xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/GCNSchedStrategy.cpp (revision c1d255d3ffdbe447de3ab875bf4e7d7accc5bfc5)
1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This contains a MachineSchedStrategy implementation for maximizing wave
11 /// occupancy on GCN hardware.
12 //===----------------------------------------------------------------------===//
13 
14 #include "GCNSchedStrategy.h"
15 #include "SIMachineFunctionInfo.h"
16 
17 #define DEBUG_TYPE "machine-scheduler"
18 
19 using namespace llvm;
20 
21 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
22     const MachineSchedContext *C) :
23     GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { }
24 
25 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
26   GenericScheduler::initialize(DAG);
27 
28   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
29 
30   MF = &DAG->MF;
31 
32   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
33 
34   // FIXME: This is also necessary, because some passes that run after
35   // scheduling and before regalloc increase register pressure.
36   const int ErrorMargin = 3;
37 
38   SGPRExcessLimit = Context->RegClassInfo
39     ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
40   VGPRExcessLimit = Context->RegClassInfo
41     ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
42   if (TargetOccupancy) {
43     SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true);
44     VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy);
45   } else {
46     SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
47         AMDGPU::RegisterPressureSets::SReg_32);
48     VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
49         AMDGPU::RegisterPressureSets::VGPR_32);
50   }
51 
52   SGPRCriticalLimit -= ErrorMargin;
53   VGPRCriticalLimit -= ErrorMargin;
54 }
55 
56 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
57                                      bool AtTop, const RegPressureTracker &RPTracker,
58                                      const SIRegisterInfo *SRI,
59                                      unsigned SGPRPressure,
60                                      unsigned VGPRPressure) {
61 
62   Cand.SU = SU;
63   Cand.AtTop = AtTop;
64 
65   // getDownwardPressure() and getUpwardPressure() make temporary changes to
66   // the tracker, so we need to pass those function a non-const copy.
67   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
68 
69   Pressure.clear();
70   MaxPressure.clear();
71 
72   if (AtTop)
73     TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
74   else {
75     // FIXME: I think for bottom up scheduling, the register pressure is cached
76     // and can be retrieved by DAG->getPressureDif(SU).
77     TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
78   }
79 
80   unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
81   unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
82 
83   // If two instructions increase the pressure of different register sets
84   // by the same amount, the generic scheduler will prefer to schedule the
85   // instruction that increases the set with the least amount of registers,
86   // which in our case would be SGPRs.  This is rarely what we want, so
87   // when we report excess/critical register pressure, we do it either
88   // only for VGPRs or only for SGPRs.
89 
90   // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
91   const unsigned MaxVGPRPressureInc = 16;
92   bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
93   bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
94 
95 
96   // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
97   // to increase the likelihood we don't go over the limits.  We should improve
98   // the analysis to look through dependencies to find the path with the least
99   // register pressure.
100 
101   // We only need to update the RPDelta for instructions that increase register
102   // pressure. Instructions that decrease or keep reg pressure the same will be
103   // marked as RegExcess in tryCandidate() when they are compared with
104   // instructions that increase the register pressure.
105   if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
106     Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
107     Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
108   }
109 
110   if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
111     Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
112     Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
113   }
114 
115   // Register pressure is considered 'CRITICAL' if it is approaching a value
116   // that would reduce the wave occupancy for the execution unit.  When
117   // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
118   // has the same cost, so we don't need to prefer one over the other.
119 
120   int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
121   int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
122 
123   if (SGPRDelta >= 0 || VGPRDelta >= 0) {
124     if (SGPRDelta > VGPRDelta) {
125       Cand.RPDelta.CriticalMax =
126         PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
127       Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
128     } else {
129       Cand.RPDelta.CriticalMax =
130         PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
131       Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
132     }
133   }
134 }
135 
136 // This function is mostly cut and pasted from
137 // GenericScheduler::pickNodeFromQueue()
138 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
139                                          const CandPolicy &ZonePolicy,
140                                          const RegPressureTracker &RPTracker,
141                                          SchedCandidate &Cand) {
142   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
143   ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
144   unsigned SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
145   unsigned VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
146   ReadyQueue &Q = Zone.Available;
147   for (SUnit *SU : Q) {
148 
149     SchedCandidate TryCand(ZonePolicy);
150     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
151                   SGPRPressure, VGPRPressure);
152     // Pass SchedBoundary only when comparing nodes from the same boundary.
153     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
154     GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
155     if (TryCand.Reason != NoCand) {
156       // Initialize resource delta if needed in case future heuristics query it.
157       if (TryCand.ResDelta == SchedResourceDelta())
158         TryCand.initResourceDelta(Zone.DAG, SchedModel);
159       Cand.setBest(TryCand);
160       LLVM_DEBUG(traceCandidate(Cand));
161     }
162   }
163 }
164 
165 // This function is mostly cut and pasted from
166 // GenericScheduler::pickNodeBidirectional()
167 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
168   // Schedule as far as possible in the direction of no choice. This is most
169   // efficient, but also provides the best heuristics for CriticalPSets.
170   if (SUnit *SU = Bot.pickOnlyChoice()) {
171     IsTopNode = false;
172     return SU;
173   }
174   if (SUnit *SU = Top.pickOnlyChoice()) {
175     IsTopNode = true;
176     return SU;
177   }
178   // Set the bottom-up policy based on the state of the current bottom zone and
179   // the instructions outside the zone, including the top zone.
180   CandPolicy BotPolicy;
181   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
182   // Set the top-down policy based on the state of the current top zone and
183   // the instructions outside the zone, including the bottom zone.
184   CandPolicy TopPolicy;
185   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
186 
187   // See if BotCand is still valid (because we previously scheduled from Top).
188   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
189   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
190       BotCand.Policy != BotPolicy) {
191     BotCand.reset(CandPolicy());
192     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
193     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
194   } else {
195     LLVM_DEBUG(traceCandidate(BotCand));
196 #ifndef NDEBUG
197     if (VerifyScheduling) {
198       SchedCandidate TCand;
199       TCand.reset(CandPolicy());
200       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
201       assert(TCand.SU == BotCand.SU &&
202              "Last pick result should correspond to re-picking right now");
203     }
204 #endif
205   }
206 
207   // Check if the top Q has a better candidate.
208   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
209   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
210       TopCand.Policy != TopPolicy) {
211     TopCand.reset(CandPolicy());
212     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
213     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
214   } else {
215     LLVM_DEBUG(traceCandidate(TopCand));
216 #ifndef NDEBUG
217     if (VerifyScheduling) {
218       SchedCandidate TCand;
219       TCand.reset(CandPolicy());
220       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
221       assert(TCand.SU == TopCand.SU &&
222            "Last pick result should correspond to re-picking right now");
223     }
224 #endif
225   }
226 
227   // Pick best from BotCand and TopCand.
228   LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
229              dbgs() << "Bot Cand: "; traceCandidate(BotCand););
230   SchedCandidate Cand = BotCand;
231   TopCand.Reason = NoCand;
232   GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
233   if (TopCand.Reason != NoCand) {
234     Cand.setBest(TopCand);
235   }
236   LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
237 
238   IsTopNode = Cand.AtTop;
239   return Cand.SU;
240 }
241 
242 // This function is mostly cut and pasted from
243 // GenericScheduler::pickNode()
244 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
245   if (DAG->top() == DAG->bottom()) {
246     assert(Top.Available.empty() && Top.Pending.empty() &&
247            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
248     return nullptr;
249   }
250   SUnit *SU;
251   do {
252     if (RegionPolicy.OnlyTopDown) {
253       SU = Top.pickOnlyChoice();
254       if (!SU) {
255         CandPolicy NoPolicy;
256         TopCand.reset(NoPolicy);
257         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
258         assert(TopCand.Reason != NoCand && "failed to find a candidate");
259         SU = TopCand.SU;
260       }
261       IsTopNode = true;
262     } else if (RegionPolicy.OnlyBottomUp) {
263       SU = Bot.pickOnlyChoice();
264       if (!SU) {
265         CandPolicy NoPolicy;
266         BotCand.reset(NoPolicy);
267         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
268         assert(BotCand.Reason != NoCand && "failed to find a candidate");
269         SU = BotCand.SU;
270       }
271       IsTopNode = false;
272     } else {
273       SU = pickNodeBidirectional(IsTopNode);
274     }
275   } while (SU->isScheduled);
276 
277   if (SU->isTopReady())
278     Top.removeReady(SU);
279   if (SU->isBottomReady())
280     Bot.removeReady(SU);
281 
282   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
283                     << *SU->getInstr());
284   return SU;
285 }
286 
287 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
288                         std::unique_ptr<MachineSchedStrategy> S) :
289   ScheduleDAGMILive(C, std::move(S)),
290   ST(MF.getSubtarget<GCNSubtarget>()),
291   MFI(*MF.getInfo<SIMachineFunctionInfo>()),
292   StartingOccupancy(MFI.getOccupancy()),
293   MinOccupancy(StartingOccupancy), Stage(Collect), RegionIdx(0) {
294 
295   LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
296 }
297 
298 void GCNScheduleDAGMILive::schedule() {
299   if (Stage == Collect) {
300     // Just record regions at the first pass.
301     Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
302     return;
303   }
304 
305   std::vector<MachineInstr*> Unsched;
306   Unsched.reserve(NumRegionInstrs);
307   for (auto &I : *this) {
308     Unsched.push_back(&I);
309   }
310 
311   GCNRegPressure PressureBefore;
312   if (LIS) {
313     PressureBefore = Pressure[RegionIdx];
314 
315     LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
316                GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
317                dbgs() << "Region live-in pressure:  ";
318                llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
319                dbgs() << "Region register pressure: ";
320                PressureBefore.print(dbgs()));
321   }
322 
323   ScheduleDAGMILive::schedule();
324   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
325   RescheduleRegions[RegionIdx] = false;
326 
327   if (!LIS)
328     return;
329 
330   // Check the results of scheduling.
331   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
332   auto PressureAfter = getRealRegPressure();
333 
334   LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
335              PressureAfter.print(dbgs()));
336 
337   if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
338       PressureAfter.getVGPRNum() <= S.VGPRCriticalLimit) {
339     Pressure[RegionIdx] = PressureAfter;
340     LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
341     return;
342   }
343   unsigned Occ = MFI.getOccupancy();
344   unsigned WavesAfter = std::min(Occ, PressureAfter.getOccupancy(ST));
345   unsigned WavesBefore = std::min(Occ, PressureBefore.getOccupancy(ST));
346   LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
347                     << ", after " << WavesAfter << ".\n");
348 
349   // We could not keep current target occupancy because of the just scheduled
350   // region. Record new occupancy for next scheduling cycle.
351   unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
352   // Allow memory bound functions to drop to 4 waves if not limited by an
353   // attribute.
354   if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy &&
355       WavesAfter >= MFI.getMinAllowedOccupancy()) {
356     LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
357                       << MFI.getMinAllowedOccupancy() << " waves\n");
358     NewOccupancy = WavesAfter;
359   }
360   if (NewOccupancy < MinOccupancy) {
361     MinOccupancy = NewOccupancy;
362     MFI.limitOccupancy(MinOccupancy);
363     LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
364                       << MinOccupancy << ".\n");
365   }
366 
367   unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF);
368   unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF);
369   if (PressureAfter.getVGPRNum() > MaxVGPRs ||
370       PressureAfter.getSGPRNum() > MaxSGPRs)
371     RescheduleRegions[RegionIdx] = true;
372 
373   if (WavesAfter >= MinOccupancy) {
374     if (Stage == UnclusteredReschedule &&
375         !PressureAfter.less(ST, PressureBefore)) {
376       LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n");
377     } else if (WavesAfter > MFI.getMinWavesPerEU() ||
378         PressureAfter.less(ST, PressureBefore) ||
379         !RescheduleRegions[RegionIdx]) {
380       Pressure[RegionIdx] = PressureAfter;
381       return;
382     } else {
383       LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n");
384     }
385   }
386 
387   LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
388   RescheduleRegions[RegionIdx] = true;
389   RegionEnd = RegionBegin;
390   for (MachineInstr *MI : Unsched) {
391     if (MI->isDebugInstr())
392       continue;
393 
394     if (MI->getIterator() != RegionEnd) {
395       BB->remove(MI);
396       BB->insert(RegionEnd, MI);
397       if (!MI->isDebugInstr())
398         LIS->handleMove(*MI, true);
399     }
400     // Reset read-undef flags and update them later.
401     for (auto &Op : MI->operands())
402       if (Op.isReg() && Op.isDef())
403         Op.setIsUndef(false);
404     RegisterOperands RegOpers;
405     RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
406     if (!MI->isDebugInstr()) {
407       if (ShouldTrackLaneMasks) {
408         // Adjust liveness and add missing dead+read-undef flags.
409         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
410         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
411       } else {
412         // Adjust for missing dead-def flags.
413         RegOpers.detectDeadDefs(*MI, *LIS);
414       }
415     }
416     RegionEnd = MI->getIterator();
417     ++RegionEnd;
418     LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
419   }
420   RegionBegin = Unsched.front()->getIterator();
421   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
422 
423   placeDebugValues();
424 }
425 
426 GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
427   GCNDownwardRPTracker RPTracker(*LIS);
428   RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
429   return RPTracker.moveMaxPressure();
430 }
431 
432 void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
433   GCNDownwardRPTracker RPTracker(*LIS);
434 
435   // If the block has the only successor then live-ins of that successor are
436   // live-outs of the current block. We can reuse calculated live set if the
437   // successor will be sent to scheduling past current block.
438   const MachineBasicBlock *OnlySucc = nullptr;
439   if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
440     SlotIndexes *Ind = LIS->getSlotIndexes();
441     if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
442       OnlySucc = *MBB->succ_begin();
443   }
444 
445   // Scheduler sends regions from the end of the block upwards.
446   size_t CurRegion = RegionIdx;
447   for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
448     if (Regions[CurRegion].first->getParent() != MBB)
449       break;
450   --CurRegion;
451 
452   auto I = MBB->begin();
453   auto LiveInIt = MBBLiveIns.find(MBB);
454   if (LiveInIt != MBBLiveIns.end()) {
455     auto LiveIn = std::move(LiveInIt->second);
456     RPTracker.reset(*MBB->begin(), &LiveIn);
457     MBBLiveIns.erase(LiveInIt);
458   } else {
459     auto &Rgn = Regions[CurRegion];
460     I = Rgn.first;
461     auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
462     auto LRS = BBLiveInMap.lookup(NonDbgMI);
463     assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
464     RPTracker.reset(*I, &LRS);
465   }
466 
467   for ( ; ; ) {
468     I = RPTracker.getNext();
469 
470     if (Regions[CurRegion].first == I) {
471       LiveIns[CurRegion] = RPTracker.getLiveRegs();
472       RPTracker.clearMaxPressure();
473     }
474 
475     if (Regions[CurRegion].second == I) {
476       Pressure[CurRegion] = RPTracker.moveMaxPressure();
477       if (CurRegion-- == RegionIdx)
478         break;
479     }
480     RPTracker.advanceToNext();
481     RPTracker.advanceBeforeNext();
482   }
483 
484   if (OnlySucc) {
485     if (I != MBB->end()) {
486       RPTracker.advanceToNext();
487       RPTracker.advance(MBB->end());
488     }
489     RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
490     RPTracker.advanceBeforeNext();
491     MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
492   }
493 }
494 
495 DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
496 GCNScheduleDAGMILive::getBBLiveInMap() const {
497   assert(!Regions.empty());
498   std::vector<MachineInstr *> BBStarters;
499   BBStarters.reserve(Regions.size());
500   auto I = Regions.rbegin(), E = Regions.rend();
501   auto *BB = I->first->getParent();
502   do {
503     auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
504     BBStarters.push_back(MI);
505     do {
506       ++I;
507     } while (I != E && I->first->getParent() == BB);
508   } while (I != E);
509   return getLiveRegMap(BBStarters, false /*After*/, *LIS);
510 }
511 
512 void GCNScheduleDAGMILive::finalizeSchedule() {
513   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
514   LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
515 
516   LiveIns.resize(Regions.size());
517   Pressure.resize(Regions.size());
518   RescheduleRegions.resize(Regions.size());
519   RescheduleRegions.set();
520 
521   if (!Regions.empty())
522     BBLiveInMap = getBBLiveInMap();
523 
524   std::vector<std::unique_ptr<ScheduleDAGMutation>> SavedMutations;
525 
526   do {
527     Stage++;
528     RegionIdx = 0;
529     MachineBasicBlock *MBB = nullptr;
530 
531     if (Stage > InitialSchedule) {
532       if (!LIS)
533         break;
534 
535       // Retry function scheduling if we found resulting occupancy and it is
536       // lower than used for first pass scheduling. This will give more freedom
537       // to schedule low register pressure blocks.
538       // Code is partially copied from MachineSchedulerBase::scheduleRegions().
539 
540       if (Stage == UnclusteredReschedule) {
541         if (RescheduleRegions.none())
542           continue;
543         LLVM_DEBUG(dbgs() <<
544           "Retrying function scheduling without clustering.\n");
545       }
546 
547       if (Stage == ClusteredLowOccupancyReschedule) {
548         if (StartingOccupancy <= MinOccupancy)
549           break;
550 
551         LLVM_DEBUG(
552             dbgs()
553             << "Retrying function scheduling with lowest recorded occupancy "
554             << MinOccupancy << ".\n");
555 
556         S.setTargetOccupancy(MinOccupancy);
557       }
558     }
559 
560     if (Stage == UnclusteredReschedule)
561       SavedMutations.swap(Mutations);
562 
563     for (auto Region : Regions) {
564       if (Stage == UnclusteredReschedule && !RescheduleRegions[RegionIdx]) {
565         ++RegionIdx;
566         continue;
567       }
568 
569       RegionBegin = Region.first;
570       RegionEnd = Region.second;
571 
572       if (RegionBegin->getParent() != MBB) {
573         if (MBB) finishBlock();
574         MBB = RegionBegin->getParent();
575         startBlock(MBB);
576         if (Stage == InitialSchedule)
577           computeBlockPressure(MBB);
578       }
579 
580       unsigned NumRegionInstrs = std::distance(begin(), end());
581       enterRegion(MBB, begin(), end(), NumRegionInstrs);
582 
583       // Skip empty scheduling regions (0 or 1 schedulable instructions).
584       if (begin() == end() || begin() == std::prev(end())) {
585         exitRegion();
586         continue;
587       }
588 
589       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
590       LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " "
591                         << MBB->getName() << "\n  From: " << *begin()
592                         << "    To: ";
593                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
594                  else dbgs() << "End";
595                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
596 
597       schedule();
598 
599       exitRegion();
600       ++RegionIdx;
601     }
602     finishBlock();
603 
604     if (Stage == UnclusteredReschedule)
605       SavedMutations.swap(Mutations);
606   } while (Stage != LastStage);
607 }
608