xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/GCNSchedStrategy.cpp (revision 43a5ec4eb41567cc92586503212743d89686d78f)
1 //===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This contains a MachineSchedStrategy implementation for maximizing wave
11 /// occupancy on GCN hardware.
12 //===----------------------------------------------------------------------===//
13 
14 #include "GCNSchedStrategy.h"
15 #include "SIMachineFunctionInfo.h"
16 
17 #define DEBUG_TYPE "machine-scheduler"
18 
19 using namespace llvm;
20 
21 GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
22     const MachineSchedContext *C) :
23     GenericScheduler(C), TargetOccupancy(0), HasClusteredNodes(false),
24     HasExcessPressure(false), MF(nullptr) { }
25 
26 void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
27   GenericScheduler::initialize(DAG);
28 
29   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
30 
31   MF = &DAG->MF;
32 
33   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
34 
35   // FIXME: This is also necessary, because some passes that run after
36   // scheduling and before regalloc increase register pressure.
37   const int ErrorMargin = 3;
38 
39   SGPRExcessLimit = Context->RegClassInfo
40     ->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
41   VGPRExcessLimit = Context->RegClassInfo
42     ->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
43   if (TargetOccupancy) {
44     SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true);
45     VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy);
46   } else {
47     SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
48         AMDGPU::RegisterPressureSets::SReg_32);
49     VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
50         AMDGPU::RegisterPressureSets::VGPR_32);
51   }
52 
53   SGPRCriticalLimit -= ErrorMargin;
54   VGPRCriticalLimit -= ErrorMargin;
55 }
56 
57 void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
58                                      bool AtTop, const RegPressureTracker &RPTracker,
59                                      const SIRegisterInfo *SRI,
60                                      unsigned SGPRPressure,
61                                      unsigned VGPRPressure) {
62 
63   Cand.SU = SU;
64   Cand.AtTop = AtTop;
65 
66   // getDownwardPressure() and getUpwardPressure() make temporary changes to
67   // the tracker, so we need to pass those function a non-const copy.
68   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
69 
70   Pressure.clear();
71   MaxPressure.clear();
72 
73   if (AtTop)
74     TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
75   else {
76     // FIXME: I think for bottom up scheduling, the register pressure is cached
77     // and can be retrieved by DAG->getPressureDif(SU).
78     TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
79   }
80 
81   unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
82   unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
83 
84   // If two instructions increase the pressure of different register sets
85   // by the same amount, the generic scheduler will prefer to schedule the
86   // instruction that increases the set with the least amount of registers,
87   // which in our case would be SGPRs.  This is rarely what we want, so
88   // when we report excess/critical register pressure, we do it either
89   // only for VGPRs or only for SGPRs.
90 
91   // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
92   const unsigned MaxVGPRPressureInc = 16;
93   bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
94   bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
95 
96 
97   // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
98   // to increase the likelihood we don't go over the limits.  We should improve
99   // the analysis to look through dependencies to find the path with the least
100   // register pressure.
101 
102   // We only need to update the RPDelta for instructions that increase register
103   // pressure. Instructions that decrease or keep reg pressure the same will be
104   // marked as RegExcess in tryCandidate() when they are compared with
105   // instructions that increase the register pressure.
106   if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
107     HasExcessPressure = true;
108     Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
109     Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
110   }
111 
112   if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
113     HasExcessPressure = true;
114     Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
115     Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
116   }
117 
118   // Register pressure is considered 'CRITICAL' if it is approaching a value
119   // that would reduce the wave occupancy for the execution unit.  When
120   // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
121   // has the same cost, so we don't need to prefer one over the other.
122 
123   int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
124   int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
125 
126   if (SGPRDelta >= 0 || VGPRDelta >= 0) {
127     HasExcessPressure = true;
128     if (SGPRDelta > VGPRDelta) {
129       Cand.RPDelta.CriticalMax =
130         PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
131       Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
132     } else {
133       Cand.RPDelta.CriticalMax =
134         PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
135       Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
136     }
137   }
138 }
139 
140 // This function is mostly cut and pasted from
141 // GenericScheduler::pickNodeFromQueue()
142 void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
143                                          const CandPolicy &ZonePolicy,
144                                          const RegPressureTracker &RPTracker,
145                                          SchedCandidate &Cand) {
146   const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
147   ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
148   unsigned SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
149   unsigned VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
150   ReadyQueue &Q = Zone.Available;
151   for (SUnit *SU : Q) {
152 
153     SchedCandidate TryCand(ZonePolicy);
154     initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
155                   SGPRPressure, VGPRPressure);
156     // Pass SchedBoundary only when comparing nodes from the same boundary.
157     SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
158     GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
159     if (TryCand.Reason != NoCand) {
160       // Initialize resource delta if needed in case future heuristics query it.
161       if (TryCand.ResDelta == SchedResourceDelta())
162         TryCand.initResourceDelta(Zone.DAG, SchedModel);
163       Cand.setBest(TryCand);
164       LLVM_DEBUG(traceCandidate(Cand));
165     }
166   }
167 }
168 
169 // This function is mostly cut and pasted from
170 // GenericScheduler::pickNodeBidirectional()
171 SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
172   // Schedule as far as possible in the direction of no choice. This is most
173   // efficient, but also provides the best heuristics for CriticalPSets.
174   if (SUnit *SU = Bot.pickOnlyChoice()) {
175     IsTopNode = false;
176     return SU;
177   }
178   if (SUnit *SU = Top.pickOnlyChoice()) {
179     IsTopNode = true;
180     return SU;
181   }
182   // Set the bottom-up policy based on the state of the current bottom zone and
183   // the instructions outside the zone, including the top zone.
184   CandPolicy BotPolicy;
185   setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
186   // Set the top-down policy based on the state of the current top zone and
187   // the instructions outside the zone, including the bottom zone.
188   CandPolicy TopPolicy;
189   setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
190 
191   // See if BotCand is still valid (because we previously scheduled from Top).
192   LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
193   if (!BotCand.isValid() || BotCand.SU->isScheduled ||
194       BotCand.Policy != BotPolicy) {
195     BotCand.reset(CandPolicy());
196     pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
197     assert(BotCand.Reason != NoCand && "failed to find the first candidate");
198   } else {
199     LLVM_DEBUG(traceCandidate(BotCand));
200 #ifndef NDEBUG
201     if (VerifyScheduling) {
202       SchedCandidate TCand;
203       TCand.reset(CandPolicy());
204       pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand);
205       assert(TCand.SU == BotCand.SU &&
206              "Last pick result should correspond to re-picking right now");
207     }
208 #endif
209   }
210 
211   // Check if the top Q has a better candidate.
212   LLVM_DEBUG(dbgs() << "Picking from Top:\n");
213   if (!TopCand.isValid() || TopCand.SU->isScheduled ||
214       TopCand.Policy != TopPolicy) {
215     TopCand.reset(CandPolicy());
216     pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
217     assert(TopCand.Reason != NoCand && "failed to find the first candidate");
218   } else {
219     LLVM_DEBUG(traceCandidate(TopCand));
220 #ifndef NDEBUG
221     if (VerifyScheduling) {
222       SchedCandidate TCand;
223       TCand.reset(CandPolicy());
224       pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand);
225       assert(TCand.SU == TopCand.SU &&
226            "Last pick result should correspond to re-picking right now");
227     }
228 #endif
229   }
230 
231   // Pick best from BotCand and TopCand.
232   LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
233              dbgs() << "Bot Cand: "; traceCandidate(BotCand););
234   SchedCandidate Cand = BotCand;
235   TopCand.Reason = NoCand;
236   GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
237   if (TopCand.Reason != NoCand) {
238     Cand.setBest(TopCand);
239   }
240   LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
241 
242   IsTopNode = Cand.AtTop;
243   return Cand.SU;
244 }
245 
246 // This function is mostly cut and pasted from
247 // GenericScheduler::pickNode()
248 SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
249   if (DAG->top() == DAG->bottom()) {
250     assert(Top.Available.empty() && Top.Pending.empty() &&
251            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
252     return nullptr;
253   }
254   SUnit *SU;
255   do {
256     if (RegionPolicy.OnlyTopDown) {
257       SU = Top.pickOnlyChoice();
258       if (!SU) {
259         CandPolicy NoPolicy;
260         TopCand.reset(NoPolicy);
261         pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
262         assert(TopCand.Reason != NoCand && "failed to find a candidate");
263         SU = TopCand.SU;
264       }
265       IsTopNode = true;
266     } else if (RegionPolicy.OnlyBottomUp) {
267       SU = Bot.pickOnlyChoice();
268       if (!SU) {
269         CandPolicy NoPolicy;
270         BotCand.reset(NoPolicy);
271         pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
272         assert(BotCand.Reason != NoCand && "failed to find a candidate");
273         SU = BotCand.SU;
274       }
275       IsTopNode = false;
276     } else {
277       SU = pickNodeBidirectional(IsTopNode);
278     }
279   } while (SU->isScheduled);
280 
281   if (SU->isTopReady())
282     Top.removeReady(SU);
283   if (SU->isBottomReady())
284     Bot.removeReady(SU);
285 
286   if (!HasClusteredNodes && SU->getInstr()->mayLoadOrStore()) {
287     for (SDep &Dep : SU->Preds) {
288       if (Dep.isCluster()) {
289         HasClusteredNodes = true;
290         break;
291       }
292     }
293   }
294 
295   LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
296                     << *SU->getInstr());
297   return SU;
298 }
299 
300 GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
301                         std::unique_ptr<MachineSchedStrategy> S) :
302   ScheduleDAGMILive(C, std::move(S)),
303   ST(MF.getSubtarget<GCNSubtarget>()),
304   MFI(*MF.getInfo<SIMachineFunctionInfo>()),
305   StartingOccupancy(MFI.getOccupancy()),
306   MinOccupancy(StartingOccupancy), Stage(Collect), RegionIdx(0) {
307 
308   LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
309 }
310 
311 void GCNScheduleDAGMILive::schedule() {
312   if (Stage == Collect) {
313     // Just record regions at the first pass.
314     Regions.push_back(std::make_pair(RegionBegin, RegionEnd));
315     return;
316   }
317 
318   std::vector<MachineInstr*> Unsched;
319   Unsched.reserve(NumRegionInstrs);
320   for (auto &I : *this) {
321     Unsched.push_back(&I);
322   }
323 
324   GCNRegPressure PressureBefore;
325   if (LIS) {
326     PressureBefore = Pressure[RegionIdx];
327 
328     LLVM_DEBUG(dbgs() << "Pressure before scheduling:\nRegion live-ins:";
329                GCNRPTracker::printLiveRegs(dbgs(), LiveIns[RegionIdx], MRI);
330                dbgs() << "Region live-in pressure:  ";
331                llvm::getRegPressure(MRI, LiveIns[RegionIdx]).print(dbgs());
332                dbgs() << "Region register pressure: ";
333                PressureBefore.print(dbgs()));
334   }
335 
336   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
337   // Set HasClusteredNodes to true for late stages where we have already
338   // collected it. That way pickNode() will not scan SDep's when not needed.
339   S.HasClusteredNodes = Stage > InitialSchedule;
340   S.HasExcessPressure = false;
341   ScheduleDAGMILive::schedule();
342   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
343   RescheduleRegions[RegionIdx] = false;
344   if (Stage == InitialSchedule && S.HasClusteredNodes)
345     RegionsWithClusters[RegionIdx] = true;
346   if (S.HasExcessPressure)
347     RegionsWithHighRP[RegionIdx] = true;
348 
349   if (!LIS)
350     return;
351 
352   // Check the results of scheduling.
353   auto PressureAfter = getRealRegPressure();
354 
355   LLVM_DEBUG(dbgs() << "Pressure after scheduling: ";
356              PressureAfter.print(dbgs()));
357 
358   if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
359       PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) <= S.VGPRCriticalLimit) {
360     Pressure[RegionIdx] = PressureAfter;
361     LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
362     return;
363   }
364   unsigned Occ = MFI.getOccupancy();
365   unsigned WavesAfter = std::min(Occ, PressureAfter.getOccupancy(ST));
366   unsigned WavesBefore = std::min(Occ, PressureBefore.getOccupancy(ST));
367   LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
368                     << ", after " << WavesAfter << ".\n");
369 
370   // We could not keep current target occupancy because of the just scheduled
371   // region. Record new occupancy for next scheduling cycle.
372   unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
373   // Allow memory bound functions to drop to 4 waves if not limited by an
374   // attribute.
375   if (WavesAfter < WavesBefore && WavesAfter < MinOccupancy &&
376       WavesAfter >= MFI.getMinAllowedOccupancy()) {
377     LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
378                       << MFI.getMinAllowedOccupancy() << " waves\n");
379     NewOccupancy = WavesAfter;
380   }
381   if (NewOccupancy < MinOccupancy) {
382     MinOccupancy = NewOccupancy;
383     MFI.limitOccupancy(MinOccupancy);
384     LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
385                       << MinOccupancy << ".\n");
386   }
387 
388   unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF);
389   unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF);
390   if (PressureAfter.getVGPRNum(false) > MaxVGPRs ||
391       PressureAfter.getAGPRNum() > MaxVGPRs ||
392       PressureAfter.getSGPRNum() > MaxSGPRs) {
393     RescheduleRegions[RegionIdx] = true;
394     RegionsWithHighRP[RegionIdx] = true;
395   }
396 
397   if (WavesAfter >= MinOccupancy) {
398     if (Stage == UnclusteredReschedule &&
399         !PressureAfter.less(ST, PressureBefore)) {
400       LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n");
401     } else if (WavesAfter > MFI.getMinWavesPerEU() ||
402         PressureAfter.less(ST, PressureBefore) ||
403         !RescheduleRegions[RegionIdx]) {
404       Pressure[RegionIdx] = PressureAfter;
405       if (!RegionsWithClusters[RegionIdx] &&
406           (Stage + 1) == UnclusteredReschedule)
407         RescheduleRegions[RegionIdx] = false;
408       return;
409     } else {
410       LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n");
411     }
412   }
413 
414   LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
415   RescheduleRegions[RegionIdx] = RegionsWithClusters[RegionIdx] ||
416                                  (Stage + 1) != UnclusteredReschedule;
417   RegionEnd = RegionBegin;
418   for (MachineInstr *MI : Unsched) {
419     if (MI->isDebugInstr())
420       continue;
421 
422     if (MI->getIterator() != RegionEnd) {
423       BB->remove(MI);
424       BB->insert(RegionEnd, MI);
425       if (!MI->isDebugInstr())
426         LIS->handleMove(*MI, true);
427     }
428     // Reset read-undef flags and update them later.
429     for (auto &Op : MI->operands())
430       if (Op.isReg() && Op.isDef())
431         Op.setIsUndef(false);
432     RegisterOperands RegOpers;
433     RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
434     if (!MI->isDebugInstr()) {
435       if (ShouldTrackLaneMasks) {
436         // Adjust liveness and add missing dead+read-undef flags.
437         SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
438         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
439       } else {
440         // Adjust for missing dead-def flags.
441         RegOpers.detectDeadDefs(*MI, *LIS);
442       }
443     }
444     RegionEnd = MI->getIterator();
445     ++RegionEnd;
446     LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
447   }
448   RegionBegin = Unsched.front()->getIterator();
449   Regions[RegionIdx] = std::make_pair(RegionBegin, RegionEnd);
450 
451   placeDebugValues();
452 }
453 
454 GCNRegPressure GCNScheduleDAGMILive::getRealRegPressure() const {
455   GCNDownwardRPTracker RPTracker(*LIS);
456   RPTracker.advance(begin(), end(), &LiveIns[RegionIdx]);
457   return RPTracker.moveMaxPressure();
458 }
459 
460 void GCNScheduleDAGMILive::computeBlockPressure(const MachineBasicBlock *MBB) {
461   GCNDownwardRPTracker RPTracker(*LIS);
462 
463   // If the block has the only successor then live-ins of that successor are
464   // live-outs of the current block. We can reuse calculated live set if the
465   // successor will be sent to scheduling past current block.
466   const MachineBasicBlock *OnlySucc = nullptr;
467   if (MBB->succ_size() == 1 && !(*MBB->succ_begin())->empty()) {
468     SlotIndexes *Ind = LIS->getSlotIndexes();
469     if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(*MBB->succ_begin()))
470       OnlySucc = *MBB->succ_begin();
471   }
472 
473   // Scheduler sends regions from the end of the block upwards.
474   size_t CurRegion = RegionIdx;
475   for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
476     if (Regions[CurRegion].first->getParent() != MBB)
477       break;
478   --CurRegion;
479 
480   auto I = MBB->begin();
481   auto LiveInIt = MBBLiveIns.find(MBB);
482   if (LiveInIt != MBBLiveIns.end()) {
483     auto LiveIn = std::move(LiveInIt->second);
484     RPTracker.reset(*MBB->begin(), &LiveIn);
485     MBBLiveIns.erase(LiveInIt);
486   } else {
487     auto &Rgn = Regions[CurRegion];
488     I = Rgn.first;
489     auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
490     auto LRS = BBLiveInMap.lookup(NonDbgMI);
491 #ifdef EXPENSIVE_CHECKS
492     assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
493 #endif
494     RPTracker.reset(*I, &LRS);
495   }
496 
497   for ( ; ; ) {
498     I = RPTracker.getNext();
499 
500     if (Regions[CurRegion].first == I) {
501       LiveIns[CurRegion] = RPTracker.getLiveRegs();
502       RPTracker.clearMaxPressure();
503     }
504 
505     if (Regions[CurRegion].second == I) {
506       Pressure[CurRegion] = RPTracker.moveMaxPressure();
507       if (CurRegion-- == RegionIdx)
508         break;
509     }
510     RPTracker.advanceToNext();
511     RPTracker.advanceBeforeNext();
512   }
513 
514   if (OnlySucc) {
515     if (I != MBB->end()) {
516       RPTracker.advanceToNext();
517       RPTracker.advance(MBB->end());
518     }
519     RPTracker.reset(*OnlySucc->begin(), &RPTracker.getLiveRegs());
520     RPTracker.advanceBeforeNext();
521     MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
522   }
523 }
524 
525 DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
526 GCNScheduleDAGMILive::getBBLiveInMap() const {
527   assert(!Regions.empty());
528   std::vector<MachineInstr *> BBStarters;
529   BBStarters.reserve(Regions.size());
530   auto I = Regions.rbegin(), E = Regions.rend();
531   auto *BB = I->first->getParent();
532   do {
533     auto *MI = &*skipDebugInstructionsForward(I->first, I->second);
534     BBStarters.push_back(MI);
535     do {
536       ++I;
537     } while (I != E && I->first->getParent() == BB);
538   } while (I != E);
539   return getLiveRegMap(BBStarters, false /*After*/, *LIS);
540 }
541 
542 void GCNScheduleDAGMILive::finalizeSchedule() {
543   GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
544   LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
545 
546   LiveIns.resize(Regions.size());
547   Pressure.resize(Regions.size());
548   RescheduleRegions.resize(Regions.size());
549   RegionsWithClusters.resize(Regions.size());
550   RegionsWithHighRP.resize(Regions.size());
551   RescheduleRegions.set();
552   RegionsWithClusters.reset();
553   RegionsWithHighRP.reset();
554 
555   if (!Regions.empty())
556     BBLiveInMap = getBBLiveInMap();
557 
558   std::vector<std::unique_ptr<ScheduleDAGMutation>> SavedMutations;
559 
560   do {
561     Stage++;
562     RegionIdx = 0;
563     MachineBasicBlock *MBB = nullptr;
564 
565     if (Stage > InitialSchedule) {
566       if (!LIS)
567         break;
568 
569       // Retry function scheduling if we found resulting occupancy and it is
570       // lower than used for first pass scheduling. This will give more freedom
571       // to schedule low register pressure blocks.
572       // Code is partially copied from MachineSchedulerBase::scheduleRegions().
573 
574       if (Stage == UnclusteredReschedule) {
575         if (RescheduleRegions.none())
576           continue;
577         LLVM_DEBUG(dbgs() <<
578           "Retrying function scheduling without clustering.\n");
579       }
580 
581       if (Stage == ClusteredLowOccupancyReschedule) {
582         if (StartingOccupancy <= MinOccupancy)
583           break;
584 
585         LLVM_DEBUG(
586             dbgs()
587             << "Retrying function scheduling with lowest recorded occupancy "
588             << MinOccupancy << ".\n");
589 
590         S.setTargetOccupancy(MinOccupancy);
591       }
592     }
593 
594     if (Stage == UnclusteredReschedule)
595       SavedMutations.swap(Mutations);
596 
597     for (auto Region : Regions) {
598       if ((Stage == UnclusteredReschedule && !RescheduleRegions[RegionIdx]) ||
599           (Stage == ClusteredLowOccupancyReschedule &&
600            !RegionsWithClusters[RegionIdx] && !RegionsWithHighRP[RegionIdx])) {
601 
602         ++RegionIdx;
603         continue;
604       }
605 
606       RegionBegin = Region.first;
607       RegionEnd = Region.second;
608 
609       if (RegionBegin->getParent() != MBB) {
610         if (MBB) finishBlock();
611         MBB = RegionBegin->getParent();
612         startBlock(MBB);
613         if (Stage == InitialSchedule)
614           computeBlockPressure(MBB);
615       }
616 
617       unsigned NumRegionInstrs = std::distance(begin(), end());
618       enterRegion(MBB, begin(), end(), NumRegionInstrs);
619 
620       // Skip empty scheduling regions (0 or 1 schedulable instructions).
621       if (begin() == end() || begin() == std::prev(end())) {
622         exitRegion();
623         continue;
624       }
625 
626       LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
627       LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*MBB) << " "
628                         << MBB->getName() << "\n  From: " << *begin()
629                         << "    To: ";
630                  if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
631                  else dbgs() << "End";
632                  dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
633 
634       schedule();
635 
636       exitRegion();
637       ++RegionIdx;
638     }
639     finishBlock();
640 
641     if (Stage == UnclusteredReschedule)
642       SavedMutations.swap(Mutations);
643   } while (Stage != LastStage);
644 }
645