1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "GCNSubtarget.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "SIMachineFunctionInfo.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/ScheduleDAG.h" 20 #include "llvm/TargetParser/TargetParser.h" 21 22 using namespace llvm; 23 24 namespace { 25 26 struct MFMAPaddingRatioParser : public cl::parser<unsigned> { 27 MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {} 28 29 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 30 if (Arg.getAsInteger(0, Value)) 31 return O.error("'" + Arg + "' value invalid for uint argument!"); 32 33 if (Value > 100) 34 return O.error("'" + Arg + "' value must be in the range [0, 100]!"); 35 36 return false; 37 } 38 }; 39 40 } // end anonymous namespace 41 42 static cl::opt<unsigned, false, MFMAPaddingRatioParser> 43 MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden, 44 cl::desc("Fill a percentage of the latency between " 45 "neighboring MFMA with s_nops.")); 46 47 //===----------------------------------------------------------------------===// 48 // Hazard Recognizer Implementation 49 //===----------------------------------------------------------------------===// 50 51 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 52 const GCNSubtarget &ST); 53 54 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 55 IsHazardRecognizerMode(false), 56 CurrCycleInstr(nullptr), 57 MF(MF), 58 ST(MF.getSubtarget<GCNSubtarget>()), 59 TII(*ST.getInstrInfo()), 60 TRI(TII.getRegisterInfo()), 61 ClauseUses(TRI.getNumRegUnits()), 62 ClauseDefs(TRI.getNumRegUnits()) { 63 MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5; 64 TSchedModel.init(&ST); 65 RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST); 66 } 67 68 void GCNHazardRecognizer::Reset() { 69 EmittedInstrs.clear(); 70 } 71 72 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 73 EmitInstruction(SU->getInstr()); 74 } 75 76 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 77 CurrCycleInstr = MI; 78 } 79 80 static bool isDivFMas(unsigned Opcode) { 81 return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64; 82 } 83 84 static bool isSGetReg(unsigned Opcode) { 85 return Opcode == AMDGPU::S_GETREG_B32; 86 } 87 88 static bool isSSetReg(unsigned Opcode) { 89 switch (Opcode) { 90 case AMDGPU::S_SETREG_B32: 91 case AMDGPU::S_SETREG_B32_mode: 92 case AMDGPU::S_SETREG_IMM32_B32: 93 case AMDGPU::S_SETREG_IMM32_B32_mode: 94 return true; 95 } 96 return false; 97 } 98 99 static bool isRWLane(unsigned Opcode) { 100 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 101 } 102 103 static bool isRFE(unsigned Opcode) { 104 return Opcode == AMDGPU::S_RFE_B64; 105 } 106 107 static bool isSMovRel(unsigned Opcode) { 108 switch (Opcode) { 109 case AMDGPU::S_MOVRELS_B32: 110 case AMDGPU::S_MOVRELS_B64: 111 case AMDGPU::S_MOVRELD_B32: 112 case AMDGPU::S_MOVRELD_B64: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static bool isDGEMM(unsigned Opcode) { 120 return AMDGPU::getMAIIsDGEMM(Opcode); 121 } 122 123 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) { 124 unsigned Opcode = MI.getOpcode(); 125 126 if (!SIInstrInfo::isMAI(MI) || 127 isDGEMM(Opcode) || 128 Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 129 Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64) 130 return false; 131 132 if (!ST.hasGFX940Insts()) 133 return true; 134 135 return AMDGPU::getMAIIsGFX940XDL(Opcode); 136 } 137 138 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 139 const MachineInstr &MI) { 140 if (TII.isAlwaysGDS(MI.getOpcode())) 141 return true; 142 143 switch (MI.getOpcode()) { 144 case AMDGPU::S_SENDMSG: 145 case AMDGPU::S_SENDMSGHALT: 146 case AMDGPU::S_TTRACEDATA: 147 return true; 148 // These DS opcodes don't support GDS. 149 case AMDGPU::DS_NOP: 150 case AMDGPU::DS_PERMUTE_B32: 151 case AMDGPU::DS_BPERMUTE_B32: 152 return false; 153 default: 154 if (TII.isDS(MI.getOpcode())) { 155 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 156 AMDGPU::OpName::gds); 157 if (MI.getOperand(GDS).getImm()) 158 return true; 159 } 160 return false; 161 } 162 } 163 164 static bool isPermlane(const MachineInstr &MI) { 165 unsigned Opcode = MI.getOpcode(); 166 return Opcode == AMDGPU::V_PERMLANE16_B32_e64 || 167 Opcode == AMDGPU::V_PERMLANE64_B32 || 168 Opcode == AMDGPU::V_PERMLANEX16_B32_e64 || 169 Opcode == AMDGPU::V_PERMLANE16_VAR_B32_e64 || 170 Opcode == AMDGPU::V_PERMLANEX16_VAR_B32_e64; 171 } 172 173 static bool isLdsDma(const MachineInstr &MI) { 174 return SIInstrInfo::isVALU(MI) && 175 (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)); 176 } 177 178 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 179 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 180 AMDGPU::OpName::simm16); 181 return std::get<0>(AMDGPU::Hwreg::HwregEncoding::decode(RegOp->getImm())); 182 } 183 184 ScheduleHazardRecognizer::HazardType 185 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 186 MachineInstr *MI = SU->getInstr(); 187 // If we are not in "HazardRecognizerMode" and therefore not being run from 188 // the scheduler, track possible stalls from hazards but don't insert noops. 189 auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard; 190 191 if (MI->isBundle()) 192 return NoHazard; 193 194 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 195 return HazardType; 196 197 if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) 198 return HazardType; 199 200 if (checkFPAtomicToDenormModeHazard(MI) > 0) 201 return HazardType; 202 203 if (ST.hasNoDataDepHazard()) 204 return NoHazard; 205 206 // FIXME: Should flat be considered vmem? 207 if ((SIInstrInfo::isVMEM(*MI) || 208 SIInstrInfo::isFLAT(*MI)) 209 && checkVMEMHazards(MI) > 0) 210 return HazardType; 211 212 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 213 return HazardType; 214 215 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 216 return HazardType; 217 218 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 219 return HazardType; 220 221 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 222 return HazardType; 223 224 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 225 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 226 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 227 return HazardType; 228 229 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 230 return HazardType; 231 232 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 233 return HazardType; 234 235 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 236 return HazardType; 237 238 if (((ST.hasReadM0MovRelInterpHazard() && 239 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 240 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 241 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 242 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 243 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 244 (ST.hasReadM0LdsDirectHazard() && 245 MI->readsRegister(AMDGPU::LDS_DIRECT, /*TRI=*/nullptr))) && 246 checkReadM0Hazards(MI) > 0) 247 return HazardType; 248 249 if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0) 250 return HazardType; 251 252 if ((SIInstrInfo::isVMEM(*MI) || 253 SIInstrInfo::isFLAT(*MI) || 254 SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0) 255 return HazardType; 256 257 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 258 return HazardType; 259 260 return NoHazard; 261 } 262 263 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII, 264 unsigned Quantity) { 265 while (Quantity > 0) { 266 unsigned Arg = std::min(Quantity, 8u); 267 Quantity -= Arg; 268 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP)) 269 .addImm(Arg - 1); 270 } 271 } 272 273 unsigned 274 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const { 275 const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI); 276 assert(TSchedModel.getWriteProcResBegin(SC) != 277 TSchedModel.getWriteProcResEnd(SC)); 278 return TSchedModel.getWriteProcResBegin(SC)->ReleaseAtCycle; 279 } 280 281 void GCNHazardRecognizer::processBundle() { 282 MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator()); 283 MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); 284 // Check bundled MachineInstr's for hazards. 285 for (; MI != E && MI->isInsideBundle(); ++MI) { 286 CurrCycleInstr = &*MI; 287 unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); 288 289 if (IsHazardRecognizerMode) { 290 fixHazards(CurrCycleInstr); 291 292 insertNoopsInBundle(CurrCycleInstr, TII, WaitStates); 293 } 294 295 // It’s unnecessary to track more than MaxLookAhead instructions. Since we 296 // include the bundled MI directly after, only add a maximum of 297 // (MaxLookAhead - 1) noops to EmittedInstrs. 298 for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i) 299 EmittedInstrs.push_front(nullptr); 300 301 EmittedInstrs.push_front(CurrCycleInstr); 302 EmittedInstrs.resize(MaxLookAhead); 303 } 304 CurrCycleInstr = nullptr; 305 } 306 307 void GCNHazardRecognizer::runOnInstruction(MachineInstr *MI) { 308 assert(IsHazardRecognizerMode); 309 310 unsigned NumPreNoops = PreEmitNoops(MI); 311 EmitNoops(NumPreNoops); 312 if (MI->isInsideBundle()) 313 insertNoopsInBundle(MI, TII, NumPreNoops); 314 else 315 TII.insertNoops(*MI->getParent(), MachineBasicBlock::iterator(MI), 316 NumPreNoops); 317 EmitInstruction(MI); 318 AdvanceCycle(); 319 } 320 321 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 322 IsHazardRecognizerMode = true; 323 CurrCycleInstr = MI; 324 unsigned W = PreEmitNoopsCommon(MI); 325 fixHazards(MI); 326 CurrCycleInstr = nullptr; 327 return W; 328 } 329 330 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 331 if (MI->isBundle()) 332 return 0; 333 334 int WaitStates = 0; 335 336 if (SIInstrInfo::isSMRD(*MI)) 337 return std::max(WaitStates, checkSMRDHazards(MI)); 338 339 if (ST.hasNSAtoVMEMBug()) 340 WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI)); 341 342 WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI)); 343 344 if (ST.hasNoDataDepHazard()) 345 return WaitStates; 346 347 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 348 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 349 350 if (SIInstrInfo::isVALU(*MI)) 351 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 352 353 if (SIInstrInfo::isDPP(*MI)) 354 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 355 356 if (isDivFMas(MI->getOpcode())) 357 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 358 359 if (isRWLane(MI->getOpcode())) 360 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 361 362 if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) || 363 SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) || 364 SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0) 365 WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI)); 366 367 if (MI->isInlineAsm()) 368 return std::max(WaitStates, checkInlineAsmHazards(MI)); 369 370 if (isSGetReg(MI->getOpcode())) 371 return std::max(WaitStates, checkGetRegHazards(MI)); 372 373 if (isSSetReg(MI->getOpcode())) 374 return std::max(WaitStates, checkSetRegHazards(MI)); 375 376 if (isRFE(MI->getOpcode())) 377 return std::max(WaitStates, checkRFEHazards(MI)); 378 379 if ((ST.hasReadM0MovRelInterpHazard() && 380 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) || 381 MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 || 382 MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) || 383 (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) || 384 (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) || 385 (ST.hasReadM0LdsDirectHazard() && 386 MI->readsRegister(AMDGPU::LDS_DIRECT, /*TRI=*/nullptr))) 387 return std::max(WaitStates, checkReadM0Hazards(MI)); 388 389 if (SIInstrInfo::isMAI(*MI)) 390 return std::max(WaitStates, checkMAIHazards(MI)); 391 392 if (SIInstrInfo::isVMEM(*MI) || 393 SIInstrInfo::isFLAT(*MI) || 394 SIInstrInfo::isDS(*MI)) 395 return std::max(WaitStates, checkMAILdStHazards(MI)); 396 397 return WaitStates; 398 } 399 400 void GCNHazardRecognizer::EmitNoop() { 401 EmittedInstrs.push_front(nullptr); 402 } 403 404 void GCNHazardRecognizer::AdvanceCycle() { 405 // When the scheduler detects a stall, it will call AdvanceCycle() without 406 // emitting any instructions. 407 if (!CurrCycleInstr) { 408 EmittedInstrs.push_front(nullptr); 409 return; 410 } 411 412 if (CurrCycleInstr->isBundle()) { 413 processBundle(); 414 return; 415 } 416 417 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 418 if (!NumWaitStates) { 419 CurrCycleInstr = nullptr; 420 return; 421 } 422 423 // Keep track of emitted instructions 424 EmittedInstrs.push_front(CurrCycleInstr); 425 426 // Add a nullptr for each additional wait state after the first. Make sure 427 // not to add more than getMaxLookAhead() items to the list, since we 428 // truncate the list to that size right after this loop. 429 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 430 i < e; ++i) { 431 EmittedInstrs.push_front(nullptr); 432 } 433 434 // getMaxLookahead() is the largest number of wait states we will ever need 435 // to insert, so there is no point in keeping track of more than that many 436 // wait states. 437 EmittedInstrs.resize(getMaxLookAhead()); 438 439 CurrCycleInstr = nullptr; 440 } 441 442 void GCNHazardRecognizer::RecedeCycle() { 443 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 444 } 445 446 //===----------------------------------------------------------------------===// 447 // Helper Functions 448 //===----------------------------------------------------------------------===// 449 450 using HazardFnResult = enum { HazardFound, HazardExpired, NoHazardFound }; 451 452 using IsExpiredFn = function_ref<bool(const MachineInstr &, int WaitStates)>; 453 using GetNumWaitStatesFn = function_ref<unsigned int(const MachineInstr &)>; 454 455 // Search for a hazard in a block and its predecessors. 456 template <typename StateT> 457 static bool 458 hasHazard(StateT State, 459 function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard, 460 function_ref<void(StateT &, const MachineInstr &)> UpdateState, 461 const MachineBasicBlock *MBB, 462 MachineBasicBlock::const_reverse_instr_iterator I, 463 DenseSet<const MachineBasicBlock *> &Visited) { 464 for (auto E = MBB->instr_rend(); I != E; ++I) { 465 // No need to look at parent BUNDLE instructions. 466 if (I->isBundle()) 467 continue; 468 469 switch (IsHazard(State, *I)) { 470 case HazardFound: 471 return true; 472 case HazardExpired: 473 return false; 474 default: 475 // Continue search 476 break; 477 } 478 479 if (I->isInlineAsm() || I->isMetaInstruction()) 480 continue; 481 482 UpdateState(State, *I); 483 } 484 485 for (MachineBasicBlock *Pred : MBB->predecessors()) { 486 if (!Visited.insert(Pred).second) 487 continue; 488 489 if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(), 490 Visited)) 491 return true; 492 } 493 494 return false; 495 } 496 497 // Returns a minimum wait states since \p I walking all predecessors. 498 // Only scans until \p IsExpired does not return true. 499 // Can only be run in a hazard recognizer mode. 500 static int getWaitStatesSince( 501 GCNHazardRecognizer::IsHazardFn IsHazard, const MachineBasicBlock *MBB, 502 MachineBasicBlock::const_reverse_instr_iterator I, int WaitStates, 503 IsExpiredFn IsExpired, DenseSet<const MachineBasicBlock *> &Visited, 504 GetNumWaitStatesFn GetNumWaitStates = SIInstrInfo::getNumWaitStates) { 505 for (auto E = MBB->instr_rend(); I != E; ++I) { 506 // Don't add WaitStates for parent BUNDLE instructions. 507 if (I->isBundle()) 508 continue; 509 510 if (IsHazard(*I)) 511 return WaitStates; 512 513 if (I->isInlineAsm()) 514 continue; 515 516 WaitStates += GetNumWaitStates(*I); 517 518 if (IsExpired(*I, WaitStates)) 519 return std::numeric_limits<int>::max(); 520 } 521 522 int MinWaitStates = std::numeric_limits<int>::max(); 523 for (MachineBasicBlock *Pred : MBB->predecessors()) { 524 if (!Visited.insert(Pred).second) 525 continue; 526 527 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), WaitStates, 528 IsExpired, Visited, GetNumWaitStates); 529 530 MinWaitStates = std::min(MinWaitStates, W); 531 } 532 533 return MinWaitStates; 534 } 535 536 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 537 const MachineInstr *MI, IsExpiredFn IsExpired) { 538 DenseSet<const MachineBasicBlock *> Visited; 539 return getWaitStatesSince(IsHazard, MI->getParent(), 540 std::next(MI->getReverseIterator()), 541 0, IsExpired, Visited); 542 } 543 544 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 545 if (IsHazardRecognizerMode) { 546 auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) { 547 return WaitStates >= Limit; 548 }; 549 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 550 } 551 552 int WaitStates = 0; 553 for (MachineInstr *MI : EmittedInstrs) { 554 if (MI) { 555 if (IsHazard(*MI)) 556 return WaitStates; 557 558 if (MI->isInlineAsm()) 559 continue; 560 } 561 ++WaitStates; 562 563 if (WaitStates >= Limit) 564 break; 565 } 566 return std::numeric_limits<int>::max(); 567 } 568 569 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 570 IsHazardFn IsHazardDef, 571 int Limit) { 572 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 573 574 auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) { 575 return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI); 576 }; 577 578 return getWaitStatesSince(IsHazardFn, Limit); 579 } 580 581 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 582 int Limit) { 583 auto IsHazardFn = [IsHazard](const MachineInstr &MI) { 584 return isSSetReg(MI.getOpcode()) && IsHazard(MI); 585 }; 586 587 return getWaitStatesSince(IsHazardFn, Limit); 588 } 589 590 //===----------------------------------------------------------------------===// 591 // No-op Hazard Detection 592 //===----------------------------------------------------------------------===// 593 594 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV, 595 MCRegister Reg) { 596 for (MCRegUnit Unit : TRI.regunits(Reg)) 597 BV.set(Unit); 598 } 599 600 static void addRegsToSet(const SIRegisterInfo &TRI, 601 iterator_range<MachineInstr::const_mop_iterator> Ops, 602 BitVector &DefSet, BitVector &UseSet) { 603 for (const MachineOperand &Op : Ops) { 604 if (Op.isReg()) 605 addRegUnits(TRI, Op.isDef() ? DefSet : UseSet, Op.getReg().asMCReg()); 606 } 607 } 608 609 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 610 addRegsToSet(TRI, MI.operands(), ClauseDefs, ClauseUses); 611 } 612 613 static bool breaksSMEMSoftClause(MachineInstr *MI) { 614 return !SIInstrInfo::isSMRD(*MI); 615 } 616 617 static bool breaksVMEMSoftClause(MachineInstr *MI) { 618 return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI); 619 } 620 621 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 622 // SMEM soft clause are only present on VI+, and only matter if xnack is 623 // enabled. 624 if (!ST.isXNACKEnabled()) 625 return 0; 626 627 bool IsSMRD = TII.isSMRD(*MEM); 628 629 resetClause(); 630 631 // A soft-clause is any group of consecutive SMEM instructions. The 632 // instructions in this group may return out of order and/or may be 633 // replayed (i.e. the same instruction issued more than once). 634 // 635 // In order to handle these situations correctly we need to make sure that 636 // when a clause has more than one instruction, no instruction in the clause 637 // writes to a register that is read by another instruction in the clause 638 // (including itself). If we encounter this situation, we need to break the 639 // clause by inserting a non SMEM instruction. 640 641 for (MachineInstr *MI : EmittedInstrs) { 642 // When we hit a non-SMEM instruction then we have passed the start of the 643 // clause and we can stop. 644 if (!MI) 645 break; 646 647 if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI)) 648 break; 649 650 addClauseInst(*MI); 651 } 652 653 if (ClauseDefs.none()) 654 return 0; 655 656 // We need to make sure not to put loads and stores in the same clause if they 657 // use the same address. For now, just start a new clause whenever we see a 658 // store. 659 if (MEM->mayStore()) 660 return 1; 661 662 addClauseInst(*MEM); 663 664 // If the set of defs and uses intersect then we cannot add this instruction 665 // to the clause, so we have a hazard. 666 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 667 } 668 669 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 670 int WaitStatesNeeded = 0; 671 672 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 673 674 // This SMRD hazard only affects SI. 675 if (!ST.hasSMRDReadVALUDefHazard()) 676 return WaitStatesNeeded; 677 678 // A read of an SGPR by SMRD instruction requires 4 wait states when the 679 // SGPR was written by a VALU instruction. 680 int SmrdSgprWaitStates = 4; 681 auto IsHazardDefFn = [this](const MachineInstr &MI) { 682 return TII.isVALU(MI); 683 }; 684 auto IsBufferHazardDefFn = [this](const MachineInstr &MI) { 685 return TII.isSALU(MI); 686 }; 687 688 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 689 690 for (const MachineOperand &Use : SMRD->uses()) { 691 if (!Use.isReg()) 692 continue; 693 int WaitStatesNeededForUse = 694 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 695 SmrdSgprWaitStates); 696 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 697 698 // This fixes what appears to be undocumented hardware behavior in SI where 699 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 700 // needs some number of nops in between. We don't know how many we need, but 701 // let's use 4. This wasn't discovered before probably because the only 702 // case when this happens is when we expand a 64-bit pointer into a full 703 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 704 // probably never encountered in the closed-source land. 705 if (IsBufferSMRD) { 706 int WaitStatesNeededForUse = 707 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 708 IsBufferHazardDefFn, 709 SmrdSgprWaitStates); 710 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 711 } 712 } 713 714 return WaitStatesNeeded; 715 } 716 717 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 718 if (!ST.hasVMEMReadSGPRVALUDefHazard()) 719 return 0; 720 721 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 722 723 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 724 // SGPR was written by a VALU Instruction. 725 const int VmemSgprWaitStates = 5; 726 auto IsHazardDefFn = [this](const MachineInstr &MI) { 727 return TII.isVALU(MI); 728 }; 729 for (const MachineOperand &Use : VMEM->uses()) { 730 if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg())) 731 continue; 732 733 int WaitStatesNeededForUse = 734 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 735 VmemSgprWaitStates); 736 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 737 } 738 return WaitStatesNeeded; 739 } 740 741 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 742 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 743 const SIInstrInfo *TII = ST.getInstrInfo(); 744 745 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 746 int DppVgprWaitStates = 2; 747 int DppExecWaitStates = 5; 748 int WaitStatesNeeded = 0; 749 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 750 return TII->isVALU(MI); 751 }; 752 753 for (const MachineOperand &Use : DPP->uses()) { 754 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 755 continue; 756 int WaitStatesNeededForUse = 757 DppVgprWaitStates - getWaitStatesSinceDef( 758 Use.getReg(), 759 [](const MachineInstr &) { return true; }, 760 DppVgprWaitStates); 761 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 762 } 763 764 WaitStatesNeeded = std::max( 765 WaitStatesNeeded, 766 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 767 DppExecWaitStates)); 768 769 return WaitStatesNeeded; 770 } 771 772 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 773 const SIInstrInfo *TII = ST.getInstrInfo(); 774 775 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 776 // instruction. 777 const int DivFMasWaitStates = 4; 778 auto IsHazardDefFn = [TII](const MachineInstr &MI) { 779 return TII->isVALU(MI); 780 }; 781 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 782 DivFMasWaitStates); 783 784 return DivFMasWaitStates - WaitStatesNeeded; 785 } 786 787 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 788 const SIInstrInfo *TII = ST.getInstrInfo(); 789 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 790 791 const int GetRegWaitStates = 2; 792 auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) { 793 return GetRegHWReg == getHWReg(TII, MI); 794 }; 795 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 796 797 return GetRegWaitStates - WaitStatesNeeded; 798 } 799 800 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 801 const SIInstrInfo *TII = ST.getInstrInfo(); 802 unsigned HWReg = getHWReg(TII, *SetRegInstr); 803 804 const int SetRegWaitStates = ST.getSetRegWaitStates(); 805 auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) { 806 return HWReg == getHWReg(TII, MI); 807 }; 808 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 809 return SetRegWaitStates - WaitStatesNeeded; 810 } 811 812 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 813 if (!MI.mayStore()) 814 return -1; 815 816 const SIInstrInfo *TII = ST.getInstrInfo(); 817 unsigned Opcode = MI.getOpcode(); 818 const MCInstrDesc &Desc = MI.getDesc(); 819 820 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 821 int VDataRCID = -1; 822 if (VDataIdx != -1) 823 VDataRCID = Desc.operands()[VDataIdx].RegClass; 824 825 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 826 // There is no hazard if the instruction does not use vector regs 827 // (like wbinvl1) 828 if (VDataIdx == -1) 829 return -1; 830 // For MUBUF/MTBUF instructions this hazard only exists if the 831 // instruction is not using a register in the soffset field. 832 const MachineOperand *SOffset = 833 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 834 // If we have no soffset operand, then assume this field has been 835 // hardcoded to zero. 836 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 837 (!SOffset || !SOffset->isReg())) 838 return VDataIdx; 839 } 840 841 // MIMG instructions create a hazard if they don't use a 256-bit T# and 842 // the store size is greater than 8 bytes and they have more than two bits 843 // of their dmask set. 844 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 845 if (TII->isMIMG(MI)) { 846 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 847 assert(SRsrcIdx != -1 && 848 AMDGPU::getRegBitWidth(Desc.operands()[SRsrcIdx].RegClass) == 256); 849 (void)SRsrcIdx; 850 } 851 852 if (TII->isFLAT(MI)) { 853 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 854 if (AMDGPU::getRegBitWidth(Desc.operands()[DataIdx].RegClass) > 64) 855 return DataIdx; 856 } 857 858 return -1; 859 } 860 861 int 862 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 863 const MachineRegisterInfo &MRI) { 864 // Helper to check for the hazard where VMEM instructions that store more than 865 // 8 bytes can have there store data over written by the next instruction. 866 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 867 868 const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1; 869 int WaitStatesNeeded = 0; 870 871 if (!TRI->isVectorRegister(MRI, Def.getReg())) 872 return WaitStatesNeeded; 873 Register Reg = Def.getReg(); 874 auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) { 875 int DataIdx = createsVALUHazard(MI); 876 return DataIdx >= 0 && 877 TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg); 878 }; 879 int WaitStatesNeededForDef = 880 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 881 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 882 883 return WaitStatesNeeded; 884 } 885 886 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 887 int WaitStatesNeeded = 0; 888 889 if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) { 890 const int TransDefWaitstates = 1; 891 892 auto IsTransDefFn = [this, VALU](const MachineInstr &MI) { 893 if (!SIInstrInfo::isTRANS(MI)) 894 return false; 895 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 896 const SIInstrInfo *TII = ST.getInstrInfo(); 897 Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg(); 898 899 for (const MachineOperand &Use : VALU->explicit_uses()) { 900 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 901 return true; 902 } 903 904 return false; 905 }; 906 907 int WaitStatesNeededForDef = 908 TransDefWaitstates - 909 getWaitStatesSince(IsTransDefFn, TransDefWaitstates); 910 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 911 } 912 913 if (ST.hasDstSelForwardingHazard()) { 914 const int Shift16DefWaitstates = 1; 915 916 auto IsShift16BitDefFn = [this, VALU](const MachineInstr &MI) { 917 if (!SIInstrInfo::isVALU(MI)) 918 return false; 919 const SIInstrInfo *TII = ST.getInstrInfo(); 920 if (SIInstrInfo::isSDWA(MI)) { 921 if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel)) 922 if (DstSel->getImm() == AMDGPU::SDWA::DWORD) 923 return false; 924 } else { 925 if (!AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::op_sel) || 926 !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers) 927 ->getImm() & 928 SISrcMods::DST_OP_SEL)) 929 return false; 930 } 931 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 932 if (auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) { 933 Register Def = Dst->getReg(); 934 935 for (const MachineOperand &Use : VALU->explicit_uses()) { 936 if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg())) 937 return true; 938 } 939 } 940 941 return false; 942 }; 943 944 int WaitStatesNeededForDef = 945 Shift16DefWaitstates - 946 getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates); 947 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 948 } 949 950 if (ST.hasVDecCoExecHazard()) { 951 const int VALUWriteSGPRVALUReadWaitstates = 2; 952 const int VALUWriteEXECRWLane = 4; 953 const int VALUWriteVGPRReadlaneRead = 1; 954 955 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 956 const MachineRegisterInfo &MRI = MF.getRegInfo(); 957 Register UseReg; 958 auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) { 959 if (!SIInstrInfo::isVALU(MI)) 960 return false; 961 return MI.modifiesRegister(UseReg, TRI); 962 }; 963 964 for (const MachineOperand &Use : VALU->explicit_uses()) { 965 if (!Use.isReg()) 966 continue; 967 968 UseReg = Use.getReg(); 969 if (TRI->isSGPRReg(MRI, UseReg)) { 970 int WaitStatesNeededForDef = 971 VALUWriteSGPRVALUReadWaitstates - 972 getWaitStatesSince(IsVALUDefSGPRFn, 973 VALUWriteSGPRVALUReadWaitstates); 974 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 975 } 976 } 977 978 if (VALU->readsRegister(AMDGPU::VCC, TRI)) { 979 UseReg = AMDGPU::VCC; 980 int WaitStatesNeededForDef = 981 VALUWriteSGPRVALUReadWaitstates - 982 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates); 983 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 984 } 985 986 switch (VALU->getOpcode()) { 987 case AMDGPU::V_READLANE_B32: 988 case AMDGPU::V_READFIRSTLANE_B32: { 989 MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0); 990 UseReg = Src->getReg(); 991 int WaitStatesNeededForDef = 992 VALUWriteVGPRReadlaneRead - 993 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead); 994 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 995 } 996 [[fallthrough]]; 997 case AMDGPU::V_WRITELANE_B32: { 998 UseReg = AMDGPU::EXEC; 999 int WaitStatesNeededForDef = 1000 VALUWriteEXECRWLane - 1001 getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane); 1002 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 1003 break; 1004 } 1005 default: 1006 break; 1007 } 1008 } 1009 1010 // This checks for the hazard where VMEM instructions that store more than 1011 // 8 bytes can have there store data over written by the next instruction. 1012 if (!ST.has12DWordStoreHazard()) 1013 return WaitStatesNeeded; 1014 1015 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1016 1017 for (const MachineOperand &Def : VALU->defs()) { 1018 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 1019 } 1020 1021 return WaitStatesNeeded; 1022 } 1023 1024 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 1025 // This checks for hazards associated with inline asm statements. 1026 // Since inline asms can contain just about anything, we use this 1027 // to call/leverage other check*Hazard routines. Note that 1028 // this function doesn't attempt to address all possible inline asm 1029 // hazards (good luck), but is a collection of what has been 1030 // problematic thus far. 1031 1032 // see checkVALUHazards() 1033 if (!ST.has12DWordStoreHazard()) 1034 return 0; 1035 1036 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1037 int WaitStatesNeeded = 0; 1038 1039 for (const MachineOperand &Op : 1040 llvm::drop_begin(IA->operands(), InlineAsm::MIOp_FirstOperand)) { 1041 if (Op.isReg() && Op.isDef()) { 1042 WaitStatesNeeded = 1043 std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 1044 } 1045 } 1046 1047 return WaitStatesNeeded; 1048 } 1049 1050 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 1051 const SIInstrInfo *TII = ST.getInstrInfo(); 1052 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1053 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1054 1055 const MachineOperand *LaneSelectOp = 1056 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 1057 1058 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 1059 return 0; 1060 1061 Register LaneSelectReg = LaneSelectOp->getReg(); 1062 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); }; 1063 1064 const int RWLaneWaitStates = 4; 1065 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 1066 RWLaneWaitStates); 1067 return RWLaneWaitStates - WaitStatesSince; 1068 } 1069 1070 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 1071 if (!ST.hasRFEHazards()) 1072 return 0; 1073 1074 const SIInstrInfo *TII = ST.getInstrInfo(); 1075 1076 const int RFEWaitStates = 1; 1077 1078 auto IsHazardFn = [TII](const MachineInstr &MI) { 1079 return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS; 1080 }; 1081 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 1082 return RFEWaitStates - WaitStatesNeeded; 1083 } 1084 1085 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 1086 const SIInstrInfo *TII = ST.getInstrInfo(); 1087 const int ReadM0WaitStates = 1; 1088 auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); }; 1089 return ReadM0WaitStates - 1090 getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, ReadM0WaitStates); 1091 } 1092 1093 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { 1094 fixVMEMtoScalarWriteHazards(MI); 1095 fixVcmpxPermlaneHazards(MI); 1096 fixSMEMtoVectorWriteHazards(MI); 1097 fixVcmpxExecWARHazard(MI); 1098 fixLdsBranchVmemWARHazard(MI); 1099 if (ST.hasLdsDirect()) { 1100 fixLdsDirectVALUHazard(MI); 1101 fixLdsDirectVMEMHazard(MI); 1102 } 1103 fixVALUPartialForwardingHazard(MI); 1104 fixVALUTransUseHazard(MI); 1105 fixWMMAHazards(MI); 1106 fixShift64HighRegBug(MI); 1107 fixVALUMaskWriteHazard(MI); 1108 fixRequiredExportPriority(MI); 1109 } 1110 1111 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) { 1112 if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI)) 1113 return false; 1114 1115 const SIInstrInfo *TII = ST.getInstrInfo(); 1116 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1117 auto IsHazardFn = [TII, TRI](const MachineInstr &MI) { 1118 return (TII->isVOPC(MI) || 1119 ((TII->isVOP3(MI) || TII->isSDWA(MI)) && MI.isCompare())) && 1120 MI.modifiesRegister(AMDGPU::EXEC, TRI); 1121 }; 1122 1123 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1124 unsigned Opc = MI.getOpcode(); 1125 return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 && 1126 Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa; 1127 }; 1128 1129 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1130 std::numeric_limits<int>::max()) 1131 return false; 1132 1133 // V_NOP will be discarded by SQ. 1134 // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE* 1135 // which is always a VGPR and available. 1136 auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1137 Register Reg = Src0->getReg(); 1138 bool IsUndef = Src0->isUndef(); 1139 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1140 TII->get(AMDGPU::V_MOV_B32_e32)) 1141 .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0)) 1142 .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill); 1143 1144 return true; 1145 } 1146 1147 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { 1148 if (!ST.hasVMEMtoScalarWriteHazard()) 1149 return false; 1150 assert(!ST.hasExtendedWaitCounts()); 1151 1152 if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI)) 1153 return false; 1154 1155 if (MI->getNumDefs() == 0) 1156 return false; 1157 1158 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1159 1160 auto IsHazardFn = [TRI, MI](const MachineInstr &I) { 1161 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) && 1162 !SIInstrInfo::isFLAT(I)) 1163 return false; 1164 1165 for (const MachineOperand &Def : MI->defs()) { 1166 const MachineOperand *Op = 1167 I.findRegisterUseOperand(Def.getReg(), TRI, false); 1168 if (!Op) 1169 continue; 1170 return true; 1171 } 1172 return false; 1173 }; 1174 1175 auto IsExpiredFn = [](const MachineInstr &MI, int) { 1176 return SIInstrInfo::isVALU(MI) || 1177 (MI.getOpcode() == AMDGPU::S_WAITCNT && 1178 !MI.getOperand(0).getImm()) || 1179 (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1180 AMDGPU::DepCtr::decodeFieldVmVsrc(MI.getOperand(0).getImm()) == 0); 1181 }; 1182 1183 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1184 std::numeric_limits<int>::max()) 1185 return false; 1186 1187 const SIInstrInfo *TII = ST.getInstrInfo(); 1188 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1189 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1190 .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0)); 1191 return true; 1192 } 1193 1194 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { 1195 if (!ST.hasSMEMtoVectorWriteHazard()) 1196 return false; 1197 assert(!ST.hasExtendedWaitCounts()); 1198 1199 if (!SIInstrInfo::isVALU(*MI)) 1200 return false; 1201 1202 unsigned SDSTName; 1203 switch (MI->getOpcode()) { 1204 case AMDGPU::V_READLANE_B32: 1205 case AMDGPU::V_READFIRSTLANE_B32: 1206 SDSTName = AMDGPU::OpName::vdst; 1207 break; 1208 default: 1209 SDSTName = AMDGPU::OpName::sdst; 1210 break; 1211 } 1212 1213 const SIInstrInfo *TII = ST.getInstrInfo(); 1214 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1215 const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU()); 1216 const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName); 1217 if (!SDST) { 1218 for (const auto &MO : MI->implicit_operands()) { 1219 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) { 1220 SDST = &MO; 1221 break; 1222 } 1223 } 1224 } 1225 1226 if (!SDST) 1227 return false; 1228 1229 const Register SDSTReg = SDST->getReg(); 1230 auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) { 1231 return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI); 1232 }; 1233 1234 auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) { 1235 if (TII->isSALU(MI)) { 1236 switch (MI.getOpcode()) { 1237 case AMDGPU::S_SETVSKIP: 1238 case AMDGPU::S_VERSION: 1239 case AMDGPU::S_WAITCNT_VSCNT: 1240 case AMDGPU::S_WAITCNT_VMCNT: 1241 case AMDGPU::S_WAITCNT_EXPCNT: 1242 // These instructions cannot not mitigate the hazard. 1243 return false; 1244 case AMDGPU::S_WAITCNT_LGKMCNT: 1245 // Reducing lgkmcnt count to 0 always mitigates the hazard. 1246 return (MI.getOperand(1).getImm() == 0) && 1247 (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1248 case AMDGPU::S_WAITCNT: { 1249 const int64_t Imm = MI.getOperand(0).getImm(); 1250 AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm); 1251 // DsCnt corresponds to LGKMCnt here. 1252 return (Decoded.DsCnt == 0); 1253 } 1254 default: 1255 // SOPP instructions cannot mitigate the hazard. 1256 if (TII->isSOPP(MI)) 1257 return false; 1258 // At this point the SALU can be assumed to mitigate the hazard 1259 // because either: 1260 // (a) it is independent of the at risk SMEM (breaking chain), 1261 // or 1262 // (b) it is dependent on the SMEM, in which case an appropriate 1263 // s_waitcnt lgkmcnt _must_ exist between it and the at risk 1264 // SMEM instruction. 1265 return true; 1266 } 1267 } 1268 return false; 1269 }; 1270 1271 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1272 std::numeric_limits<int>::max()) 1273 return false; 1274 1275 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1276 TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL) 1277 .addImm(0); 1278 return true; 1279 } 1280 1281 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { 1282 if (!ST.hasVcmpxExecWARHazard()) 1283 return false; 1284 assert(!ST.hasExtendedWaitCounts()); 1285 1286 if (!SIInstrInfo::isVALU(*MI)) 1287 return false; 1288 1289 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1290 if (!MI->modifiesRegister(AMDGPU::EXEC, TRI)) 1291 return false; 1292 1293 auto IsHazardFn = [TRI](const MachineInstr &I) { 1294 if (SIInstrInfo::isVALU(I)) 1295 return false; 1296 return I.readsRegister(AMDGPU::EXEC, TRI); 1297 }; 1298 1299 const SIInstrInfo *TII = ST.getInstrInfo(); 1300 auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) { 1301 if (SIInstrInfo::isVALU(MI)) { 1302 if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst)) 1303 return true; 1304 for (auto MO : MI.implicit_operands()) 1305 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) 1306 return true; 1307 } 1308 if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1309 AMDGPU::DepCtr::decodeFieldSaSdst(MI.getOperand(0).getImm()) == 0) 1310 return true; 1311 return false; 1312 }; 1313 1314 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1315 std::numeric_limits<int>::max()) 1316 return false; 1317 1318 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1319 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1320 .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0)); 1321 return true; 1322 } 1323 1324 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF, 1325 const GCNSubtarget &ST) { 1326 if (!ST.hasLdsBranchVmemWARHazard()) 1327 return false; 1328 1329 // Check if the necessary condition for the hazard is met: both LDS and VMEM 1330 // instructions need to appear in the same function. 1331 bool HasLds = false; 1332 bool HasVmem = false; 1333 for (auto &MBB : MF) { 1334 for (auto &MI : MBB) { 1335 HasLds |= SIInstrInfo::isDS(MI); 1336 HasVmem |= 1337 SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI); 1338 if (HasLds && HasVmem) 1339 return true; 1340 } 1341 } 1342 return false; 1343 } 1344 1345 static bool isStoreCountWaitZero(const MachineInstr &I) { 1346 return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1347 I.getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1348 !I.getOperand(1).getImm(); 1349 } 1350 1351 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { 1352 if (!RunLdsBranchVmemWARHazardFixup) 1353 return false; 1354 1355 assert(ST.hasLdsBranchVmemWARHazard()); 1356 assert(!ST.hasExtendedWaitCounts()); 1357 1358 auto IsHazardInst = [](const MachineInstr &MI) { 1359 if (SIInstrInfo::isDS(MI)) 1360 return 1; 1361 if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI)) 1362 return 2; 1363 return 0; 1364 }; 1365 1366 auto InstType = IsHazardInst(*MI); 1367 if (!InstType) 1368 return false; 1369 1370 auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) { 1371 return IsHazardInst(I) || isStoreCountWaitZero(I); 1372 }; 1373 1374 auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) { 1375 if (!I.isBranch()) 1376 return false; 1377 1378 auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) { 1379 auto InstType2 = IsHazardInst(I); 1380 return InstType2 && InstType != InstType2; 1381 }; 1382 1383 auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) { 1384 auto InstType2 = IsHazardInst(I); 1385 if (InstType == InstType2) 1386 return true; 1387 1388 return isStoreCountWaitZero(I); 1389 }; 1390 1391 return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) != 1392 std::numeric_limits<int>::max(); 1393 }; 1394 1395 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1396 std::numeric_limits<int>::max()) 1397 return false; 1398 1399 const SIInstrInfo *TII = ST.getInstrInfo(); 1400 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1401 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1402 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1403 .addImm(0); 1404 1405 return true; 1406 } 1407 1408 bool GCNHazardRecognizer::fixLdsDirectVALUHazard(MachineInstr *MI) { 1409 if (!SIInstrInfo::isLDSDIR(*MI)) 1410 return false; 1411 1412 const int NoHazardWaitStates = 15; 1413 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1414 const Register VDSTReg = VDST->getReg(); 1415 1416 bool VisitedTrans = false; 1417 auto IsHazardFn = [this, VDSTReg, &VisitedTrans](const MachineInstr &I) { 1418 if (!SIInstrInfo::isVALU(I)) 1419 return false; 1420 VisitedTrans = VisitedTrans || SIInstrInfo::isTRANS(I); 1421 // Cover both WAR and WAW 1422 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1423 }; 1424 auto IsExpiredFn = [&](const MachineInstr &I, int WaitStates) { 1425 if (WaitStates >= NoHazardWaitStates) 1426 return true; 1427 // Instructions which cause va_vdst==0 expire hazard 1428 return SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1429 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I); 1430 }; 1431 auto GetWaitStatesFn = [](const MachineInstr &MI) { 1432 return SIInstrInfo::isVALU(MI) ? 1 : 0; 1433 }; 1434 1435 DenseSet<const MachineBasicBlock *> Visited; 1436 auto Count = ::getWaitStatesSince(IsHazardFn, MI->getParent(), 1437 std::next(MI->getReverseIterator()), 0, 1438 IsExpiredFn, Visited, GetWaitStatesFn); 1439 1440 // Transcendentals can execute in parallel to other VALUs. 1441 // This makes va_vdst count unusable with a mixture of VALU and TRANS. 1442 if (VisitedTrans) 1443 Count = 0; 1444 1445 MachineOperand *WaitVdstOp = 1446 TII.getNamedOperand(*MI, AMDGPU::OpName::waitvdst); 1447 WaitVdstOp->setImm(std::min(Count, NoHazardWaitStates)); 1448 1449 return true; 1450 } 1451 1452 bool GCNHazardRecognizer::fixLdsDirectVMEMHazard(MachineInstr *MI) { 1453 if (!SIInstrInfo::isLDSDIR(*MI)) 1454 return false; 1455 1456 const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst); 1457 const Register VDSTReg = VDST->getReg(); 1458 1459 auto IsHazardFn = [this, VDSTReg](const MachineInstr &I) { 1460 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I) && 1461 !SIInstrInfo::isDS(I)) 1462 return false; 1463 return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI); 1464 }; 1465 bool LdsdirCanWait = ST.hasLdsWaitVMSRC(); 1466 // TODO: On GFX12 the hazard should expire on S_WAIT_LOADCNT/SAMPLECNT/BVHCNT 1467 // according to the type of VMEM instruction. 1468 auto IsExpiredFn = [this, LdsdirCanWait](const MachineInstr &I, int) { 1469 return SIInstrInfo::isVALU(I) || SIInstrInfo::isEXP(I) || 1470 (I.getOpcode() == AMDGPU::S_WAITCNT && !I.getOperand(0).getImm()) || 1471 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1472 AMDGPU::DepCtr::decodeFieldVmVsrc(I.getOperand(0).getImm()) == 0) || 1473 (LdsdirCanWait && SIInstrInfo::isLDSDIR(I) && 1474 !TII.getNamedOperand(I, AMDGPU::OpName::waitvsrc)->getImm()); 1475 }; 1476 1477 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1478 std::numeric_limits<int>::max()) 1479 return false; 1480 1481 if (LdsdirCanWait) { 1482 TII.getNamedOperand(*MI, AMDGPU::OpName::waitvsrc)->setImm(0); 1483 } else { 1484 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1485 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1486 .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0)); 1487 } 1488 1489 return true; 1490 } 1491 1492 bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) { 1493 if (!ST.hasVALUPartialForwardingHazard()) 1494 return false; 1495 assert(!ST.hasExtendedWaitCounts()); 1496 1497 if (!ST.isWave64() || !SIInstrInfo::isVALU(*MI)) 1498 return false; 1499 1500 SmallSetVector<Register, 4> SrcVGPRs; 1501 1502 for (const MachineOperand &Use : MI->explicit_uses()) { 1503 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1504 SrcVGPRs.insert(Use.getReg()); 1505 } 1506 1507 // Only applies with >= 2 unique VGPR sources 1508 if (SrcVGPRs.size() <= 1) 1509 return false; 1510 1511 // Look for the following pattern: 1512 // Va <- VALU [PreExecPos] 1513 // intv1 1514 // Exec <- SALU [ExecPos] 1515 // intv2 1516 // Vb <- VALU [PostExecPos] 1517 // intv3 1518 // MI Va, Vb (WaitState = 0) 1519 // 1520 // Where: 1521 // intv1 + intv2 <= 2 VALUs 1522 // intv3 <= 4 VALUs 1523 // 1524 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1525 1526 const int Intv1plus2MaxVALUs = 2; 1527 const int Intv3MaxVALUs = 4; 1528 const int IntvMaxVALUs = 6; 1529 const int NoHazardVALUWaitStates = IntvMaxVALUs + 2; 1530 1531 struct StateType { 1532 SmallDenseMap<Register, int, 4> DefPos; 1533 int ExecPos = std::numeric_limits<int>::max(); 1534 int VALUs = 0; 1535 }; 1536 1537 StateType State; 1538 1539 // This overloads expiry testing with all the hazard detection 1540 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1541 // Too many VALU states have passed 1542 if (State.VALUs > NoHazardVALUWaitStates) 1543 return HazardExpired; 1544 1545 // Instructions which cause va_vdst==0 expire hazard 1546 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1547 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1548 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1549 AMDGPU::DepCtr::decodeFieldVaVdst(I.getOperand(0).getImm()) == 0)) 1550 return HazardExpired; 1551 1552 // Track registers writes 1553 bool Changed = false; 1554 if (SIInstrInfo::isVALU(I)) { 1555 for (Register Src : SrcVGPRs) { 1556 if (!State.DefPos.count(Src) && I.modifiesRegister(Src, &TRI)) { 1557 State.DefPos[Src] = State.VALUs; 1558 Changed = true; 1559 } 1560 } 1561 } else if (SIInstrInfo::isSALU(I)) { 1562 if (State.ExecPos == std::numeric_limits<int>::max()) { 1563 if (!State.DefPos.empty() && I.modifiesRegister(AMDGPU::EXEC, &TRI)) { 1564 State.ExecPos = State.VALUs; 1565 Changed = true; 1566 } 1567 } 1568 } 1569 1570 // Early expiration: too many VALUs in intv3 1571 if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty()) 1572 return HazardExpired; 1573 1574 // Only evaluate state if something changed 1575 if (!Changed) 1576 return NoHazardFound; 1577 1578 // Determine positions of VALUs pre/post exec change 1579 if (State.ExecPos == std::numeric_limits<int>::max()) 1580 return NoHazardFound; 1581 1582 int PreExecPos = std::numeric_limits<int>::max(); 1583 int PostExecPos = std::numeric_limits<int>::max(); 1584 1585 for (auto Entry : State.DefPos) { 1586 int DefVALUs = Entry.second; 1587 if (DefVALUs != std::numeric_limits<int>::max()) { 1588 if (DefVALUs >= State.ExecPos) 1589 PreExecPos = std::min(PreExecPos, DefVALUs); 1590 else 1591 PostExecPos = std::min(PostExecPos, DefVALUs); 1592 } 1593 } 1594 1595 // Need a VALUs post exec change 1596 if (PostExecPos == std::numeric_limits<int>::max()) 1597 return NoHazardFound; 1598 1599 // Too many VALUs in intv3? 1600 int Intv3VALUs = PostExecPos; 1601 if (Intv3VALUs > Intv3MaxVALUs) 1602 return HazardExpired; 1603 1604 // Too many VALUs in intv2? 1605 int Intv2VALUs = (State.ExecPos - PostExecPos) - 1; 1606 if (Intv2VALUs > Intv1plus2MaxVALUs) 1607 return HazardExpired; 1608 1609 // Need a VALUs pre exec change 1610 if (PreExecPos == std::numeric_limits<int>::max()) 1611 return NoHazardFound; 1612 1613 // Too many VALUs in intv1? 1614 int Intv1VALUs = PreExecPos - State.ExecPos; 1615 if (Intv1VALUs > Intv1plus2MaxVALUs) 1616 return HazardExpired; 1617 1618 // Too many VALUs in intv1 + intv2 1619 if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs) 1620 return HazardExpired; 1621 1622 return HazardFound; 1623 }; 1624 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1625 if (SIInstrInfo::isVALU(MI)) 1626 State.VALUs += 1; 1627 }; 1628 1629 DenseSet<const MachineBasicBlock *> Visited; 1630 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1631 std::next(MI->getReverseIterator()), Visited)) 1632 return false; 1633 1634 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1635 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1636 .addImm(0x0fff); 1637 1638 return true; 1639 } 1640 1641 bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) { 1642 if (!ST.hasVALUTransUseHazard()) 1643 return false; 1644 assert(!ST.hasExtendedWaitCounts()); 1645 1646 if (!SIInstrInfo::isVALU(*MI)) 1647 return false; 1648 1649 SmallSet<Register, 4> SrcVGPRs; 1650 1651 for (const MachineOperand &Use : MI->explicit_uses()) { 1652 if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1653 SrcVGPRs.insert(Use.getReg()); 1654 } 1655 1656 // Look for the following pattern: 1657 // Va <- TRANS VALU 1658 // intv 1659 // MI Va (WaitState = 0) 1660 // 1661 // Where: 1662 // intv <= 5 VALUs / 1 TRANS 1663 // 1664 // If found, insert an appropriate S_WAITCNT_DEPCTR before MI. 1665 1666 const int IntvMaxVALUs = 5; 1667 const int IntvMaxTRANS = 1; 1668 1669 struct StateType { 1670 int VALUs = 0; 1671 int TRANS = 0; 1672 }; 1673 1674 StateType State; 1675 1676 // This overloads expiry testing with all the hazard detection 1677 auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) { 1678 // Too many VALU states have passed 1679 if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS) 1680 return HazardExpired; 1681 1682 // Instructions which cause va_vdst==0 expire hazard 1683 if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) || 1684 SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) || 1685 (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1686 I.getOperand(0).getImm() == 0x0fff)) 1687 return HazardExpired; 1688 1689 // Track registers writes 1690 if (SIInstrInfo::isTRANS(I)) { 1691 for (Register Src : SrcVGPRs) { 1692 if (I.modifiesRegister(Src, &TRI)) { 1693 return HazardFound; 1694 } 1695 } 1696 } 1697 1698 return NoHazardFound; 1699 }; 1700 auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) { 1701 if (SIInstrInfo::isVALU(MI)) 1702 State.VALUs += 1; 1703 if (SIInstrInfo::isTRANS(MI)) 1704 State.TRANS += 1; 1705 }; 1706 1707 DenseSet<const MachineBasicBlock *> Visited; 1708 if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(), 1709 std::next(MI->getReverseIterator()), Visited)) 1710 return false; 1711 1712 // Hazard is observed - insert a wait on va_dst counter to ensure hazard is 1713 // avoided. 1714 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1715 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 1716 .addImm(AMDGPU::DepCtr::encodeFieldVaVdst(0)); 1717 1718 return true; 1719 } 1720 1721 bool GCNHazardRecognizer::fixWMMAHazards(MachineInstr *MI) { 1722 if (!SIInstrInfo::isWMMA(*MI) && !SIInstrInfo::isSWMMAC(*MI)) 1723 return false; 1724 1725 const SIInstrInfo *TII = ST.getInstrInfo(); 1726 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1727 1728 auto IsHazardFn = [MI, TII, TRI, this](const MachineInstr &I) { 1729 if (!SIInstrInfo::isWMMA(I) && !SIInstrInfo::isSWMMAC(I)) 1730 return false; 1731 1732 // Src0(matrix A) or Src1(matrix B) of the current wmma instruction overlaps 1733 // with the dest(matrix D) of the previous wmma. 1734 const Register CurSrc0Reg = 1735 TII->getNamedOperand(*MI, AMDGPU::OpName::src0)->getReg(); 1736 const Register CurSrc1Reg = 1737 TII->getNamedOperand(*MI, AMDGPU::OpName::src1)->getReg(); 1738 1739 const Register PrevDstReg = 1740 TII->getNamedOperand(I, AMDGPU::OpName::vdst)->getReg(); 1741 1742 if (TRI->regsOverlap(PrevDstReg, CurSrc0Reg) || 1743 TRI->regsOverlap(PrevDstReg, CurSrc1Reg)) { 1744 return true; 1745 } 1746 1747 // GFX12+ allows overlap of matrix C with PrevDstReg (hardware will stall) 1748 // but Index can't overlap with PrevDstReg. 1749 if (AMDGPU::isGFX12Plus(ST)) { 1750 if (SIInstrInfo::isSWMMAC(*MI)) { 1751 const Register CurIndex = 1752 TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->getReg(); 1753 if (TRI->regsOverlap(PrevDstReg, CurIndex)) 1754 return true; 1755 } 1756 return false; 1757 } 1758 1759 return false; 1760 }; 1761 1762 auto IsExpiredFn = [](const MachineInstr &I, int) { 1763 return SIInstrInfo::isVALU(I); 1764 }; 1765 1766 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1767 std::numeric_limits<int>::max()) 1768 return false; 1769 1770 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32)); 1771 1772 return true; 1773 } 1774 1775 bool GCNHazardRecognizer::fixShift64HighRegBug(MachineInstr *MI) { 1776 if (!ST.hasShift64HighRegBug()) 1777 return false; 1778 assert(!ST.hasExtendedWaitCounts()); 1779 1780 switch (MI->getOpcode()) { 1781 default: 1782 return false; 1783 case AMDGPU::V_LSHLREV_B64_e64: 1784 case AMDGPU::V_LSHRREV_B64_e64: 1785 case AMDGPU::V_ASHRREV_I64_e64: 1786 break; 1787 } 1788 1789 MachineOperand *Amt = TII.getNamedOperand(*MI, AMDGPU::OpName::src0); 1790 if (!Amt->isReg()) 1791 return false; 1792 1793 Register AmtReg = Amt->getReg(); 1794 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1795 // Check if this is a last VGPR in the allocation block. 1796 if (!TRI.isVGPR(MRI, AmtReg) || ((AmtReg - AMDGPU::VGPR0) & 7) != 7) 1797 return false; 1798 1799 if (AmtReg != AMDGPU::VGPR255 && MRI.isPhysRegUsed(AmtReg + 1)) 1800 return false; 1801 1802 MachineOperand *Src1 = TII.getNamedOperand(*MI, AMDGPU::OpName::src1); 1803 bool OverlappedSrc = Src1->isReg() && TRI.regsOverlap(Src1->getReg(), AmtReg); 1804 bool OverlappedDst = MI->modifiesRegister(AmtReg, &TRI); 1805 bool Overlapped = OverlappedSrc || OverlappedDst; 1806 1807 assert(!OverlappedDst || !OverlappedSrc || 1808 Src1->getReg() == MI->getOperand(0).getReg()); 1809 assert(ST.needsAlignedVGPRs()); 1810 static_assert(AMDGPU::VGPR0 + 1 == AMDGPU::VGPR1); 1811 1812 Register NewReg; 1813 for (MCRegister Reg : Overlapped ? AMDGPU::VReg_64_Align2RegClass 1814 : AMDGPU::VGPR_32RegClass) { 1815 if (!MI->modifiesRegister(Reg, &TRI) && !MI->readsRegister(Reg, &TRI)) { 1816 NewReg = Reg; 1817 break; 1818 } 1819 } 1820 1821 Register NewAmt = Overlapped ? (Register)TRI.getSubReg(NewReg, AMDGPU::sub1) 1822 : NewReg; 1823 Register NewAmtLo; 1824 1825 if (Overlapped) 1826 NewAmtLo = TRI.getSubReg(NewReg, AMDGPU::sub0); 1827 1828 DebugLoc DL = MI->getDebugLoc(); 1829 MachineBasicBlock *MBB = MI->getParent(); 1830 // Insert a full wait count because found register might be pending a wait. 1831 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_WAITCNT)) 1832 .addImm(0); 1833 1834 // Insert V_SWAP_B32 instruction(s) and run hazard recognizer on them. 1835 if (Overlapped) 1836 runOnInstruction( 1837 BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmtLo) 1838 .addDef(AmtReg - 1) 1839 .addReg(AmtReg - 1, RegState::Undef) 1840 .addReg(NewAmtLo, RegState::Undef)); 1841 runOnInstruction(BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmt) 1842 .addDef(AmtReg) 1843 .addReg(AmtReg, RegState::Undef) 1844 .addReg(NewAmt, RegState::Undef)); 1845 1846 // Instructions emitted after the current instruction will be processed by the 1847 // parent loop of the hazard recognizer in a natural way. 1848 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1849 AmtReg) 1850 .addDef(NewAmt) 1851 .addReg(NewAmt) 1852 .addReg(AmtReg); 1853 if (Overlapped) 1854 BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32), 1855 AmtReg - 1) 1856 .addDef(NewAmtLo) 1857 .addReg(NewAmtLo) 1858 .addReg(AmtReg - 1); 1859 1860 // Re-running hazard recognizer on the modified instruction is not necessary, 1861 // inserted V_SWAP_B32 has already both read and write new registers so 1862 // hazards related to these register has already been handled. 1863 Amt->setReg(NewAmt); 1864 Amt->setIsKill(false); 1865 // We do not update liveness, so verifier may see it as undef. 1866 Amt->setIsUndef(); 1867 if (OverlappedDst) 1868 MI->getOperand(0).setReg(NewReg); 1869 if (OverlappedSrc) { 1870 Src1->setReg(NewReg); 1871 Src1->setIsKill(false); 1872 Src1->setIsUndef(); 1873 } 1874 1875 return true; 1876 } 1877 1878 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { 1879 int NSAtoVMEMWaitStates = 1; 1880 1881 if (!ST.hasNSAtoVMEMBug()) 1882 return 0; 1883 1884 if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI)) 1885 return 0; 1886 1887 const SIInstrInfo *TII = ST.getInstrInfo(); 1888 const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset); 1889 if (!Offset || (Offset->getImm() & 6) == 0) 1890 return 0; 1891 1892 auto IsHazardFn = [TII](const MachineInstr &I) { 1893 if (!SIInstrInfo::isMIMG(I)) 1894 return false; 1895 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode()); 1896 return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && 1897 TII->getInstSizeInBytes(I) >= 16; 1898 }; 1899 1900 return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1); 1901 } 1902 1903 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) { 1904 int FPAtomicToDenormModeWaitStates = 3; 1905 1906 if (!ST.hasFPAtomicToDenormModeHazard()) 1907 return 0; 1908 assert(!ST.hasExtendedWaitCounts()); 1909 1910 if (MI->getOpcode() != AMDGPU::S_DENORM_MODE) 1911 return 0; 1912 1913 auto IsHazardFn = [](const MachineInstr &I) { 1914 if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I)) 1915 return false; 1916 return SIInstrInfo::isFPAtomic(I); 1917 }; 1918 1919 auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) { 1920 if (WaitStates >= 3 || SIInstrInfo::isVALU(MI)) 1921 return true; 1922 1923 switch (MI.getOpcode()) { 1924 case AMDGPU::S_WAITCNT: 1925 case AMDGPU::S_WAITCNT_VSCNT: 1926 case AMDGPU::S_WAITCNT_VMCNT: 1927 case AMDGPU::S_WAITCNT_EXPCNT: 1928 case AMDGPU::S_WAITCNT_LGKMCNT: 1929 case AMDGPU::S_WAIT_IDLE: 1930 return true; 1931 default: 1932 break; 1933 } 1934 1935 return false; 1936 }; 1937 1938 return FPAtomicToDenormModeWaitStates - 1939 ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn); 1940 } 1941 1942 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) { 1943 assert(SIInstrInfo::isMAI(*MI)); 1944 1945 return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI); 1946 } 1947 1948 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) { 1949 // Early exit if no padding is requested. 1950 if (MFMAPaddingRatio == 0) 1951 return 0; 1952 1953 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1954 if (!SIInstrInfo::isMFMA(*MI) || MFI->getOccupancy() < 2) 1955 return 0; 1956 1957 int NeighborMFMALatency = 0; 1958 auto IsNeighboringMFMA = [&NeighborMFMALatency, 1959 this](const MachineInstr &MI) { 1960 if (!SIInstrInfo::isMFMA(MI)) 1961 return false; 1962 1963 NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI); 1964 return true; 1965 }; 1966 1967 const int MaxMFMAPipelineWaitStates = 16; 1968 int WaitStatesSinceNeighborMFMA = 1969 getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates); 1970 1971 int NeighborMFMAPaddingNeeded = 1972 (NeighborMFMALatency * MFMAPaddingRatio / 100) - 1973 WaitStatesSinceNeighborMFMA; 1974 1975 return std::max(0, NeighborMFMAPaddingNeeded); 1976 } 1977 1978 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) { 1979 int WaitStatesNeeded = 0; 1980 unsigned Opc = MI->getOpcode(); 1981 1982 auto IsVALUFn = [](const MachineInstr &MI) { 1983 return SIInstrInfo::isVALU(MI) || MI.isInlineAsm(); 1984 }; 1985 1986 if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write 1987 const int LegacyVALUWritesVGPRWaitStates = 2; 1988 const int VALUWritesExecWaitStates = 4; 1989 const int MaxWaitStates = 4; 1990 1991 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 1992 getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates); 1993 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1994 1995 if (WaitStatesNeeded < MaxWaitStates) { 1996 for (const MachineOperand &Use : MI->explicit_uses()) { 1997 const int MaxWaitStates = 2; 1998 1999 if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 2000 continue; 2001 2002 int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates - 2003 getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates); 2004 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2005 2006 if (WaitStatesNeeded == MaxWaitStates) 2007 break; 2008 } 2009 } 2010 } 2011 2012 for (const MachineOperand &Op : MI->explicit_operands()) { 2013 if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg())) 2014 continue; 2015 2016 if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2017 continue; 2018 2019 const int MFMAWritesAGPROverlappedSrcABWaitStates = 4; 2020 const int MFMAWritesAGPROverlappedSrcCWaitStates = 2; 2021 const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4; 2022 const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10; 2023 const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18; 2024 const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1; 2025 const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7; 2026 const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15; 2027 const int MaxWaitStates = 18; 2028 Register Reg = Op.getReg(); 2029 unsigned HazardDefLatency = 0; 2030 2031 auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency, 2032 this](const MachineInstr &MI) { 2033 if (!SIInstrInfo::isMFMA(MI)) 2034 return false; 2035 Register DstReg = MI.getOperand(0).getReg(); 2036 if (DstReg == Reg) 2037 return false; 2038 HazardDefLatency = 2039 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2040 return TRI.regsOverlap(DstReg, Reg); 2041 }; 2042 2043 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, 2044 MaxWaitStates); 2045 int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates; 2046 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2047 int OpNo = Op.getOperandNo(); 2048 if (OpNo == SrcCIdx) { 2049 NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates; 2050 } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) { 2051 switch (HazardDefLatency) { 2052 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates; 2053 break; 2054 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates; 2055 break; 2056 case 16: [[fallthrough]]; 2057 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates; 2058 break; 2059 } 2060 } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2061 switch (HazardDefLatency) { 2062 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates; 2063 break; 2064 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates; 2065 break; 2066 case 16: [[fallthrough]]; 2067 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates; 2068 break; 2069 } 2070 } 2071 2072 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2073 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2074 2075 if (WaitStatesNeeded == MaxWaitStates) 2076 return WaitStatesNeeded; // Early exit. 2077 2078 auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) { 2079 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2080 return false; 2081 Register DstReg = MI.getOperand(0).getReg(); 2082 return TRI.regsOverlap(Reg, DstReg); 2083 }; 2084 2085 const int AccVGPRWriteMFMAReadSrcCWaitStates = 1; 2086 const int AccVGPRWriteMFMAReadSrcABWaitStates = 3; 2087 const int AccVGPRWriteAccVgprReadWaitStates = 3; 2088 NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates; 2089 if (OpNo == SrcCIdx) 2090 NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates; 2091 else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) 2092 NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates; 2093 2094 WaitStatesNeededForUse = NeedWaitStates - 2095 getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates); 2096 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2097 2098 if (WaitStatesNeeded == MaxWaitStates) 2099 return WaitStatesNeeded; // Early exit. 2100 } 2101 2102 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) { 2103 const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0; 2104 const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5; 2105 const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13; 2106 const int MaxWaitStates = 13; 2107 Register DstReg = MI->getOperand(0).getReg(); 2108 unsigned HazardDefLatency = 0; 2109 2110 auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency, 2111 this](const MachineInstr &MI) { 2112 if (!SIInstrInfo::isMFMA(MI)) 2113 return false; 2114 Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg(); 2115 HazardDefLatency = 2116 std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI)); 2117 return TRI.regsOverlap(Reg, DstReg); 2118 }; 2119 2120 int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates); 2121 int NeedWaitStates; 2122 switch (HazardDefLatency) { 2123 case 2: NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates; 2124 break; 2125 case 8: NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates; 2126 break; 2127 case 16: [[fallthrough]]; 2128 default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates; 2129 break; 2130 } 2131 2132 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince; 2133 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2134 } 2135 2136 // Pad neighboring MFMA with noops for better inter-wave performance. 2137 WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI)); 2138 2139 return WaitStatesNeeded; 2140 } 2141 2142 static int 2143 GFX940_XDL_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(int NumPasses) { 2144 // 2 pass -> 3 2145 // 4 pass -> 5 2146 // 8 pass -> 9 2147 // 16 pass -> 17 2148 return NumPasses + 1; 2149 } 2150 2151 static int 2152 GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(int NumPasses) { 2153 // 2 pass -> 2 2154 // 4 pass -> 4 2155 // 8 pass -> 8 2156 // 16 pass -> 16 2157 return NumPasses; 2158 } 2159 2160 static int 2161 GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses) { 2162 // 2 pass -> 4 2163 // 4 pass -> 6 2164 // 8 pass -> 10 2165 // 16 pass -> 18 2166 return NumPasses + 2; 2167 } 2168 2169 static int GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses) { 2170 // 2 pass -> 5 2171 // 4 pass -> 7 2172 // 8 pass -> 11 2173 // 16 pass -> 19 2174 return NumPasses + 3; 2175 } 2176 2177 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) { 2178 int WaitStatesNeeded = 0; 2179 unsigned Opc = MI->getOpcode(); 2180 2181 auto IsLegacyVALUFn = [](const MachineInstr &MI) { 2182 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI); 2183 }; 2184 2185 auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) { 2186 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) && 2187 !SIInstrInfo::isDOT(MI); 2188 }; 2189 2190 if (!SIInstrInfo::isMFMA(*MI)) 2191 return WaitStatesNeeded; 2192 2193 const int VALUWritesExecWaitStates = 4; 2194 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 2195 getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn, 2196 VALUWritesExecWaitStates); 2197 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2198 2199 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 2200 2201 // Loop for both DGEMM and S/HGEMM 2nd instruction. 2202 for (const MachineOperand &Use : MI->explicit_uses()) { 2203 const int LegacyVALUNotDotWritesVGPRWaitStates = 2; 2204 const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2; 2205 const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8; 2206 const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16; 2207 const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3; 2208 const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9; 2209 const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17; 2210 const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9; 2211 const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4; 2212 const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5; 2213 const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11; 2214 const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19; 2215 const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6; 2216 const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11; 2217 const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4; 2218 const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2; 2219 const int MaxWaitStates = 19; 2220 2221 if (!Use.isReg()) 2222 continue; 2223 Register Reg = Use.getReg(); 2224 bool FullReg; 2225 const MachineInstr *MI1; 2226 2227 auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1, 2228 this](const MachineInstr &MI) { 2229 if (!SIInstrInfo::isMFMA(MI)) 2230 return false; 2231 Register DstReg = MI.getOperand(0).getReg(); 2232 FullReg = (DstReg == Reg); 2233 MI1 = &MI; 2234 return TRI.regsOverlap(DstReg, Reg); 2235 }; 2236 2237 WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates - 2238 getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates); 2239 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2240 2241 int NumWaitStates = 2242 getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates); 2243 if (NumWaitStates == std::numeric_limits<int>::max()) 2244 continue; 2245 2246 int OpNo = Use.getOperandNo(); 2247 unsigned Opc1 = MI1->getOpcode(); 2248 int NeedWaitStates = 0; 2249 if (OpNo == SrcCIdx) { 2250 if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) { 2251 NeedWaitStates = 0; 2252 } else if (FullReg) { 2253 if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2254 Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) && 2255 (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 || 2256 Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64)) 2257 NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates; 2258 else if (ST.hasGFX940Insts() && 2259 TSchedModel.computeInstrLatency(MI1) == 2) 2260 NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates; 2261 } else { 2262 switch (Opc1) { 2263 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2264 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2265 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2266 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2267 if (!isXDL(ST, *MI)) 2268 NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates; 2269 break; 2270 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2271 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2272 if (!isXDL(ST, *MI)) 2273 NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates; 2274 break; 2275 default: 2276 int NumPasses = TSchedModel.computeInstrLatency(MI1); 2277 if (ST.hasGFX940Insts()) { 2278 if (isXDL(ST, *MI) && !isXDL(ST, *MI1)) 2279 break; 2280 2281 NeedWaitStates = 2282 isXDL(ST, *MI1) 2283 ? GFX940_XDL_N_PassWritesVGPROverlappedSMFMASrcCWaitStates( 2284 NumPasses) 2285 : GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates( 2286 NumPasses); 2287 break; 2288 } 2289 2290 switch (NumPasses) { 2291 case 2: 2292 NeedWaitStates = 2293 isDGEMM(Opc) ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates 2294 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates; 2295 break; 2296 case 8: 2297 NeedWaitStates = 2298 isDGEMM(Opc) 2299 ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates 2300 : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates; 2301 break; 2302 case 16: 2303 NeedWaitStates = 2304 isDGEMM(Opc) 2305 ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates 2306 : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates; 2307 break; 2308 default: 2309 llvm_unreachable("unexpected number of passes"); 2310 } 2311 } 2312 } 2313 } else { 2314 switch (Opc1) { 2315 case AMDGPU::V_MFMA_F64_16X16X4F64_e64: 2316 case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64: 2317 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64: 2318 case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64: 2319 NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates; 2320 break; 2321 case AMDGPU::V_MFMA_F64_4X4X4F64_e64: 2322 case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64: 2323 NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates; 2324 break; 2325 default: 2326 int NumPasses = TSchedModel.computeInstrLatency(MI1); 2327 2328 if (ST.hasGFX940Insts()) { 2329 NeedWaitStates = 2330 isXDL(ST, *MI1) 2331 ? GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates( 2332 NumPasses) 2333 : GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates( 2334 NumPasses); 2335 break; 2336 } 2337 2338 switch (NumPasses) { 2339 case 2: 2340 NeedWaitStates = SMFMA4x4WritesVGPROverlappedSrcABWaitStates; 2341 break; 2342 case 4: 2343 llvm_unreachable("unexpected number of passes for mfma"); 2344 case 8: 2345 NeedWaitStates = SMFMA16x16WritesVGPROverlappedSrcABWaitStates; 2346 break; 2347 case 16: 2348 default: 2349 NeedWaitStates = SMFMA32x32WritesVGPROverlappedSrcABWaitStates; 2350 } 2351 } 2352 } 2353 if (WaitStatesNeeded >= NeedWaitStates) 2354 continue; 2355 2356 WaitStatesNeededForUse = NeedWaitStates - NumWaitStates; 2357 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2358 2359 if (WaitStatesNeeded == MaxWaitStates) 2360 break; 2361 } 2362 2363 // Pad neighboring MFMA with noops for better inter-wave performance. 2364 WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI)); 2365 2366 return WaitStatesNeeded; 2367 } 2368 2369 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) { 2370 // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards() 2371 if (!ST.hasMAIInsts() || ST.hasGFX90AInsts()) 2372 return 0; 2373 2374 int WaitStatesNeeded = 0; 2375 2376 auto IsAccVgprReadFn = [](const MachineInstr &MI) { 2377 return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64; 2378 }; 2379 2380 for (const MachineOperand &Op : MI->explicit_uses()) { 2381 if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg())) 2382 continue; 2383 2384 Register Reg = Op.getReg(); 2385 2386 const int AccVgprReadLdStWaitStates = 2; 2387 const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1; 2388 const int MaxWaitStates = 2; 2389 2390 int WaitStatesNeededForUse = AccVgprReadLdStWaitStates - 2391 getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates); 2392 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2393 2394 if (WaitStatesNeeded == MaxWaitStates) 2395 return WaitStatesNeeded; // Early exit. 2396 2397 auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) { 2398 if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 && 2399 MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 2400 return false; 2401 auto IsVALUFn = [](const MachineInstr &MI) { 2402 return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI); 2403 }; 2404 return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) < 2405 std::numeric_limits<int>::max(); 2406 }; 2407 2408 WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates - 2409 getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates); 2410 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2411 } 2412 2413 return WaitStatesNeeded; 2414 } 2415 2416 static int GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(int NumPasses) { 2417 // 2 pass -> 4 2418 // 4 pass -> 6 2419 // 8 pass -> 10 2420 // 16 pass -> 18 2421 return NumPasses + 2; 2422 } 2423 2424 static int GFX940_XDL_N_PassWriteVgprVALUWawWaitStates(int NumPasses) { 2425 // 2 pass -> 5 2426 // 4 pass -> 7 2427 // 8 pass -> 11 2428 // 16 pass -> 19 2429 return NumPasses + 3; 2430 } 2431 2432 static int GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses) { 2433 // 2 pass -> 5 2434 // 4 pass -> 7 2435 // 8 pass -> 11 2436 // 16 pass -> 19 2437 return NumPasses + 3; 2438 } 2439 2440 static int GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses) { 2441 // 2 pass -> 4 2442 // 4 pass -> 6 2443 // 8 pass -> 10 2444 // 16 pass -> 18 2445 return NumPasses + 2; 2446 } 2447 2448 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) { 2449 if (!ST.hasGFX90AInsts()) 2450 return 0; 2451 2452 auto IsDGEMMFn = [](const MachineInstr &MI) -> bool { 2453 return isDGEMM(MI.getOpcode()); 2454 }; 2455 2456 // This is checked in checkMAIHazards90A() 2457 if (SIInstrInfo::isMFMA(*MI)) 2458 return 0; 2459 2460 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2461 2462 int WaitStatesNeeded = 0; 2463 2464 bool IsMem = SIInstrInfo::isVMEM(*MI) || 2465 SIInstrInfo::isFLAT(*MI) || 2466 SIInstrInfo::isDS(*MI); 2467 bool IsMemOrExport = IsMem || SIInstrInfo::isEXP(*MI); 2468 bool IsVALU = SIInstrInfo::isVALU(*MI); 2469 2470 const MachineInstr *MFMA = nullptr; 2471 unsigned Reg; 2472 auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2473 if (!SIInstrInfo::isMFMA(MI) || 2474 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2475 return false; 2476 MFMA = &MI; 2477 return true; 2478 }; 2479 2480 const MachineInstr *DOT = nullptr; 2481 auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) { 2482 if (!SIInstrInfo::isDOT(MI) || 2483 !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg)) 2484 return false; 2485 DOT = &MI; 2486 return true; 2487 }; 2488 2489 bool DGEMMAfterVALUWrite = false; 2490 auto IsDGEMMHazard = [&DGEMMAfterVALUWrite, this](const MachineInstr &MI) { 2491 // Found DGEMM on reverse traversal to def. 2492 if (isDGEMM(MI.getOpcode())) 2493 DGEMMAfterVALUWrite = true; 2494 2495 // Only hazard if register is defined by a VALU and a DGEMM is found after 2496 // after the def. 2497 if (!TII.isVALU(MI) || !DGEMMAfterVALUWrite) 2498 return false; 2499 2500 return true; 2501 }; 2502 2503 int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), 2504 AMDGPU::OpName::src2); 2505 2506 if (IsMemOrExport || IsVALU) { 2507 const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5; 2508 const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11; 2509 const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19; 2510 const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9; 2511 const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18; 2512 const int DMFMA4x4WriteVgprVALUReadWaitStates = 6; 2513 const int DMFMA16x16WriteVgprVALUReadWaitStates = 11; 2514 const int DotWriteSameDotReadSrcAB = 3; 2515 const int DotWriteDifferentVALURead = 3; 2516 const int DMFMABetweenVALUWriteVMEMRead = 2; 2517 const int MaxWaitStates = 19; 2518 2519 for (const MachineOperand &Use : MI->explicit_uses()) { 2520 if (!Use.isReg()) 2521 continue; 2522 Reg = Use.getReg(); 2523 2524 DOT = nullptr; 2525 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2526 MaxWaitStates); 2527 if (DOT) { 2528 int NeedWaitStates = 0; 2529 if (DOT->getOpcode() == MI->getOpcode()) { 2530 if (&Use - &MI->getOperand(0) != SrcCIdx) 2531 NeedWaitStates = DotWriteSameDotReadSrcAB; 2532 } else { 2533 NeedWaitStates = DotWriteDifferentVALURead; 2534 } 2535 2536 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2537 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2538 } 2539 2540 // Workaround for HW data hazard bug observed only in GFX90A. When there 2541 // is a DGEMM instruction in-between a VALU and a VMEM instruction it 2542 // causes the SQ to incorrectly not insert two wait states between the two 2543 // instructions needed to avoid data hazard. 2544 if (IsMem && ST.hasGFX90AInsts() && !ST.hasGFX940Insts()) { 2545 DGEMMAfterVALUWrite = false; 2546 if (TRI.isVectorRegister(MRI, Reg)) { 2547 int WaitStatesNeededForUse = 2548 DMFMABetweenVALUWriteVMEMRead - 2549 getWaitStatesSinceDef(Reg, IsDGEMMHazard, 2550 DMFMABetweenVALUWriteVMEMRead); 2551 2552 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2553 } 2554 } 2555 2556 MFMA = nullptr; 2557 WaitStatesSinceDef = 2558 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2559 if (!MFMA) 2560 continue; 2561 2562 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2563 int NumPasses = HazardDefLatency; 2564 int NeedWaitStates = MaxWaitStates; 2565 2566 if (isDGEMM(MFMA->getOpcode())) { 2567 switch (HazardDefLatency) { 2568 case 4: 2569 NeedWaitStates = IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates 2570 : DMFMA4x4WriteVgprVALUReadWaitStates; 2571 break; 2572 case 8: 2573 case 16: 2574 NeedWaitStates = IsMemOrExport 2575 ? DMFMA16x16WriteVgprMemExpReadWaitStates 2576 : DMFMA16x16WriteVgprVALUReadWaitStates; 2577 break; 2578 default: 2579 llvm_unreachable("unexpected dgemm"); 2580 } 2581 } else if (ST.hasGFX940Insts()) { 2582 NeedWaitStates = 2583 isXDL(ST, *MFMA) 2584 ? GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates(NumPasses) 2585 : GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates( 2586 NumPasses); 2587 } else { 2588 switch (HazardDefLatency) { 2589 case 2: 2590 NeedWaitStates = SMFMA4x4WriteVgprVALUMemExpReadWaitStates; 2591 break; 2592 case 8: 2593 NeedWaitStates = SMFMA16x16WriteVgprVALUMemExpReadWaitStates; 2594 break; 2595 case 16: 2596 NeedWaitStates = SMFMA32x32WriteVgprVALUMemExpReadWaitStates; 2597 break; 2598 default: 2599 llvm_unreachable("unexpected number of passes for mfma"); 2600 } 2601 } 2602 2603 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2604 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2605 2606 if (WaitStatesNeeded == MaxWaitStates) 2607 break; 2608 } 2609 } 2610 2611 unsigned Opc = MI->getOpcode(); 2612 const int DMFMAToFMA64WaitStates = 2; 2613 if ((Opc == AMDGPU::V_FMA_F64_e64 || 2614 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 || 2615 Opc == AMDGPU::V_FMAC_F64_dpp) && 2616 WaitStatesNeeded < DMFMAToFMA64WaitStates) { 2617 int WaitStatesNeededForUse = DMFMAToFMA64WaitStates - 2618 getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates); 2619 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2620 } 2621 2622 if (!IsVALU && !IsMemOrExport) 2623 return WaitStatesNeeded; 2624 2625 for (const MachineOperand &Def : MI->defs()) { 2626 const int SMFMA4x4WriteVgprVALUWawWaitStates = 5; 2627 const int SMFMA16x16WriteVgprVALUWawWaitStates = 11; 2628 const int SMFMA32x32WriteVgprVALUWawWaitStates = 19; 2629 const int SMFMA4x4ReadVgprVALUWarWaitStates = 1; 2630 const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3; 2631 const int SMFMA16x16ReadVgprVALUWarWaitStates = 7; 2632 const int SMFMA32x32ReadVgprVALUWarWaitStates = 15; 2633 const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6; 2634 const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11; 2635 const int DotWriteDifferentVALUWrite = 3; 2636 const int MaxWaitStates = 19; 2637 const int MaxWarWaitStates = 15; 2638 2639 Reg = Def.getReg(); 2640 2641 DOT = nullptr; 2642 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn, 2643 MaxWaitStates); 2644 if (DOT && DOT->getOpcode() != MI->getOpcode()) 2645 WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite - 2646 WaitStatesSinceDef); 2647 2648 MFMA = nullptr; 2649 WaitStatesSinceDef = 2650 getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates); 2651 if (MFMA) { 2652 int NeedWaitStates = MaxWaitStates; 2653 int NumPasses = TSchedModel.computeInstrLatency(MFMA); 2654 2655 if (isDGEMM(MFMA->getOpcode())) { 2656 switch (NumPasses) { 2657 case 4: 2658 NeedWaitStates = DMFMA4x4WriteVgprVALUWriteWaitStates; 2659 break; 2660 case 8: 2661 case 16: 2662 NeedWaitStates = DMFMA16x16WriteVgprVALUWriteWaitStates; 2663 break; 2664 default: 2665 llvm_unreachable("unexpected number of cycles for dgemm"); 2666 } 2667 } else if (ST.hasGFX940Insts()) { 2668 NeedWaitStates = 2669 isXDL(ST, *MFMA) 2670 ? GFX940_XDL_N_PassWriteVgprVALUWawWaitStates(NumPasses) 2671 : GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(NumPasses); 2672 } else { 2673 switch (NumPasses) { 2674 case 2: 2675 NeedWaitStates = SMFMA4x4WriteVgprVALUWawWaitStates; 2676 break; 2677 case 8: 2678 NeedWaitStates = SMFMA16x16WriteVgprVALUWawWaitStates; 2679 break; 2680 case 16: 2681 NeedWaitStates = SMFMA32x32WriteVgprVALUWawWaitStates; 2682 break; 2683 default: 2684 llvm_unreachable("Unexpected number of passes for mfma"); 2685 } 2686 } 2687 2688 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 2689 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2690 2691 if (WaitStatesNeeded == MaxWaitStates) 2692 break; 2693 } 2694 2695 auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) { 2696 if (!SIInstrInfo::isMFMA(MI) || isDGEMM(MI.getOpcode()) || 2697 !MI.readsRegister(Reg, &TRI)) 2698 return false; 2699 2700 if (ST.hasGFX940Insts() && !isXDL(ST, MI)) 2701 return false; 2702 2703 const MachineOperand *SrcC = 2704 TII.getNamedOperand(MI, AMDGPU::OpName::src2); 2705 assert(SrcC); 2706 if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg)) 2707 return false; 2708 2709 MFMA = &MI; 2710 return true; 2711 }; 2712 2713 MFMA = nullptr; 2714 int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn, 2715 MaxWarWaitStates); 2716 if (!MFMA) 2717 continue; 2718 2719 unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA); 2720 int NeedWaitStates = MaxWaitStates; 2721 switch (HazardDefLatency) { 2722 case 2: NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates; 2723 break; 2724 case 4: assert(ST.hasGFX940Insts()); 2725 NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates; 2726 break; 2727 case 8: NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates; 2728 break; 2729 case 16: [[fallthrough]]; 2730 default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates; 2731 break; 2732 } 2733 2734 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse; 2735 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 2736 } 2737 2738 return WaitStatesNeeded; 2739 } 2740 2741 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) { 2742 if (!SU->isInstr()) 2743 return false; 2744 2745 const MachineInstr *MAI = nullptr; 2746 2747 auto IsMFMAFn = [&MAI](const MachineInstr &MI) { 2748 MAI = nullptr; 2749 if (SIInstrInfo::isMFMA(MI)) 2750 MAI = &MI; 2751 return MAI != nullptr; 2752 }; 2753 2754 MachineInstr *MI = SU->getInstr(); 2755 if (IsMFMAFn(*MI)) { 2756 int W = getWaitStatesSince(IsMFMAFn, 16); 2757 if (MAI) 2758 return W < (int)TSchedModel.computeInstrLatency(MAI); 2759 } 2760 2761 return false; 2762 } 2763 2764 bool GCNHazardRecognizer::fixVALUMaskWriteHazard(MachineInstr *MI) { 2765 if (!ST.hasVALUMaskWriteHazard()) 2766 return false; 2767 assert(!ST.hasExtendedWaitCounts()); 2768 2769 if (!ST.isWave64() || !SIInstrInfo::isSALU(*MI)) 2770 return false; 2771 2772 // The hazard sequence is three instructions: 2773 // 1. VALU reads SGPR as mask 2774 // 2. SALU writes SGPR 2775 // 3. SALU reads SGPR 2776 // The hazard can expire if the distance between 2 and 3 is sufficient. 2777 // In practice this happens <10% of the time, hence this always assumes 2778 // the hazard exists if 1 and 2 are present to avoid searching. 2779 2780 const MachineOperand *SDSTOp = TII.getNamedOperand(*MI, AMDGPU::OpName::sdst); 2781 if (!SDSTOp || !SDSTOp->isReg()) 2782 return false; 2783 2784 const Register HazardReg = SDSTOp->getReg(); 2785 if (HazardReg == AMDGPU::EXEC || 2786 HazardReg == AMDGPU::EXEC_LO || 2787 HazardReg == AMDGPU::EXEC_HI || 2788 HazardReg == AMDGPU::M0) 2789 return false; 2790 2791 auto IsHazardFn = [HazardReg, this](const MachineInstr &I) { 2792 switch (I.getOpcode()) { 2793 case AMDGPU::V_ADDC_U32_e32: 2794 case AMDGPU::V_ADDC_U32_dpp: 2795 case AMDGPU::V_CNDMASK_B16_e32: 2796 case AMDGPU::V_CNDMASK_B16_dpp: 2797 case AMDGPU::V_CNDMASK_B32_e32: 2798 case AMDGPU::V_CNDMASK_B32_dpp: 2799 case AMDGPU::V_DIV_FMAS_F32_e64: 2800 case AMDGPU::V_DIV_FMAS_F64_e64: 2801 case AMDGPU::V_SUBB_U32_e32: 2802 case AMDGPU::V_SUBB_U32_dpp: 2803 case AMDGPU::V_SUBBREV_U32_e32: 2804 case AMDGPU::V_SUBBREV_U32_dpp: 2805 // These implicitly read VCC as mask source. 2806 return HazardReg == AMDGPU::VCC || 2807 HazardReg == AMDGPU::VCC_LO || 2808 HazardReg == AMDGPU::VCC_HI; 2809 case AMDGPU::V_ADDC_U32_e64: 2810 case AMDGPU::V_ADDC_U32_e64_dpp: 2811 case AMDGPU::V_CNDMASK_B16_e64: 2812 case AMDGPU::V_CNDMASK_B16_e64_dpp: 2813 case AMDGPU::V_CNDMASK_B32_e64: 2814 case AMDGPU::V_CNDMASK_B32_e64_dpp: 2815 case AMDGPU::V_SUBB_U32_e64: 2816 case AMDGPU::V_SUBB_U32_e64_dpp: 2817 case AMDGPU::V_SUBBREV_U32_e64: 2818 case AMDGPU::V_SUBBREV_U32_e64_dpp: { 2819 // Only check mask register overlaps. 2820 const MachineOperand *SSRCOp = TII.getNamedOperand(I, AMDGPU::OpName::src2); 2821 assert(SSRCOp); 2822 return TRI.regsOverlap(SSRCOp->getReg(), HazardReg); 2823 } 2824 default: 2825 return false; 2826 } 2827 }; 2828 2829 const MachineRegisterInfo &MRI = MF.getRegInfo(); 2830 auto IsExpiredFn = [&MRI, this](const MachineInstr &I, int) { 2831 // s_waitcnt_depctr sa_sdst(0) mitigates hazard. 2832 if (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 2833 AMDGPU::DepCtr::decodeFieldSaSdst(I.getOperand(0).getImm()) == 0) 2834 return true; 2835 2836 // VALU access to any SGPR or literal constant other than HazardReg 2837 // mitigates hazard. No need to check HazardReg here as this will 2838 // only be called when !IsHazardFn. 2839 if (!SIInstrInfo::isVALU(I)) 2840 return false; 2841 for (int OpNo = 0, End = I.getNumOperands(); OpNo < End; ++OpNo) { 2842 const MachineOperand &Op = I.getOperand(OpNo); 2843 if (Op.isReg()) { 2844 Register OpReg = Op.getReg(); 2845 // Only consider uses 2846 if (!Op.isUse()) 2847 continue; 2848 // Ignore EXEC 2849 if (OpReg == AMDGPU::EXEC || 2850 OpReg == AMDGPU::EXEC_LO || 2851 OpReg == AMDGPU::EXEC_HI) 2852 continue; 2853 // Ignore all implicit uses except VCC 2854 if (Op.isImplicit()) { 2855 if (OpReg == AMDGPU::VCC || 2856 OpReg == AMDGPU::VCC_LO || 2857 OpReg == AMDGPU::VCC_HI) 2858 return true; 2859 continue; 2860 } 2861 if (TRI.isSGPRReg(MRI, OpReg)) 2862 return true; 2863 } else { 2864 const MCInstrDesc &InstDesc = I.getDesc(); 2865 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo]; 2866 if (!TII.isInlineConstant(Op, OpInfo)) 2867 return true; 2868 } 2869 } 2870 return false; 2871 }; 2872 2873 // Check for hazard 2874 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 2875 std::numeric_limits<int>::max()) 2876 return false; 2877 2878 auto NextMI = std::next(MI->getIterator()); 2879 2880 // Add s_waitcnt_depctr sa_sdst(0) after SALU write. 2881 BuildMI(*MI->getParent(), NextMI, MI->getDebugLoc(), 2882 TII.get(AMDGPU::S_WAITCNT_DEPCTR)) 2883 .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0)); 2884 2885 // SALU write may be s_getpc in a bundle. 2886 if (MI->getOpcode() == AMDGPU::S_GETPC_B64) { 2887 // Update offsets of any references in the bundle. 2888 while (NextMI != MI->getParent()->end() && 2889 NextMI->isBundledWithPred()) { 2890 for (auto &Operand : NextMI->operands()) { 2891 if (Operand.isGlobal()) 2892 Operand.setOffset(Operand.getOffset() + 4); 2893 } 2894 NextMI++; 2895 } 2896 } 2897 2898 return true; 2899 } 2900 2901 static bool ensureEntrySetPrio(MachineFunction *MF, int Priority, 2902 const SIInstrInfo &TII) { 2903 MachineBasicBlock &EntryMBB = MF->front(); 2904 if (EntryMBB.begin() != EntryMBB.end()) { 2905 auto &EntryMI = *EntryMBB.begin(); 2906 if (EntryMI.getOpcode() == AMDGPU::S_SETPRIO && 2907 EntryMI.getOperand(0).getImm() >= Priority) 2908 return false; 2909 } 2910 2911 BuildMI(EntryMBB, EntryMBB.begin(), DebugLoc(), TII.get(AMDGPU::S_SETPRIO)) 2912 .addImm(Priority); 2913 return true; 2914 } 2915 2916 bool GCNHazardRecognizer::fixRequiredExportPriority(MachineInstr *MI) { 2917 if (!ST.hasRequiredExportPriority()) 2918 return false; 2919 2920 // Assume the following shader types will never have exports, 2921 // and avoid adding or adjusting S_SETPRIO. 2922 MachineBasicBlock *MBB = MI->getParent(); 2923 MachineFunction *MF = MBB->getParent(); 2924 auto CC = MF->getFunction().getCallingConv(); 2925 switch (CC) { 2926 case CallingConv::AMDGPU_CS: 2927 case CallingConv::AMDGPU_CS_Chain: 2928 case CallingConv::AMDGPU_CS_ChainPreserve: 2929 case CallingConv::AMDGPU_KERNEL: 2930 return false; 2931 default: 2932 break; 2933 } 2934 2935 const int MaxPriority = 3; 2936 const int NormalPriority = 2; 2937 const int PostExportPriority = 0; 2938 2939 auto It = MI->getIterator(); 2940 switch (MI->getOpcode()) { 2941 case AMDGPU::S_ENDPGM: 2942 case AMDGPU::S_ENDPGM_SAVED: 2943 case AMDGPU::S_ENDPGM_ORDERED_PS_DONE: 2944 case AMDGPU::SI_RETURN_TO_EPILOG: 2945 // Ensure shader with calls raises priority at entry. 2946 // This ensures correct priority if exports exist in callee. 2947 if (MF->getFrameInfo().hasCalls()) 2948 return ensureEntrySetPrio(MF, NormalPriority, TII); 2949 return false; 2950 case AMDGPU::S_SETPRIO: { 2951 // Raise minimum priority unless in workaround. 2952 auto &PrioOp = MI->getOperand(0); 2953 int Prio = PrioOp.getImm(); 2954 bool InWA = (Prio == PostExportPriority) && 2955 (It != MBB->begin() && TII.isEXP(*std::prev(It))); 2956 if (InWA || Prio >= NormalPriority) 2957 return false; 2958 PrioOp.setImm(std::min(Prio + NormalPriority, MaxPriority)); 2959 return true; 2960 } 2961 default: 2962 if (!TII.isEXP(*MI)) 2963 return false; 2964 break; 2965 } 2966 2967 // Check entry priority at each export (as there will only be a few). 2968 // Note: amdgpu_gfx can only be a callee, so defer to caller setprio. 2969 bool Changed = false; 2970 if (CC != CallingConv::AMDGPU_Gfx) 2971 Changed = ensureEntrySetPrio(MF, NormalPriority, TII); 2972 2973 auto NextMI = std::next(It); 2974 bool EndOfShader = false; 2975 if (NextMI != MBB->end()) { 2976 // Only need WA at end of sequence of exports. 2977 if (TII.isEXP(*NextMI)) 2978 return Changed; 2979 // Assume appropriate S_SETPRIO after export means WA already applied. 2980 if (NextMI->getOpcode() == AMDGPU::S_SETPRIO && 2981 NextMI->getOperand(0).getImm() == PostExportPriority) 2982 return Changed; 2983 EndOfShader = NextMI->getOpcode() == AMDGPU::S_ENDPGM; 2984 } 2985 2986 const DebugLoc &DL = MI->getDebugLoc(); 2987 2988 // Lower priority. 2989 BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_SETPRIO)) 2990 .addImm(PostExportPriority); 2991 2992 if (!EndOfShader) { 2993 // Wait for exports to complete. 2994 BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_WAITCNT_EXPCNT)) 2995 .addReg(AMDGPU::SGPR_NULL) 2996 .addImm(0); 2997 } 2998 2999 BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_NOP)).addImm(0); 3000 BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_NOP)).addImm(0); 3001 3002 if (!EndOfShader) { 3003 // Return to normal (higher) priority. 3004 BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_SETPRIO)) 3005 .addImm(NormalPriority); 3006 } 3007 3008 return true; 3009 } 3010