode>(Imm);
2060       if (C->getZExtValue())
2061         return false;
2062       Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2063     }
2064     Src = DAG.getRegister(ImmReg, MVT::i32);
2065     return true;
2066   }
2067   default:
2068     return false;
2069   }
2070 }
2071 
2072 /// Fold the instructions after selecting them
2073 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2074                                             SelectionDAG &DAG) const {
2075   const R600InstrInfo *TII = Subtarget->getInstrInfo();
2076   if (!Node->isMachineOpcode())
2077     return Node;
2078 
2079   unsigned Opcode = Node->getMachineOpcode();
2080   SDValue FakeOp;
2081 
2082   std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2083 
2084   if (Opcode == R600::DOT_4) {
2085     int OperandIdx[] = {
2086       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2087       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2088       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2089       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2090       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2091       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2092       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2093       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2094         };
2095     int NegIdx[] = {
2096       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2097       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2098       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2099       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2100       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2101       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2102       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2103       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2104     };
2105     int AbsIdx[] = {
2106       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2107       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2108       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2109       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2110       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2111       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2112       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2113       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2114     };
2115     for (unsigned i = 0; i < 8; i++) {
2116       if (OperandIdx[i] < 0)
2117         return Node;
2118       SDValue &Src = Ops[OperandIdx[i] - 1];
2119       SDValue &Neg = Ops[NegIdx[i] - 1];
2120       SDValue &Abs = Ops[AbsIdx[i] - 1];
2121       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2122       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2123       if (HasDst)
2124         SelIdx--;
2125       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2126       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2127         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2128     }
2129   } else if (Opcode == R600::REG_SEQUENCE) {
2130     for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2131       SDValue &Src = Ops[i];
2132       if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2133         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2134     }
2135   } else {
2136     if (!TII->hasInstrModifiers(Opcode))
2137       return Node;
2138     int OperandIdx[] = {
2139       TII->getOperandIdx(Opcode, R600::OpName::src0),
2140       TII->getOperandIdx(Opcode, R600::OpName::src1),
2141       TII->getOperandIdx(Opcode, R600::OpName::src2)
2142     };
2143     int NegIdx[] = {
2144       TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2145       TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2146       TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2147     };
2148     int AbsIdx[] = {
2149       TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2150       TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2151       -1
2152     };
2153     for (unsigned i = 0; i < 3; i++) {
2154       if (OperandIdx[i] < 0)
2155         return Node;
2156       SDValue &Src = Ops[OperandIdx[i] - 1];
2157       SDValue &Neg = Ops[NegIdx[i] - 1];
2158       SDValue FakeAbs;
2159       SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2160       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2161       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2162       int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2163       if (HasDst) {
2164         SelIdx--;
2165         ImmIdx--;
2166       }
2167       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2168       SDValue &Imm = Ops[ImmIdx];
2169       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2170         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2171     }
2172   }
2173 
2174   return Node;
2175 }
2176 
2177 TargetLowering::AtomicExpansionKind
2178 R600TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
2179   switch (RMW->getOperation()) {
2180   case AtomicRMWInst::UIncWrap:
2181   case AtomicRMWInst::UDecWrap:
2182     // FIXME: Cayman at least appears to have instructions for this, but the
2183     // instruction defintions appear to be missing.
2184     return AtomicExpansionKind::CmpXChg;
2185   default:
2186     break;
2187   }
2188 
2189   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
2190 }
2191