1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements hazard recognizers for scheduling on GCN processors. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "GCNHazardRecognizer.h" 14 #include "AMDGPUSubtarget.h" 15 #include "SIDefines.h" 16 #include "SIInstrInfo.h" 17 #include "SIRegisterInfo.h" 18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 19 #include "Utils/AMDGPUBaseInfo.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/ScheduleDAG.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <limits> 31 #include <set> 32 #include <vector> 33 34 using namespace llvm; 35 36 //===----------------------------------------------------------------------===// 37 // Hazard Recoginizer Implementation 38 //===----------------------------------------------------------------------===// 39 40 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) : 41 IsHazardRecognizerMode(false), 42 CurrCycleInstr(nullptr), 43 MF(MF), 44 ST(MF.getSubtarget<GCNSubtarget>()), 45 TII(*ST.getInstrInfo()), 46 TRI(TII.getRegisterInfo()), 47 ClauseUses(TRI.getNumRegUnits()), 48 ClauseDefs(TRI.getNumRegUnits()) { 49 MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 18 : 5; 50 TSchedModel.init(&ST); 51 } 52 53 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) { 54 EmitInstruction(SU->getInstr()); 55 } 56 57 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) { 58 CurrCycleInstr = MI; 59 } 60 61 static bool isDivFMas(unsigned Opcode) { 62 return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64; 63 } 64 65 static bool isSGetReg(unsigned Opcode) { 66 return Opcode == AMDGPU::S_GETREG_B32; 67 } 68 69 static bool isSSetReg(unsigned Opcode) { 70 return Opcode == AMDGPU::S_SETREG_B32 || Opcode == AMDGPU::S_SETREG_IMM32_B32; 71 } 72 73 static bool isRWLane(unsigned Opcode) { 74 return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32; 75 } 76 77 static bool isRFE(unsigned Opcode) { 78 return Opcode == AMDGPU::S_RFE_B64; 79 } 80 81 static bool isSMovRel(unsigned Opcode) { 82 switch (Opcode) { 83 case AMDGPU::S_MOVRELS_B32: 84 case AMDGPU::S_MOVRELS_B64: 85 case AMDGPU::S_MOVRELD_B32: 86 case AMDGPU::S_MOVRELD_B64: 87 return true; 88 default: 89 return false; 90 } 91 } 92 93 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII, 94 const MachineInstr &MI) { 95 if (TII.isAlwaysGDS(MI.getOpcode())) 96 return true; 97 98 switch (MI.getOpcode()) { 99 case AMDGPU::S_SENDMSG: 100 case AMDGPU::S_SENDMSGHALT: 101 case AMDGPU::S_TTRACEDATA: 102 return true; 103 // These DS opcodes don't support GDS. 104 case AMDGPU::DS_NOP: 105 case AMDGPU::DS_PERMUTE_B32: 106 case AMDGPU::DS_BPERMUTE_B32: 107 return false; 108 default: 109 if (TII.isDS(MI.getOpcode())) { 110 int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 111 AMDGPU::OpName::gds); 112 if (MI.getOperand(GDS).getImm()) 113 return true; 114 } 115 return false; 116 } 117 } 118 119 static bool isPermlane(const MachineInstr &MI) { 120 unsigned Opcode = MI.getOpcode(); 121 return Opcode == AMDGPU::V_PERMLANE16_B32 || 122 Opcode == AMDGPU::V_PERMLANEX16_B32; 123 } 124 125 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) { 126 const MachineOperand *RegOp = TII->getNamedOperand(RegInstr, 127 AMDGPU::OpName::simm16); 128 return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_; 129 } 130 131 ScheduleHazardRecognizer::HazardType 132 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) { 133 MachineInstr *MI = SU->getInstr(); 134 if (MI->isBundle()) 135 return NoHazard; 136 137 if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0) 138 return NoopHazard; 139 140 // FIXME: Should flat be considered vmem? 141 if ((SIInstrInfo::isVMEM(*MI) || 142 SIInstrInfo::isFLAT(*MI)) 143 && checkVMEMHazards(MI) > 0) 144 return NoopHazard; 145 146 if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0) 147 return NoopHazard; 148 149 if (checkFPAtomicToDenormModeHazard(MI) > 0) 150 return NoopHazard; 151 152 if (ST.hasNoDataDepHazard()) 153 return NoHazard; 154 155 if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0) 156 return NoopHazard; 157 158 if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0) 159 return NoopHazard; 160 161 if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0) 162 return NoopHazard; 163 164 if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0) 165 return NoopHazard; 166 167 if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0) 168 return NoopHazard; 169 170 if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0) 171 return NoopHazard; 172 173 if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0) 174 return NoopHazard; 175 176 if (ST.hasReadM0MovRelInterpHazard() && 177 (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) && 178 checkReadM0Hazards(MI) > 0) 179 return NoopHazard; 180 181 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) && 182 checkReadM0Hazards(MI) > 0) 183 return NoopHazard; 184 185 if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0) 186 return NoopHazard; 187 188 if ((MI->mayLoad() || MI->mayStore()) && checkMAILdStHazards(MI) > 0) 189 return NoopHazard; 190 191 if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0) 192 return NoopHazard; 193 194 if (checkAnyInstHazards(MI) > 0) 195 return NoopHazard; 196 197 return NoHazard; 198 } 199 200 static void insertNoopInBundle(MachineInstr *MI, const SIInstrInfo &TII) { 201 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP)) 202 .addImm(0); 203 } 204 205 void GCNHazardRecognizer::processBundle() { 206 MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator()); 207 MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end(); 208 // Check bundled MachineInstr's for hazards. 209 for (; MI != E && MI->isInsideBundle(); ++MI) { 210 CurrCycleInstr = &*MI; 211 unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr); 212 213 if (IsHazardRecognizerMode) 214 fixHazards(CurrCycleInstr); 215 216 for (unsigned i = 0; i < WaitStates; ++i) 217 insertNoopInBundle(CurrCycleInstr, TII); 218 219 // It’s unnecessary to track more than MaxLookAhead instructions. Since we 220 // include the bundled MI directly after, only add a maximum of 221 // (MaxLookAhead - 1) noops to EmittedInstrs. 222 for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i) 223 EmittedInstrs.push_front(nullptr); 224 225 EmittedInstrs.push_front(CurrCycleInstr); 226 EmittedInstrs.resize(MaxLookAhead); 227 } 228 CurrCycleInstr = nullptr; 229 } 230 231 unsigned GCNHazardRecognizer::PreEmitNoops(SUnit *SU) { 232 IsHazardRecognizerMode = false; 233 return PreEmitNoopsCommon(SU->getInstr()); 234 } 235 236 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) { 237 IsHazardRecognizerMode = true; 238 CurrCycleInstr = MI; 239 unsigned W = PreEmitNoopsCommon(MI); 240 fixHazards(MI); 241 CurrCycleInstr = nullptr; 242 return W; 243 } 244 245 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) { 246 if (MI->isBundle()) 247 return 0; 248 249 int WaitStates = std::max(0, checkAnyInstHazards(MI)); 250 251 if (SIInstrInfo::isSMRD(*MI)) 252 return std::max(WaitStates, checkSMRDHazards(MI)); 253 254 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI)) 255 WaitStates = std::max(WaitStates, checkVMEMHazards(MI)); 256 257 if (ST.hasNSAtoVMEMBug()) 258 WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI)); 259 260 WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI)); 261 262 if (ST.hasNoDataDepHazard()) 263 return WaitStates; 264 265 if (SIInstrInfo::isVALU(*MI)) 266 WaitStates = std::max(WaitStates, checkVALUHazards(MI)); 267 268 if (SIInstrInfo::isDPP(*MI)) 269 WaitStates = std::max(WaitStates, checkDPPHazards(MI)); 270 271 if (isDivFMas(MI->getOpcode())) 272 WaitStates = std::max(WaitStates, checkDivFMasHazards(MI)); 273 274 if (isRWLane(MI->getOpcode())) 275 WaitStates = std::max(WaitStates, checkRWLaneHazards(MI)); 276 277 if (MI->isInlineAsm()) 278 return std::max(WaitStates, checkInlineAsmHazards(MI)); 279 280 if (isSGetReg(MI->getOpcode())) 281 return std::max(WaitStates, checkGetRegHazards(MI)); 282 283 if (isSSetReg(MI->getOpcode())) 284 return std::max(WaitStates, checkSetRegHazards(MI)); 285 286 if (isRFE(MI->getOpcode())) 287 return std::max(WaitStates, checkRFEHazards(MI)); 288 289 if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) || 290 isSMovRel(MI->getOpcode()))) 291 return std::max(WaitStates, checkReadM0Hazards(MI)); 292 293 if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) 294 return std::max(WaitStates, checkReadM0Hazards(MI)); 295 296 if (SIInstrInfo::isMAI(*MI)) 297 return std::max(WaitStates, checkMAIHazards(MI)); 298 299 if (MI->mayLoad() || MI->mayStore()) 300 return std::max(WaitStates, checkMAILdStHazards(MI)); 301 302 return WaitStates; 303 } 304 305 void GCNHazardRecognizer::EmitNoop() { 306 EmittedInstrs.push_front(nullptr); 307 } 308 309 void GCNHazardRecognizer::AdvanceCycle() { 310 // When the scheduler detects a stall, it will call AdvanceCycle() without 311 // emitting any instructions. 312 if (!CurrCycleInstr) 313 return; 314 315 // Do not track non-instructions which do not affect the wait states. 316 // If included, these instructions can lead to buffer overflow such that 317 // detectable hazards are missed. 318 if (CurrCycleInstr->isImplicitDef() || CurrCycleInstr->isDebugInstr() || 319 CurrCycleInstr->isKill()) 320 return; 321 322 if (CurrCycleInstr->isBundle()) { 323 processBundle(); 324 return; 325 } 326 327 unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr); 328 329 // Keep track of emitted instructions 330 EmittedInstrs.push_front(CurrCycleInstr); 331 332 // Add a nullptr for each additional wait state after the first. Make sure 333 // not to add more than getMaxLookAhead() items to the list, since we 334 // truncate the list to that size right after this loop. 335 for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead()); 336 i < e; ++i) { 337 EmittedInstrs.push_front(nullptr); 338 } 339 340 // getMaxLookahead() is the largest number of wait states we will ever need 341 // to insert, so there is no point in keeping track of more than that many 342 // wait states. 343 EmittedInstrs.resize(getMaxLookAhead()); 344 345 CurrCycleInstr = nullptr; 346 } 347 348 void GCNHazardRecognizer::RecedeCycle() { 349 llvm_unreachable("hazard recognizer does not support bottom-up scheduling."); 350 } 351 352 //===----------------------------------------------------------------------===// 353 // Helper Functions 354 //===----------------------------------------------------------------------===// 355 356 typedef function_ref<bool(MachineInstr *, int WaitStates)> IsExpiredFn; 357 358 // Returns a minimum wait states since \p I walking all predecessors. 359 // Only scans until \p IsExpired does not return true. 360 // Can only be run in a hazard recognizer mode. 361 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 362 MachineBasicBlock *MBB, 363 MachineBasicBlock::reverse_instr_iterator I, 364 int WaitStates, 365 IsExpiredFn IsExpired, 366 DenseSet<const MachineBasicBlock *> &Visited) { 367 for (auto E = MBB->instr_rend(); I != E; ++I) { 368 // Don't add WaitStates for parent BUNDLE instructions. 369 if (I->isBundle()) 370 continue; 371 372 if (IsHazard(&*I)) 373 return WaitStates; 374 375 if (I->isInlineAsm() || I->isImplicitDef() || I->isDebugInstr()) 376 continue; 377 378 WaitStates += SIInstrInfo::getNumWaitStates(*I); 379 380 if (IsExpired(&*I, WaitStates)) 381 return std::numeric_limits<int>::max(); 382 } 383 384 int MinWaitStates = WaitStates; 385 bool Found = false; 386 for (MachineBasicBlock *Pred : MBB->predecessors()) { 387 if (!Visited.insert(Pred).second) 388 continue; 389 390 int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), 391 WaitStates, IsExpired, Visited); 392 393 if (W == std::numeric_limits<int>::max()) 394 continue; 395 396 MinWaitStates = Found ? std::min(MinWaitStates, W) : W; 397 if (IsExpired(nullptr, MinWaitStates)) 398 return MinWaitStates; 399 400 Found = true; 401 } 402 403 if (Found) 404 return MinWaitStates; 405 406 return std::numeric_limits<int>::max(); 407 } 408 409 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard, 410 MachineInstr *MI, 411 IsExpiredFn IsExpired) { 412 DenseSet<const MachineBasicBlock *> Visited; 413 return getWaitStatesSince(IsHazard, MI->getParent(), 414 std::next(MI->getReverseIterator()), 415 0, IsExpired, Visited); 416 } 417 418 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) { 419 if (IsHazardRecognizerMode) { 420 auto IsExpiredFn = [Limit] (MachineInstr *, int WaitStates) { 421 return WaitStates >= Limit; 422 }; 423 return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn); 424 } 425 426 int WaitStates = 0; 427 for (MachineInstr *MI : EmittedInstrs) { 428 if (MI) { 429 if (IsHazard(MI)) 430 return WaitStates; 431 432 if (MI->isInlineAsm()) 433 continue; 434 } 435 ++WaitStates; 436 437 if (WaitStates >= Limit) 438 break; 439 } 440 return std::numeric_limits<int>::max(); 441 } 442 443 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg, 444 IsHazardFn IsHazardDef, 445 int Limit) { 446 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 447 448 auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) { 449 return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI); 450 }; 451 452 return getWaitStatesSince(IsHazardFn, Limit); 453 } 454 455 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard, 456 int Limit) { 457 auto IsHazardFn = [IsHazard] (MachineInstr *MI) { 458 return isSSetReg(MI->getOpcode()) && IsHazard(MI); 459 }; 460 461 return getWaitStatesSince(IsHazardFn, Limit); 462 } 463 464 //===----------------------------------------------------------------------===// 465 // No-op Hazard Detection 466 //===----------------------------------------------------------------------===// 467 468 static void addRegUnits(const SIRegisterInfo &TRI, 469 BitVector &BV, unsigned Reg) { 470 for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI) 471 BV.set(*RUI); 472 } 473 474 static void addRegsToSet(const SIRegisterInfo &TRI, 475 iterator_range<MachineInstr::const_mop_iterator> Ops, 476 BitVector &Set) { 477 for (const MachineOperand &Op : Ops) { 478 if (Op.isReg()) 479 addRegUnits(TRI, Set, Op.getReg()); 480 } 481 } 482 483 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) { 484 // XXX: Do we need to worry about implicit operands 485 addRegsToSet(TRI, MI.defs(), ClauseDefs); 486 addRegsToSet(TRI, MI.uses(), ClauseUses); 487 } 488 489 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) { 490 // SMEM soft clause are only present on VI+, and only matter if xnack is 491 // enabled. 492 if (!ST.isXNACKEnabled()) 493 return 0; 494 495 bool IsSMRD = TII.isSMRD(*MEM); 496 497 resetClause(); 498 499 // A soft-clause is any group of consecutive SMEM instructions. The 500 // instructions in this group may return out of order and/or may be 501 // replayed (i.e. the same instruction issued more than once). 502 // 503 // In order to handle these situations correctly we need to make sure that 504 // when a clause has more than one instruction, no instruction in the clause 505 // writes to a register that is read by another instruction in the clause 506 // (including itself). If we encounter this situaion, we need to break the 507 // clause by inserting a non SMEM instruction. 508 509 for (MachineInstr *MI : EmittedInstrs) { 510 // When we hit a non-SMEM instruction then we have passed the start of the 511 // clause and we can stop. 512 if (!MI) 513 break; 514 515 if (IsSMRD != SIInstrInfo::isSMRD(*MI)) 516 break; 517 518 addClauseInst(*MI); 519 } 520 521 if (ClauseDefs.none()) 522 return 0; 523 524 // We need to make sure not to put loads and stores in the same clause if they 525 // use the same address. For now, just start a new clause whenever we see a 526 // store. 527 if (MEM->mayStore()) 528 return 1; 529 530 addClauseInst(*MEM); 531 532 // If the set of defs and uses intersect then we cannot add this instruction 533 // to the clause, so we have a hazard. 534 return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0; 535 } 536 537 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) { 538 int WaitStatesNeeded = 0; 539 540 WaitStatesNeeded = checkSoftClauseHazards(SMRD); 541 542 // This SMRD hazard only affects SI. 543 if (!ST.hasSMRDReadVALUDefHazard()) 544 return WaitStatesNeeded; 545 546 // A read of an SGPR by SMRD instruction requires 4 wait states when the 547 // SGPR was written by a VALU instruction. 548 int SmrdSgprWaitStates = 4; 549 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 550 auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); }; 551 552 bool IsBufferSMRD = TII.isBufferSMRD(*SMRD); 553 554 for (const MachineOperand &Use : SMRD->uses()) { 555 if (!Use.isReg()) 556 continue; 557 int WaitStatesNeededForUse = 558 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 559 SmrdSgprWaitStates); 560 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 561 562 // This fixes what appears to be undocumented hardware behavior in SI where 563 // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor 564 // needs some number of nops in between. We don't know how many we need, but 565 // let's use 4. This wasn't discovered before probably because the only 566 // case when this happens is when we expand a 64-bit pointer into a full 567 // descriptor and use s_buffer_load_dword instead of s_load_dword, which was 568 // probably never encountered in the closed-source land. 569 if (IsBufferSMRD) { 570 int WaitStatesNeededForUse = 571 SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 572 IsBufferHazardDefFn, 573 SmrdSgprWaitStates); 574 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 575 } 576 } 577 578 return WaitStatesNeeded; 579 } 580 581 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) { 582 if (!ST.hasVMEMReadSGPRVALUDefHazard()) 583 return 0; 584 585 int WaitStatesNeeded = checkSoftClauseHazards(VMEM); 586 587 // A read of an SGPR by a VMEM instruction requires 5 wait states when the 588 // SGPR was written by a VALU Instruction. 589 const int VmemSgprWaitStates = 5; 590 auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); }; 591 for (const MachineOperand &Use : VMEM->uses()) { 592 if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 593 continue; 594 595 int WaitStatesNeededForUse = 596 VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn, 597 VmemSgprWaitStates); 598 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 599 } 600 return WaitStatesNeeded; 601 } 602 603 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) { 604 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 605 const SIInstrInfo *TII = ST.getInstrInfo(); 606 607 // Check for DPP VGPR read after VALU VGPR write and EXEC write. 608 int DppVgprWaitStates = 2; 609 int DppExecWaitStates = 5; 610 int WaitStatesNeeded = 0; 611 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 612 613 for (const MachineOperand &Use : DPP->uses()) { 614 if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 615 continue; 616 int WaitStatesNeededForUse = 617 DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg(), 618 [](MachineInstr *) { return true; }, 619 DppVgprWaitStates); 620 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 621 } 622 623 WaitStatesNeeded = std::max( 624 WaitStatesNeeded, 625 DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn, 626 DppExecWaitStates)); 627 628 return WaitStatesNeeded; 629 } 630 631 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) { 632 const SIInstrInfo *TII = ST.getInstrInfo(); 633 634 // v_div_fmas requires 4 wait states after a write to vcc from a VALU 635 // instruction. 636 const int DivFMasWaitStates = 4; 637 auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); }; 638 int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn, 639 DivFMasWaitStates); 640 641 return DivFMasWaitStates - WaitStatesNeeded; 642 } 643 644 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) { 645 const SIInstrInfo *TII = ST.getInstrInfo(); 646 unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr); 647 648 const int GetRegWaitStates = 2; 649 auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) { 650 return GetRegHWReg == getHWReg(TII, *MI); 651 }; 652 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates); 653 654 return GetRegWaitStates - WaitStatesNeeded; 655 } 656 657 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) { 658 const SIInstrInfo *TII = ST.getInstrInfo(); 659 unsigned HWReg = getHWReg(TII, *SetRegInstr); 660 661 const int SetRegWaitStates = ST.getSetRegWaitStates(); 662 auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) { 663 return HWReg == getHWReg(TII, *MI); 664 }; 665 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates); 666 return SetRegWaitStates - WaitStatesNeeded; 667 } 668 669 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) { 670 if (!MI.mayStore()) 671 return -1; 672 673 const SIInstrInfo *TII = ST.getInstrInfo(); 674 unsigned Opcode = MI.getOpcode(); 675 const MCInstrDesc &Desc = MI.getDesc(); 676 677 int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 678 int VDataRCID = -1; 679 if (VDataIdx != -1) 680 VDataRCID = Desc.OpInfo[VDataIdx].RegClass; 681 682 if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) { 683 // There is no hazard if the instruction does not use vector regs 684 // (like wbinvl1) 685 if (VDataIdx == -1) 686 return -1; 687 // For MUBUF/MTBUF instructions this hazard only exists if the 688 // instruction is not using a register in the soffset field. 689 const MachineOperand *SOffset = 690 TII->getNamedOperand(MI, AMDGPU::OpName::soffset); 691 // If we have no soffset operand, then assume this field has been 692 // hardcoded to zero. 693 if (AMDGPU::getRegBitWidth(VDataRCID) > 64 && 694 (!SOffset || !SOffset->isReg())) 695 return VDataIdx; 696 } 697 698 // MIMG instructions create a hazard if they don't use a 256-bit T# and 699 // the store size is greater than 8 bytes and they have more than two bits 700 // of their dmask set. 701 // All our MIMG definitions use a 256-bit T#, so we can skip checking for them. 702 if (TII->isMIMG(MI)) { 703 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 704 assert(SRsrcIdx != -1 && 705 AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256); 706 (void)SRsrcIdx; 707 } 708 709 if (TII->isFLAT(MI)) { 710 int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata); 711 if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64) 712 return DataIdx; 713 } 714 715 return -1; 716 } 717 718 int GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def, 719 const MachineRegisterInfo &MRI) { 720 // Helper to check for the hazard where VMEM instructions that store more than 721 // 8 bytes can have there store data over written by the next instruction. 722 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 723 724 const int VALUWaitStates = 1; 725 int WaitStatesNeeded = 0; 726 727 if (!TRI->isVGPR(MRI, Def.getReg())) 728 return WaitStatesNeeded; 729 Register Reg = Def.getReg(); 730 auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) { 731 int DataIdx = createsVALUHazard(*MI); 732 return DataIdx >= 0 && 733 TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg); 734 }; 735 int WaitStatesNeededForDef = 736 VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates); 737 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef); 738 739 return WaitStatesNeeded; 740 } 741 742 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) { 743 // This checks for the hazard where VMEM instructions that store more than 744 // 8 bytes can have there store data over written by the next instruction. 745 if (!ST.has12DWordStoreHazard()) 746 return 0; 747 748 const MachineRegisterInfo &MRI = MF.getRegInfo(); 749 int WaitStatesNeeded = 0; 750 751 for (const MachineOperand &Def : VALU->defs()) { 752 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI)); 753 } 754 755 return WaitStatesNeeded; 756 } 757 758 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) { 759 // This checks for hazards associated with inline asm statements. 760 // Since inline asms can contain just about anything, we use this 761 // to call/leverage other check*Hazard routines. Note that 762 // this function doesn't attempt to address all possible inline asm 763 // hazards (good luck), but is a collection of what has been 764 // problematic thus far. 765 766 // see checkVALUHazards() 767 if (!ST.has12DWordStoreHazard()) 768 return 0; 769 770 const MachineRegisterInfo &MRI = MF.getRegInfo(); 771 int WaitStatesNeeded = 0; 772 773 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands(); 774 I != E; ++I) { 775 const MachineOperand &Op = IA->getOperand(I); 776 if (Op.isReg() && Op.isDef()) { 777 WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI)); 778 } 779 } 780 781 return WaitStatesNeeded; 782 } 783 784 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) { 785 const SIInstrInfo *TII = ST.getInstrInfo(); 786 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 787 const MachineRegisterInfo &MRI = MF.getRegInfo(); 788 789 const MachineOperand *LaneSelectOp = 790 TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1); 791 792 if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg())) 793 return 0; 794 795 Register LaneSelectReg = LaneSelectOp->getReg(); 796 auto IsHazardFn = [TII] (MachineInstr *MI) { 797 return TII->isVALU(*MI); 798 }; 799 800 const int RWLaneWaitStates = 4; 801 int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn, 802 RWLaneWaitStates); 803 return RWLaneWaitStates - WaitStatesSince; 804 } 805 806 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) { 807 if (!ST.hasRFEHazards()) 808 return 0; 809 810 const SIInstrInfo *TII = ST.getInstrInfo(); 811 812 const int RFEWaitStates = 1; 813 814 auto IsHazardFn = [TII] (MachineInstr *MI) { 815 return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS; 816 }; 817 int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates); 818 return RFEWaitStates - WaitStatesNeeded; 819 } 820 821 int GCNHazardRecognizer::checkAnyInstHazards(MachineInstr *MI) { 822 if (MI->isDebugInstr()) 823 return 0; 824 825 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 826 if (!ST.hasSMovFedHazard()) 827 return 0; 828 829 // Check for any instruction reading an SGPR after a write from 830 // s_mov_fed_b32. 831 int MovFedWaitStates = 1; 832 int WaitStatesNeeded = 0; 833 834 for (const MachineOperand &Use : MI->uses()) { 835 if (!Use.isReg() || TRI->isVGPR(MF.getRegInfo(), Use.getReg())) 836 continue; 837 auto IsHazardFn = [] (MachineInstr *MI) { 838 return MI->getOpcode() == AMDGPU::S_MOV_FED_B32; 839 }; 840 int WaitStatesNeededForUse = 841 MovFedWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardFn, 842 MovFedWaitStates); 843 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 844 } 845 846 return WaitStatesNeeded; 847 } 848 849 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) { 850 const SIInstrInfo *TII = ST.getInstrInfo(); 851 const int SMovRelWaitStates = 1; 852 auto IsHazardFn = [TII] (MachineInstr *MI) { 853 return TII->isSALU(*MI); 854 }; 855 return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, 856 SMovRelWaitStates); 857 } 858 859 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) { 860 fixVMEMtoScalarWriteHazards(MI); 861 fixVcmpxPermlaneHazards(MI); 862 fixSMEMtoVectorWriteHazards(MI); 863 fixVcmpxExecWARHazard(MI); 864 fixLdsBranchVmemWARHazard(MI); 865 } 866 867 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) { 868 if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI)) 869 return false; 870 871 const SIInstrInfo *TII = ST.getInstrInfo(); 872 auto IsHazardFn = [TII] (MachineInstr *MI) { 873 return TII->isVOPC(*MI); 874 }; 875 876 auto IsExpiredFn = [] (MachineInstr *MI, int) { 877 if (!MI) 878 return false; 879 unsigned Opc = MI->getOpcode(); 880 return SIInstrInfo::isVALU(*MI) && 881 Opc != AMDGPU::V_NOP_e32 && 882 Opc != AMDGPU::V_NOP_e64 && 883 Opc != AMDGPU::V_NOP_sdwa; 884 }; 885 886 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 887 std::numeric_limits<int>::max()) 888 return false; 889 890 // V_NOP will be discarded by SQ. 891 // Use V_MOB_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE* 892 // which is always a VGPR and available. 893 auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 894 Register Reg = Src0->getReg(); 895 bool IsUndef = Src0->isUndef(); 896 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 897 TII->get(AMDGPU::V_MOV_B32_e32)) 898 .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0)) 899 .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill); 900 901 return true; 902 } 903 904 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) { 905 if (!ST.hasVMEMtoScalarWriteHazard()) 906 return false; 907 908 if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI)) 909 return false; 910 911 if (MI->getNumDefs() == 0) 912 return false; 913 914 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 915 916 auto IsHazardFn = [TRI, MI] (MachineInstr *I) { 917 if (!SIInstrInfo::isVMEM(*I) && !SIInstrInfo::isDS(*I) && 918 !SIInstrInfo::isFLAT(*I)) 919 return false; 920 921 for (const MachineOperand &Def : MI->defs()) { 922 MachineOperand *Op = I->findRegisterUseOperand(Def.getReg(), false, TRI); 923 if (!Op) 924 continue; 925 return true; 926 } 927 return false; 928 }; 929 930 auto IsExpiredFn = [] (MachineInstr *MI, int) { 931 return MI && (SIInstrInfo::isVALU(*MI) || 932 (MI->getOpcode() == AMDGPU::S_WAITCNT && 933 !MI->getOperand(0).getImm())); 934 }; 935 936 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 937 std::numeric_limits<int>::max()) 938 return false; 939 940 const SIInstrInfo *TII = ST.getInstrInfo(); 941 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32)); 942 return true; 943 } 944 945 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) { 946 if (!ST.hasSMEMtoVectorWriteHazard()) 947 return false; 948 949 if (!SIInstrInfo::isVALU(*MI)) 950 return false; 951 952 unsigned SDSTName; 953 switch (MI->getOpcode()) { 954 case AMDGPU::V_READLANE_B32: 955 case AMDGPU::V_READLANE_B32_gfx10: 956 case AMDGPU::V_READFIRSTLANE_B32: 957 SDSTName = AMDGPU::OpName::vdst; 958 break; 959 default: 960 SDSTName = AMDGPU::OpName::sdst; 961 break; 962 } 963 964 const SIInstrInfo *TII = ST.getInstrInfo(); 965 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 966 const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU()); 967 const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName); 968 if (!SDST) { 969 for (const auto &MO : MI->implicit_operands()) { 970 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) { 971 SDST = &MO; 972 break; 973 } 974 } 975 } 976 977 if (!SDST) 978 return false; 979 980 const Register SDSTReg = SDST->getReg(); 981 auto IsHazardFn = [SDSTReg, TRI] (MachineInstr *I) { 982 return SIInstrInfo::isSMRD(*I) && I->readsRegister(SDSTReg, TRI); 983 }; 984 985 auto IsExpiredFn = [TII, IV] (MachineInstr *MI, int) { 986 if (MI) { 987 if (TII->isSALU(*MI)) { 988 switch (MI->getOpcode()) { 989 case AMDGPU::S_SETVSKIP: 990 case AMDGPU::S_VERSION: 991 case AMDGPU::S_WAITCNT_VSCNT: 992 case AMDGPU::S_WAITCNT_VMCNT: 993 case AMDGPU::S_WAITCNT_EXPCNT: 994 // These instructions cannot not mitigate the hazard. 995 return false; 996 case AMDGPU::S_WAITCNT_LGKMCNT: 997 // Reducing lgkmcnt count to 0 always mitigates the hazard. 998 return (MI->getOperand(1).getImm() == 0) && 999 (MI->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1000 case AMDGPU::S_WAITCNT: { 1001 const int64_t Imm = MI->getOperand(0).getImm(); 1002 AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm); 1003 return (Decoded.LgkmCnt == 0); 1004 } 1005 default: 1006 // SOPP instructions cannot mitigate the hazard. 1007 if (TII->isSOPP(*MI)) 1008 return false; 1009 // At this point the SALU can be assumed to mitigate the hazard 1010 // because either: 1011 // (a) it is independent of the at risk SMEM (breaking chain), 1012 // or 1013 // (b) it is dependent on the SMEM, in which case an appropriate 1014 // s_waitcnt lgkmcnt _must_ exist between it and the at risk 1015 // SMEM instruction. 1016 return true; 1017 } 1018 } 1019 } 1020 return false; 1021 }; 1022 1023 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1024 std::numeric_limits<int>::max()) 1025 return false; 1026 1027 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1028 TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL) 1029 .addImm(0); 1030 return true; 1031 } 1032 1033 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) { 1034 if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI)) 1035 return false; 1036 1037 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1038 if (!MI->modifiesRegister(AMDGPU::EXEC, TRI)) 1039 return false; 1040 1041 auto IsHazardFn = [TRI] (MachineInstr *I) { 1042 if (SIInstrInfo::isVALU(*I)) 1043 return false; 1044 return I->readsRegister(AMDGPU::EXEC, TRI); 1045 }; 1046 1047 const SIInstrInfo *TII = ST.getInstrInfo(); 1048 auto IsExpiredFn = [TII, TRI] (MachineInstr *MI, int) { 1049 if (!MI) 1050 return false; 1051 if (SIInstrInfo::isVALU(*MI)) { 1052 if (TII->getNamedOperand(*MI, AMDGPU::OpName::sdst)) 1053 return true; 1054 for (auto MO : MI->implicit_operands()) 1055 if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) 1056 return true; 1057 } 1058 if (MI->getOpcode() == AMDGPU::S_WAITCNT_DEPCTR && 1059 (MI->getOperand(0).getImm() & 0xfffe) == 0xfffe) 1060 return true; 1061 return false; 1062 }; 1063 1064 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1065 std::numeric_limits<int>::max()) 1066 return false; 1067 1068 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1069 TII->get(AMDGPU::S_WAITCNT_DEPCTR)) 1070 .addImm(0xfffe); 1071 return true; 1072 } 1073 1074 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) { 1075 if (!ST.hasLdsBranchVmemWARHazard()) 1076 return false; 1077 1078 auto IsHazardInst = [] (const MachineInstr *MI) { 1079 if (SIInstrInfo::isDS(*MI)) 1080 return 1; 1081 if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isSegmentSpecificFLAT(*MI)) 1082 return 2; 1083 return 0; 1084 }; 1085 1086 auto InstType = IsHazardInst(MI); 1087 if (!InstType) 1088 return false; 1089 1090 auto IsExpiredFn = [&IsHazardInst] (MachineInstr *I, int) { 1091 return I && (IsHazardInst(I) || 1092 (I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1093 I->getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1094 !I->getOperand(1).getImm())); 1095 }; 1096 1097 auto IsHazardFn = [InstType, &IsHazardInst] (MachineInstr *I) { 1098 if (!I->isBranch()) 1099 return false; 1100 1101 auto IsHazardFn = [InstType, IsHazardInst] (MachineInstr *I) { 1102 auto InstType2 = IsHazardInst(I); 1103 return InstType2 && InstType != InstType2; 1104 }; 1105 1106 auto IsExpiredFn = [InstType, &IsHazardInst] (MachineInstr *I, int) { 1107 if (!I) 1108 return false; 1109 1110 auto InstType2 = IsHazardInst(I); 1111 if (InstType == InstType2) 1112 return true; 1113 1114 return I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1115 I->getOperand(0).getReg() == AMDGPU::SGPR_NULL && 1116 !I->getOperand(1).getImm(); 1117 }; 1118 1119 return ::getWaitStatesSince(IsHazardFn, I, IsExpiredFn) != 1120 std::numeric_limits<int>::max(); 1121 }; 1122 1123 if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) == 1124 std::numeric_limits<int>::max()) 1125 return false; 1126 1127 const SIInstrInfo *TII = ST.getInstrInfo(); 1128 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1129 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1130 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1131 .addImm(0); 1132 1133 return true; 1134 } 1135 1136 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) { 1137 int NSAtoVMEMWaitStates = 1; 1138 1139 if (!ST.hasNSAtoVMEMBug()) 1140 return 0; 1141 1142 if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI)) 1143 return 0; 1144 1145 const SIInstrInfo *TII = ST.getInstrInfo(); 1146 const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset); 1147 if (!Offset || (Offset->getImm() & 6) == 0) 1148 return 0; 1149 1150 auto IsHazardFn = [TII] (MachineInstr *I) { 1151 if (!SIInstrInfo::isMIMG(*I)) 1152 return false; 1153 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I->getOpcode()); 1154 return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA && 1155 TII->getInstSizeInBytes(*I) >= 16; 1156 }; 1157 1158 return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1); 1159 } 1160 1161 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) { 1162 int FPAtomicToDenormModeWaitStates = 3; 1163 1164 if (MI->getOpcode() != AMDGPU::S_DENORM_MODE) 1165 return 0; 1166 1167 auto IsHazardFn = [] (MachineInstr *I) { 1168 if (!SIInstrInfo::isVMEM(*I) && !SIInstrInfo::isFLAT(*I)) 1169 return false; 1170 return SIInstrInfo::isFPAtomic(*I); 1171 }; 1172 1173 auto IsExpiredFn = [] (MachineInstr *MI, int WaitStates) { 1174 if (WaitStates >= 3 || SIInstrInfo::isVALU(*MI)) 1175 return true; 1176 1177 switch (MI->getOpcode()) { 1178 case AMDGPU::S_WAITCNT: 1179 case AMDGPU::S_WAITCNT_VSCNT: 1180 case AMDGPU::S_WAITCNT_VMCNT: 1181 case AMDGPU::S_WAITCNT_EXPCNT: 1182 case AMDGPU::S_WAITCNT_LGKMCNT: 1183 case AMDGPU::S_WAITCNT_IDLE: 1184 return true; 1185 default: 1186 break; 1187 } 1188 1189 return false; 1190 }; 1191 1192 1193 return FPAtomicToDenormModeWaitStates - 1194 ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn); 1195 } 1196 1197 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) { 1198 assert(SIInstrInfo::isMAI(*MI)); 1199 1200 int WaitStatesNeeded = 0; 1201 unsigned Opc = MI->getOpcode(); 1202 1203 auto IsVALUFn = [] (MachineInstr *MI) { 1204 return SIInstrInfo::isVALU(*MI); 1205 }; 1206 1207 if (Opc != AMDGPU::V_ACCVGPR_READ_B32) { // MFMA or v_accvgpr_write 1208 const int LegacyVALUWritesVGPRWaitStates = 2; 1209 const int VALUWritesExecWaitStates = 4; 1210 const int MaxWaitStates = 4; 1211 1212 int WaitStatesNeededForUse = VALUWritesExecWaitStates - 1213 getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates); 1214 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1215 1216 if (WaitStatesNeeded < MaxWaitStates) { 1217 for (const MachineOperand &Use : MI->explicit_uses()) { 1218 const int MaxWaitStates = 2; 1219 1220 if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg())) 1221 continue; 1222 1223 int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates - 1224 getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates); 1225 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1226 1227 if (WaitStatesNeeded == MaxWaitStates) 1228 break; 1229 } 1230 } 1231 } 1232 1233 auto IsMFMAFn = [] (MachineInstr *MI) { 1234 return SIInstrInfo::isMAI(*MI) && 1235 MI->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32 && 1236 MI->getOpcode() != AMDGPU::V_ACCVGPR_READ_B32; 1237 }; 1238 1239 for (const MachineOperand &Op : MI->explicit_operands()) { 1240 if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg())) 1241 continue; 1242 1243 if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32) 1244 continue; 1245 1246 const int MFMAWritesAGPROverlappedSrcABWaitStates = 4; 1247 const int MFMAWritesAGPROverlappedSrcCWaitStates = 2; 1248 const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4; 1249 const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10; 1250 const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18; 1251 const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1; 1252 const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7; 1253 const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15; 1254 const int MaxWaitStates = 18; 1255 Register Reg = Op.getReg(); 1256 unsigned HazardDefLatency = 0; 1257 1258 auto IsOverlappedMFMAFn = [Reg, &IsMFMAFn, &HazardDefLatency, this] 1259 (MachineInstr *MI) { 1260 if (!IsMFMAFn(MI)) 1261 return false; 1262 Register DstReg = MI->getOperand(0).getReg(); 1263 if (DstReg == Reg) 1264 return false; 1265 HazardDefLatency = std::max(HazardDefLatency, 1266 TSchedModel.computeInstrLatency(MI)); 1267 return TRI.regsOverlap(DstReg, Reg); 1268 }; 1269 1270 int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, 1271 MaxWaitStates); 1272 int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates; 1273 int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1274 int OpNo = MI->getOperandNo(&Op); 1275 if (OpNo == SrcCIdx) { 1276 NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates; 1277 } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32) { 1278 switch (HazardDefLatency) { 1279 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates; 1280 break; 1281 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates; 1282 break; 1283 case 16: LLVM_FALLTHROUGH; 1284 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates; 1285 break; 1286 } 1287 } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32) { 1288 switch (HazardDefLatency) { 1289 case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates; 1290 break; 1291 case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates; 1292 break; 1293 case 16: LLVM_FALLTHROUGH; 1294 default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates; 1295 break; 1296 } 1297 } 1298 1299 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef; 1300 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1301 1302 if (WaitStatesNeeded == MaxWaitStates) 1303 return WaitStatesNeeded; // Early exit. 1304 1305 auto IsAccVgprWriteFn = [Reg, this] (MachineInstr *MI) { 1306 if (MI->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32) 1307 return false; 1308 Register DstReg = MI->getOperand(0).getReg(); 1309 return TRI.regsOverlap(Reg, DstReg); 1310 }; 1311 1312 const int AccVGPRWriteMFMAReadSrcCWaitStates = 1; 1313 const int AccVGPRWriteMFMAReadSrcABWaitStates = 3; 1314 const int AccVGPRWriteAccVgprReadWaitStates = 3; 1315 NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates; 1316 if (OpNo == SrcCIdx) 1317 NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates; 1318 else if (Opc == AMDGPU::V_ACCVGPR_READ_B32) 1319 NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates; 1320 1321 WaitStatesNeededForUse = NeedWaitStates - 1322 getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates); 1323 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1324 1325 if (WaitStatesNeeded == MaxWaitStates) 1326 return WaitStatesNeeded; // Early exit. 1327 } 1328 1329 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32) { 1330 const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0; 1331 const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5; 1332 const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13; 1333 const int MaxWaitStates = 13; 1334 Register DstReg = MI->getOperand(0).getReg(); 1335 unsigned HazardDefLatency = 0; 1336 1337 auto IsSrcCMFMAFn = [DstReg, &IsMFMAFn, &HazardDefLatency, this] 1338 (MachineInstr *MI) { 1339 if (!IsMFMAFn(MI)) 1340 return false; 1341 Register Reg = TII.getNamedOperand(*MI, AMDGPU::OpName::src2)->getReg(); 1342 HazardDefLatency = std::max(HazardDefLatency, 1343 TSchedModel.computeInstrLatency(MI)); 1344 return TRI.regsOverlap(Reg, DstReg); 1345 }; 1346 1347 int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates); 1348 int NeedWaitStates; 1349 switch (HazardDefLatency) { 1350 case 2: NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates; 1351 break; 1352 case 8: NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates; 1353 break; 1354 case 16: LLVM_FALLTHROUGH; 1355 default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates; 1356 break; 1357 } 1358 1359 int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince; 1360 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1361 } 1362 1363 return WaitStatesNeeded; 1364 } 1365 1366 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) { 1367 if (!ST.hasMAIInsts()) 1368 return 0; 1369 1370 int WaitStatesNeeded = 0; 1371 1372 auto IsAccVgprReadFn = [] (MachineInstr *MI) { 1373 return MI->getOpcode() == AMDGPU::V_ACCVGPR_READ_B32; 1374 }; 1375 1376 for (const MachineOperand &Op : MI->explicit_uses()) { 1377 if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg())) 1378 continue; 1379 1380 Register Reg = Op.getReg(); 1381 1382 const int AccVgprReadLdStWaitStates = 2; 1383 const int VALUWriteAccVgprReadLdStDepVALUWaitStates = 1; 1384 const int MaxWaitStates = 2; 1385 1386 int WaitStatesNeededForUse = AccVgprReadLdStWaitStates - 1387 getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates); 1388 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1389 1390 if (WaitStatesNeeded == MaxWaitStates) 1391 return WaitStatesNeeded; // Early exit. 1392 1393 auto IsVALUAccVgprReadCheckFn = [Reg, this] (MachineInstr *MI) { 1394 if (MI->getOpcode() != AMDGPU::V_ACCVGPR_READ_B32) 1395 return false; 1396 auto IsVALUFn = [] (MachineInstr *MI) { 1397 return SIInstrInfo::isVALU(*MI) && !SIInstrInfo::isMAI(*MI); 1398 }; 1399 return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) < 1400 std::numeric_limits<int>::max(); 1401 }; 1402 1403 WaitStatesNeededForUse = VALUWriteAccVgprReadLdStDepVALUWaitStates - 1404 getWaitStatesSince(IsVALUAccVgprReadCheckFn, MaxWaitStates); 1405 WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse); 1406 } 1407 1408 return WaitStatesNeeded; 1409 } 1410