xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/GCNHazardRecognizer.cpp (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements hazard recognizers for scheduling on GCN processors.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "GCNHazardRecognizer.h"
14 #include "GCNSubtarget.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "SIMachineFunctionInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/ScheduleDAG.h"
19 #include "llvm/TargetParser/TargetParser.h"
20 
21 using namespace llvm;
22 
23 namespace {
24 
25 struct MFMAPaddingRatioParser : public cl::parser<unsigned> {
26   MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {}
27 
28   bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) {
29     if (Arg.getAsInteger(0, Value))
30       return O.error("'" + Arg + "' value invalid for uint argument!");
31 
32     if (Value > 100)
33       return O.error("'" + Arg + "' value must be in the range [0, 100]!");
34 
35     return false;
36   }
37 };
38 
39 } // end anonymous namespace
40 
41 static cl::opt<unsigned, false, MFMAPaddingRatioParser>
42     MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden,
43                      cl::desc("Fill a percentage of the latency between "
44                               "neighboring MFMA with s_nops."));
45 
46 //===----------------------------------------------------------------------===//
47 // Hazard Recognizer Implementation
48 //===----------------------------------------------------------------------===//
49 
50 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
51                                                  const GCNSubtarget &ST);
52 
53 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
54   IsHazardRecognizerMode(false),
55   CurrCycleInstr(nullptr),
56   MF(MF),
57   ST(MF.getSubtarget<GCNSubtarget>()),
58   TII(*ST.getInstrInfo()),
59   TRI(TII.getRegisterInfo()),
60   ClauseUses(TRI.getNumRegUnits()),
61   ClauseDefs(TRI.getNumRegUnits()) {
62   MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5;
63   TSchedModel.init(&ST);
64   RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST);
65 }
66 
67 void GCNHazardRecognizer::Reset() {
68   EmittedInstrs.clear();
69 }
70 
71 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
72   EmitInstruction(SU->getInstr());
73 }
74 
75 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
76   CurrCycleInstr = MI;
77 }
78 
79 static bool isDivFMas(unsigned Opcode) {
80   return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64;
81 }
82 
83 static bool isSGetReg(unsigned Opcode) {
84   return Opcode == AMDGPU::S_GETREG_B32;
85 }
86 
87 static bool isSSetReg(unsigned Opcode) {
88   switch (Opcode) {
89   case AMDGPU::S_SETREG_B32:
90   case AMDGPU::S_SETREG_B32_mode:
91   case AMDGPU::S_SETREG_IMM32_B32:
92   case AMDGPU::S_SETREG_IMM32_B32_mode:
93     return true;
94   }
95   return false;
96 }
97 
98 static bool isRWLane(unsigned Opcode) {
99   return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
100 }
101 
102 static bool isRFE(unsigned Opcode) {
103   return Opcode == AMDGPU::S_RFE_B64;
104 }
105 
106 static bool isSMovRel(unsigned Opcode) {
107   switch (Opcode) {
108   case AMDGPU::S_MOVRELS_B32:
109   case AMDGPU::S_MOVRELS_B64:
110   case AMDGPU::S_MOVRELD_B32:
111   case AMDGPU::S_MOVRELD_B64:
112     return true;
113   default:
114     return false;
115   }
116 }
117 
118 static bool isDGEMM(unsigned Opcode) {
119   return AMDGPU::getMAIIsDGEMM(Opcode);
120 }
121 
122 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) {
123   unsigned Opcode = MI.getOpcode();
124 
125   if (!SIInstrInfo::isMAI(MI) ||
126       isDGEMM(Opcode) ||
127       Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
128       Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64)
129     return false;
130 
131   if (!ST.hasGFX940Insts())
132     return true;
133 
134   return AMDGPU::getMAIIsGFX940XDL(Opcode);
135 }
136 
137 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII,
138                                     const MachineInstr &MI) {
139   if (TII.isAlwaysGDS(MI.getOpcode()))
140     return true;
141 
142   switch (MI.getOpcode()) {
143   case AMDGPU::S_SENDMSG:
144   case AMDGPU::S_SENDMSGHALT:
145   case AMDGPU::S_TTRACEDATA:
146     return true;
147   // These DS opcodes don't support GDS.
148   case AMDGPU::DS_NOP:
149   case AMDGPU::DS_PERMUTE_B32:
150   case AMDGPU::DS_BPERMUTE_B32:
151     return false;
152   default:
153     if (TII.isDS(MI.getOpcode())) {
154       int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
155                                            AMDGPU::OpName::gds);
156       if (MI.getOperand(GDS).getImm())
157         return true;
158     }
159     return false;
160   }
161 }
162 
163 static bool isPermlane(const MachineInstr &MI) {
164   unsigned Opcode = MI.getOpcode();
165   return Opcode == AMDGPU::V_PERMLANE16_B32_e64 ||
166          Opcode == AMDGPU::V_PERMLANE64_B32 ||
167          Opcode == AMDGPU::V_PERMLANEX16_B32_e64 ||
168          Opcode == AMDGPU::V_PERMLANE16_VAR_B32_e64 ||
169          Opcode == AMDGPU::V_PERMLANEX16_VAR_B32_e64;
170 }
171 
172 static bool isLdsDma(const MachineInstr &MI) {
173   return SIInstrInfo::isVALU(MI) &&
174          (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI));
175 }
176 
177 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
178   const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
179                                                      AMDGPU::OpName::simm16);
180   return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
181 }
182 
183 ScheduleHazardRecognizer::HazardType
184 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
185   MachineInstr *MI = SU->getInstr();
186   // If we are not in "HazardRecognizerMode" and therefore not being run from
187   // the scheduler, track possible stalls from hazards but don't insert noops.
188   auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard;
189 
190   if (MI->isBundle())
191    return NoHazard;
192 
193   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
194     return HazardType;
195 
196   if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0)
197     return HazardType;
198 
199   if (checkFPAtomicToDenormModeHazard(MI) > 0)
200     return HazardType;
201 
202   if (ST.hasNoDataDepHazard())
203     return NoHazard;
204 
205   // FIXME: Should flat be considered vmem?
206   if ((SIInstrInfo::isVMEM(*MI) ||
207        SIInstrInfo::isFLAT(*MI))
208       && checkVMEMHazards(MI) > 0)
209     return HazardType;
210 
211   if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
212     return HazardType;
213 
214   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
215     return HazardType;
216 
217   if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
218     return HazardType;
219 
220   if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
221     return HazardType;
222 
223   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
224        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
225        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
226     return HazardType;
227 
228   if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
229     return HazardType;
230 
231   if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
232     return HazardType;
233 
234   if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
235     return HazardType;
236 
237   if (((ST.hasReadM0MovRelInterpHazard() &&
238         (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) ||
239          MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 ||
240          MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) ||
241        (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) ||
242        (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) ||
243        (ST.hasReadM0LdsDirectHazard() &&
244         MI->readsRegister(AMDGPU::LDS_DIRECT))) &&
245       checkReadM0Hazards(MI) > 0)
246     return HazardType;
247 
248   if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0)
249     return HazardType;
250 
251   if ((SIInstrInfo::isVMEM(*MI) ||
252        SIInstrInfo::isFLAT(*MI) ||
253        SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0)
254     return HazardType;
255 
256   if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
257     return HazardType;
258 
259   return NoHazard;
260 }
261 
262 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII,
263                                 unsigned Quantity) {
264   while (Quantity > 0) {
265     unsigned Arg = std::min(Quantity, 8u);
266     Quantity -= Arg;
267     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP))
268         .addImm(Arg - 1);
269   }
270 }
271 
272 unsigned
273 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const {
274   const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI);
275   assert(TSchedModel.getWriteProcResBegin(SC) !=
276          TSchedModel.getWriteProcResEnd(SC));
277   return TSchedModel.getWriteProcResBegin(SC)->ReleaseAtCycle;
278 }
279 
280 void GCNHazardRecognizer::processBundle() {
281   MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator());
282   MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end();
283   // Check bundled MachineInstr's for hazards.
284   for (; MI != E && MI->isInsideBundle(); ++MI) {
285     CurrCycleInstr = &*MI;
286     unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr);
287 
288     if (IsHazardRecognizerMode) {
289       fixHazards(CurrCycleInstr);
290 
291       insertNoopsInBundle(CurrCycleInstr, TII, WaitStates);
292     }
293 
294     // It’s unnecessary to track more than MaxLookAhead instructions. Since we
295     // include the bundled MI directly after, only add a maximum of
296     // (MaxLookAhead - 1) noops to EmittedInstrs.
297     for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i)
298       EmittedInstrs.push_front(nullptr);
299 
300     EmittedInstrs.push_front(CurrCycleInstr);
301     EmittedInstrs.resize(MaxLookAhead);
302   }
303   CurrCycleInstr = nullptr;
304 }
305 
306 void GCNHazardRecognizer::runOnInstruction(MachineInstr *MI) {
307   assert(IsHazardRecognizerMode);
308 
309   unsigned NumPreNoops = PreEmitNoops(MI);
310   EmitNoops(NumPreNoops);
311   if (MI->isInsideBundle())
312     insertNoopsInBundle(MI, TII, NumPreNoops);
313   else
314     TII.insertNoops(*MI->getParent(), MachineBasicBlock::iterator(MI),
315                     NumPreNoops);
316   EmitInstruction(MI);
317   AdvanceCycle();
318 }
319 
320 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
321   IsHazardRecognizerMode = true;
322   CurrCycleInstr = MI;
323   unsigned W = PreEmitNoopsCommon(MI);
324   fixHazards(MI);
325   CurrCycleInstr = nullptr;
326   return W;
327 }
328 
329 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) {
330   if (MI->isBundle())
331     return 0;
332 
333   int WaitStates = 0;
334 
335   if (SIInstrInfo::isSMRD(*MI))
336     return std::max(WaitStates, checkSMRDHazards(MI));
337 
338   if (ST.hasNSAtoVMEMBug())
339     WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI));
340 
341   WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI));
342 
343   if (ST.hasNoDataDepHazard())
344     return WaitStates;
345 
346   if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
347     WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
348 
349   if (SIInstrInfo::isVALU(*MI))
350     WaitStates = std::max(WaitStates, checkVALUHazards(MI));
351 
352   if (SIInstrInfo::isDPP(*MI))
353     WaitStates = std::max(WaitStates, checkDPPHazards(MI));
354 
355   if (isDivFMas(MI->getOpcode()))
356     WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
357 
358   if (isRWLane(MI->getOpcode()))
359     WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
360 
361   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
362        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
363        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
364     WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI));
365 
366   if (MI->isInlineAsm())
367     return std::max(WaitStates, checkInlineAsmHazards(MI));
368 
369   if (isSGetReg(MI->getOpcode()))
370     return std::max(WaitStates, checkGetRegHazards(MI));
371 
372   if (isSSetReg(MI->getOpcode()))
373     return std::max(WaitStates, checkSetRegHazards(MI));
374 
375   if (isRFE(MI->getOpcode()))
376     return std::max(WaitStates, checkRFEHazards(MI));
377 
378   if ((ST.hasReadM0MovRelInterpHazard() &&
379        (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) ||
380         MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 ||
381         MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) ||
382       (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) ||
383       (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) ||
384       (ST.hasReadM0LdsDirectHazard() && MI->readsRegister(AMDGPU::LDS_DIRECT)))
385     return std::max(WaitStates, checkReadM0Hazards(MI));
386 
387   if (SIInstrInfo::isMAI(*MI))
388     return std::max(WaitStates, checkMAIHazards(MI));
389 
390   if (SIInstrInfo::isVMEM(*MI) ||
391       SIInstrInfo::isFLAT(*MI) ||
392       SIInstrInfo::isDS(*MI))
393     return std::max(WaitStates, checkMAILdStHazards(MI));
394 
395   return WaitStates;
396 }
397 
398 void GCNHazardRecognizer::EmitNoop() {
399   EmittedInstrs.push_front(nullptr);
400 }
401 
402 void GCNHazardRecognizer::AdvanceCycle() {
403   // When the scheduler detects a stall, it will call AdvanceCycle() without
404   // emitting any instructions.
405   if (!CurrCycleInstr) {
406     EmittedInstrs.push_front(nullptr);
407     return;
408   }
409 
410   if (CurrCycleInstr->isBundle()) {
411     processBundle();
412     return;
413   }
414 
415   unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
416   if (!NumWaitStates) {
417     CurrCycleInstr = nullptr;
418     return;
419   }
420 
421   // Keep track of emitted instructions
422   EmittedInstrs.push_front(CurrCycleInstr);
423 
424   // Add a nullptr for each additional wait state after the first.  Make sure
425   // not to add more than getMaxLookAhead() items to the list, since we
426   // truncate the list to that size right after this loop.
427   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
428        i < e; ++i) {
429     EmittedInstrs.push_front(nullptr);
430   }
431 
432   // getMaxLookahead() is the largest number of wait states we will ever need
433   // to insert, so there is no point in keeping track of more than that many
434   // wait states.
435   EmittedInstrs.resize(getMaxLookAhead());
436 
437   CurrCycleInstr = nullptr;
438 }
439 
440 void GCNHazardRecognizer::RecedeCycle() {
441   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
442 }
443 
444 //===----------------------------------------------------------------------===//
445 // Helper Functions
446 //===----------------------------------------------------------------------===//
447 
448 typedef enum { HazardFound, HazardExpired, NoHazardFound } HazardFnResult;
449 
450 typedef function_ref<bool(const MachineInstr &, int WaitStates)> IsExpiredFn;
451 typedef function_ref<unsigned int(const MachineInstr &)> GetNumWaitStatesFn;
452 
453 // Search for a hazard in a block and its predecessors.
454 template <typename StateT>
455 static bool
456 hasHazard(StateT State,
457           function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard,
458           function_ref<void(StateT &, const MachineInstr &)> UpdateState,
459           const MachineBasicBlock *MBB,
460           MachineBasicBlock::const_reverse_instr_iterator I,
461           DenseSet<const MachineBasicBlock *> &Visited) {
462   for (auto E = MBB->instr_rend(); I != E; ++I) {
463     // No need to look at parent BUNDLE instructions.
464     if (I->isBundle())
465       continue;
466 
467     switch (IsHazard(State, *I)) {
468     case HazardFound:
469       return true;
470     case HazardExpired:
471       return false;
472     default:
473       // Continue search
474       break;
475     }
476 
477     if (I->isInlineAsm() || I->isMetaInstruction())
478       continue;
479 
480     UpdateState(State, *I);
481   }
482 
483   for (MachineBasicBlock *Pred : MBB->predecessors()) {
484     if (!Visited.insert(Pred).second)
485       continue;
486 
487     if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(),
488                   Visited))
489       return true;
490   }
491 
492   return false;
493 }
494 
495 // Returns a minimum wait states since \p I walking all predecessors.
496 // Only scans until \p IsExpired does not return true.
497 // Can only be run in a hazard recognizer mode.
498 static int getWaitStatesSince(
499     GCNHazardRecognizer::IsHazardFn IsHazard, const MachineBasicBlock *MBB,
500     MachineBasicBlock::const_reverse_instr_iterator I, int WaitStates,
501     IsExpiredFn IsExpired, DenseSet<const MachineBasicBlock *> &Visited,
502     GetNumWaitStatesFn GetNumWaitStates = SIInstrInfo::getNumWaitStates) {
503   for (auto E = MBB->instr_rend(); I != E; ++I) {
504     // Don't add WaitStates for parent BUNDLE instructions.
505     if (I->isBundle())
506       continue;
507 
508     if (IsHazard(*I))
509       return WaitStates;
510 
511     if (I->isInlineAsm())
512       continue;
513 
514     WaitStates += GetNumWaitStates(*I);
515 
516     if (IsExpired(*I, WaitStates))
517       return std::numeric_limits<int>::max();
518   }
519 
520   int MinWaitStates = std::numeric_limits<int>::max();
521   for (MachineBasicBlock *Pred : MBB->predecessors()) {
522     if (!Visited.insert(Pred).second)
523       continue;
524 
525     int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), WaitStates,
526                                IsExpired, Visited, GetNumWaitStates);
527 
528     MinWaitStates = std::min(MinWaitStates, W);
529   }
530 
531   return MinWaitStates;
532 }
533 
534 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
535                               const MachineInstr *MI, IsExpiredFn IsExpired) {
536   DenseSet<const MachineBasicBlock *> Visited;
537   return getWaitStatesSince(IsHazard, MI->getParent(),
538                             std::next(MI->getReverseIterator()),
539                             0, IsExpired, Visited);
540 }
541 
542 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) {
543   if (IsHazardRecognizerMode) {
544     auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) {
545       return WaitStates >= Limit;
546     };
547     return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn);
548   }
549 
550   int WaitStates = 0;
551   for (MachineInstr *MI : EmittedInstrs) {
552     if (MI) {
553       if (IsHazard(*MI))
554         return WaitStates;
555 
556       if (MI->isInlineAsm())
557         continue;
558     }
559     ++WaitStates;
560 
561     if (WaitStates >= Limit)
562       break;
563   }
564   return std::numeric_limits<int>::max();
565 }
566 
567 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg,
568                                                IsHazardFn IsHazardDef,
569                                                int Limit) {
570   const SIRegisterInfo *TRI = ST.getRegisterInfo();
571 
572   auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) {
573     return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI);
574   };
575 
576   return getWaitStatesSince(IsHazardFn, Limit);
577 }
578 
579 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard,
580                                                   int Limit) {
581   auto IsHazardFn = [IsHazard](const MachineInstr &MI) {
582     return isSSetReg(MI.getOpcode()) && IsHazard(MI);
583   };
584 
585   return getWaitStatesSince(IsHazardFn, Limit);
586 }
587 
588 //===----------------------------------------------------------------------===//
589 // No-op Hazard Detection
590 //===----------------------------------------------------------------------===//
591 
592 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV,
593                         MCRegister Reg) {
594   for (MCRegUnit Unit : TRI.regunits(Reg))
595     BV.set(Unit);
596 }
597 
598 static void addRegsToSet(const SIRegisterInfo &TRI,
599                          iterator_range<MachineInstr::const_mop_iterator> Ops,
600                          BitVector &DefSet, BitVector &UseSet) {
601   for (const MachineOperand &Op : Ops) {
602     if (Op.isReg())
603       addRegUnits(TRI, Op.isDef() ? DefSet : UseSet, Op.getReg().asMCReg());
604   }
605 }
606 
607 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
608   addRegsToSet(TRI, MI.operands(), ClauseDefs, ClauseUses);
609 }
610 
611 static bool breaksSMEMSoftClause(MachineInstr *MI) {
612   return !SIInstrInfo::isSMRD(*MI);
613 }
614 
615 static bool breaksVMEMSoftClause(MachineInstr *MI) {
616   return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI);
617 }
618 
619 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
620   // SMEM soft clause are only present on VI+, and only matter if xnack is
621   // enabled.
622   if (!ST.isXNACKEnabled())
623     return 0;
624 
625   bool IsSMRD = TII.isSMRD(*MEM);
626 
627   resetClause();
628 
629   // A soft-clause is any group of consecutive SMEM instructions.  The
630   // instructions in this group may return out of order and/or may be
631   // replayed (i.e. the same instruction issued more than once).
632   //
633   // In order to handle these situations correctly we need to make sure that
634   // when a clause has more than one instruction, no instruction in the clause
635   // writes to a register that is read by another instruction in the clause
636   // (including itself). If we encounter this situation, we need to break the
637   // clause by inserting a non SMEM instruction.
638 
639   for (MachineInstr *MI : EmittedInstrs) {
640     // When we hit a non-SMEM instruction then we have passed the start of the
641     // clause and we can stop.
642     if (!MI)
643       break;
644 
645     if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI))
646       break;
647 
648     addClauseInst(*MI);
649   }
650 
651   if (ClauseDefs.none())
652     return 0;
653 
654   // We need to make sure not to put loads and stores in the same clause if they
655   // use the same address. For now, just start a new clause whenever we see a
656   // store.
657   if (MEM->mayStore())
658     return 1;
659 
660   addClauseInst(*MEM);
661 
662   // If the set of defs and uses intersect then we cannot add this instruction
663   // to the clause, so we have a hazard.
664   return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
665 }
666 
667 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
668   int WaitStatesNeeded = 0;
669 
670   WaitStatesNeeded = checkSoftClauseHazards(SMRD);
671 
672   // This SMRD hazard only affects SI.
673   if (!ST.hasSMRDReadVALUDefHazard())
674     return WaitStatesNeeded;
675 
676   // A read of an SGPR by SMRD instruction requires 4 wait states when the
677   // SGPR was written by a VALU instruction.
678   int SmrdSgprWaitStates = 4;
679   auto IsHazardDefFn = [this](const MachineInstr &MI) {
680     return TII.isVALU(MI);
681   };
682   auto IsBufferHazardDefFn = [this](const MachineInstr &MI) {
683     return TII.isSALU(MI);
684   };
685 
686   bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);
687 
688   for (const MachineOperand &Use : SMRD->uses()) {
689     if (!Use.isReg())
690       continue;
691     int WaitStatesNeededForUse =
692         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
693                                                    SmrdSgprWaitStates);
694     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
695 
696     // This fixes what appears to be undocumented hardware behavior in SI where
697     // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
698     // needs some number of nops in between. We don't know how many we need, but
699     // let's use 4. This wasn't discovered before probably because the only
700     // case when this happens is when we expand a 64-bit pointer into a full
701     // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
702     // probably never encountered in the closed-source land.
703     if (IsBufferSMRD) {
704       int WaitStatesNeededForUse =
705         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
706                                                    IsBufferHazardDefFn,
707                                                    SmrdSgprWaitStates);
708       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
709     }
710   }
711 
712   return WaitStatesNeeded;
713 }
714 
715 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
716   if (!ST.hasVMEMReadSGPRVALUDefHazard())
717     return 0;
718 
719   int WaitStatesNeeded = checkSoftClauseHazards(VMEM);
720 
721   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
722   // SGPR was written by a VALU Instruction.
723   const int VmemSgprWaitStates = 5;
724   auto IsHazardDefFn = [this](const MachineInstr &MI) {
725     return TII.isVALU(MI);
726   };
727   for (const MachineOperand &Use : VMEM->uses()) {
728     if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg()))
729       continue;
730 
731     int WaitStatesNeededForUse =
732         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
733                                                    VmemSgprWaitStates);
734     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
735   }
736   return WaitStatesNeeded;
737 }
738 
739 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
740   const SIRegisterInfo *TRI = ST.getRegisterInfo();
741   const SIInstrInfo *TII = ST.getInstrInfo();
742 
743   // Check for DPP VGPR read after VALU VGPR write and EXEC write.
744   int DppVgprWaitStates = 2;
745   int DppExecWaitStates = 5;
746   int WaitStatesNeeded = 0;
747   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
748     return TII->isVALU(MI);
749   };
750 
751   for (const MachineOperand &Use : DPP->uses()) {
752     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
753       continue;
754     int WaitStatesNeededForUse =
755         DppVgprWaitStates - getWaitStatesSinceDef(
756                                 Use.getReg(),
757                                 [](const MachineInstr &) { return true; },
758                                 DppVgprWaitStates);
759     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
760   }
761 
762   WaitStatesNeeded = std::max(
763       WaitStatesNeeded,
764       DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn,
765                                                 DppExecWaitStates));
766 
767   return WaitStatesNeeded;
768 }
769 
770 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
771   const SIInstrInfo *TII = ST.getInstrInfo();
772 
773   // v_div_fmas requires 4 wait states after a write to vcc from a VALU
774   // instruction.
775   const int DivFMasWaitStates = 4;
776   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
777     return TII->isVALU(MI);
778   };
779   int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn,
780                                                DivFMasWaitStates);
781 
782   return DivFMasWaitStates - WaitStatesNeeded;
783 }
784 
785 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
786   const SIInstrInfo *TII = ST.getInstrInfo();
787   unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
788 
789   const int GetRegWaitStates = 2;
790   auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) {
791     return GetRegHWReg == getHWReg(TII, MI);
792   };
793   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates);
794 
795   return GetRegWaitStates - WaitStatesNeeded;
796 }
797 
798 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
799   const SIInstrInfo *TII = ST.getInstrInfo();
800   unsigned HWReg = getHWReg(TII, *SetRegInstr);
801 
802   const int SetRegWaitStates = ST.getSetRegWaitStates();
803   auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) {
804     return HWReg == getHWReg(TII, MI);
805   };
806   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates);
807   return SetRegWaitStates - WaitStatesNeeded;
808 }
809 
810 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
811   if (!MI.mayStore())
812     return -1;
813 
814   const SIInstrInfo *TII = ST.getInstrInfo();
815   unsigned Opcode = MI.getOpcode();
816   const MCInstrDesc &Desc = MI.getDesc();
817 
818   int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
819   int VDataRCID = -1;
820   if (VDataIdx != -1)
821     VDataRCID = Desc.operands()[VDataIdx].RegClass;
822 
823   if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
824     // There is no hazard if the instruction does not use vector regs
825     // (like wbinvl1)
826     if (VDataIdx == -1)
827       return -1;
828     // For MUBUF/MTBUF instructions this hazard only exists if the
829     // instruction is not using a register in the soffset field.
830     const MachineOperand *SOffset =
831         TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
832     // If we have no soffset operand, then assume this field has been
833     // hardcoded to zero.
834     if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
835         (!SOffset || !SOffset->isReg()))
836       return VDataIdx;
837   }
838 
839   // MIMG instructions create a hazard if they don't use a 256-bit T# and
840   // the store size is greater than 8 bytes and they have more than two bits
841   // of their dmask set.
842   // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
843   if (TII->isMIMG(MI)) {
844     int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
845     assert(SRsrcIdx != -1 &&
846            AMDGPU::getRegBitWidth(Desc.operands()[SRsrcIdx].RegClass) == 256);
847     (void)SRsrcIdx;
848   }
849 
850   if (TII->isFLAT(MI)) {
851     int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
852     if (AMDGPU::getRegBitWidth(Desc.operands()[DataIdx].RegClass) > 64)
853       return DataIdx;
854   }
855 
856   return -1;
857 }
858 
859 int
860 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
861                                             const MachineRegisterInfo &MRI) {
862   // Helper to check for the hazard where VMEM instructions that store more than
863   // 8 bytes can have there store data over written by the next instruction.
864   const SIRegisterInfo *TRI = ST.getRegisterInfo();
865 
866   const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1;
867   int WaitStatesNeeded = 0;
868 
869   if (!TRI->isVectorRegister(MRI, Def.getReg()))
870     return WaitStatesNeeded;
871   Register Reg = Def.getReg();
872   auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) {
873     int DataIdx = createsVALUHazard(MI);
874     return DataIdx >= 0 &&
875            TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg);
876   };
877   int WaitStatesNeededForDef =
878     VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates);
879   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
880 
881   return WaitStatesNeeded;
882 }
883 
884 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
885   int WaitStatesNeeded = 0;
886 
887   if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) {
888     const int TransDefWaitstates = 1;
889 
890     auto IsTransDefFn = [this, VALU](const MachineInstr &MI) {
891       if (!SIInstrInfo::isTRANS(MI))
892         return false;
893       const SIRegisterInfo *TRI = ST.getRegisterInfo();
894       const SIInstrInfo *TII = ST.getInstrInfo();
895       Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg();
896 
897       for (const MachineOperand &Use : VALU->explicit_uses()) {
898         if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg()))
899           return true;
900       }
901 
902       return false;
903     };
904 
905     int WaitStatesNeededForDef =
906         TransDefWaitstates -
907         getWaitStatesSince(IsTransDefFn, TransDefWaitstates);
908     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
909   }
910 
911   if (ST.hasDstSelForwardingHazard()) {
912     const int Shift16DefWaitstates = 1;
913 
914     auto IsShift16BitDefFn = [this, VALU](const MachineInstr &MI) {
915       if (!SIInstrInfo::isVALU(MI))
916         return false;
917       const SIInstrInfo *TII = ST.getInstrInfo();
918       if (SIInstrInfo::isSDWA(MI)) {
919         if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel))
920           if (DstSel->getImm() == AMDGPU::SDWA::DWORD)
921             return false;
922       } else {
923         if (!AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::op_sel) ||
924             !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)
925                   ->getImm() &
926               SISrcMods::DST_OP_SEL))
927           return false;
928       }
929       const SIRegisterInfo *TRI = ST.getRegisterInfo();
930       if (auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) {
931         Register Def = Dst->getReg();
932 
933         for (const MachineOperand &Use : VALU->explicit_uses()) {
934           if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg()))
935             return true;
936         }
937       }
938 
939       return false;
940     };
941 
942     int WaitStatesNeededForDef =
943         Shift16DefWaitstates -
944         getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates);
945     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
946   }
947 
948   if (ST.hasVDecCoExecHazard()) {
949     const int VALUWriteSGPRVALUReadWaitstates = 2;
950     const int VALUWriteEXECRWLane = 4;
951     const int VALUWriteVGPRReadlaneRead = 1;
952 
953     const SIRegisterInfo *TRI = ST.getRegisterInfo();
954     const MachineRegisterInfo &MRI = MF.getRegInfo();
955     Register UseReg;
956     auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) {
957       if (!SIInstrInfo::isVALU(MI))
958         return false;
959       return MI.modifiesRegister(UseReg, TRI);
960     };
961 
962     for (const MachineOperand &Use : VALU->explicit_uses()) {
963       if (!Use.isReg())
964         continue;
965 
966       UseReg = Use.getReg();
967       if (TRI->isSGPRReg(MRI, UseReg)) {
968         int WaitStatesNeededForDef =
969             VALUWriteSGPRVALUReadWaitstates -
970             getWaitStatesSince(IsVALUDefSGPRFn,
971                                VALUWriteSGPRVALUReadWaitstates);
972         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
973       }
974     }
975 
976     if (VALU->readsRegister(AMDGPU::VCC, TRI)) {
977       UseReg = AMDGPU::VCC;
978       int WaitStatesNeededForDef =
979           VALUWriteSGPRVALUReadWaitstates -
980           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates);
981       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
982     }
983 
984     switch (VALU->getOpcode()) {
985     case AMDGPU::V_READLANE_B32:
986     case AMDGPU::V_READFIRSTLANE_B32: {
987       MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0);
988       UseReg = Src->getReg();
989       int WaitStatesNeededForDef =
990           VALUWriteVGPRReadlaneRead -
991           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead);
992       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
993     }
994       [[fallthrough]];
995     case AMDGPU::V_WRITELANE_B32: {
996       UseReg = AMDGPU::EXEC;
997       int WaitStatesNeededForDef =
998           VALUWriteEXECRWLane -
999           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane);
1000       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
1001       break;
1002     }
1003     default:
1004       break;
1005     }
1006   }
1007 
1008   // This checks for the hazard where VMEM instructions that store more than
1009   // 8 bytes can have there store data over written by the next instruction.
1010   if (!ST.has12DWordStoreHazard())
1011     return WaitStatesNeeded;
1012 
1013   const MachineRegisterInfo &MRI = MF.getRegInfo();
1014 
1015   for (const MachineOperand &Def : VALU->defs()) {
1016     WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
1017   }
1018 
1019   return WaitStatesNeeded;
1020 }
1021 
1022 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
1023   // This checks for hazards associated with inline asm statements.
1024   // Since inline asms can contain just about anything, we use this
1025   // to call/leverage other check*Hazard routines. Note that
1026   // this function doesn't attempt to address all possible inline asm
1027   // hazards (good luck), but is a collection of what has been
1028   // problematic thus far.
1029 
1030   // see checkVALUHazards()
1031   if (!ST.has12DWordStoreHazard())
1032     return 0;
1033 
1034   const MachineRegisterInfo &MRI = MF.getRegInfo();
1035   int WaitStatesNeeded = 0;
1036 
1037   for (const MachineOperand &Op :
1038        llvm::drop_begin(IA->operands(), InlineAsm::MIOp_FirstOperand)) {
1039     if (Op.isReg() && Op.isDef()) {
1040       WaitStatesNeeded =
1041           std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
1042     }
1043   }
1044 
1045   return WaitStatesNeeded;
1046 }
1047 
1048 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
1049   const SIInstrInfo *TII = ST.getInstrInfo();
1050   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1051   const MachineRegisterInfo &MRI = MF.getRegInfo();
1052 
1053   const MachineOperand *LaneSelectOp =
1054       TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
1055 
1056   if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
1057     return 0;
1058 
1059   Register LaneSelectReg = LaneSelectOp->getReg();
1060   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); };
1061 
1062   const int RWLaneWaitStates = 4;
1063   int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn,
1064                                               RWLaneWaitStates);
1065   return RWLaneWaitStates - WaitStatesSince;
1066 }
1067 
1068 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
1069   if (!ST.hasRFEHazards())
1070     return 0;
1071 
1072   const SIInstrInfo *TII = ST.getInstrInfo();
1073 
1074   const int RFEWaitStates = 1;
1075 
1076   auto IsHazardFn = [TII](const MachineInstr &MI) {
1077     return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS;
1078   };
1079   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates);
1080   return RFEWaitStates - WaitStatesNeeded;
1081 }
1082 
1083 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
1084   const SIInstrInfo *TII = ST.getInstrInfo();
1085   const int ReadM0WaitStates = 1;
1086   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); };
1087   return ReadM0WaitStates -
1088          getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, ReadM0WaitStates);
1089 }
1090 
1091 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) {
1092   fixVMEMtoScalarWriteHazards(MI);
1093   fixVcmpxPermlaneHazards(MI);
1094   fixSMEMtoVectorWriteHazards(MI);
1095   fixVcmpxExecWARHazard(MI);
1096   fixLdsBranchVmemWARHazard(MI);
1097   if (ST.hasLdsDirect()) {
1098     fixLdsDirectVALUHazard(MI);
1099     fixLdsDirectVMEMHazard(MI);
1100   }
1101   fixVALUPartialForwardingHazard(MI);
1102   fixVALUTransUseHazard(MI);
1103   fixWMMAHazards(MI);
1104   fixShift64HighRegBug(MI);
1105   fixVALUMaskWriteHazard(MI);
1106 }
1107 
1108 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) {
1109   if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI))
1110     return false;
1111 
1112   const SIInstrInfo *TII = ST.getInstrInfo();
1113   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1114   auto IsHazardFn = [TII, TRI](const MachineInstr &MI) {
1115     return (TII->isVOPC(MI) ||
1116             ((TII->isVOP3(MI) || TII->isSDWA(MI)) && MI.isCompare())) &&
1117            MI.modifiesRegister(AMDGPU::EXEC, TRI);
1118   };
1119 
1120   auto IsExpiredFn = [](const MachineInstr &MI, int) {
1121     unsigned Opc = MI.getOpcode();
1122     return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 &&
1123            Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa;
1124   };
1125 
1126   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1127       std::numeric_limits<int>::max())
1128     return false;
1129 
1130   // V_NOP will be discarded by SQ.
1131   // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE*
1132   // which is always a VGPR and available.
1133   auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
1134   Register Reg = Src0->getReg();
1135   bool IsUndef = Src0->isUndef();
1136   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1137           TII->get(AMDGPU::V_MOV_B32_e32))
1138     .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0))
1139     .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill);
1140 
1141   return true;
1142 }
1143 
1144 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) {
1145   if (!ST.hasVMEMtoScalarWriteHazard())
1146     return false;
1147   assert(!ST.hasExtendedWaitCounts());
1148 
1149   if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI))
1150     return false;
1151 
1152   if (MI->getNumDefs() == 0)
1153     return false;
1154 
1155   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1156 
1157   auto IsHazardFn = [TRI, MI](const MachineInstr &I) {
1158     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) &&
1159         !SIInstrInfo::isFLAT(I))
1160       return false;
1161 
1162     for (const MachineOperand &Def : MI->defs()) {
1163       const MachineOperand *Op =
1164           I.findRegisterUseOperand(Def.getReg(), false, TRI);
1165       if (!Op)
1166         continue;
1167       return true;
1168     }
1169     return false;
1170   };
1171 
1172   auto IsExpiredFn = [](const MachineInstr &MI, int) {
1173     return SIInstrInfo::isVALU(MI) ||
1174            (MI.getOpcode() == AMDGPU::S_WAITCNT &&
1175             !MI.getOperand(0).getImm()) ||
1176            (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1177             AMDGPU::DepCtr::decodeFieldVmVsrc(MI.getOperand(0).getImm()) == 0);
1178   };
1179 
1180   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1181       std::numeric_limits<int>::max())
1182     return false;
1183 
1184   const SIInstrInfo *TII = ST.getInstrInfo();
1185   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1186           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
1187       .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0));
1188   return true;
1189 }
1190 
1191 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) {
1192   if (!ST.hasSMEMtoVectorWriteHazard())
1193     return false;
1194   assert(!ST.hasExtendedWaitCounts());
1195 
1196   if (!SIInstrInfo::isVALU(*MI))
1197     return false;
1198 
1199   unsigned SDSTName;
1200   switch (MI->getOpcode()) {
1201   case AMDGPU::V_READLANE_B32:
1202   case AMDGPU::V_READFIRSTLANE_B32:
1203     SDSTName = AMDGPU::OpName::vdst;
1204     break;
1205   default:
1206     SDSTName = AMDGPU::OpName::sdst;
1207     break;
1208   }
1209 
1210   const SIInstrInfo *TII = ST.getInstrInfo();
1211   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1212   const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU());
1213   const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName);
1214   if (!SDST) {
1215     for (const auto &MO : MI->implicit_operands()) {
1216       if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) {
1217         SDST = &MO;
1218         break;
1219       }
1220     }
1221   }
1222 
1223   if (!SDST)
1224     return false;
1225 
1226   const Register SDSTReg = SDST->getReg();
1227   auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) {
1228     return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI);
1229   };
1230 
1231   auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) {
1232     if (TII->isSALU(MI)) {
1233       switch (MI.getOpcode()) {
1234       case AMDGPU::S_SETVSKIP:
1235       case AMDGPU::S_VERSION:
1236       case AMDGPU::S_WAITCNT_VSCNT:
1237       case AMDGPU::S_WAITCNT_VMCNT:
1238       case AMDGPU::S_WAITCNT_EXPCNT:
1239         // These instructions cannot not mitigate the hazard.
1240         return false;
1241       case AMDGPU::S_WAITCNT_LGKMCNT:
1242         // Reducing lgkmcnt count to 0 always mitigates the hazard.
1243         return (MI.getOperand(1).getImm() == 0) &&
1244                (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1245       case AMDGPU::S_WAITCNT: {
1246         const int64_t Imm = MI.getOperand(0).getImm();
1247         AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm);
1248         // DsCnt corresponds to LGKMCnt here.
1249         return (Decoded.DsCnt == 0);
1250       }
1251       default:
1252         // SOPP instructions cannot mitigate the hazard.
1253         if (TII->isSOPP(MI))
1254           return false;
1255         // At this point the SALU can be assumed to mitigate the hazard
1256         // because either:
1257         // (a) it is independent of the at risk SMEM (breaking chain),
1258         // or
1259         // (b) it is dependent on the SMEM, in which case an appropriate
1260         //     s_waitcnt lgkmcnt _must_ exist between it and the at risk
1261         //     SMEM instruction.
1262         return true;
1263       }
1264     }
1265     return false;
1266   };
1267 
1268   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1269       std::numeric_limits<int>::max())
1270     return false;
1271 
1272   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1273           TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL)
1274       .addImm(0);
1275   return true;
1276 }
1277 
1278 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) {
1279   if (!ST.hasVcmpxExecWARHazard())
1280     return false;
1281   assert(!ST.hasExtendedWaitCounts());
1282 
1283   if (!SIInstrInfo::isVALU(*MI))
1284     return false;
1285 
1286   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1287   if (!MI->modifiesRegister(AMDGPU::EXEC, TRI))
1288     return false;
1289 
1290   auto IsHazardFn = [TRI](const MachineInstr &I) {
1291     if (SIInstrInfo::isVALU(I))
1292       return false;
1293     return I.readsRegister(AMDGPU::EXEC, TRI);
1294   };
1295 
1296   const SIInstrInfo *TII = ST.getInstrInfo();
1297   auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) {
1298     if (SIInstrInfo::isVALU(MI)) {
1299       if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst))
1300         return true;
1301       for (auto MO : MI.implicit_operands())
1302         if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg())))
1303           return true;
1304     }
1305     if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1306         AMDGPU::DepCtr::decodeFieldSaSdst(MI.getOperand(0).getImm()) == 0)
1307       return true;
1308     return false;
1309   };
1310 
1311   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1312       std::numeric_limits<int>::max())
1313     return false;
1314 
1315   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1316           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
1317       .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0));
1318   return true;
1319 }
1320 
1321 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
1322                                                  const GCNSubtarget &ST) {
1323   if (!ST.hasLdsBranchVmemWARHazard())
1324     return false;
1325 
1326   // Check if the necessary condition for the hazard is met: both LDS and VMEM
1327   // instructions need to appear in the same function.
1328   bool HasLds = false;
1329   bool HasVmem = false;
1330   for (auto &MBB : MF) {
1331     for (auto &MI : MBB) {
1332       HasLds |= SIInstrInfo::isDS(MI);
1333       HasVmem |=
1334           SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI);
1335       if (HasLds && HasVmem)
1336         return true;
1337     }
1338   }
1339   return false;
1340 }
1341 
1342 static bool isStoreCountWaitZero(const MachineInstr &I) {
1343   return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1344          I.getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
1345          !I.getOperand(1).getImm();
1346 }
1347 
1348 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) {
1349   if (!RunLdsBranchVmemWARHazardFixup)
1350     return false;
1351 
1352   assert(ST.hasLdsBranchVmemWARHazard());
1353   assert(!ST.hasExtendedWaitCounts());
1354 
1355   auto IsHazardInst = [](const MachineInstr &MI) {
1356     if (SIInstrInfo::isDS(MI))
1357       return 1;
1358     if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI))
1359       return 2;
1360     return 0;
1361   };
1362 
1363   auto InstType = IsHazardInst(*MI);
1364   if (!InstType)
1365     return false;
1366 
1367   auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) {
1368     return IsHazardInst(I) || isStoreCountWaitZero(I);
1369   };
1370 
1371   auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) {
1372     if (!I.isBranch())
1373       return false;
1374 
1375     auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) {
1376       auto InstType2 = IsHazardInst(I);
1377       return InstType2 && InstType != InstType2;
1378     };
1379 
1380     auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) {
1381       auto InstType2 = IsHazardInst(I);
1382       if (InstType == InstType2)
1383         return true;
1384 
1385       return isStoreCountWaitZero(I);
1386     };
1387 
1388     return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) !=
1389            std::numeric_limits<int>::max();
1390   };
1391 
1392   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1393       std::numeric_limits<int>::max())
1394     return false;
1395 
1396   const SIInstrInfo *TII = ST.getInstrInfo();
1397   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1398           TII->get(AMDGPU::S_WAITCNT_VSCNT))
1399     .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1400     .addImm(0);
1401 
1402   return true;
1403 }
1404 
1405 bool GCNHazardRecognizer::fixLdsDirectVALUHazard(MachineInstr *MI) {
1406   if (!SIInstrInfo::isLDSDIR(*MI))
1407     return false;
1408 
1409   const int NoHazardWaitStates = 15;
1410   const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst);
1411   const Register VDSTReg = VDST->getReg();
1412 
1413   bool VisitedTrans = false;
1414   auto IsHazardFn = [this, VDSTReg, &VisitedTrans](const MachineInstr &I) {
1415     if (!SIInstrInfo::isVALU(I))
1416       return false;
1417     VisitedTrans = VisitedTrans || SIInstrInfo::isTRANS(I);
1418     // Cover both WAR and WAW
1419     return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI);
1420   };
1421   auto IsExpiredFn = [&](const MachineInstr &I, int WaitStates) {
1422     if (WaitStates >= NoHazardWaitStates)
1423       return true;
1424     // Instructions which cause va_vdst==0 expire hazard
1425     return SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1426            SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I);
1427   };
1428   auto GetWaitStatesFn = [](const MachineInstr &MI) {
1429     return SIInstrInfo::isVALU(MI) ? 1 : 0;
1430   };
1431 
1432   DenseSet<const MachineBasicBlock *> Visited;
1433   auto Count = ::getWaitStatesSince(IsHazardFn, MI->getParent(),
1434                                     std::next(MI->getReverseIterator()), 0,
1435                                     IsExpiredFn, Visited, GetWaitStatesFn);
1436 
1437   // Transcendentals can execute in parallel to other VALUs.
1438   // This makes va_vdst count unusable with a mixture of VALU and TRANS.
1439   if (VisitedTrans)
1440     Count = 0;
1441 
1442   MachineOperand *WaitVdstOp =
1443       TII.getNamedOperand(*MI, AMDGPU::OpName::waitvdst);
1444   WaitVdstOp->setImm(std::min(Count, NoHazardWaitStates));
1445 
1446   return true;
1447 }
1448 
1449 bool GCNHazardRecognizer::fixLdsDirectVMEMHazard(MachineInstr *MI) {
1450   if (!SIInstrInfo::isLDSDIR(*MI))
1451     return false;
1452 
1453   const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst);
1454   const Register VDSTReg = VDST->getReg();
1455 
1456   auto IsHazardFn = [this, VDSTReg](const MachineInstr &I) {
1457     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I) &&
1458         !SIInstrInfo::isDS(I))
1459       return false;
1460     return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI);
1461   };
1462   bool LdsdirCanWait = ST.hasLdsWaitVMSRC();
1463   // TODO: On GFX12 the hazard should expire on S_WAIT_LOADCNT/SAMPLECNT/BVHCNT
1464   // according to the type of VMEM instruction.
1465   auto IsExpiredFn = [this, LdsdirCanWait](const MachineInstr &I, int) {
1466     return SIInstrInfo::isVALU(I) || SIInstrInfo::isEXP(I) ||
1467            (I.getOpcode() == AMDGPU::S_WAITCNT && !I.getOperand(0).getImm()) ||
1468            (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1469             AMDGPU::DepCtr::decodeFieldVmVsrc(I.getOperand(0).getImm()) == 0) ||
1470            (LdsdirCanWait && SIInstrInfo::isLDSDIR(I) &&
1471             !TII.getNamedOperand(I, AMDGPU::OpName::waitvsrc)->getImm());
1472   };
1473 
1474   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1475       std::numeric_limits<int>::max())
1476     return false;
1477 
1478   if (LdsdirCanWait) {
1479     TII.getNamedOperand(*MI, AMDGPU::OpName::waitvsrc)->setImm(0);
1480   } else {
1481     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1482             TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1483         .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0));
1484   }
1485 
1486   return true;
1487 }
1488 
1489 bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) {
1490   if (!ST.hasVALUPartialForwardingHazard())
1491     return false;
1492   assert(!ST.hasExtendedWaitCounts());
1493 
1494   if (!ST.isWave64() || !SIInstrInfo::isVALU(*MI))
1495     return false;
1496 
1497   SmallSetVector<Register, 4> SrcVGPRs;
1498 
1499   for (const MachineOperand &Use : MI->explicit_uses()) {
1500     if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1501       SrcVGPRs.insert(Use.getReg());
1502   }
1503 
1504   // Only applies with >= 2 unique VGPR sources
1505   if (SrcVGPRs.size() <= 1)
1506     return false;
1507 
1508   // Look for the following pattern:
1509   //   Va <- VALU [PreExecPos]
1510   //   intv1
1511   //   Exec <- SALU [ExecPos]
1512   //   intv2
1513   //   Vb <- VALU [PostExecPos]
1514   //   intv3
1515   //   MI Va, Vb (WaitState = 0)
1516   //
1517   // Where:
1518   // intv1 + intv2 <= 2 VALUs
1519   // intv3 <= 4 VALUs
1520   //
1521   // If found, insert an appropriate S_WAITCNT_DEPCTR before MI.
1522 
1523   const int Intv1plus2MaxVALUs = 2;
1524   const int Intv3MaxVALUs = 4;
1525   const int IntvMaxVALUs = 6;
1526   const int NoHazardVALUWaitStates = IntvMaxVALUs + 2;
1527 
1528   struct StateType {
1529     SmallDenseMap<Register, int, 4> DefPos;
1530     int ExecPos = std::numeric_limits<int>::max();
1531     int VALUs = 0;
1532   };
1533 
1534   StateType State;
1535 
1536   // This overloads expiry testing with all the hazard detection
1537   auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) {
1538     // Too many VALU states have passed
1539     if (State.VALUs > NoHazardVALUWaitStates)
1540       return HazardExpired;
1541 
1542     // Instructions which cause va_vdst==0 expire hazard
1543     if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1544         SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) ||
1545         (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1546          AMDGPU::DepCtr::decodeFieldVaVdst(I.getOperand(0).getImm()) == 0))
1547       return HazardExpired;
1548 
1549     // Track registers writes
1550     bool Changed = false;
1551     if (SIInstrInfo::isVALU(I)) {
1552       for (Register Src : SrcVGPRs) {
1553         if (!State.DefPos.count(Src) && I.modifiesRegister(Src, &TRI)) {
1554           State.DefPos[Src] = State.VALUs;
1555           Changed = true;
1556         }
1557       }
1558     } else if (SIInstrInfo::isSALU(I)) {
1559       if (State.ExecPos == std::numeric_limits<int>::max()) {
1560         if (!State.DefPos.empty() && I.modifiesRegister(AMDGPU::EXEC, &TRI)) {
1561           State.ExecPos = State.VALUs;
1562           Changed = true;
1563         }
1564       }
1565     }
1566 
1567     // Early expiration: too many VALUs in intv3
1568     if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty())
1569       return HazardExpired;
1570 
1571     // Only evaluate state if something changed
1572     if (!Changed)
1573       return NoHazardFound;
1574 
1575     // Determine positions of VALUs pre/post exec change
1576     if (State.ExecPos == std::numeric_limits<int>::max())
1577       return NoHazardFound;
1578 
1579     int PreExecPos = std::numeric_limits<int>::max();
1580     int PostExecPos = std::numeric_limits<int>::max();
1581 
1582     for (auto Entry : State.DefPos) {
1583       int DefVALUs = Entry.second;
1584       if (DefVALUs != std::numeric_limits<int>::max()) {
1585         if (DefVALUs >= State.ExecPos)
1586           PreExecPos = std::min(PreExecPos, DefVALUs);
1587         else if (DefVALUs < State.ExecPos)
1588           PostExecPos = std::min(PostExecPos, DefVALUs);
1589       }
1590     }
1591 
1592     // Need a VALUs post exec change
1593     if (PostExecPos == std::numeric_limits<int>::max())
1594       return NoHazardFound;
1595 
1596     // Too many VALUs in intv3?
1597     int Intv3VALUs = PostExecPos;
1598     if (Intv3VALUs > Intv3MaxVALUs)
1599       return HazardExpired;
1600 
1601     // Too many VALUs in intv2?
1602     int Intv2VALUs = (State.ExecPos - PostExecPos) - 1;
1603     if (Intv2VALUs > Intv1plus2MaxVALUs)
1604       return HazardExpired;
1605 
1606     // Need a VALUs pre exec change
1607     if (PreExecPos == std::numeric_limits<int>::max())
1608       return NoHazardFound;
1609 
1610     // Too many VALUs in intv1?
1611     int Intv1VALUs = PreExecPos - State.ExecPos;
1612     if (Intv1VALUs > Intv1plus2MaxVALUs)
1613       return HazardExpired;
1614 
1615     // Too many VALUs in intv1 + intv2
1616     if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs)
1617       return HazardExpired;
1618 
1619     return HazardFound;
1620   };
1621   auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) {
1622     if (SIInstrInfo::isVALU(MI))
1623       State.VALUs += 1;
1624   };
1625 
1626   DenseSet<const MachineBasicBlock *> Visited;
1627   if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(),
1628                             std::next(MI->getReverseIterator()), Visited))
1629     return false;
1630 
1631   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1632           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1633       .addImm(0x0fff);
1634 
1635   return true;
1636 }
1637 
1638 bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) {
1639   if (!ST.hasVALUTransUseHazard())
1640     return false;
1641   assert(!ST.hasExtendedWaitCounts());
1642 
1643   if (!SIInstrInfo::isVALU(*MI))
1644     return false;
1645 
1646   SmallSet<Register, 4> SrcVGPRs;
1647 
1648   for (const MachineOperand &Use : MI->explicit_uses()) {
1649     if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1650       SrcVGPRs.insert(Use.getReg());
1651   }
1652 
1653   // Look for the following pattern:
1654   //   Va <- TRANS VALU
1655   //   intv
1656   //   MI Va (WaitState = 0)
1657   //
1658   // Where:
1659   // intv <= 5 VALUs / 1 TRANS
1660   //
1661   // If found, insert an appropriate S_WAITCNT_DEPCTR before MI.
1662 
1663   const int IntvMaxVALUs = 5;
1664   const int IntvMaxTRANS = 1;
1665 
1666   struct StateType {
1667     int VALUs = 0;
1668     int TRANS = 0;
1669   };
1670 
1671   StateType State;
1672 
1673   // This overloads expiry testing with all the hazard detection
1674   auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) {
1675     // Too many VALU states have passed
1676     if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS)
1677       return HazardExpired;
1678 
1679     // Instructions which cause va_vdst==0 expire hazard
1680     if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1681         SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) ||
1682         (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1683          I.getOperand(0).getImm() == 0x0fff))
1684       return HazardExpired;
1685 
1686     // Track registers writes
1687     if (SIInstrInfo::isTRANS(I)) {
1688       for (Register Src : SrcVGPRs) {
1689         if (I.modifiesRegister(Src, &TRI)) {
1690           return HazardFound;
1691         }
1692       }
1693     }
1694 
1695     return NoHazardFound;
1696   };
1697   auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) {
1698     if (SIInstrInfo::isVALU(MI))
1699       State.VALUs += 1;
1700     if (SIInstrInfo::isTRANS(MI))
1701       State.TRANS += 1;
1702   };
1703 
1704   DenseSet<const MachineBasicBlock *> Visited;
1705   if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(),
1706                             std::next(MI->getReverseIterator()), Visited))
1707     return false;
1708 
1709   // Hazard is observed - insert a wait on va_dst counter to ensure hazard is
1710   // avoided.
1711   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1712           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1713       .addImm(AMDGPU::DepCtr::encodeFieldVaVdst(0));
1714 
1715   return true;
1716 }
1717 
1718 bool GCNHazardRecognizer::fixWMMAHazards(MachineInstr *MI) {
1719   if (!SIInstrInfo::isWMMA(*MI) && !SIInstrInfo::isSWMMAC(*MI))
1720     return false;
1721 
1722   const SIInstrInfo *TII = ST.getInstrInfo();
1723   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1724 
1725   auto IsHazardFn = [MI, TII, TRI, this](const MachineInstr &I) {
1726     if (!SIInstrInfo::isWMMA(I) && !SIInstrInfo::isSWMMAC(I))
1727       return false;
1728 
1729     // Src0 or Src1 of the current wmma instruction overlaps with the dest of
1730     // the previous wmma.
1731     const Register CurSrc0Reg =
1732         TII->getNamedOperand(*MI, AMDGPU::OpName::src0)->getReg();
1733     const Register CurSrc1Reg =
1734         TII->getNamedOperand(*MI, AMDGPU::OpName::src1)->getReg();
1735 
1736     const Register PrevDstReg =
1737         TII->getNamedOperand(I, AMDGPU::OpName::vdst)->getReg();
1738 
1739     if (TRI->regsOverlap(PrevDstReg, CurSrc0Reg) ||
1740         TRI->regsOverlap(PrevDstReg, CurSrc1Reg)) {
1741       return true;
1742     }
1743 
1744     // Src2 of the current wmma instruction overlaps with the dest of the
1745     // previous wmma.
1746     const MachineOperand *Src2 =
1747         TII->getNamedOperand(*MI, AMDGPU::OpName::src2);
1748     const Register CurSrc2Reg = Src2->isReg() ? Src2->getReg() : Register();
1749 
1750     if (CurSrc2Reg != AMDGPU::NoRegister &&
1751         TRI->regsOverlap(PrevDstReg, CurSrc2Reg)) {
1752 
1753       const MachineOperand *Src2Mods =
1754           TII->getNamedOperand(*MI, AMDGPU::OpName::src2_modifiers);
1755       const bool NoSrc2Mods =
1756           !Src2Mods ||
1757           (Src2Mods->getImm() & (SISrcMods::NEG | SISrcMods::NEG_HI)) == 0;
1758       // Exception: there is no hazard if the wmma instructions are of the same
1759       // type and there is no input modifier on src2 of the current instruction.
1760       return !(NoSrc2Mods && (TII->pseudoToMCOpcode(I.getOpcode()) ==
1761                               TII->pseudoToMCOpcode(MI->getOpcode())));
1762     }
1763 
1764     // GFX12+ allows overlap of matrix C with PrevDstReg (hardware will stall)
1765     // but Index can't overlap with PrevDstReg.
1766     if (AMDGPU::isGFX12Plus(ST)) {
1767       if (SIInstrInfo::isSWMMAC(*MI)) {
1768         const Register CurIndex =
1769             TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->getReg();
1770         if (TRI->regsOverlap(PrevDstReg, CurIndex))
1771           return true;
1772       }
1773       return false;
1774     }
1775 
1776     return false;
1777   };
1778 
1779   auto IsExpiredFn = [](const MachineInstr &I, int) {
1780     return SIInstrInfo::isVALU(I);
1781   };
1782 
1783   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1784       std::numeric_limits<int>::max())
1785     return false;
1786 
1787   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32));
1788 
1789   return true;
1790 }
1791 
1792 bool GCNHazardRecognizer::fixShift64HighRegBug(MachineInstr *MI) {
1793   if (!ST.hasShift64HighRegBug())
1794     return false;
1795   assert(!ST.hasExtendedWaitCounts());
1796 
1797   switch (MI->getOpcode()) {
1798   default:
1799     return false;
1800   case AMDGPU::V_LSHLREV_B64_e64:
1801   case AMDGPU::V_LSHRREV_B64_e64:
1802   case AMDGPU::V_ASHRREV_I64_e64:
1803     break;
1804   }
1805 
1806   MachineOperand *Amt = TII.getNamedOperand(*MI, AMDGPU::OpName::src0);
1807   if (!Amt->isReg())
1808     return false;
1809 
1810   Register AmtReg = Amt->getReg();
1811   const MachineRegisterInfo &MRI = MF.getRegInfo();
1812   // Check if this is a last VGPR in the allocation block.
1813   if (!TRI.isVGPR(MRI, AmtReg) || ((AmtReg - AMDGPU::VGPR0) & 7) != 7)
1814     return false;
1815 
1816   if (AmtReg != AMDGPU::VGPR255 && MRI.isPhysRegUsed(AmtReg + 1))
1817     return false;
1818 
1819   MachineOperand *Src1 = TII.getNamedOperand(*MI, AMDGPU::OpName::src1);
1820   bool OverlappedSrc = Src1->isReg() && TRI.regsOverlap(Src1->getReg(), AmtReg);
1821   bool OverlappedDst = MI->modifiesRegister(AmtReg, &TRI);
1822   bool Overlapped = OverlappedSrc || OverlappedDst;
1823 
1824   assert(!OverlappedDst || !OverlappedSrc ||
1825          Src1->getReg() == MI->getOperand(0).getReg());
1826   assert(ST.needsAlignedVGPRs());
1827   static_assert(AMDGPU::VGPR0 + 1 == AMDGPU::VGPR1);
1828 
1829   Register NewReg;
1830   for (MCRegister Reg : Overlapped ? AMDGPU::VReg_64_Align2RegClass
1831                                    : AMDGPU::VGPR_32RegClass) {
1832     if (!MI->modifiesRegister(Reg, &TRI) && !MI->readsRegister(Reg, &TRI)) {
1833       NewReg = Reg;
1834       break;
1835     }
1836   }
1837 
1838   Register NewAmt = Overlapped ? (Register)TRI.getSubReg(NewReg, AMDGPU::sub1)
1839                                : NewReg;
1840   Register NewAmtLo;
1841 
1842   if (Overlapped)
1843     NewAmtLo = TRI.getSubReg(NewReg, AMDGPU::sub0);
1844 
1845   DebugLoc DL = MI->getDebugLoc();
1846   MachineBasicBlock *MBB = MI->getParent();
1847   // Insert a full wait count because found register might be pending a wait.
1848   BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_WAITCNT))
1849       .addImm(0);
1850 
1851   // Insert V_SWAP_B32 instruction(s) and run hazard recognizer on them.
1852   if (Overlapped)
1853     runOnInstruction(
1854         BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmtLo)
1855             .addDef(AmtReg - 1)
1856             .addReg(AmtReg - 1, RegState::Undef)
1857             .addReg(NewAmtLo, RegState::Undef));
1858   runOnInstruction(BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmt)
1859                        .addDef(AmtReg)
1860                        .addReg(AmtReg, RegState::Undef)
1861                        .addReg(NewAmt, RegState::Undef));
1862 
1863   // Instructions emitted after the current instruction will be processed by the
1864   // parent loop of the hazard recognizer in a natural way.
1865   BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32),
1866           AmtReg)
1867       .addDef(NewAmt)
1868       .addReg(NewAmt)
1869       .addReg(AmtReg);
1870   if (Overlapped)
1871     BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32),
1872             AmtReg - 1)
1873         .addDef(NewAmtLo)
1874         .addReg(NewAmtLo)
1875         .addReg(AmtReg - 1);
1876 
1877   // Re-running hazard recognizer on the modified instruction is not necessary,
1878   // inserted V_SWAP_B32 has already both read and write new registers so
1879   // hazards related to these register has already been handled.
1880   Amt->setReg(NewAmt);
1881   Amt->setIsKill(false);
1882   // We do not update liveness, so verifier may see it as undef.
1883   Amt->setIsUndef();
1884   if (OverlappedDst)
1885     MI->getOperand(0).setReg(NewReg);
1886   if (OverlappedSrc) {
1887     Src1->setReg(NewReg);
1888     Src1->setIsKill(false);
1889     Src1->setIsUndef();
1890   }
1891 
1892   return true;
1893 }
1894 
1895 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) {
1896   int NSAtoVMEMWaitStates = 1;
1897 
1898   if (!ST.hasNSAtoVMEMBug())
1899     return 0;
1900 
1901   if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI))
1902     return 0;
1903 
1904   const SIInstrInfo *TII = ST.getInstrInfo();
1905   const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset);
1906   if (!Offset || (Offset->getImm() & 6) == 0)
1907     return 0;
1908 
1909   auto IsHazardFn = [TII](const MachineInstr &I) {
1910     if (!SIInstrInfo::isMIMG(I))
1911       return false;
1912     const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode());
1913     return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA &&
1914            TII->getInstSizeInBytes(I) >= 16;
1915   };
1916 
1917   return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1);
1918 }
1919 
1920 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) {
1921   int FPAtomicToDenormModeWaitStates = 3;
1922 
1923   if (!ST.hasFPAtomicToDenormModeHazard())
1924     return 0;
1925   assert(!ST.hasExtendedWaitCounts());
1926 
1927   if (MI->getOpcode() != AMDGPU::S_DENORM_MODE)
1928     return 0;
1929 
1930   auto IsHazardFn = [](const MachineInstr &I) {
1931     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I))
1932       return false;
1933     return SIInstrInfo::isFPAtomic(I);
1934   };
1935 
1936   auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) {
1937     if (WaitStates >= 3 || SIInstrInfo::isVALU(MI))
1938       return true;
1939 
1940     switch (MI.getOpcode()) {
1941     case AMDGPU::S_WAITCNT:
1942     case AMDGPU::S_WAITCNT_VSCNT:
1943     case AMDGPU::S_WAITCNT_VMCNT:
1944     case AMDGPU::S_WAITCNT_EXPCNT:
1945     case AMDGPU::S_WAITCNT_LGKMCNT:
1946     case AMDGPU::S_WAIT_IDLE:
1947       return true;
1948     default:
1949       break;
1950     }
1951 
1952     return false;
1953   };
1954 
1955   return FPAtomicToDenormModeWaitStates -
1956          ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn);
1957 }
1958 
1959 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) {
1960   assert(SIInstrInfo::isMAI(*MI));
1961 
1962   return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI);
1963 }
1964 
1965 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) {
1966   // Early exit if no padding is requested.
1967   if (MFMAPaddingRatio == 0)
1968     return 0;
1969 
1970   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1971   if (!SIInstrInfo::isMFMA(*MI) || MFI->getOccupancy() < 2)
1972     return 0;
1973 
1974   int NeighborMFMALatency = 0;
1975   auto IsNeighboringMFMA = [&NeighborMFMALatency,
1976                             this](const MachineInstr &MI) {
1977     if (!SIInstrInfo::isMFMA(MI))
1978       return false;
1979 
1980     NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI);
1981     return true;
1982   };
1983 
1984   const int MaxMFMAPipelineWaitStates = 16;
1985   int WaitStatesSinceNeighborMFMA =
1986       getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates);
1987 
1988   int NeighborMFMAPaddingNeeded =
1989       (NeighborMFMALatency * MFMAPaddingRatio / 100) -
1990       WaitStatesSinceNeighborMFMA;
1991 
1992   return std::max(0, NeighborMFMAPaddingNeeded);
1993 }
1994 
1995 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) {
1996   int WaitStatesNeeded = 0;
1997   unsigned Opc = MI->getOpcode();
1998 
1999   auto IsVALUFn = [](const MachineInstr &MI) {
2000     return SIInstrInfo::isVALU(MI) || MI.isInlineAsm();
2001   };
2002 
2003   if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write
2004     const int LegacyVALUWritesVGPRWaitStates = 2;
2005     const int VALUWritesExecWaitStates = 4;
2006     const int MaxWaitStates = 4;
2007 
2008     int WaitStatesNeededForUse = VALUWritesExecWaitStates -
2009       getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates);
2010     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2011 
2012     if (WaitStatesNeeded < MaxWaitStates) {
2013       for (const MachineOperand &Use : MI->explicit_uses()) {
2014         const int MaxWaitStates = 2;
2015 
2016         if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
2017           continue;
2018 
2019         int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates -
2020           getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates);
2021         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2022 
2023         if (WaitStatesNeeded == MaxWaitStates)
2024           break;
2025       }
2026     }
2027   }
2028 
2029   for (const MachineOperand &Op : MI->explicit_operands()) {
2030     if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg()))
2031       continue;
2032 
2033     if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
2034       continue;
2035 
2036     const int MFMAWritesAGPROverlappedSrcABWaitStates = 4;
2037     const int MFMAWritesAGPROverlappedSrcCWaitStates = 2;
2038     const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4;
2039     const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10;
2040     const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18;
2041     const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1;
2042     const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7;
2043     const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15;
2044     const int MaxWaitStates = 18;
2045     Register Reg = Op.getReg();
2046     unsigned HazardDefLatency = 0;
2047 
2048     auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency,
2049                                this](const MachineInstr &MI) {
2050       if (!SIInstrInfo::isMFMA(MI))
2051         return false;
2052       Register DstReg = MI.getOperand(0).getReg();
2053       if (DstReg == Reg)
2054         return false;
2055       HazardDefLatency =
2056           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
2057       return TRI.regsOverlap(DstReg, Reg);
2058     };
2059 
2060     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn,
2061                                                    MaxWaitStates);
2062     int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates;
2063     int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
2064     int OpNo = Op.getOperandNo();
2065     if (OpNo == SrcCIdx) {
2066       NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates;
2067     } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) {
2068       switch (HazardDefLatency) {
2069       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates;
2070                break;
2071       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates;
2072                break;
2073       case 16: [[fallthrough]];
2074       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates;
2075                break;
2076       }
2077     } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
2078       switch (HazardDefLatency) {
2079       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates;
2080                break;
2081       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates;
2082                break;
2083       case 16: [[fallthrough]];
2084       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates;
2085                break;
2086       }
2087     }
2088 
2089     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2090     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2091 
2092     if (WaitStatesNeeded == MaxWaitStates)
2093       return WaitStatesNeeded; // Early exit.
2094 
2095     auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) {
2096       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
2097         return false;
2098       Register DstReg = MI.getOperand(0).getReg();
2099       return TRI.regsOverlap(Reg, DstReg);
2100     };
2101 
2102     const int AccVGPRWriteMFMAReadSrcCWaitStates = 1;
2103     const int AccVGPRWriteMFMAReadSrcABWaitStates = 3;
2104     const int AccVGPRWriteAccVgprReadWaitStates = 3;
2105     NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates;
2106     if (OpNo == SrcCIdx)
2107       NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates;
2108     else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64)
2109       NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates;
2110 
2111     WaitStatesNeededForUse = NeedWaitStates -
2112       getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates);
2113     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2114 
2115     if (WaitStatesNeeded == MaxWaitStates)
2116       return WaitStatesNeeded; // Early exit.
2117   }
2118 
2119   if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
2120     const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0;
2121     const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5;
2122     const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13;
2123     const int MaxWaitStates = 13;
2124     Register DstReg = MI->getOperand(0).getReg();
2125     unsigned HazardDefLatency = 0;
2126 
2127     auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency,
2128                          this](const MachineInstr &MI) {
2129       if (!SIInstrInfo::isMFMA(MI))
2130         return false;
2131       Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg();
2132       HazardDefLatency =
2133           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
2134       return TRI.regsOverlap(Reg, DstReg);
2135     };
2136 
2137     int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates);
2138     int NeedWaitStates;
2139     switch (HazardDefLatency) {
2140     case 2:  NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates;
2141              break;
2142     case 8:  NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates;
2143              break;
2144     case 16: [[fallthrough]];
2145     default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates;
2146              break;
2147     }
2148 
2149     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince;
2150     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2151   }
2152 
2153   // Pad neighboring MFMA with noops for better inter-wave performance.
2154   WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI));
2155 
2156   return WaitStatesNeeded;
2157 }
2158 
2159 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) {
2160   int WaitStatesNeeded = 0;
2161   unsigned Opc = MI->getOpcode();
2162 
2163   auto IsLegacyVALUFn = [](const MachineInstr &MI) {
2164     return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI);
2165   };
2166 
2167   auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) {
2168     return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) &&
2169            !SIInstrInfo::isDOT(MI);
2170   };
2171 
2172   if (!SIInstrInfo::isMFMA(*MI))
2173     return WaitStatesNeeded;
2174 
2175   const int VALUWritesExecWaitStates = 4;
2176   int WaitStatesNeededForUse = VALUWritesExecWaitStates -
2177     getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn,
2178                           VALUWritesExecWaitStates);
2179   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2180 
2181   int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
2182 
2183   // Loop for both DGEMM and S/HGEMM 2nd instruction.
2184   for (const MachineOperand &Use : MI->explicit_uses()) {
2185     const int LegacyVALUNotDotWritesVGPRWaitStates = 2;
2186     const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2;
2187     const int GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates = 3;
2188     const int GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates = 5;
2189     const int GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates = 4;
2190     const int GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates = 9;
2191     const int GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates = 8;
2192     const int GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates = 17;
2193     const int GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates = 16;
2194     const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8;
2195     const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16;
2196     const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3;
2197     const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9;
2198     const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17;
2199     const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9;
2200     const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4;
2201     const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5;
2202     const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11;
2203     const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19;
2204     const int GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates = 4;
2205     const int GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates = 6;
2206     const int GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates = 10;
2207     const int GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates = 18;
2208     const int GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates = 5;
2209     const int GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates = 7;
2210     const int GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates = 11;
2211     const int GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates = 19;
2212     const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6;
2213     const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11;
2214     const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4;
2215     const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2;
2216     const int MaxWaitStates = 19;
2217 
2218     if (!Use.isReg())
2219       continue;
2220     Register Reg = Use.getReg();
2221     bool FullReg;
2222     const MachineInstr *MI1;
2223 
2224     auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1,
2225                                this](const MachineInstr &MI) {
2226       if (!SIInstrInfo::isMFMA(MI))
2227         return false;
2228       Register DstReg = MI.getOperand(0).getReg();
2229       FullReg = (DstReg == Reg);
2230       MI1 = &MI;
2231       return TRI.regsOverlap(DstReg, Reg);
2232     };
2233 
2234     WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates -
2235       getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates);
2236     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2237 
2238     int NumWaitStates =
2239         getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates);
2240     if (NumWaitStates == std::numeric_limits<int>::max())
2241       continue;
2242 
2243     int OpNo = Use.getOperandNo();
2244     unsigned Opc1 = MI1->getOpcode();
2245     int NeedWaitStates = 0;
2246     if (OpNo == SrcCIdx) {
2247       if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) {
2248         NeedWaitStates = 0;
2249       } else if (FullReg) {
2250         if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
2251              Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) &&
2252             (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
2253              Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64))
2254           NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates;
2255         else if (ST.hasGFX940Insts() &&
2256                  TSchedModel.computeInstrLatency(MI1) == 2)
2257           NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates;
2258       } else {
2259         switch (Opc1) {
2260         case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
2261         case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
2262         case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64:
2263         case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64:
2264           if (!isXDL(ST, *MI))
2265             NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates;
2266           break;
2267         case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
2268         case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
2269           if (!isXDL(ST, *MI))
2270             NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates;
2271           break;
2272         default:
2273           if (ST.hasGFX940Insts() && isXDL(ST, *MI) && !isXDL(ST, *MI1))
2274             break;
2275           switch (TSchedModel.computeInstrLatency(MI1)) {
2276           case 2:
2277             NeedWaitStates = ST.hasGFX940Insts()
2278               ? isXDL(ST, *MI1)
2279                 ? GFX940_XDL2PassWritesVGPROverlappedSMFMASrcCWaitStates
2280                 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates
2281               : isDGEMM(Opc)
2282                 ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates
2283                 : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates;
2284             break;
2285           case 4:
2286             assert(ST.hasGFX940Insts());
2287             NeedWaitStates = isXDL(ST, *MI1)
2288               ? GFX940_XDL4PassWritesVGPROverlappedSMFMASrcCWaitStates
2289               : GFX940_SMFMA4PassWritesVGPROverlappedSMFMASrcCWaitStates;
2290             break;
2291           case 8:
2292             NeedWaitStates = ST.hasGFX940Insts()
2293               ? isXDL(ST, *MI1)
2294                 ? GFX940_XDL8PassWritesVGPROverlappedSMFMASrcCWaitStates
2295                 : GFX940_SMFMA8PassWritesVGPROverlappedSMFMASrcCWaitStates
2296               : isDGEMM(Opc)
2297                 ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates
2298                 : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates;
2299             break;
2300           case 16: [[fallthrough]];
2301           default:
2302             NeedWaitStates = ST.hasGFX940Insts()
2303               ? isXDL(ST, *MI1)
2304                 ? GFX940_XDL16PassWritesVGPROverlappedSMFMASrcCWaitStates
2305                 : GFX940_SMFMA16PassWritesVGPROverlappedSMFMASrcCWaitStates
2306               : isDGEMM(Opc)
2307                 ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates
2308                 : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates;
2309           }
2310         }
2311       }
2312     } else {
2313       switch (Opc1) {
2314       case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
2315       case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
2316       case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64:
2317       case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64:
2318         NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates;
2319         break;
2320       case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
2321       case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
2322         NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates;
2323         break;
2324       default:
2325         switch (TSchedModel.computeInstrLatency(MI1)) {
2326         case 2:
2327           NeedWaitStates = ST.hasGFX940Insts()
2328             ? isXDL(ST, *MI1)
2329               ? GFX940_XDL2PassWritesVGPROverlappedSrcABWaitStates
2330               : GFX940_SMFMA2PassWritesVGPROverlappedSrcABWaitStates
2331             : SMFMA4x4WritesVGPROverlappedSrcABWaitStates;
2332           break;
2333         case 4:
2334           assert(ST.hasGFX940Insts());
2335           NeedWaitStates = isXDL(ST, *MI1)
2336             ? GFX940_XDL4PassWritesVGPROverlappedSrcABWaitStates
2337             : GFX940_SMFMA4PassWritesVGPROverlappedSrcABWaitStates;
2338           break;
2339         case 8:
2340           NeedWaitStates = ST.hasGFX940Insts()
2341             ? isXDL(ST, *MI1)
2342               ? GFX940_XDL8PassWritesVGPROverlappedSrcABWaitStates
2343               : GFX940_SMFMA8PassWritesVGPROverlappedSrcABWaitStates
2344             : SMFMA16x16WritesVGPROverlappedSrcABWaitStates;
2345           break;
2346         case 16: [[fallthrough]];
2347         default:
2348           NeedWaitStates = ST.hasGFX940Insts()
2349             ? isXDL(ST, *MI1)
2350               ? GFX940_XDL16PassWritesVGPROverlappedSrcABWaitStates
2351               : GFX940_SMFMA16PassWritesVGPROverlappedSrcABWaitStates
2352             : SMFMA32x32WritesVGPROverlappedSrcABWaitStates;
2353         }
2354       }
2355     }
2356     if (WaitStatesNeeded >= NeedWaitStates)
2357       continue;
2358 
2359     WaitStatesNeededForUse = NeedWaitStates - NumWaitStates;
2360     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2361 
2362     if (WaitStatesNeeded == MaxWaitStates)
2363       break;
2364   }
2365 
2366   return WaitStatesNeeded;
2367 }
2368 
2369 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) {
2370   // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards()
2371   if (!ST.hasMAIInsts() || ST.hasGFX90AInsts())
2372     return 0;
2373 
2374   int WaitStatesNeeded = 0;
2375 
2376   auto IsAccVgprReadFn = [](const MachineInstr &MI) {
2377     return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64;
2378   };
2379 
2380   for (const MachineOperand &Op : MI->explicit_uses()) {
2381     if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg()))
2382       continue;
2383 
2384     Register Reg = Op.getReg();
2385 
2386     const int AccVgprReadLdStWaitStates = 2;
2387     const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1;
2388     const int MaxWaitStates = 2;
2389 
2390     int WaitStatesNeededForUse = AccVgprReadLdStWaitStates -
2391       getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates);
2392     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2393 
2394     if (WaitStatesNeeded == MaxWaitStates)
2395       return WaitStatesNeeded; // Early exit.
2396 
2397     auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) {
2398       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 &&
2399           MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
2400         return false;
2401       auto IsVALUFn = [](const MachineInstr &MI) {
2402         return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI);
2403       };
2404       return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) <
2405              std::numeric_limits<int>::max();
2406     };
2407 
2408     WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates -
2409       getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates);
2410     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2411   }
2412 
2413   return WaitStatesNeeded;
2414 }
2415 
2416 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) {
2417   if (!ST.hasGFX90AInsts())
2418     return 0;
2419 
2420   auto IsDGEMMFn = [](const MachineInstr &MI) -> bool {
2421     return isDGEMM(MI.getOpcode());
2422   };
2423 
2424   // This is checked in checkMAIHazards90A()
2425   if (SIInstrInfo::isMFMA(*MI))
2426     return 0;
2427 
2428   const MachineRegisterInfo &MRI = MF.getRegInfo();
2429 
2430   int WaitStatesNeeded = 0;
2431 
2432   bool IsMem = SIInstrInfo::isVMEM(*MI) ||
2433                SIInstrInfo::isFLAT(*MI) ||
2434                SIInstrInfo::isDS(*MI);
2435   bool IsMemOrExport = IsMem || SIInstrInfo::isEXP(*MI);
2436   bool IsVALU = SIInstrInfo::isVALU(*MI);
2437 
2438   const MachineInstr *MFMA = nullptr;
2439   unsigned Reg;
2440   auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) {
2441     if (!SIInstrInfo::isMFMA(MI) ||
2442         !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
2443       return false;
2444     MFMA = &MI;
2445     return true;
2446   };
2447 
2448   const MachineInstr *DOT = nullptr;
2449   auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) {
2450     if (!SIInstrInfo::isDOT(MI) ||
2451         !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
2452       return false;
2453     DOT = &MI;
2454     return true;
2455   };
2456 
2457   bool DGEMMAfterVALUWrite = false;
2458   auto IsDGEMMHazard = [&DGEMMAfterVALUWrite, this](const MachineInstr &MI) {
2459     // Found DGEMM on reverse traversal to def.
2460     if (isDGEMM(MI.getOpcode()))
2461       DGEMMAfterVALUWrite = true;
2462 
2463     // Only hazard if register is defined by a VALU and a DGEMM is found after
2464     // after the def.
2465     if (!TII.isVALU(MI) || !DGEMMAfterVALUWrite)
2466       return false;
2467 
2468     return true;
2469   };
2470 
2471   int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
2472                                            AMDGPU::OpName::src2);
2473 
2474   if (IsMemOrExport || IsVALU) {
2475     const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5;
2476     const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11;
2477     const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19;
2478     const int GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates = 4;
2479     const int GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates = 6;
2480     const int GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates = 10;
2481     const int GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates = 18;
2482     const int GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates = 5;
2483     const int GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates = 7;
2484     const int GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates = 11;
2485     const int GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates = 19;
2486     const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9;
2487     const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18;
2488     const int DMFMA4x4WriteVgprVALUReadWaitStates = 6;
2489     const int DMFMA16x16WriteVgprVALUReadWaitStates = 11;
2490     const int DotWriteSameDotReadSrcAB = 3;
2491     const int DotWriteDifferentVALURead = 3;
2492     const int DMFMABetweenVALUWriteVMEMRead = 2;
2493     const int MaxWaitStates = 19;
2494 
2495     for (const MachineOperand &Use : MI->explicit_uses()) {
2496       if (!Use.isReg())
2497         continue;
2498       Reg = Use.getReg();
2499 
2500       DOT = nullptr;
2501       int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
2502                                                      MaxWaitStates);
2503       if (DOT) {
2504         int NeedWaitStates = 0;
2505         if (DOT->getOpcode() == MI->getOpcode()) {
2506           if (&Use - &MI->getOperand(0) != SrcCIdx)
2507             NeedWaitStates = DotWriteSameDotReadSrcAB;
2508         } else {
2509           NeedWaitStates = DotWriteDifferentVALURead;
2510         }
2511 
2512         int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2513         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2514       }
2515 
2516       // Workaround for HW data hazard bug observed only in GFX90A. When there
2517       // is a DGEMM instruction in-between a VALU and a VMEM instruction it
2518       // causes the SQ to incorrectly not insert two wait states between the two
2519       // instructions needed to avoid data hazard.
2520       if (IsMem && ST.hasGFX90AInsts() && !ST.hasGFX940Insts()) {
2521         DGEMMAfterVALUWrite = false;
2522         if (TRI.isVectorRegister(MRI, Reg)) {
2523           int WaitStatesNeededForUse =
2524                 DMFMABetweenVALUWriteVMEMRead -
2525                 getWaitStatesSinceDef(Reg, IsDGEMMHazard,
2526                                       DMFMABetweenVALUWriteVMEMRead);
2527 
2528           WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2529         }
2530       }
2531 
2532       MFMA = nullptr;
2533       WaitStatesSinceDef =
2534           getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates);
2535       if (!MFMA)
2536         continue;
2537 
2538       unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
2539       int NeedWaitStates = MaxWaitStates;
2540       switch (HazardDefLatency) {
2541       case 2:
2542         NeedWaitStates =
2543           ST.hasGFX940Insts()
2544             ? isXDL(ST, *MFMA)
2545               ? GFX940_XDL2PassWriteVgprVALUMemExpReadWaitStates
2546               : GFX940_SMFMA2PassWriteVgprVALUMemExpReadWaitStates
2547             : SMFMA4x4WriteVgprVALUMemExpReadWaitStates;
2548         break;
2549       case 4:
2550         assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts());
2551         NeedWaitStates =
2552           isDGEMM(MFMA->getOpcode())
2553             ? IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates
2554                             : DMFMA4x4WriteVgprVALUReadWaitStates
2555             : isXDL(ST, *MFMA)
2556               ? GFX940_XDL4PassWriteVgprVALUMemExpReadWaitStates
2557               : GFX940_SMFMA4PassWriteVgprVALUMemExpReadWaitStates;
2558         break;
2559       case 8:
2560         NeedWaitStates =
2561           ST.hasGFX940Insts()
2562             ? isXDL(ST, *MFMA)
2563               ? GFX940_XDL8PassWriteVgprVALUMemExpReadWaitStates
2564               : GFX940_SMFMA8PassWriteVgprVALUMemExpReadWaitStates
2565             : SMFMA16x16WriteVgprVALUMemExpReadWaitStates;
2566         break;
2567       case 16: [[fallthrough]];
2568       default:
2569         NeedWaitStates =
2570           isDGEMM(MFMA->getOpcode())
2571             ? IsMemOrExport ? DMFMA16x16WriteVgprMemExpReadWaitStates
2572                             : DMFMA16x16WriteVgprVALUReadWaitStates
2573             : ST.hasGFX940Insts()
2574               ? isXDL(ST, *MFMA)
2575                 ? GFX940_XDL16PassWriteVgprVALUMemExpReadWaitStates
2576                 : GFX940_SMFMA16PassWriteVgprVALUMemExpReadWaitStates
2577               : SMFMA32x32WriteVgprVALUMemExpReadWaitStates;
2578         break;
2579       }
2580 
2581       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2582       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2583 
2584       if (WaitStatesNeeded == MaxWaitStates)
2585         break;
2586     }
2587   }
2588 
2589   unsigned Opc = MI->getOpcode();
2590   const int DMFMAToFMA64WaitStates = 2;
2591   if ((Opc == AMDGPU::V_FMA_F64_e64 ||
2592        Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 ||
2593        Opc == AMDGPU::V_FMAC_F64_dpp) &&
2594       WaitStatesNeeded < DMFMAToFMA64WaitStates) {
2595     int WaitStatesNeededForUse = DMFMAToFMA64WaitStates -
2596       getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates);
2597     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2598   }
2599 
2600   if (!IsVALU && !IsMemOrExport)
2601     return WaitStatesNeeded;
2602 
2603   for (const MachineOperand &Def : MI->defs()) {
2604     const int SMFMA4x4WriteVgprVALUWawWaitStates = 5;
2605     const int SMFMA16x16WriteVgprVALUWawWaitStates = 11;
2606     const int SMFMA32x32WriteVgprVALUWawWaitStates = 19;
2607     const int GFX940_SMFMA2PassWriteVgprVALUWawWaitStates = 4;
2608     const int GFX940_SMFMA4PassWriteVgprVALUWawWaitStates = 6;
2609     const int GFX940_SMFMA8PassWriteVgprVALUWawWaitStates = 10;
2610     const int GFX940_SMFMA16PassWriteVgprVALUWawWaitStates = 18;
2611     const int GFX940_XDL2PassWriteVgprVALUWawWaitStates = 5;
2612     const int GFX940_XDL4PassWriteVgprVALUWawWaitStates = 7;
2613     const int GFX940_XDL8PassWriteVgprVALUWawWaitStates = 11;
2614     const int GFX940_XDL16PassWriteVgprVALUWawWaitStates = 19;
2615     const int SMFMA4x4ReadVgprVALUWarWaitStates = 1;
2616     const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3;
2617     const int SMFMA16x16ReadVgprVALUWarWaitStates = 7;
2618     const int SMFMA32x32ReadVgprVALUWarWaitStates = 15;
2619     const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6;
2620     const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11;
2621     const int DotWriteDifferentVALUWrite = 3;
2622     const int MaxWaitStates = 19;
2623     const int MaxWarWaitStates = 15;
2624 
2625     Reg = Def.getReg();
2626 
2627     DOT = nullptr;
2628     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
2629                                                    MaxWaitStates);
2630     if (DOT && DOT->getOpcode() != MI->getOpcode())
2631       WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite -
2632                                                     WaitStatesSinceDef);
2633 
2634     MFMA = nullptr;
2635     WaitStatesSinceDef =
2636         getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates);
2637     if (MFMA) {
2638       int NeedWaitStates = MaxWaitStates;
2639       switch (TSchedModel.computeInstrLatency(MFMA)) {
2640       case 2:
2641         NeedWaitStates = ST.hasGFX940Insts()
2642           ? isXDL(ST, *MFMA)
2643             ? GFX940_XDL2PassWriteVgprVALUWawWaitStates
2644             : GFX940_SMFMA2PassWriteVgprVALUWawWaitStates
2645           : SMFMA4x4WriteVgprVALUWawWaitStates;
2646         break;
2647       case 4:
2648         assert(isDGEMM(MFMA->getOpcode()) || ST.hasGFX940Insts());
2649         NeedWaitStates = isDGEMM(MFMA->getOpcode())
2650             ? DMFMA4x4WriteVgprVALUWriteWaitStates
2651             : isXDL(ST, *MFMA)
2652               ? GFX940_XDL4PassWriteVgprVALUWawWaitStates
2653               : GFX940_SMFMA4PassWriteVgprVALUWawWaitStates;
2654         break;
2655       case 8:
2656         NeedWaitStates = ST.hasGFX940Insts()
2657           ? isXDL(ST, *MFMA)
2658             ? GFX940_XDL8PassWriteVgprVALUWawWaitStates
2659             : GFX940_SMFMA8PassWriteVgprVALUWawWaitStates
2660           : SMFMA16x16WriteVgprVALUWawWaitStates;
2661         break;
2662       case 16: [[fallthrough]];
2663       default:
2664         NeedWaitStates = isDGEMM(MFMA->getOpcode())
2665                    ? DMFMA16x16WriteVgprVALUWriteWaitStates
2666                    : ST.hasGFX940Insts()
2667                      ? isXDL(ST, *MFMA)
2668                        ? GFX940_XDL16PassWriteVgprVALUWawWaitStates
2669                        : GFX940_SMFMA16PassWriteVgprVALUWawWaitStates
2670                    : SMFMA32x32WriteVgprVALUWawWaitStates;
2671         break;
2672       }
2673 
2674       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2675       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2676 
2677       if (WaitStatesNeeded == MaxWaitStates)
2678         break;
2679     }
2680 
2681     auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) {
2682       if (!SIInstrInfo::isMFMA(MI) || isDGEMM(MI.getOpcode()) ||
2683           !MI.readsRegister(Reg, &TRI))
2684         return false;
2685 
2686       if (ST.hasGFX940Insts() && !isXDL(ST, MI))
2687         return false;
2688 
2689       const MachineOperand *SrcC =
2690           TII.getNamedOperand(MI, AMDGPU::OpName::src2);
2691       assert(SrcC);
2692       if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg))
2693         return false;
2694 
2695       MFMA = &MI;
2696       return true;
2697     };
2698 
2699     MFMA = nullptr;
2700     int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn,
2701                                                 MaxWarWaitStates);
2702     if (!MFMA)
2703       continue;
2704 
2705     unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
2706     int NeedWaitStates = MaxWaitStates;
2707     switch (HazardDefLatency) {
2708     case 2:  NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates;
2709              break;
2710     case 4:  assert(ST.hasGFX940Insts());
2711              NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates;
2712              break;
2713     case 8:  NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates;
2714              break;
2715     case 16: [[fallthrough]];
2716     default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates;
2717              break;
2718     }
2719 
2720     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse;
2721     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2722   }
2723 
2724   return WaitStatesNeeded;
2725 }
2726 
2727 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) {
2728   if (!SU->isInstr())
2729     return false;
2730 
2731   const MachineInstr *MAI = nullptr;
2732 
2733   auto IsMFMAFn = [&MAI](const MachineInstr &MI) {
2734     MAI = nullptr;
2735     if (SIInstrInfo::isMFMA(MI))
2736       MAI = &MI;
2737     return MAI != nullptr;
2738   };
2739 
2740   MachineInstr *MI = SU->getInstr();
2741   if (IsMFMAFn(*MI)) {
2742     int W = getWaitStatesSince(IsMFMAFn, 16);
2743     if (MAI)
2744       return W < (int)TSchedModel.computeInstrLatency(MAI);
2745   }
2746 
2747   return false;
2748 }
2749 
2750 bool GCNHazardRecognizer::fixVALUMaskWriteHazard(MachineInstr *MI) {
2751   if (!ST.hasVALUMaskWriteHazard())
2752     return false;
2753   assert(!ST.hasExtendedWaitCounts());
2754 
2755   if (!ST.isWave64() || !SIInstrInfo::isSALU(*MI))
2756     return false;
2757 
2758   // The hazard sequence is three instructions:
2759   //   1. VALU reads SGPR as mask
2760   //   2. SALU writes SGPR
2761   //   3. SALU reads SGPR
2762   // The hazard can expire if the distance between 2 and 3 is sufficient.
2763   // In practice this happens <10% of the time, hence this always assumes
2764   // the hazard exists if 1 and 2 are present to avoid searching.
2765 
2766   const MachineOperand *SDSTOp = TII.getNamedOperand(*MI, AMDGPU::OpName::sdst);
2767   if (!SDSTOp || !SDSTOp->isReg())
2768     return false;
2769 
2770   const Register HazardReg = SDSTOp->getReg();
2771   if (HazardReg == AMDGPU::EXEC ||
2772       HazardReg == AMDGPU::EXEC_LO ||
2773       HazardReg == AMDGPU::EXEC_HI ||
2774       HazardReg == AMDGPU::M0)
2775     return false;
2776 
2777   auto IsHazardFn = [HazardReg, this](const MachineInstr &I) {
2778     switch (I.getOpcode()) {
2779     case AMDGPU::V_ADDC_U32_e32:
2780     case AMDGPU::V_ADDC_U32_dpp:
2781     case AMDGPU::V_CNDMASK_B16_e32:
2782     case AMDGPU::V_CNDMASK_B16_dpp:
2783     case AMDGPU::V_CNDMASK_B32_e32:
2784     case AMDGPU::V_CNDMASK_B32_dpp:
2785     case AMDGPU::V_DIV_FMAS_F32_e64:
2786     case AMDGPU::V_DIV_FMAS_F64_e64:
2787     case AMDGPU::V_SUBB_U32_e32:
2788     case AMDGPU::V_SUBB_U32_dpp:
2789     case AMDGPU::V_SUBBREV_U32_e32:
2790     case AMDGPU::V_SUBBREV_U32_dpp:
2791       // These implicitly read VCC as mask source.
2792       return HazardReg == AMDGPU::VCC ||
2793              HazardReg == AMDGPU::VCC_LO ||
2794              HazardReg == AMDGPU::VCC_HI;
2795     case AMDGPU::V_ADDC_U32_e64:
2796     case AMDGPU::V_ADDC_U32_e64_dpp:
2797     case AMDGPU::V_CNDMASK_B16_e64:
2798     case AMDGPU::V_CNDMASK_B16_e64_dpp:
2799     case AMDGPU::V_CNDMASK_B32_e64:
2800     case AMDGPU::V_CNDMASK_B32_e64_dpp:
2801     case AMDGPU::V_SUBB_U32_e64:
2802     case AMDGPU::V_SUBB_U32_e64_dpp:
2803     case AMDGPU::V_SUBBREV_U32_e64:
2804     case AMDGPU::V_SUBBREV_U32_e64_dpp: {
2805       // Only check mask register overlaps.
2806       const MachineOperand *SSRCOp = TII.getNamedOperand(I, AMDGPU::OpName::src2);
2807       assert(SSRCOp);
2808       return TRI.regsOverlap(SSRCOp->getReg(), HazardReg);
2809     }
2810     default:
2811       return false;
2812     }
2813   };
2814 
2815   const MachineRegisterInfo &MRI = MF.getRegInfo();
2816   auto IsExpiredFn = [&MRI, this](const MachineInstr &I, int) {
2817     // s_waitcnt_depctr sa_sdst(0) mitigates hazard.
2818     if (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
2819         AMDGPU::DepCtr::decodeFieldSaSdst(I.getOperand(0).getImm()) == 0)
2820       return true;
2821 
2822     // VALU access to any SGPR or literal constant other than HazardReg
2823     // mitigates hazard. No need to check HazardReg here as this will
2824     // only be called when !IsHazardFn.
2825     if (!SIInstrInfo::isVALU(I))
2826       return false;
2827     for (int OpNo = 0, End = I.getNumOperands(); OpNo < End; ++OpNo) {
2828       const MachineOperand &Op = I.getOperand(OpNo);
2829       if (Op.isReg()) {
2830         Register OpReg = Op.getReg();
2831         // Only consider uses
2832         if (!Op.isUse())
2833           continue;
2834         // Ignore EXEC
2835         if (OpReg == AMDGPU::EXEC ||
2836             OpReg == AMDGPU::EXEC_LO ||
2837             OpReg == AMDGPU::EXEC_HI)
2838           continue;
2839         // Ignore all implicit uses except VCC
2840         if (Op.isImplicit()) {
2841           if (OpReg == AMDGPU::VCC ||
2842               OpReg == AMDGPU::VCC_LO ||
2843               OpReg == AMDGPU::VCC_HI)
2844             return true;
2845           continue;
2846         }
2847         if (TRI.isSGPRReg(MRI, OpReg))
2848           return true;
2849       } else {
2850         const MCInstrDesc &InstDesc = I.getDesc();
2851         const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo];
2852         if (!TII.isInlineConstant(Op, OpInfo))
2853           return true;
2854       }
2855     }
2856     return false;
2857   };
2858 
2859   // Check for hazard
2860   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
2861       std::numeric_limits<int>::max())
2862     return false;
2863 
2864   auto NextMI = std::next(MI->getIterator());
2865 
2866   // Add s_waitcnt_depctr sa_sdst(0) after SALU write.
2867   BuildMI(*MI->getParent(), NextMI, MI->getDebugLoc(),
2868           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
2869       .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0));
2870 
2871   // SALU write may be s_getpc in a bundle.
2872   if (MI->getOpcode() == AMDGPU::S_GETPC_B64) {
2873     // Update offsets of any references in the bundle.
2874     while (NextMI != MI->getParent()->end() &&
2875            NextMI->isBundledWithPred()) {
2876       for (auto &Operand : NextMI->operands()) {
2877         if (Operand.isGlobal())
2878           Operand.setOffset(Operand.getOffset() + 4);
2879       }
2880       NextMI++;
2881     }
2882   }
2883 
2884   return true;
2885 }
2886