xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/GCNHazardRecognizer.cpp (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements hazard recognizers for scheduling on GCN processors.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "GCNHazardRecognizer.h"
14 #include "GCNSubtarget.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "SIMachineFunctionInfo.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/ScheduleDAG.h"
20 #include "llvm/TargetParser/TargetParser.h"
21 
22 using namespace llvm;
23 
24 namespace {
25 
26 struct MFMAPaddingRatioParser : public cl::parser<unsigned> {
27   MFMAPaddingRatioParser(cl::Option &O) : cl::parser<unsigned>(O) {}
28 
29   bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) {
30     if (Arg.getAsInteger(0, Value))
31       return O.error("'" + Arg + "' value invalid for uint argument!");
32 
33     if (Value > 100)
34       return O.error("'" + Arg + "' value must be in the range [0, 100]!");
35 
36     return false;
37   }
38 };
39 
40 } // end anonymous namespace
41 
42 static cl::opt<unsigned, false, MFMAPaddingRatioParser>
43     MFMAPaddingRatio("amdgpu-mfma-padding-ratio", cl::init(0), cl::Hidden,
44                      cl::desc("Fill a percentage of the latency between "
45                               "neighboring MFMA with s_nops."));
46 
47 //===----------------------------------------------------------------------===//
48 // Hazard Recognizer Implementation
49 //===----------------------------------------------------------------------===//
50 
51 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
52                                                  const GCNSubtarget &ST);
53 
54 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
55   IsHazardRecognizerMode(false),
56   CurrCycleInstr(nullptr),
57   MF(MF),
58   ST(MF.getSubtarget<GCNSubtarget>()),
59   TII(*ST.getInstrInfo()),
60   TRI(TII.getRegisterInfo()),
61   ClauseUses(TRI.getNumRegUnits()),
62   ClauseDefs(TRI.getNumRegUnits()) {
63   MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5;
64   TSchedModel.init(&ST);
65   RunLdsBranchVmemWARHazardFixup = shouldRunLdsBranchVmemWARHazardFixup(MF, ST);
66 }
67 
68 void GCNHazardRecognizer::Reset() {
69   EmittedInstrs.clear();
70 }
71 
72 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
73   EmitInstruction(SU->getInstr());
74 }
75 
76 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
77   CurrCycleInstr = MI;
78 }
79 
80 static bool isDivFMas(unsigned Opcode) {
81   return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64;
82 }
83 
84 static bool isSGetReg(unsigned Opcode) {
85   return Opcode == AMDGPU::S_GETREG_B32;
86 }
87 
88 static bool isSSetReg(unsigned Opcode) {
89   switch (Opcode) {
90   case AMDGPU::S_SETREG_B32:
91   case AMDGPU::S_SETREG_B32_mode:
92   case AMDGPU::S_SETREG_IMM32_B32:
93   case AMDGPU::S_SETREG_IMM32_B32_mode:
94     return true;
95   }
96   return false;
97 }
98 
99 static bool isRWLane(unsigned Opcode) {
100   return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
101 }
102 
103 static bool isRFE(unsigned Opcode) {
104   return Opcode == AMDGPU::S_RFE_B64;
105 }
106 
107 static bool isSMovRel(unsigned Opcode) {
108   switch (Opcode) {
109   case AMDGPU::S_MOVRELS_B32:
110   case AMDGPU::S_MOVRELS_B64:
111   case AMDGPU::S_MOVRELD_B32:
112   case AMDGPU::S_MOVRELD_B64:
113     return true;
114   default:
115     return false;
116   }
117 }
118 
119 static bool isDGEMM(unsigned Opcode) {
120   return AMDGPU::getMAIIsDGEMM(Opcode);
121 }
122 
123 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) {
124   unsigned Opcode = MI.getOpcode();
125 
126   if (!SIInstrInfo::isMAI(MI) ||
127       isDGEMM(Opcode) ||
128       Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
129       Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64)
130     return false;
131 
132   if (!ST.hasGFX940Insts())
133     return true;
134 
135   return AMDGPU::getMAIIsGFX940XDL(Opcode);
136 }
137 
138 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII,
139                                     const MachineInstr &MI) {
140   if (TII.isAlwaysGDS(MI.getOpcode()))
141     return true;
142 
143   switch (MI.getOpcode()) {
144   case AMDGPU::S_SENDMSG:
145   case AMDGPU::S_SENDMSGHALT:
146   case AMDGPU::S_TTRACEDATA:
147     return true;
148   // These DS opcodes don't support GDS.
149   case AMDGPU::DS_NOP:
150   case AMDGPU::DS_PERMUTE_B32:
151   case AMDGPU::DS_BPERMUTE_B32:
152     return false;
153   default:
154     if (TII.isDS(MI.getOpcode())) {
155       int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
156                                            AMDGPU::OpName::gds);
157       if (MI.getOperand(GDS).getImm())
158         return true;
159     }
160     return false;
161   }
162 }
163 
164 static bool isPermlane(const MachineInstr &MI) {
165   unsigned Opcode = MI.getOpcode();
166   return Opcode == AMDGPU::V_PERMLANE16_B32_e64 ||
167          Opcode == AMDGPU::V_PERMLANE64_B32 ||
168          Opcode == AMDGPU::V_PERMLANEX16_B32_e64 ||
169          Opcode == AMDGPU::V_PERMLANE16_VAR_B32_e64 ||
170          Opcode == AMDGPU::V_PERMLANEX16_VAR_B32_e64;
171 }
172 
173 static bool isLdsDma(const MachineInstr &MI) {
174   return SIInstrInfo::isVALU(MI) &&
175          (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI));
176 }
177 
178 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
179   const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
180                                                      AMDGPU::OpName::simm16);
181   return std::get<0>(AMDGPU::Hwreg::HwregEncoding::decode(RegOp->getImm()));
182 }
183 
184 ScheduleHazardRecognizer::HazardType
185 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
186   MachineInstr *MI = SU->getInstr();
187   // If we are not in "HazardRecognizerMode" and therefore not being run from
188   // the scheduler, track possible stalls from hazards but don't insert noops.
189   auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard;
190 
191   if (MI->isBundle())
192    return NoHazard;
193 
194   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
195     return HazardType;
196 
197   if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0)
198     return HazardType;
199 
200   if (checkFPAtomicToDenormModeHazard(MI) > 0)
201     return HazardType;
202 
203   if (ST.hasNoDataDepHazard())
204     return NoHazard;
205 
206   // FIXME: Should flat be considered vmem?
207   if ((SIInstrInfo::isVMEM(*MI) ||
208        SIInstrInfo::isFLAT(*MI))
209       && checkVMEMHazards(MI) > 0)
210     return HazardType;
211 
212   if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
213     return HazardType;
214 
215   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
216     return HazardType;
217 
218   if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
219     return HazardType;
220 
221   if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
222     return HazardType;
223 
224   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
225        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
226        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
227     return HazardType;
228 
229   if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
230     return HazardType;
231 
232   if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
233     return HazardType;
234 
235   if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
236     return HazardType;
237 
238   if (((ST.hasReadM0MovRelInterpHazard() &&
239         (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) ||
240          MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 ||
241          MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) ||
242        (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) ||
243        (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) ||
244        (ST.hasReadM0LdsDirectHazard() &&
245         MI->readsRegister(AMDGPU::LDS_DIRECT, /*TRI=*/nullptr))) &&
246       checkReadM0Hazards(MI) > 0)
247     return HazardType;
248 
249   if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0)
250     return HazardType;
251 
252   if ((SIInstrInfo::isVMEM(*MI) ||
253        SIInstrInfo::isFLAT(*MI) ||
254        SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0)
255     return HazardType;
256 
257   if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
258     return HazardType;
259 
260   return NoHazard;
261 }
262 
263 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII,
264                                 unsigned Quantity) {
265   while (Quantity > 0) {
266     unsigned Arg = std::min(Quantity, 8u);
267     Quantity -= Arg;
268     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP))
269         .addImm(Arg - 1);
270   }
271 }
272 
273 unsigned
274 GCNHazardRecognizer::getMFMAPipelineWaitStates(const MachineInstr &MI) const {
275   const MCSchedClassDesc *SC = TSchedModel.resolveSchedClass(&MI);
276   assert(TSchedModel.getWriteProcResBegin(SC) !=
277          TSchedModel.getWriteProcResEnd(SC));
278   return TSchedModel.getWriteProcResBegin(SC)->ReleaseAtCycle;
279 }
280 
281 void GCNHazardRecognizer::processBundle() {
282   MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator());
283   MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end();
284   // Check bundled MachineInstr's for hazards.
285   for (; MI != E && MI->isInsideBundle(); ++MI) {
286     CurrCycleInstr = &*MI;
287     unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr);
288 
289     if (IsHazardRecognizerMode) {
290       fixHazards(CurrCycleInstr);
291 
292       insertNoopsInBundle(CurrCycleInstr, TII, WaitStates);
293     }
294 
295     // It’s unnecessary to track more than MaxLookAhead instructions. Since we
296     // include the bundled MI directly after, only add a maximum of
297     // (MaxLookAhead - 1) noops to EmittedInstrs.
298     for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i)
299       EmittedInstrs.push_front(nullptr);
300 
301     EmittedInstrs.push_front(CurrCycleInstr);
302     EmittedInstrs.resize(MaxLookAhead);
303   }
304   CurrCycleInstr = nullptr;
305 }
306 
307 void GCNHazardRecognizer::runOnInstruction(MachineInstr *MI) {
308   assert(IsHazardRecognizerMode);
309 
310   unsigned NumPreNoops = PreEmitNoops(MI);
311   EmitNoops(NumPreNoops);
312   if (MI->isInsideBundle())
313     insertNoopsInBundle(MI, TII, NumPreNoops);
314   else
315     TII.insertNoops(*MI->getParent(), MachineBasicBlock::iterator(MI),
316                     NumPreNoops);
317   EmitInstruction(MI);
318   AdvanceCycle();
319 }
320 
321 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
322   IsHazardRecognizerMode = true;
323   CurrCycleInstr = MI;
324   unsigned W = PreEmitNoopsCommon(MI);
325   fixHazards(MI);
326   CurrCycleInstr = nullptr;
327   return W;
328 }
329 
330 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) {
331   if (MI->isBundle())
332     return 0;
333 
334   int WaitStates = 0;
335 
336   if (SIInstrInfo::isSMRD(*MI))
337     return std::max(WaitStates, checkSMRDHazards(MI));
338 
339   if (ST.hasNSAtoVMEMBug())
340     WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI));
341 
342   WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI));
343 
344   if (ST.hasNoDataDepHazard())
345     return WaitStates;
346 
347   if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
348     WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
349 
350   if (SIInstrInfo::isVALU(*MI))
351     WaitStates = std::max(WaitStates, checkVALUHazards(MI));
352 
353   if (SIInstrInfo::isDPP(*MI))
354     WaitStates = std::max(WaitStates, checkDPPHazards(MI));
355 
356   if (isDivFMas(MI->getOpcode()))
357     WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
358 
359   if (isRWLane(MI->getOpcode()))
360     WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
361 
362   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
363        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
364        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
365     WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI));
366 
367   if (MI->isInlineAsm())
368     return std::max(WaitStates, checkInlineAsmHazards(MI));
369 
370   if (isSGetReg(MI->getOpcode()))
371     return std::max(WaitStates, checkGetRegHazards(MI));
372 
373   if (isSSetReg(MI->getOpcode()))
374     return std::max(WaitStates, checkSetRegHazards(MI));
375 
376   if (isRFE(MI->getOpcode()))
377     return std::max(WaitStates, checkRFEHazards(MI));
378 
379   if ((ST.hasReadM0MovRelInterpHazard() &&
380        (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode()) ||
381         MI->getOpcode() == AMDGPU::DS_WRITE_ADDTID_B32 ||
382         MI->getOpcode() == AMDGPU::DS_READ_ADDTID_B32)) ||
383       (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI)) ||
384       (ST.hasReadM0LdsDmaHazard() && isLdsDma(*MI)) ||
385       (ST.hasReadM0LdsDirectHazard() &&
386        MI->readsRegister(AMDGPU::LDS_DIRECT, /*TRI=*/nullptr)))
387     return std::max(WaitStates, checkReadM0Hazards(MI));
388 
389   if (SIInstrInfo::isMAI(*MI))
390     return std::max(WaitStates, checkMAIHazards(MI));
391 
392   if (SIInstrInfo::isVMEM(*MI) ||
393       SIInstrInfo::isFLAT(*MI) ||
394       SIInstrInfo::isDS(*MI))
395     return std::max(WaitStates, checkMAILdStHazards(MI));
396 
397   return WaitStates;
398 }
399 
400 void GCNHazardRecognizer::EmitNoop() {
401   EmittedInstrs.push_front(nullptr);
402 }
403 
404 void GCNHazardRecognizer::AdvanceCycle() {
405   // When the scheduler detects a stall, it will call AdvanceCycle() without
406   // emitting any instructions.
407   if (!CurrCycleInstr) {
408     EmittedInstrs.push_front(nullptr);
409     return;
410   }
411 
412   if (CurrCycleInstr->isBundle()) {
413     processBundle();
414     return;
415   }
416 
417   unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
418   if (!NumWaitStates) {
419     CurrCycleInstr = nullptr;
420     return;
421   }
422 
423   // Keep track of emitted instructions
424   EmittedInstrs.push_front(CurrCycleInstr);
425 
426   // Add a nullptr for each additional wait state after the first.  Make sure
427   // not to add more than getMaxLookAhead() items to the list, since we
428   // truncate the list to that size right after this loop.
429   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
430        i < e; ++i) {
431     EmittedInstrs.push_front(nullptr);
432   }
433 
434   // getMaxLookahead() is the largest number of wait states we will ever need
435   // to insert, so there is no point in keeping track of more than that many
436   // wait states.
437   EmittedInstrs.resize(getMaxLookAhead());
438 
439   CurrCycleInstr = nullptr;
440 }
441 
442 void GCNHazardRecognizer::RecedeCycle() {
443   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
444 }
445 
446 //===----------------------------------------------------------------------===//
447 // Helper Functions
448 //===----------------------------------------------------------------------===//
449 
450 using HazardFnResult = enum { HazardFound, HazardExpired, NoHazardFound };
451 
452 using IsExpiredFn = function_ref<bool(const MachineInstr &, int WaitStates)>;
453 using GetNumWaitStatesFn = function_ref<unsigned int(const MachineInstr &)>;
454 
455 // Search for a hazard in a block and its predecessors.
456 template <typename StateT>
457 static bool
458 hasHazard(StateT State,
459           function_ref<HazardFnResult(StateT &, const MachineInstr &)> IsHazard,
460           function_ref<void(StateT &, const MachineInstr &)> UpdateState,
461           const MachineBasicBlock *MBB,
462           MachineBasicBlock::const_reverse_instr_iterator I,
463           DenseSet<const MachineBasicBlock *> &Visited) {
464   for (auto E = MBB->instr_rend(); I != E; ++I) {
465     // No need to look at parent BUNDLE instructions.
466     if (I->isBundle())
467       continue;
468 
469     switch (IsHazard(State, *I)) {
470     case HazardFound:
471       return true;
472     case HazardExpired:
473       return false;
474     default:
475       // Continue search
476       break;
477     }
478 
479     if (I->isInlineAsm() || I->isMetaInstruction())
480       continue;
481 
482     UpdateState(State, *I);
483   }
484 
485   for (MachineBasicBlock *Pred : MBB->predecessors()) {
486     if (!Visited.insert(Pred).second)
487       continue;
488 
489     if (hasHazard(State, IsHazard, UpdateState, Pred, Pred->instr_rbegin(),
490                   Visited))
491       return true;
492   }
493 
494   return false;
495 }
496 
497 // Returns a minimum wait states since \p I walking all predecessors.
498 // Only scans until \p IsExpired does not return true.
499 // Can only be run in a hazard recognizer mode.
500 static int getWaitStatesSince(
501     GCNHazardRecognizer::IsHazardFn IsHazard, const MachineBasicBlock *MBB,
502     MachineBasicBlock::const_reverse_instr_iterator I, int WaitStates,
503     IsExpiredFn IsExpired, DenseSet<const MachineBasicBlock *> &Visited,
504     GetNumWaitStatesFn GetNumWaitStates = SIInstrInfo::getNumWaitStates) {
505   for (auto E = MBB->instr_rend(); I != E; ++I) {
506     // Don't add WaitStates for parent BUNDLE instructions.
507     if (I->isBundle())
508       continue;
509 
510     if (IsHazard(*I))
511       return WaitStates;
512 
513     if (I->isInlineAsm())
514       continue;
515 
516     WaitStates += GetNumWaitStates(*I);
517 
518     if (IsExpired(*I, WaitStates))
519       return std::numeric_limits<int>::max();
520   }
521 
522   int MinWaitStates = std::numeric_limits<int>::max();
523   for (MachineBasicBlock *Pred : MBB->predecessors()) {
524     if (!Visited.insert(Pred).second)
525       continue;
526 
527     int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(), WaitStates,
528                                IsExpired, Visited, GetNumWaitStates);
529 
530     MinWaitStates = std::min(MinWaitStates, W);
531   }
532 
533   return MinWaitStates;
534 }
535 
536 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
537                               const MachineInstr *MI, IsExpiredFn IsExpired) {
538   DenseSet<const MachineBasicBlock *> Visited;
539   return getWaitStatesSince(IsHazard, MI->getParent(),
540                             std::next(MI->getReverseIterator()),
541                             0, IsExpired, Visited);
542 }
543 
544 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) {
545   if (IsHazardRecognizerMode) {
546     auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) {
547       return WaitStates >= Limit;
548     };
549     return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn);
550   }
551 
552   int WaitStates = 0;
553   for (MachineInstr *MI : EmittedInstrs) {
554     if (MI) {
555       if (IsHazard(*MI))
556         return WaitStates;
557 
558       if (MI->isInlineAsm())
559         continue;
560     }
561     ++WaitStates;
562 
563     if (WaitStates >= Limit)
564       break;
565   }
566   return std::numeric_limits<int>::max();
567 }
568 
569 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg,
570                                                IsHazardFn IsHazardDef,
571                                                int Limit) {
572   const SIRegisterInfo *TRI = ST.getRegisterInfo();
573 
574   auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) {
575     return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI);
576   };
577 
578   return getWaitStatesSince(IsHazardFn, Limit);
579 }
580 
581 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard,
582                                                   int Limit) {
583   auto IsHazardFn = [IsHazard](const MachineInstr &MI) {
584     return isSSetReg(MI.getOpcode()) && IsHazard(MI);
585   };
586 
587   return getWaitStatesSince(IsHazardFn, Limit);
588 }
589 
590 //===----------------------------------------------------------------------===//
591 // No-op Hazard Detection
592 //===----------------------------------------------------------------------===//
593 
594 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV,
595                         MCRegister Reg) {
596   for (MCRegUnit Unit : TRI.regunits(Reg))
597     BV.set(Unit);
598 }
599 
600 static void addRegsToSet(const SIRegisterInfo &TRI,
601                          iterator_range<MachineInstr::const_mop_iterator> Ops,
602                          BitVector &DefSet, BitVector &UseSet) {
603   for (const MachineOperand &Op : Ops) {
604     if (Op.isReg())
605       addRegUnits(TRI, Op.isDef() ? DefSet : UseSet, Op.getReg().asMCReg());
606   }
607 }
608 
609 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
610   addRegsToSet(TRI, MI.operands(), ClauseDefs, ClauseUses);
611 }
612 
613 static bool breaksSMEMSoftClause(MachineInstr *MI) {
614   return !SIInstrInfo::isSMRD(*MI);
615 }
616 
617 static bool breaksVMEMSoftClause(MachineInstr *MI) {
618   return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI);
619 }
620 
621 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
622   // SMEM soft clause are only present on VI+, and only matter if xnack is
623   // enabled.
624   if (!ST.isXNACKEnabled())
625     return 0;
626 
627   bool IsSMRD = TII.isSMRD(*MEM);
628 
629   resetClause();
630 
631   // A soft-clause is any group of consecutive SMEM instructions.  The
632   // instructions in this group may return out of order and/or may be
633   // replayed (i.e. the same instruction issued more than once).
634   //
635   // In order to handle these situations correctly we need to make sure that
636   // when a clause has more than one instruction, no instruction in the clause
637   // writes to a register that is read by another instruction in the clause
638   // (including itself). If we encounter this situation, we need to break the
639   // clause by inserting a non SMEM instruction.
640 
641   for (MachineInstr *MI : EmittedInstrs) {
642     // When we hit a non-SMEM instruction then we have passed the start of the
643     // clause and we can stop.
644     if (!MI)
645       break;
646 
647     if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI))
648       break;
649 
650     addClauseInst(*MI);
651   }
652 
653   if (ClauseDefs.none())
654     return 0;
655 
656   // We need to make sure not to put loads and stores in the same clause if they
657   // use the same address. For now, just start a new clause whenever we see a
658   // store.
659   if (MEM->mayStore())
660     return 1;
661 
662   addClauseInst(*MEM);
663 
664   // If the set of defs and uses intersect then we cannot add this instruction
665   // to the clause, so we have a hazard.
666   return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
667 }
668 
669 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
670   int WaitStatesNeeded = 0;
671 
672   WaitStatesNeeded = checkSoftClauseHazards(SMRD);
673 
674   // This SMRD hazard only affects SI.
675   if (!ST.hasSMRDReadVALUDefHazard())
676     return WaitStatesNeeded;
677 
678   // A read of an SGPR by SMRD instruction requires 4 wait states when the
679   // SGPR was written by a VALU instruction.
680   int SmrdSgprWaitStates = 4;
681   auto IsHazardDefFn = [this](const MachineInstr &MI) {
682     return TII.isVALU(MI);
683   };
684   auto IsBufferHazardDefFn = [this](const MachineInstr &MI) {
685     return TII.isSALU(MI);
686   };
687 
688   bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);
689 
690   for (const MachineOperand &Use : SMRD->uses()) {
691     if (!Use.isReg())
692       continue;
693     int WaitStatesNeededForUse =
694         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
695                                                    SmrdSgprWaitStates);
696     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
697 
698     // This fixes what appears to be undocumented hardware behavior in SI where
699     // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
700     // needs some number of nops in between. We don't know how many we need, but
701     // let's use 4. This wasn't discovered before probably because the only
702     // case when this happens is when we expand a 64-bit pointer into a full
703     // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
704     // probably never encountered in the closed-source land.
705     if (IsBufferSMRD) {
706       int WaitStatesNeededForUse =
707         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
708                                                    IsBufferHazardDefFn,
709                                                    SmrdSgprWaitStates);
710       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
711     }
712   }
713 
714   return WaitStatesNeeded;
715 }
716 
717 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
718   if (!ST.hasVMEMReadSGPRVALUDefHazard())
719     return 0;
720 
721   int WaitStatesNeeded = checkSoftClauseHazards(VMEM);
722 
723   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
724   // SGPR was written by a VALU Instruction.
725   const int VmemSgprWaitStates = 5;
726   auto IsHazardDefFn = [this](const MachineInstr &MI) {
727     return TII.isVALU(MI);
728   };
729   for (const MachineOperand &Use : VMEM->uses()) {
730     if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg()))
731       continue;
732 
733     int WaitStatesNeededForUse =
734         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
735                                                    VmemSgprWaitStates);
736     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
737   }
738   return WaitStatesNeeded;
739 }
740 
741 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
742   const SIRegisterInfo *TRI = ST.getRegisterInfo();
743   const SIInstrInfo *TII = ST.getInstrInfo();
744 
745   // Check for DPP VGPR read after VALU VGPR write and EXEC write.
746   int DppVgprWaitStates = 2;
747   int DppExecWaitStates = 5;
748   int WaitStatesNeeded = 0;
749   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
750     return TII->isVALU(MI);
751   };
752 
753   for (const MachineOperand &Use : DPP->uses()) {
754     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
755       continue;
756     int WaitStatesNeededForUse =
757         DppVgprWaitStates - getWaitStatesSinceDef(
758                                 Use.getReg(),
759                                 [](const MachineInstr &) { return true; },
760                                 DppVgprWaitStates);
761     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
762   }
763 
764   WaitStatesNeeded = std::max(
765       WaitStatesNeeded,
766       DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn,
767                                                 DppExecWaitStates));
768 
769   return WaitStatesNeeded;
770 }
771 
772 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
773   const SIInstrInfo *TII = ST.getInstrInfo();
774 
775   // v_div_fmas requires 4 wait states after a write to vcc from a VALU
776   // instruction.
777   const int DivFMasWaitStates = 4;
778   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
779     return TII->isVALU(MI);
780   };
781   int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn,
782                                                DivFMasWaitStates);
783 
784   return DivFMasWaitStates - WaitStatesNeeded;
785 }
786 
787 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
788   const SIInstrInfo *TII = ST.getInstrInfo();
789   unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
790 
791   const int GetRegWaitStates = 2;
792   auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) {
793     return GetRegHWReg == getHWReg(TII, MI);
794   };
795   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates);
796 
797   return GetRegWaitStates - WaitStatesNeeded;
798 }
799 
800 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
801   const SIInstrInfo *TII = ST.getInstrInfo();
802   unsigned HWReg = getHWReg(TII, *SetRegInstr);
803 
804   const int SetRegWaitStates = ST.getSetRegWaitStates();
805   auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) {
806     return HWReg == getHWReg(TII, MI);
807   };
808   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates);
809   return SetRegWaitStates - WaitStatesNeeded;
810 }
811 
812 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
813   if (!MI.mayStore())
814     return -1;
815 
816   const SIInstrInfo *TII = ST.getInstrInfo();
817   unsigned Opcode = MI.getOpcode();
818   const MCInstrDesc &Desc = MI.getDesc();
819 
820   int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
821   int VDataRCID = -1;
822   if (VDataIdx != -1)
823     VDataRCID = Desc.operands()[VDataIdx].RegClass;
824 
825   if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
826     // There is no hazard if the instruction does not use vector regs
827     // (like wbinvl1)
828     if (VDataIdx == -1)
829       return -1;
830     // For MUBUF/MTBUF instructions this hazard only exists if the
831     // instruction is not using a register in the soffset field.
832     const MachineOperand *SOffset =
833         TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
834     // If we have no soffset operand, then assume this field has been
835     // hardcoded to zero.
836     if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
837         (!SOffset || !SOffset->isReg()))
838       return VDataIdx;
839   }
840 
841   // MIMG instructions create a hazard if they don't use a 256-bit T# and
842   // the store size is greater than 8 bytes and they have more than two bits
843   // of their dmask set.
844   // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
845   if (TII->isMIMG(MI)) {
846     int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
847     assert(SRsrcIdx != -1 &&
848            AMDGPU::getRegBitWidth(Desc.operands()[SRsrcIdx].RegClass) == 256);
849     (void)SRsrcIdx;
850   }
851 
852   if (TII->isFLAT(MI)) {
853     int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
854     if (AMDGPU::getRegBitWidth(Desc.operands()[DataIdx].RegClass) > 64)
855       return DataIdx;
856   }
857 
858   return -1;
859 }
860 
861 int
862 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
863                                             const MachineRegisterInfo &MRI) {
864   // Helper to check for the hazard where VMEM instructions that store more than
865   // 8 bytes can have there store data over written by the next instruction.
866   const SIRegisterInfo *TRI = ST.getRegisterInfo();
867 
868   const int VALUWaitStates = ST.hasGFX940Insts() ? 2 : 1;
869   int WaitStatesNeeded = 0;
870 
871   if (!TRI->isVectorRegister(MRI, Def.getReg()))
872     return WaitStatesNeeded;
873   Register Reg = Def.getReg();
874   auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) {
875     int DataIdx = createsVALUHazard(MI);
876     return DataIdx >= 0 &&
877            TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg);
878   };
879   int WaitStatesNeededForDef =
880     VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates);
881   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
882 
883   return WaitStatesNeeded;
884 }
885 
886 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
887   int WaitStatesNeeded = 0;
888 
889   if (ST.hasTransForwardingHazard() && !SIInstrInfo::isTRANS(*VALU)) {
890     const int TransDefWaitstates = 1;
891 
892     auto IsTransDefFn = [this, VALU](const MachineInstr &MI) {
893       if (!SIInstrInfo::isTRANS(MI))
894         return false;
895       const SIRegisterInfo *TRI = ST.getRegisterInfo();
896       const SIInstrInfo *TII = ST.getInstrInfo();
897       Register Def = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)->getReg();
898 
899       for (const MachineOperand &Use : VALU->explicit_uses()) {
900         if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg()))
901           return true;
902       }
903 
904       return false;
905     };
906 
907     int WaitStatesNeededForDef =
908         TransDefWaitstates -
909         getWaitStatesSince(IsTransDefFn, TransDefWaitstates);
910     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
911   }
912 
913   if (ST.hasDstSelForwardingHazard()) {
914     const int Shift16DefWaitstates = 1;
915 
916     auto IsShift16BitDefFn = [this, VALU](const MachineInstr &MI) {
917       if (!SIInstrInfo::isVALU(MI))
918         return false;
919       const SIInstrInfo *TII = ST.getInstrInfo();
920       if (SIInstrInfo::isSDWA(MI)) {
921         if (auto *DstSel = TII->getNamedOperand(MI, AMDGPU::OpName::dst_sel))
922           if (DstSel->getImm() == AMDGPU::SDWA::DWORD)
923             return false;
924       } else {
925         if (!AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::op_sel) ||
926             !(TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)
927                   ->getImm() &
928               SISrcMods::DST_OP_SEL))
929           return false;
930       }
931       const SIRegisterInfo *TRI = ST.getRegisterInfo();
932       if (auto *Dst = TII->getNamedOperand(MI, AMDGPU::OpName::vdst)) {
933         Register Def = Dst->getReg();
934 
935         for (const MachineOperand &Use : VALU->explicit_uses()) {
936           if (Use.isReg() && TRI->regsOverlap(Def, Use.getReg()))
937             return true;
938         }
939       }
940 
941       return false;
942     };
943 
944     int WaitStatesNeededForDef =
945         Shift16DefWaitstates -
946         getWaitStatesSince(IsShift16BitDefFn, Shift16DefWaitstates);
947     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
948   }
949 
950   if (ST.hasVDecCoExecHazard()) {
951     const int VALUWriteSGPRVALUReadWaitstates = 2;
952     const int VALUWriteEXECRWLane = 4;
953     const int VALUWriteVGPRReadlaneRead = 1;
954 
955     const SIRegisterInfo *TRI = ST.getRegisterInfo();
956     const MachineRegisterInfo &MRI = MF.getRegInfo();
957     Register UseReg;
958     auto IsVALUDefSGPRFn = [&UseReg, TRI](const MachineInstr &MI) {
959       if (!SIInstrInfo::isVALU(MI))
960         return false;
961       return MI.modifiesRegister(UseReg, TRI);
962     };
963 
964     for (const MachineOperand &Use : VALU->explicit_uses()) {
965       if (!Use.isReg())
966         continue;
967 
968       UseReg = Use.getReg();
969       if (TRI->isSGPRReg(MRI, UseReg)) {
970         int WaitStatesNeededForDef =
971             VALUWriteSGPRVALUReadWaitstates -
972             getWaitStatesSince(IsVALUDefSGPRFn,
973                                VALUWriteSGPRVALUReadWaitstates);
974         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
975       }
976     }
977 
978     if (VALU->readsRegister(AMDGPU::VCC, TRI)) {
979       UseReg = AMDGPU::VCC;
980       int WaitStatesNeededForDef =
981           VALUWriteSGPRVALUReadWaitstates -
982           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteSGPRVALUReadWaitstates);
983       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
984     }
985 
986     switch (VALU->getOpcode()) {
987     case AMDGPU::V_READLANE_B32:
988     case AMDGPU::V_READFIRSTLANE_B32: {
989       MachineOperand *Src = TII.getNamedOperand(*VALU, AMDGPU::OpName::src0);
990       UseReg = Src->getReg();
991       int WaitStatesNeededForDef =
992           VALUWriteVGPRReadlaneRead -
993           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteVGPRReadlaneRead);
994       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
995     }
996       [[fallthrough]];
997     case AMDGPU::V_WRITELANE_B32: {
998       UseReg = AMDGPU::EXEC;
999       int WaitStatesNeededForDef =
1000           VALUWriteEXECRWLane -
1001           getWaitStatesSince(IsVALUDefSGPRFn, VALUWriteEXECRWLane);
1002       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
1003       break;
1004     }
1005     default:
1006       break;
1007     }
1008   }
1009 
1010   // This checks for the hazard where VMEM instructions that store more than
1011   // 8 bytes can have there store data over written by the next instruction.
1012   if (!ST.has12DWordStoreHazard())
1013     return WaitStatesNeeded;
1014 
1015   const MachineRegisterInfo &MRI = MF.getRegInfo();
1016 
1017   for (const MachineOperand &Def : VALU->defs()) {
1018     WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
1019   }
1020 
1021   return WaitStatesNeeded;
1022 }
1023 
1024 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
1025   // This checks for hazards associated with inline asm statements.
1026   // Since inline asms can contain just about anything, we use this
1027   // to call/leverage other check*Hazard routines. Note that
1028   // this function doesn't attempt to address all possible inline asm
1029   // hazards (good luck), but is a collection of what has been
1030   // problematic thus far.
1031 
1032   // see checkVALUHazards()
1033   if (!ST.has12DWordStoreHazard())
1034     return 0;
1035 
1036   const MachineRegisterInfo &MRI = MF.getRegInfo();
1037   int WaitStatesNeeded = 0;
1038 
1039   for (const MachineOperand &Op :
1040        llvm::drop_begin(IA->operands(), InlineAsm::MIOp_FirstOperand)) {
1041     if (Op.isReg() && Op.isDef()) {
1042       WaitStatesNeeded =
1043           std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
1044     }
1045   }
1046 
1047   return WaitStatesNeeded;
1048 }
1049 
1050 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
1051   const SIInstrInfo *TII = ST.getInstrInfo();
1052   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1053   const MachineRegisterInfo &MRI = MF.getRegInfo();
1054 
1055   const MachineOperand *LaneSelectOp =
1056       TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
1057 
1058   if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
1059     return 0;
1060 
1061   Register LaneSelectReg = LaneSelectOp->getReg();
1062   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); };
1063 
1064   const int RWLaneWaitStates = 4;
1065   int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn,
1066                                               RWLaneWaitStates);
1067   return RWLaneWaitStates - WaitStatesSince;
1068 }
1069 
1070 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
1071   if (!ST.hasRFEHazards())
1072     return 0;
1073 
1074   const SIInstrInfo *TII = ST.getInstrInfo();
1075 
1076   const int RFEWaitStates = 1;
1077 
1078   auto IsHazardFn = [TII](const MachineInstr &MI) {
1079     return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS;
1080   };
1081   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates);
1082   return RFEWaitStates - WaitStatesNeeded;
1083 }
1084 
1085 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
1086   const SIInstrInfo *TII = ST.getInstrInfo();
1087   const int ReadM0WaitStates = 1;
1088   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); };
1089   return ReadM0WaitStates -
1090          getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn, ReadM0WaitStates);
1091 }
1092 
1093 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) {
1094   fixVMEMtoScalarWriteHazards(MI);
1095   fixVcmpxPermlaneHazards(MI);
1096   fixSMEMtoVectorWriteHazards(MI);
1097   fixVcmpxExecWARHazard(MI);
1098   fixLdsBranchVmemWARHazard(MI);
1099   if (ST.hasLdsDirect()) {
1100     fixLdsDirectVALUHazard(MI);
1101     fixLdsDirectVMEMHazard(MI);
1102   }
1103   fixVALUPartialForwardingHazard(MI);
1104   fixVALUTransUseHazard(MI);
1105   fixWMMAHazards(MI);
1106   fixShift64HighRegBug(MI);
1107   fixVALUMaskWriteHazard(MI);
1108   fixRequiredExportPriority(MI);
1109 }
1110 
1111 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) {
1112   if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI))
1113     return false;
1114 
1115   const SIInstrInfo *TII = ST.getInstrInfo();
1116   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1117   auto IsHazardFn = [TII, TRI](const MachineInstr &MI) {
1118     return (TII->isVOPC(MI) ||
1119             ((TII->isVOP3(MI) || TII->isSDWA(MI)) && MI.isCompare())) &&
1120            MI.modifiesRegister(AMDGPU::EXEC, TRI);
1121   };
1122 
1123   auto IsExpiredFn = [](const MachineInstr &MI, int) {
1124     unsigned Opc = MI.getOpcode();
1125     return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 &&
1126            Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa;
1127   };
1128 
1129   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1130       std::numeric_limits<int>::max())
1131     return false;
1132 
1133   // V_NOP will be discarded by SQ.
1134   // Use V_MOV_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE*
1135   // which is always a VGPR and available.
1136   auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
1137   Register Reg = Src0->getReg();
1138   bool IsUndef = Src0->isUndef();
1139   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1140           TII->get(AMDGPU::V_MOV_B32_e32))
1141     .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0))
1142     .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill);
1143 
1144   return true;
1145 }
1146 
1147 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) {
1148   if (!ST.hasVMEMtoScalarWriteHazard())
1149     return false;
1150   assert(!ST.hasExtendedWaitCounts());
1151 
1152   if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI))
1153     return false;
1154 
1155   if (MI->getNumDefs() == 0)
1156     return false;
1157 
1158   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1159 
1160   auto IsHazardFn = [TRI, MI](const MachineInstr &I) {
1161     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) &&
1162         !SIInstrInfo::isFLAT(I))
1163       return false;
1164 
1165     for (const MachineOperand &Def : MI->defs()) {
1166       const MachineOperand *Op =
1167           I.findRegisterUseOperand(Def.getReg(), TRI, false);
1168       if (!Op)
1169         continue;
1170       return true;
1171     }
1172     return false;
1173   };
1174 
1175   auto IsExpiredFn = [](const MachineInstr &MI, int) {
1176     return SIInstrInfo::isVALU(MI) ||
1177            (MI.getOpcode() == AMDGPU::S_WAITCNT &&
1178             !MI.getOperand(0).getImm()) ||
1179            (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1180             AMDGPU::DepCtr::decodeFieldVmVsrc(MI.getOperand(0).getImm()) == 0);
1181   };
1182 
1183   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1184       std::numeric_limits<int>::max())
1185     return false;
1186 
1187   const SIInstrInfo *TII = ST.getInstrInfo();
1188   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1189           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
1190       .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0));
1191   return true;
1192 }
1193 
1194 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) {
1195   if (!ST.hasSMEMtoVectorWriteHazard())
1196     return false;
1197   assert(!ST.hasExtendedWaitCounts());
1198 
1199   if (!SIInstrInfo::isVALU(*MI))
1200     return false;
1201 
1202   unsigned SDSTName;
1203   switch (MI->getOpcode()) {
1204   case AMDGPU::V_READLANE_B32:
1205   case AMDGPU::V_READFIRSTLANE_B32:
1206     SDSTName = AMDGPU::OpName::vdst;
1207     break;
1208   default:
1209     SDSTName = AMDGPU::OpName::sdst;
1210     break;
1211   }
1212 
1213   const SIInstrInfo *TII = ST.getInstrInfo();
1214   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1215   const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU());
1216   const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName);
1217   if (!SDST) {
1218     for (const auto &MO : MI->implicit_operands()) {
1219       if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg()))) {
1220         SDST = &MO;
1221         break;
1222       }
1223     }
1224   }
1225 
1226   if (!SDST)
1227     return false;
1228 
1229   const Register SDSTReg = SDST->getReg();
1230   auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) {
1231     return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI);
1232   };
1233 
1234   auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) {
1235     if (TII->isSALU(MI)) {
1236       switch (MI.getOpcode()) {
1237       case AMDGPU::S_SETVSKIP:
1238       case AMDGPU::S_VERSION:
1239       case AMDGPU::S_WAITCNT_VSCNT:
1240       case AMDGPU::S_WAITCNT_VMCNT:
1241       case AMDGPU::S_WAITCNT_EXPCNT:
1242         // These instructions cannot not mitigate the hazard.
1243         return false;
1244       case AMDGPU::S_WAITCNT_LGKMCNT:
1245         // Reducing lgkmcnt count to 0 always mitigates the hazard.
1246         return (MI.getOperand(1).getImm() == 0) &&
1247                (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1248       case AMDGPU::S_WAITCNT: {
1249         const int64_t Imm = MI.getOperand(0).getImm();
1250         AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm);
1251         // DsCnt corresponds to LGKMCnt here.
1252         return (Decoded.DsCnt == 0);
1253       }
1254       default:
1255         // SOPP instructions cannot mitigate the hazard.
1256         if (TII->isSOPP(MI))
1257           return false;
1258         // At this point the SALU can be assumed to mitigate the hazard
1259         // because either:
1260         // (a) it is independent of the at risk SMEM (breaking chain),
1261         // or
1262         // (b) it is dependent on the SMEM, in which case an appropriate
1263         //     s_waitcnt lgkmcnt _must_ exist between it and the at risk
1264         //     SMEM instruction.
1265         return true;
1266       }
1267     }
1268     return false;
1269   };
1270 
1271   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1272       std::numeric_limits<int>::max())
1273     return false;
1274 
1275   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1276           TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL)
1277       .addImm(0);
1278   return true;
1279 }
1280 
1281 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) {
1282   if (!ST.hasVcmpxExecWARHazard())
1283     return false;
1284   assert(!ST.hasExtendedWaitCounts());
1285 
1286   if (!SIInstrInfo::isVALU(*MI))
1287     return false;
1288 
1289   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1290   if (!MI->modifiesRegister(AMDGPU::EXEC, TRI))
1291     return false;
1292 
1293   auto IsHazardFn = [TRI](const MachineInstr &I) {
1294     if (SIInstrInfo::isVALU(I))
1295       return false;
1296     return I.readsRegister(AMDGPU::EXEC, TRI);
1297   };
1298 
1299   const SIInstrInfo *TII = ST.getInstrInfo();
1300   auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) {
1301     if (SIInstrInfo::isVALU(MI)) {
1302       if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst))
1303         return true;
1304       for (auto MO : MI.implicit_operands())
1305         if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegBaseClass(MO.getReg())))
1306           return true;
1307     }
1308     if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1309         AMDGPU::DepCtr::decodeFieldSaSdst(MI.getOperand(0).getImm()) == 0)
1310       return true;
1311     return false;
1312   };
1313 
1314   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1315       std::numeric_limits<int>::max())
1316     return false;
1317 
1318   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1319           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
1320       .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0));
1321   return true;
1322 }
1323 
1324 static bool shouldRunLdsBranchVmemWARHazardFixup(const MachineFunction &MF,
1325                                                  const GCNSubtarget &ST) {
1326   if (!ST.hasLdsBranchVmemWARHazard())
1327     return false;
1328 
1329   // Check if the necessary condition for the hazard is met: both LDS and VMEM
1330   // instructions need to appear in the same function.
1331   bool HasLds = false;
1332   bool HasVmem = false;
1333   for (auto &MBB : MF) {
1334     for (auto &MI : MBB) {
1335       HasLds |= SIInstrInfo::isDS(MI);
1336       HasVmem |=
1337           SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI);
1338       if (HasLds && HasVmem)
1339         return true;
1340     }
1341   }
1342   return false;
1343 }
1344 
1345 static bool isStoreCountWaitZero(const MachineInstr &I) {
1346   return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1347          I.getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
1348          !I.getOperand(1).getImm();
1349 }
1350 
1351 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) {
1352   if (!RunLdsBranchVmemWARHazardFixup)
1353     return false;
1354 
1355   assert(ST.hasLdsBranchVmemWARHazard());
1356   assert(!ST.hasExtendedWaitCounts());
1357 
1358   auto IsHazardInst = [](const MachineInstr &MI) {
1359     if (SIInstrInfo::isDS(MI))
1360       return 1;
1361     if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI))
1362       return 2;
1363     return 0;
1364   };
1365 
1366   auto InstType = IsHazardInst(*MI);
1367   if (!InstType)
1368     return false;
1369 
1370   auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) {
1371     return IsHazardInst(I) || isStoreCountWaitZero(I);
1372   };
1373 
1374   auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) {
1375     if (!I.isBranch())
1376       return false;
1377 
1378     auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) {
1379       auto InstType2 = IsHazardInst(I);
1380       return InstType2 && InstType != InstType2;
1381     };
1382 
1383     auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) {
1384       auto InstType2 = IsHazardInst(I);
1385       if (InstType == InstType2)
1386         return true;
1387 
1388       return isStoreCountWaitZero(I);
1389     };
1390 
1391     return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) !=
1392            std::numeric_limits<int>::max();
1393   };
1394 
1395   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1396       std::numeric_limits<int>::max())
1397     return false;
1398 
1399   const SIInstrInfo *TII = ST.getInstrInfo();
1400   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1401           TII->get(AMDGPU::S_WAITCNT_VSCNT))
1402     .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1403     .addImm(0);
1404 
1405   return true;
1406 }
1407 
1408 bool GCNHazardRecognizer::fixLdsDirectVALUHazard(MachineInstr *MI) {
1409   if (!SIInstrInfo::isLDSDIR(*MI))
1410     return false;
1411 
1412   const int NoHazardWaitStates = 15;
1413   const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst);
1414   const Register VDSTReg = VDST->getReg();
1415 
1416   bool VisitedTrans = false;
1417   auto IsHazardFn = [this, VDSTReg, &VisitedTrans](const MachineInstr &I) {
1418     if (!SIInstrInfo::isVALU(I))
1419       return false;
1420     VisitedTrans = VisitedTrans || SIInstrInfo::isTRANS(I);
1421     // Cover both WAR and WAW
1422     return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI);
1423   };
1424   auto IsExpiredFn = [&](const MachineInstr &I, int WaitStates) {
1425     if (WaitStates >= NoHazardWaitStates)
1426       return true;
1427     // Instructions which cause va_vdst==0 expire hazard
1428     return SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1429            SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I);
1430   };
1431   auto GetWaitStatesFn = [](const MachineInstr &MI) {
1432     return SIInstrInfo::isVALU(MI) ? 1 : 0;
1433   };
1434 
1435   DenseSet<const MachineBasicBlock *> Visited;
1436   auto Count = ::getWaitStatesSince(IsHazardFn, MI->getParent(),
1437                                     std::next(MI->getReverseIterator()), 0,
1438                                     IsExpiredFn, Visited, GetWaitStatesFn);
1439 
1440   // Transcendentals can execute in parallel to other VALUs.
1441   // This makes va_vdst count unusable with a mixture of VALU and TRANS.
1442   if (VisitedTrans)
1443     Count = 0;
1444 
1445   MachineOperand *WaitVdstOp =
1446       TII.getNamedOperand(*MI, AMDGPU::OpName::waitvdst);
1447   WaitVdstOp->setImm(std::min(Count, NoHazardWaitStates));
1448 
1449   return true;
1450 }
1451 
1452 bool GCNHazardRecognizer::fixLdsDirectVMEMHazard(MachineInstr *MI) {
1453   if (!SIInstrInfo::isLDSDIR(*MI))
1454     return false;
1455 
1456   const MachineOperand *VDST = TII.getNamedOperand(*MI, AMDGPU::OpName::vdst);
1457   const Register VDSTReg = VDST->getReg();
1458 
1459   auto IsHazardFn = [this, VDSTReg](const MachineInstr &I) {
1460     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I) &&
1461         !SIInstrInfo::isDS(I))
1462       return false;
1463     return I.readsRegister(VDSTReg, &TRI) || I.modifiesRegister(VDSTReg, &TRI);
1464   };
1465   bool LdsdirCanWait = ST.hasLdsWaitVMSRC();
1466   // TODO: On GFX12 the hazard should expire on S_WAIT_LOADCNT/SAMPLECNT/BVHCNT
1467   // according to the type of VMEM instruction.
1468   auto IsExpiredFn = [this, LdsdirCanWait](const MachineInstr &I, int) {
1469     return SIInstrInfo::isVALU(I) || SIInstrInfo::isEXP(I) ||
1470            (I.getOpcode() == AMDGPU::S_WAITCNT && !I.getOperand(0).getImm()) ||
1471            (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1472             AMDGPU::DepCtr::decodeFieldVmVsrc(I.getOperand(0).getImm()) == 0) ||
1473            (LdsdirCanWait && SIInstrInfo::isLDSDIR(I) &&
1474             !TII.getNamedOperand(I, AMDGPU::OpName::waitvsrc)->getImm());
1475   };
1476 
1477   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1478       std::numeric_limits<int>::max())
1479     return false;
1480 
1481   if (LdsdirCanWait) {
1482     TII.getNamedOperand(*MI, AMDGPU::OpName::waitvsrc)->setImm(0);
1483   } else {
1484     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1485             TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1486         .addImm(AMDGPU::DepCtr::encodeFieldVmVsrc(0));
1487   }
1488 
1489   return true;
1490 }
1491 
1492 bool GCNHazardRecognizer::fixVALUPartialForwardingHazard(MachineInstr *MI) {
1493   if (!ST.hasVALUPartialForwardingHazard())
1494     return false;
1495   assert(!ST.hasExtendedWaitCounts());
1496 
1497   if (!ST.isWave64() || !SIInstrInfo::isVALU(*MI))
1498     return false;
1499 
1500   SmallSetVector<Register, 4> SrcVGPRs;
1501 
1502   for (const MachineOperand &Use : MI->explicit_uses()) {
1503     if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1504       SrcVGPRs.insert(Use.getReg());
1505   }
1506 
1507   // Only applies with >= 2 unique VGPR sources
1508   if (SrcVGPRs.size() <= 1)
1509     return false;
1510 
1511   // Look for the following pattern:
1512   //   Va <- VALU [PreExecPos]
1513   //   intv1
1514   //   Exec <- SALU [ExecPos]
1515   //   intv2
1516   //   Vb <- VALU [PostExecPos]
1517   //   intv3
1518   //   MI Va, Vb (WaitState = 0)
1519   //
1520   // Where:
1521   // intv1 + intv2 <= 2 VALUs
1522   // intv3 <= 4 VALUs
1523   //
1524   // If found, insert an appropriate S_WAITCNT_DEPCTR before MI.
1525 
1526   const int Intv1plus2MaxVALUs = 2;
1527   const int Intv3MaxVALUs = 4;
1528   const int IntvMaxVALUs = 6;
1529   const int NoHazardVALUWaitStates = IntvMaxVALUs + 2;
1530 
1531   struct StateType {
1532     SmallDenseMap<Register, int, 4> DefPos;
1533     int ExecPos = std::numeric_limits<int>::max();
1534     int VALUs = 0;
1535   };
1536 
1537   StateType State;
1538 
1539   // This overloads expiry testing with all the hazard detection
1540   auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) {
1541     // Too many VALU states have passed
1542     if (State.VALUs > NoHazardVALUWaitStates)
1543       return HazardExpired;
1544 
1545     // Instructions which cause va_vdst==0 expire hazard
1546     if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1547         SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) ||
1548         (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1549          AMDGPU::DepCtr::decodeFieldVaVdst(I.getOperand(0).getImm()) == 0))
1550       return HazardExpired;
1551 
1552     // Track registers writes
1553     bool Changed = false;
1554     if (SIInstrInfo::isVALU(I)) {
1555       for (Register Src : SrcVGPRs) {
1556         if (!State.DefPos.count(Src) && I.modifiesRegister(Src, &TRI)) {
1557           State.DefPos[Src] = State.VALUs;
1558           Changed = true;
1559         }
1560       }
1561     } else if (SIInstrInfo::isSALU(I)) {
1562       if (State.ExecPos == std::numeric_limits<int>::max()) {
1563         if (!State.DefPos.empty() && I.modifiesRegister(AMDGPU::EXEC, &TRI)) {
1564           State.ExecPos = State.VALUs;
1565           Changed = true;
1566         }
1567       }
1568     }
1569 
1570     // Early expiration: too many VALUs in intv3
1571     if (State.VALUs > Intv3MaxVALUs && State.DefPos.empty())
1572       return HazardExpired;
1573 
1574     // Only evaluate state if something changed
1575     if (!Changed)
1576       return NoHazardFound;
1577 
1578     // Determine positions of VALUs pre/post exec change
1579     if (State.ExecPos == std::numeric_limits<int>::max())
1580       return NoHazardFound;
1581 
1582     int PreExecPos = std::numeric_limits<int>::max();
1583     int PostExecPos = std::numeric_limits<int>::max();
1584 
1585     for (auto Entry : State.DefPos) {
1586       int DefVALUs = Entry.second;
1587       if (DefVALUs != std::numeric_limits<int>::max()) {
1588         if (DefVALUs >= State.ExecPos)
1589           PreExecPos = std::min(PreExecPos, DefVALUs);
1590         else
1591           PostExecPos = std::min(PostExecPos, DefVALUs);
1592       }
1593     }
1594 
1595     // Need a VALUs post exec change
1596     if (PostExecPos == std::numeric_limits<int>::max())
1597       return NoHazardFound;
1598 
1599     // Too many VALUs in intv3?
1600     int Intv3VALUs = PostExecPos;
1601     if (Intv3VALUs > Intv3MaxVALUs)
1602       return HazardExpired;
1603 
1604     // Too many VALUs in intv2?
1605     int Intv2VALUs = (State.ExecPos - PostExecPos) - 1;
1606     if (Intv2VALUs > Intv1plus2MaxVALUs)
1607       return HazardExpired;
1608 
1609     // Need a VALUs pre exec change
1610     if (PreExecPos == std::numeric_limits<int>::max())
1611       return NoHazardFound;
1612 
1613     // Too many VALUs in intv1?
1614     int Intv1VALUs = PreExecPos - State.ExecPos;
1615     if (Intv1VALUs > Intv1plus2MaxVALUs)
1616       return HazardExpired;
1617 
1618     // Too many VALUs in intv1 + intv2
1619     if (Intv1VALUs + Intv2VALUs > Intv1plus2MaxVALUs)
1620       return HazardExpired;
1621 
1622     return HazardFound;
1623   };
1624   auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) {
1625     if (SIInstrInfo::isVALU(MI))
1626       State.VALUs += 1;
1627   };
1628 
1629   DenseSet<const MachineBasicBlock *> Visited;
1630   if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(),
1631                             std::next(MI->getReverseIterator()), Visited))
1632     return false;
1633 
1634   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1635           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1636       .addImm(0x0fff);
1637 
1638   return true;
1639 }
1640 
1641 bool GCNHazardRecognizer::fixVALUTransUseHazard(MachineInstr *MI) {
1642   if (!ST.hasVALUTransUseHazard())
1643     return false;
1644   assert(!ST.hasExtendedWaitCounts());
1645 
1646   if (!SIInstrInfo::isVALU(*MI))
1647     return false;
1648 
1649   SmallSet<Register, 4> SrcVGPRs;
1650 
1651   for (const MachineOperand &Use : MI->explicit_uses()) {
1652     if (Use.isReg() && TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1653       SrcVGPRs.insert(Use.getReg());
1654   }
1655 
1656   // Look for the following pattern:
1657   //   Va <- TRANS VALU
1658   //   intv
1659   //   MI Va (WaitState = 0)
1660   //
1661   // Where:
1662   // intv <= 5 VALUs / 1 TRANS
1663   //
1664   // If found, insert an appropriate S_WAITCNT_DEPCTR before MI.
1665 
1666   const int IntvMaxVALUs = 5;
1667   const int IntvMaxTRANS = 1;
1668 
1669   struct StateType {
1670     int VALUs = 0;
1671     int TRANS = 0;
1672   };
1673 
1674   StateType State;
1675 
1676   // This overloads expiry testing with all the hazard detection
1677   auto IsHazardFn = [&, this](StateType &State, const MachineInstr &I) {
1678     // Too many VALU states have passed
1679     if (State.VALUs > IntvMaxVALUs || State.TRANS > IntvMaxTRANS)
1680       return HazardExpired;
1681 
1682     // Instructions which cause va_vdst==0 expire hazard
1683     if (SIInstrInfo::isVMEM(I) || SIInstrInfo::isFLAT(I) ||
1684         SIInstrInfo::isDS(I) || SIInstrInfo::isEXP(I) ||
1685         (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1686          I.getOperand(0).getImm() == 0x0fff))
1687       return HazardExpired;
1688 
1689     // Track registers writes
1690     if (SIInstrInfo::isTRANS(I)) {
1691       for (Register Src : SrcVGPRs) {
1692         if (I.modifiesRegister(Src, &TRI)) {
1693           return HazardFound;
1694         }
1695       }
1696     }
1697 
1698     return NoHazardFound;
1699   };
1700   auto UpdateStateFn = [](StateType &State, const MachineInstr &MI) {
1701     if (SIInstrInfo::isVALU(MI))
1702       State.VALUs += 1;
1703     if (SIInstrInfo::isTRANS(MI))
1704       State.TRANS += 1;
1705   };
1706 
1707   DenseSet<const MachineBasicBlock *> Visited;
1708   if (!hasHazard<StateType>(State, IsHazardFn, UpdateStateFn, MI->getParent(),
1709                             std::next(MI->getReverseIterator()), Visited))
1710     return false;
1711 
1712   // Hazard is observed - insert a wait on va_dst counter to ensure hazard is
1713   // avoided.
1714   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1715           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
1716       .addImm(AMDGPU::DepCtr::encodeFieldVaVdst(0));
1717 
1718   return true;
1719 }
1720 
1721 bool GCNHazardRecognizer::fixWMMAHazards(MachineInstr *MI) {
1722   if (!SIInstrInfo::isWMMA(*MI) && !SIInstrInfo::isSWMMAC(*MI))
1723     return false;
1724 
1725   const SIInstrInfo *TII = ST.getInstrInfo();
1726   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1727 
1728   auto IsHazardFn = [MI, TII, TRI, this](const MachineInstr &I) {
1729     if (!SIInstrInfo::isWMMA(I) && !SIInstrInfo::isSWMMAC(I))
1730       return false;
1731 
1732     // Src0(matrix A) or Src1(matrix B) of the current wmma instruction overlaps
1733     // with the dest(matrix D) of the previous wmma.
1734     const Register CurSrc0Reg =
1735         TII->getNamedOperand(*MI, AMDGPU::OpName::src0)->getReg();
1736     const Register CurSrc1Reg =
1737         TII->getNamedOperand(*MI, AMDGPU::OpName::src1)->getReg();
1738 
1739     const Register PrevDstReg =
1740         TII->getNamedOperand(I, AMDGPU::OpName::vdst)->getReg();
1741 
1742     if (TRI->regsOverlap(PrevDstReg, CurSrc0Reg) ||
1743         TRI->regsOverlap(PrevDstReg, CurSrc1Reg)) {
1744       return true;
1745     }
1746 
1747     // GFX12+ allows overlap of matrix C with PrevDstReg (hardware will stall)
1748     // but Index can't overlap with PrevDstReg.
1749     if (AMDGPU::isGFX12Plus(ST)) {
1750       if (SIInstrInfo::isSWMMAC(*MI)) {
1751         const Register CurIndex =
1752             TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->getReg();
1753         if (TRI->regsOverlap(PrevDstReg, CurIndex))
1754           return true;
1755       }
1756       return false;
1757     }
1758 
1759     return false;
1760   };
1761 
1762   auto IsExpiredFn = [](const MachineInstr &I, int) {
1763     return SIInstrInfo::isVALU(I);
1764   };
1765 
1766   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1767       std::numeric_limits<int>::max())
1768     return false;
1769 
1770   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::V_NOP_e32));
1771 
1772   return true;
1773 }
1774 
1775 bool GCNHazardRecognizer::fixShift64HighRegBug(MachineInstr *MI) {
1776   if (!ST.hasShift64HighRegBug())
1777     return false;
1778   assert(!ST.hasExtendedWaitCounts());
1779 
1780   switch (MI->getOpcode()) {
1781   default:
1782     return false;
1783   case AMDGPU::V_LSHLREV_B64_e64:
1784   case AMDGPU::V_LSHRREV_B64_e64:
1785   case AMDGPU::V_ASHRREV_I64_e64:
1786     break;
1787   }
1788 
1789   MachineOperand *Amt = TII.getNamedOperand(*MI, AMDGPU::OpName::src0);
1790   if (!Amt->isReg())
1791     return false;
1792 
1793   Register AmtReg = Amt->getReg();
1794   const MachineRegisterInfo &MRI = MF.getRegInfo();
1795   // Check if this is a last VGPR in the allocation block.
1796   if (!TRI.isVGPR(MRI, AmtReg) || ((AmtReg - AMDGPU::VGPR0) & 7) != 7)
1797     return false;
1798 
1799   if (AmtReg != AMDGPU::VGPR255 && MRI.isPhysRegUsed(AmtReg + 1))
1800     return false;
1801 
1802   MachineOperand *Src1 = TII.getNamedOperand(*MI, AMDGPU::OpName::src1);
1803   bool OverlappedSrc = Src1->isReg() && TRI.regsOverlap(Src1->getReg(), AmtReg);
1804   bool OverlappedDst = MI->modifiesRegister(AmtReg, &TRI);
1805   bool Overlapped = OverlappedSrc || OverlappedDst;
1806 
1807   assert(!OverlappedDst || !OverlappedSrc ||
1808          Src1->getReg() == MI->getOperand(0).getReg());
1809   assert(ST.needsAlignedVGPRs());
1810   static_assert(AMDGPU::VGPR0 + 1 == AMDGPU::VGPR1);
1811 
1812   Register NewReg;
1813   for (MCRegister Reg : Overlapped ? AMDGPU::VReg_64_Align2RegClass
1814                                    : AMDGPU::VGPR_32RegClass) {
1815     if (!MI->modifiesRegister(Reg, &TRI) && !MI->readsRegister(Reg, &TRI)) {
1816       NewReg = Reg;
1817       break;
1818     }
1819   }
1820 
1821   Register NewAmt = Overlapped ? (Register)TRI.getSubReg(NewReg, AMDGPU::sub1)
1822                                : NewReg;
1823   Register NewAmtLo;
1824 
1825   if (Overlapped)
1826     NewAmtLo = TRI.getSubReg(NewReg, AMDGPU::sub0);
1827 
1828   DebugLoc DL = MI->getDebugLoc();
1829   MachineBasicBlock *MBB = MI->getParent();
1830   // Insert a full wait count because found register might be pending a wait.
1831   BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_WAITCNT))
1832       .addImm(0);
1833 
1834   // Insert V_SWAP_B32 instruction(s) and run hazard recognizer on them.
1835   if (Overlapped)
1836     runOnInstruction(
1837         BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmtLo)
1838             .addDef(AmtReg - 1)
1839             .addReg(AmtReg - 1, RegState::Undef)
1840             .addReg(NewAmtLo, RegState::Undef));
1841   runOnInstruction(BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_SWAP_B32), NewAmt)
1842                        .addDef(AmtReg)
1843                        .addReg(AmtReg, RegState::Undef)
1844                        .addReg(NewAmt, RegState::Undef));
1845 
1846   // Instructions emitted after the current instruction will be processed by the
1847   // parent loop of the hazard recognizer in a natural way.
1848   BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32),
1849           AmtReg)
1850       .addDef(NewAmt)
1851       .addReg(NewAmt)
1852       .addReg(AmtReg);
1853   if (Overlapped)
1854     BuildMI(*MBB, std::next(MI->getIterator()), DL, TII.get(AMDGPU::V_SWAP_B32),
1855             AmtReg - 1)
1856         .addDef(NewAmtLo)
1857         .addReg(NewAmtLo)
1858         .addReg(AmtReg - 1);
1859 
1860   // Re-running hazard recognizer on the modified instruction is not necessary,
1861   // inserted V_SWAP_B32 has already both read and write new registers so
1862   // hazards related to these register has already been handled.
1863   Amt->setReg(NewAmt);
1864   Amt->setIsKill(false);
1865   // We do not update liveness, so verifier may see it as undef.
1866   Amt->setIsUndef();
1867   if (OverlappedDst)
1868     MI->getOperand(0).setReg(NewReg);
1869   if (OverlappedSrc) {
1870     Src1->setReg(NewReg);
1871     Src1->setIsKill(false);
1872     Src1->setIsUndef();
1873   }
1874 
1875   return true;
1876 }
1877 
1878 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) {
1879   int NSAtoVMEMWaitStates = 1;
1880 
1881   if (!ST.hasNSAtoVMEMBug())
1882     return 0;
1883 
1884   if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI))
1885     return 0;
1886 
1887   const SIInstrInfo *TII = ST.getInstrInfo();
1888   const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset);
1889   if (!Offset || (Offset->getImm() & 6) == 0)
1890     return 0;
1891 
1892   auto IsHazardFn = [TII](const MachineInstr &I) {
1893     if (!SIInstrInfo::isMIMG(I))
1894       return false;
1895     const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode());
1896     return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA &&
1897            TII->getInstSizeInBytes(I) >= 16;
1898   };
1899 
1900   return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1);
1901 }
1902 
1903 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) {
1904   int FPAtomicToDenormModeWaitStates = 3;
1905 
1906   if (!ST.hasFPAtomicToDenormModeHazard())
1907     return 0;
1908   assert(!ST.hasExtendedWaitCounts());
1909 
1910   if (MI->getOpcode() != AMDGPU::S_DENORM_MODE)
1911     return 0;
1912 
1913   auto IsHazardFn = [](const MachineInstr &I) {
1914     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I))
1915       return false;
1916     return SIInstrInfo::isFPAtomic(I);
1917   };
1918 
1919   auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) {
1920     if (WaitStates >= 3 || SIInstrInfo::isVALU(MI))
1921       return true;
1922 
1923     switch (MI.getOpcode()) {
1924     case AMDGPU::S_WAITCNT:
1925     case AMDGPU::S_WAITCNT_VSCNT:
1926     case AMDGPU::S_WAITCNT_VMCNT:
1927     case AMDGPU::S_WAITCNT_EXPCNT:
1928     case AMDGPU::S_WAITCNT_LGKMCNT:
1929     case AMDGPU::S_WAIT_IDLE:
1930       return true;
1931     default:
1932       break;
1933     }
1934 
1935     return false;
1936   };
1937 
1938   return FPAtomicToDenormModeWaitStates -
1939          ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn);
1940 }
1941 
1942 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) {
1943   assert(SIInstrInfo::isMAI(*MI));
1944 
1945   return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI);
1946 }
1947 
1948 int GCNHazardRecognizer::checkMFMAPadding(MachineInstr *MI) {
1949   // Early exit if no padding is requested.
1950   if (MFMAPaddingRatio == 0)
1951     return 0;
1952 
1953   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1954   if (!SIInstrInfo::isMFMA(*MI) || MFI->getOccupancy() < 2)
1955     return 0;
1956 
1957   int NeighborMFMALatency = 0;
1958   auto IsNeighboringMFMA = [&NeighborMFMALatency,
1959                             this](const MachineInstr &MI) {
1960     if (!SIInstrInfo::isMFMA(MI))
1961       return false;
1962 
1963     NeighborMFMALatency = this->getMFMAPipelineWaitStates(MI);
1964     return true;
1965   };
1966 
1967   const int MaxMFMAPipelineWaitStates = 16;
1968   int WaitStatesSinceNeighborMFMA =
1969       getWaitStatesSince(IsNeighboringMFMA, MaxMFMAPipelineWaitStates);
1970 
1971   int NeighborMFMAPaddingNeeded =
1972       (NeighborMFMALatency * MFMAPaddingRatio / 100) -
1973       WaitStatesSinceNeighborMFMA;
1974 
1975   return std::max(0, NeighborMFMAPaddingNeeded);
1976 }
1977 
1978 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) {
1979   int WaitStatesNeeded = 0;
1980   unsigned Opc = MI->getOpcode();
1981 
1982   auto IsVALUFn = [](const MachineInstr &MI) {
1983     return SIInstrInfo::isVALU(MI) || MI.isInlineAsm();
1984   };
1985 
1986   if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write
1987     const int LegacyVALUWritesVGPRWaitStates = 2;
1988     const int VALUWritesExecWaitStates = 4;
1989     const int MaxWaitStates = 4;
1990 
1991     int WaitStatesNeededForUse = VALUWritesExecWaitStates -
1992       getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates);
1993     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1994 
1995     if (WaitStatesNeeded < MaxWaitStates) {
1996       for (const MachineOperand &Use : MI->explicit_uses()) {
1997         const int MaxWaitStates = 2;
1998 
1999         if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
2000           continue;
2001 
2002         int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates -
2003           getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates);
2004         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2005 
2006         if (WaitStatesNeeded == MaxWaitStates)
2007           break;
2008       }
2009     }
2010   }
2011 
2012   for (const MachineOperand &Op : MI->explicit_operands()) {
2013     if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg()))
2014       continue;
2015 
2016     if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
2017       continue;
2018 
2019     const int MFMAWritesAGPROverlappedSrcABWaitStates = 4;
2020     const int MFMAWritesAGPROverlappedSrcCWaitStates = 2;
2021     const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4;
2022     const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10;
2023     const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18;
2024     const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1;
2025     const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7;
2026     const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15;
2027     const int MaxWaitStates = 18;
2028     Register Reg = Op.getReg();
2029     unsigned HazardDefLatency = 0;
2030 
2031     auto IsOverlappedMFMAFn = [Reg, &HazardDefLatency,
2032                                this](const MachineInstr &MI) {
2033       if (!SIInstrInfo::isMFMA(MI))
2034         return false;
2035       Register DstReg = MI.getOperand(0).getReg();
2036       if (DstReg == Reg)
2037         return false;
2038       HazardDefLatency =
2039           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
2040       return TRI.regsOverlap(DstReg, Reg);
2041     };
2042 
2043     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn,
2044                                                    MaxWaitStates);
2045     int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates;
2046     int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
2047     int OpNo = Op.getOperandNo();
2048     if (OpNo == SrcCIdx) {
2049       NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates;
2050     } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) {
2051       switch (HazardDefLatency) {
2052       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates;
2053                break;
2054       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates;
2055                break;
2056       case 16: [[fallthrough]];
2057       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates;
2058                break;
2059       }
2060     } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
2061       switch (HazardDefLatency) {
2062       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates;
2063                break;
2064       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates;
2065                break;
2066       case 16: [[fallthrough]];
2067       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates;
2068                break;
2069       }
2070     }
2071 
2072     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2073     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2074 
2075     if (WaitStatesNeeded == MaxWaitStates)
2076       return WaitStatesNeeded; // Early exit.
2077 
2078     auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) {
2079       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
2080         return false;
2081       Register DstReg = MI.getOperand(0).getReg();
2082       return TRI.regsOverlap(Reg, DstReg);
2083     };
2084 
2085     const int AccVGPRWriteMFMAReadSrcCWaitStates = 1;
2086     const int AccVGPRWriteMFMAReadSrcABWaitStates = 3;
2087     const int AccVGPRWriteAccVgprReadWaitStates = 3;
2088     NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates;
2089     if (OpNo == SrcCIdx)
2090       NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates;
2091     else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64)
2092       NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates;
2093 
2094     WaitStatesNeededForUse = NeedWaitStates -
2095       getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates);
2096     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2097 
2098     if (WaitStatesNeeded == MaxWaitStates)
2099       return WaitStatesNeeded; // Early exit.
2100   }
2101 
2102   if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
2103     const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0;
2104     const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5;
2105     const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13;
2106     const int MaxWaitStates = 13;
2107     Register DstReg = MI->getOperand(0).getReg();
2108     unsigned HazardDefLatency = 0;
2109 
2110     auto IsSrcCMFMAFn = [DstReg, &HazardDefLatency,
2111                          this](const MachineInstr &MI) {
2112       if (!SIInstrInfo::isMFMA(MI))
2113         return false;
2114       Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg();
2115       HazardDefLatency =
2116           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
2117       return TRI.regsOverlap(Reg, DstReg);
2118     };
2119 
2120     int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates);
2121     int NeedWaitStates;
2122     switch (HazardDefLatency) {
2123     case 2:  NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates;
2124              break;
2125     case 8:  NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates;
2126              break;
2127     case 16: [[fallthrough]];
2128     default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates;
2129              break;
2130     }
2131 
2132     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince;
2133     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2134   }
2135 
2136   // Pad neighboring MFMA with noops for better inter-wave performance.
2137   WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI));
2138 
2139   return WaitStatesNeeded;
2140 }
2141 
2142 static int
2143 GFX940_XDL_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(int NumPasses) {
2144   // 2 pass -> 3
2145   // 4 pass -> 5
2146   // 8 pass -> 9
2147   // 16 pass -> 17
2148   return NumPasses + 1;
2149 }
2150 
2151 static int
2152 GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(int NumPasses) {
2153   // 2 pass -> 2
2154   // 4 pass -> 4
2155   // 8 pass -> 8
2156   // 16 pass -> 16
2157   return NumPasses;
2158 }
2159 
2160 static int
2161 GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses) {
2162   // 2 pass -> 4
2163   // 4 pass -> 6
2164   // 8 pass -> 10
2165   // 16 pass -> 18
2166   return NumPasses + 2;
2167 }
2168 
2169 static int GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates(int NumPasses) {
2170   // 2 pass -> 5
2171   // 4 pass -> 7
2172   // 8 pass -> 11
2173   // 16 pass -> 19
2174   return NumPasses + 3;
2175 }
2176 
2177 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) {
2178   int WaitStatesNeeded = 0;
2179   unsigned Opc = MI->getOpcode();
2180 
2181   auto IsLegacyVALUFn = [](const MachineInstr &MI) {
2182     return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI);
2183   };
2184 
2185   auto IsLegacyVALUNotDotFn = [](const MachineInstr &MI) {
2186     return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMFMA(MI) &&
2187            !SIInstrInfo::isDOT(MI);
2188   };
2189 
2190   if (!SIInstrInfo::isMFMA(*MI))
2191     return WaitStatesNeeded;
2192 
2193   const int VALUWritesExecWaitStates = 4;
2194   int WaitStatesNeededForUse = VALUWritesExecWaitStates -
2195     getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn,
2196                           VALUWritesExecWaitStates);
2197   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2198 
2199   int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
2200 
2201   // Loop for both DGEMM and S/HGEMM 2nd instruction.
2202   for (const MachineOperand &Use : MI->explicit_uses()) {
2203     const int LegacyVALUNotDotWritesVGPRWaitStates = 2;
2204     const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2;
2205     const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8;
2206     const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16;
2207     const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3;
2208     const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9;
2209     const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17;
2210     const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9;
2211     const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4;
2212     const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5;
2213     const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11;
2214     const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19;
2215     const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6;
2216     const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11;
2217     const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4;
2218     const int GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates = 2;
2219     const int MaxWaitStates = 19;
2220 
2221     if (!Use.isReg())
2222       continue;
2223     Register Reg = Use.getReg();
2224     bool FullReg;
2225     const MachineInstr *MI1;
2226 
2227     auto IsOverlappedMFMAFn = [Reg, &FullReg, &MI1,
2228                                this](const MachineInstr &MI) {
2229       if (!SIInstrInfo::isMFMA(MI))
2230         return false;
2231       Register DstReg = MI.getOperand(0).getReg();
2232       FullReg = (DstReg == Reg);
2233       MI1 = &MI;
2234       return TRI.regsOverlap(DstReg, Reg);
2235     };
2236 
2237     WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates -
2238       getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates);
2239     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2240 
2241     int NumWaitStates =
2242         getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn, MaxWaitStates);
2243     if (NumWaitStates == std::numeric_limits<int>::max())
2244       continue;
2245 
2246     int OpNo = Use.getOperandNo();
2247     unsigned Opc1 = MI1->getOpcode();
2248     int NeedWaitStates = 0;
2249     if (OpNo == SrcCIdx) {
2250       if (!isDGEMM(Opc) && (!ST.hasGFX940Insts() && isDGEMM(Opc1))) {
2251         NeedWaitStates = 0;
2252       } else if (FullReg) {
2253         if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
2254              Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) &&
2255             (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
2256              Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64))
2257           NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates;
2258         else if (ST.hasGFX940Insts() &&
2259                  TSchedModel.computeInstrLatency(MI1) == 2)
2260           NeedWaitStates = GFX940_SMFMA4x4WritesVGPRFullSrcCWaitStates;
2261       } else {
2262         switch (Opc1) {
2263         case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
2264         case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
2265         case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64:
2266         case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64:
2267           if (!isXDL(ST, *MI))
2268             NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates;
2269           break;
2270         case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
2271         case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
2272           if (!isXDL(ST, *MI))
2273             NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates;
2274           break;
2275         default:
2276           int NumPasses = TSchedModel.computeInstrLatency(MI1);
2277           if (ST.hasGFX940Insts()) {
2278             if (isXDL(ST, *MI) && !isXDL(ST, *MI1))
2279               break;
2280 
2281             NeedWaitStates =
2282                 isXDL(ST, *MI1)
2283                     ? GFX940_XDL_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(
2284                           NumPasses)
2285                     : GFX940_SMFMA_N_PassWritesVGPROverlappedSMFMASrcCWaitStates(
2286                           NumPasses);
2287             break;
2288           }
2289 
2290           switch (NumPasses) {
2291           case 2:
2292             NeedWaitStates =
2293                 isDGEMM(Opc) ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates
2294                              : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates;
2295             break;
2296           case 8:
2297             NeedWaitStates =
2298                 isDGEMM(Opc)
2299                     ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates
2300                     : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates;
2301             break;
2302           case 16:
2303             NeedWaitStates =
2304                 isDGEMM(Opc)
2305                     ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates
2306                     : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates;
2307             break;
2308           default:
2309             llvm_unreachable("unexpected number of passes");
2310           }
2311         }
2312       }
2313     } else {
2314       switch (Opc1) {
2315       case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
2316       case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
2317       case AMDGPU::V_MFMA_F64_16X16X4F64_mac_e64:
2318       case AMDGPU::V_MFMA_F64_16X16X4F64_mac_vgprcd_e64:
2319         NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates;
2320         break;
2321       case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
2322       case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
2323         NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates;
2324         break;
2325       default:
2326         int NumPasses = TSchedModel.computeInstrLatency(MI1);
2327 
2328         if (ST.hasGFX940Insts()) {
2329           NeedWaitStates =
2330               isXDL(ST, *MI1)
2331                   ? GFX940_XDL_N_PassWritesVGPROverlappedSrcABWaitStates(
2332                         NumPasses)
2333                   : GFX940_SMFMA_N_PassWritesVGPROverlappedSrcABWaitStates(
2334                         NumPasses);
2335           break;
2336         }
2337 
2338         switch (NumPasses) {
2339         case 2:
2340           NeedWaitStates = SMFMA4x4WritesVGPROverlappedSrcABWaitStates;
2341           break;
2342         case 4:
2343           llvm_unreachable("unexpected number of passes for mfma");
2344         case 8:
2345           NeedWaitStates = SMFMA16x16WritesVGPROverlappedSrcABWaitStates;
2346           break;
2347         case 16:
2348         default:
2349           NeedWaitStates = SMFMA32x32WritesVGPROverlappedSrcABWaitStates;
2350         }
2351       }
2352     }
2353     if (WaitStatesNeeded >= NeedWaitStates)
2354       continue;
2355 
2356     WaitStatesNeededForUse = NeedWaitStates - NumWaitStates;
2357     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2358 
2359     if (WaitStatesNeeded == MaxWaitStates)
2360       break;
2361   }
2362 
2363   // Pad neighboring MFMA with noops for better inter-wave performance.
2364   WaitStatesNeeded = std::max(WaitStatesNeeded, checkMFMAPadding(MI));
2365 
2366   return WaitStatesNeeded;
2367 }
2368 
2369 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) {
2370   // On gfx90a+ relevant hazards are checked in checkMAIVALUHazards()
2371   if (!ST.hasMAIInsts() || ST.hasGFX90AInsts())
2372     return 0;
2373 
2374   int WaitStatesNeeded = 0;
2375 
2376   auto IsAccVgprReadFn = [](const MachineInstr &MI) {
2377     return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64;
2378   };
2379 
2380   for (const MachineOperand &Op : MI->explicit_uses()) {
2381     if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg()))
2382       continue;
2383 
2384     Register Reg = Op.getReg();
2385 
2386     const int AccVgprReadLdStWaitStates = 2;
2387     const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1;
2388     const int MaxWaitStates = 2;
2389 
2390     int WaitStatesNeededForUse = AccVgprReadLdStWaitStates -
2391       getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates);
2392     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2393 
2394     if (WaitStatesNeeded == MaxWaitStates)
2395       return WaitStatesNeeded; // Early exit.
2396 
2397     auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) {
2398       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 &&
2399           MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
2400         return false;
2401       auto IsVALUFn = [](const MachineInstr &MI) {
2402         return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI);
2403       };
2404       return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) <
2405              std::numeric_limits<int>::max();
2406     };
2407 
2408     WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates -
2409       getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates);
2410     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2411   }
2412 
2413   return WaitStatesNeeded;
2414 }
2415 
2416 static int GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(int NumPasses) {
2417   // 2 pass -> 4
2418   // 4 pass -> 6
2419   // 8 pass -> 10
2420   // 16 pass -> 18
2421   return NumPasses + 2;
2422 }
2423 
2424 static int GFX940_XDL_N_PassWriteVgprVALUWawWaitStates(int NumPasses) {
2425   // 2 pass -> 5
2426   // 4 pass -> 7
2427   // 8 pass -> 11
2428   // 16 pass -> 19
2429   return NumPasses + 3;
2430 }
2431 
2432 static int GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses) {
2433   // 2 pass -> 5
2434   // 4 pass -> 7
2435   // 8 pass -> 11
2436   // 16 pass -> 19
2437   return NumPasses + 3;
2438 }
2439 
2440 static int GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates(int NumPasses) {
2441   // 2 pass -> 4
2442   // 4 pass -> 6
2443   // 8 pass -> 10
2444   // 16 pass -> 18
2445   return NumPasses + 2;
2446 }
2447 
2448 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) {
2449   if (!ST.hasGFX90AInsts())
2450     return 0;
2451 
2452   auto IsDGEMMFn = [](const MachineInstr &MI) -> bool {
2453     return isDGEMM(MI.getOpcode());
2454   };
2455 
2456   // This is checked in checkMAIHazards90A()
2457   if (SIInstrInfo::isMFMA(*MI))
2458     return 0;
2459 
2460   const MachineRegisterInfo &MRI = MF.getRegInfo();
2461 
2462   int WaitStatesNeeded = 0;
2463 
2464   bool IsMem = SIInstrInfo::isVMEM(*MI) ||
2465                SIInstrInfo::isFLAT(*MI) ||
2466                SIInstrInfo::isDS(*MI);
2467   bool IsMemOrExport = IsMem || SIInstrInfo::isEXP(*MI);
2468   bool IsVALU = SIInstrInfo::isVALU(*MI);
2469 
2470   const MachineInstr *MFMA = nullptr;
2471   unsigned Reg;
2472   auto IsMFMAWriteFn = [&Reg, &MFMA, this](const MachineInstr &MI) {
2473     if (!SIInstrInfo::isMFMA(MI) ||
2474         !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
2475       return false;
2476     MFMA = &MI;
2477     return true;
2478   };
2479 
2480   const MachineInstr *DOT = nullptr;
2481   auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) {
2482     if (!SIInstrInfo::isDOT(MI) ||
2483         !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
2484       return false;
2485     DOT = &MI;
2486     return true;
2487   };
2488 
2489   bool DGEMMAfterVALUWrite = false;
2490   auto IsDGEMMHazard = [&DGEMMAfterVALUWrite, this](const MachineInstr &MI) {
2491     // Found DGEMM on reverse traversal to def.
2492     if (isDGEMM(MI.getOpcode()))
2493       DGEMMAfterVALUWrite = true;
2494 
2495     // Only hazard if register is defined by a VALU and a DGEMM is found after
2496     // after the def.
2497     if (!TII.isVALU(MI) || !DGEMMAfterVALUWrite)
2498       return false;
2499 
2500     return true;
2501   };
2502 
2503   int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
2504                                            AMDGPU::OpName::src2);
2505 
2506   if (IsMemOrExport || IsVALU) {
2507     const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5;
2508     const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11;
2509     const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19;
2510     const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9;
2511     const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18;
2512     const int DMFMA4x4WriteVgprVALUReadWaitStates = 6;
2513     const int DMFMA16x16WriteVgprVALUReadWaitStates = 11;
2514     const int DotWriteSameDotReadSrcAB = 3;
2515     const int DotWriteDifferentVALURead = 3;
2516     const int DMFMABetweenVALUWriteVMEMRead = 2;
2517     const int MaxWaitStates = 19;
2518 
2519     for (const MachineOperand &Use : MI->explicit_uses()) {
2520       if (!Use.isReg())
2521         continue;
2522       Reg = Use.getReg();
2523 
2524       DOT = nullptr;
2525       int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
2526                                                      MaxWaitStates);
2527       if (DOT) {
2528         int NeedWaitStates = 0;
2529         if (DOT->getOpcode() == MI->getOpcode()) {
2530           if (&Use - &MI->getOperand(0) != SrcCIdx)
2531             NeedWaitStates = DotWriteSameDotReadSrcAB;
2532         } else {
2533           NeedWaitStates = DotWriteDifferentVALURead;
2534         }
2535 
2536         int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2537         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2538       }
2539 
2540       // Workaround for HW data hazard bug observed only in GFX90A. When there
2541       // is a DGEMM instruction in-between a VALU and a VMEM instruction it
2542       // causes the SQ to incorrectly not insert two wait states between the two
2543       // instructions needed to avoid data hazard.
2544       if (IsMem && ST.hasGFX90AInsts() && !ST.hasGFX940Insts()) {
2545         DGEMMAfterVALUWrite = false;
2546         if (TRI.isVectorRegister(MRI, Reg)) {
2547           int WaitStatesNeededForUse =
2548                 DMFMABetweenVALUWriteVMEMRead -
2549                 getWaitStatesSinceDef(Reg, IsDGEMMHazard,
2550                                       DMFMABetweenVALUWriteVMEMRead);
2551 
2552           WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2553         }
2554       }
2555 
2556       MFMA = nullptr;
2557       WaitStatesSinceDef =
2558           getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates);
2559       if (!MFMA)
2560         continue;
2561 
2562       unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
2563       int NumPasses = HazardDefLatency;
2564       int NeedWaitStates = MaxWaitStates;
2565 
2566       if (isDGEMM(MFMA->getOpcode())) {
2567         switch (HazardDefLatency) {
2568         case 4:
2569           NeedWaitStates = IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates
2570                                          : DMFMA4x4WriteVgprVALUReadWaitStates;
2571           break;
2572         case 8:
2573         case 16:
2574           NeedWaitStates = IsMemOrExport
2575                                ? DMFMA16x16WriteVgprMemExpReadWaitStates
2576                                : DMFMA16x16WriteVgprVALUReadWaitStates;
2577           break;
2578         default:
2579           llvm_unreachable("unexpected dgemm");
2580         }
2581       } else if (ST.hasGFX940Insts()) {
2582         NeedWaitStates =
2583             isXDL(ST, *MFMA)
2584                 ? GFX940_XDL_N_PassWriteVgprVALUMemExpReadWaitStates(NumPasses)
2585                 : GFX940_SMFMA_N_PassWriteVgprVALUMemExpReadWaitStates(
2586                       NumPasses);
2587       } else {
2588         switch (HazardDefLatency) {
2589         case 2:
2590           NeedWaitStates = SMFMA4x4WriteVgprVALUMemExpReadWaitStates;
2591           break;
2592         case 8:
2593           NeedWaitStates = SMFMA16x16WriteVgprVALUMemExpReadWaitStates;
2594           break;
2595         case 16:
2596           NeedWaitStates = SMFMA32x32WriteVgprVALUMemExpReadWaitStates;
2597           break;
2598         default:
2599           llvm_unreachable("unexpected number of passes for mfma");
2600         }
2601       }
2602 
2603       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2604       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2605 
2606       if (WaitStatesNeeded == MaxWaitStates)
2607         break;
2608     }
2609   }
2610 
2611   unsigned Opc = MI->getOpcode();
2612   const int DMFMAToFMA64WaitStates = 2;
2613   if ((Opc == AMDGPU::V_FMA_F64_e64 ||
2614        Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 ||
2615        Opc == AMDGPU::V_FMAC_F64_dpp) &&
2616       WaitStatesNeeded < DMFMAToFMA64WaitStates) {
2617     int WaitStatesNeededForUse = DMFMAToFMA64WaitStates -
2618       getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates);
2619     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2620   }
2621 
2622   if (!IsVALU && !IsMemOrExport)
2623     return WaitStatesNeeded;
2624 
2625   for (const MachineOperand &Def : MI->defs()) {
2626     const int SMFMA4x4WriteVgprVALUWawWaitStates = 5;
2627     const int SMFMA16x16WriteVgprVALUWawWaitStates = 11;
2628     const int SMFMA32x32WriteVgprVALUWawWaitStates = 19;
2629     const int SMFMA4x4ReadVgprVALUWarWaitStates = 1;
2630     const int GFX940_XDL4PassReadVgprVALUWarWaitStates = 3;
2631     const int SMFMA16x16ReadVgprVALUWarWaitStates = 7;
2632     const int SMFMA32x32ReadVgprVALUWarWaitStates = 15;
2633     const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6;
2634     const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11;
2635     const int DotWriteDifferentVALUWrite = 3;
2636     const int MaxWaitStates = 19;
2637     const int MaxWarWaitStates = 15;
2638 
2639     Reg = Def.getReg();
2640 
2641     DOT = nullptr;
2642     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
2643                                                    MaxWaitStates);
2644     if (DOT && DOT->getOpcode() != MI->getOpcode())
2645       WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite -
2646                                                     WaitStatesSinceDef);
2647 
2648     MFMA = nullptr;
2649     WaitStatesSinceDef =
2650         getWaitStatesSinceDef(Reg, IsMFMAWriteFn, MaxWaitStates);
2651     if (MFMA) {
2652       int NeedWaitStates = MaxWaitStates;
2653       int NumPasses = TSchedModel.computeInstrLatency(MFMA);
2654 
2655       if (isDGEMM(MFMA->getOpcode())) {
2656         switch (NumPasses) {
2657         case 4:
2658           NeedWaitStates = DMFMA4x4WriteVgprVALUWriteWaitStates;
2659           break;
2660         case 8:
2661         case 16:
2662           NeedWaitStates = DMFMA16x16WriteVgprVALUWriteWaitStates;
2663           break;
2664         default:
2665           llvm_unreachable("unexpected number of cycles for dgemm");
2666         }
2667       } else if (ST.hasGFX940Insts()) {
2668         NeedWaitStates =
2669             isXDL(ST, *MFMA)
2670                 ? GFX940_XDL_N_PassWriteVgprVALUWawWaitStates(NumPasses)
2671                 : GFX940_SMFMA_N_PassWriteVgprVALUWawWaitStates(NumPasses);
2672       } else {
2673         switch (NumPasses) {
2674         case 2:
2675           NeedWaitStates = SMFMA4x4WriteVgprVALUWawWaitStates;
2676           break;
2677         case 8:
2678           NeedWaitStates = SMFMA16x16WriteVgprVALUWawWaitStates;
2679           break;
2680         case 16:
2681           NeedWaitStates = SMFMA32x32WriteVgprVALUWawWaitStates;
2682           break;
2683         default:
2684           llvm_unreachable("Unexpected number of passes for mfma");
2685         }
2686       }
2687 
2688       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
2689       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2690 
2691       if (WaitStatesNeeded == MaxWaitStates)
2692         break;
2693     }
2694 
2695     auto IsSMFMAReadAsCFn = [&Reg, &MFMA, this](const MachineInstr &MI) {
2696       if (!SIInstrInfo::isMFMA(MI) || isDGEMM(MI.getOpcode()) ||
2697           !MI.readsRegister(Reg, &TRI))
2698         return false;
2699 
2700       if (ST.hasGFX940Insts() && !isXDL(ST, MI))
2701         return false;
2702 
2703       const MachineOperand *SrcC =
2704           TII.getNamedOperand(MI, AMDGPU::OpName::src2);
2705       assert(SrcC);
2706       if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg))
2707         return false;
2708 
2709       MFMA = &MI;
2710       return true;
2711     };
2712 
2713     MFMA = nullptr;
2714     int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn,
2715                                                 MaxWarWaitStates);
2716     if (!MFMA)
2717       continue;
2718 
2719     unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
2720     int NeedWaitStates = MaxWaitStates;
2721     switch (HazardDefLatency) {
2722     case 2:  NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates;
2723              break;
2724     case 4:  assert(ST.hasGFX940Insts());
2725              NeedWaitStates = GFX940_XDL4PassReadVgprVALUWarWaitStates;
2726              break;
2727     case 8:  NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates;
2728              break;
2729     case 16: [[fallthrough]];
2730     default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates;
2731              break;
2732     }
2733 
2734     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse;
2735     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
2736   }
2737 
2738   return WaitStatesNeeded;
2739 }
2740 
2741 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) {
2742   if (!SU->isInstr())
2743     return false;
2744 
2745   const MachineInstr *MAI = nullptr;
2746 
2747   auto IsMFMAFn = [&MAI](const MachineInstr &MI) {
2748     MAI = nullptr;
2749     if (SIInstrInfo::isMFMA(MI))
2750       MAI = &MI;
2751     return MAI != nullptr;
2752   };
2753 
2754   MachineInstr *MI = SU->getInstr();
2755   if (IsMFMAFn(*MI)) {
2756     int W = getWaitStatesSince(IsMFMAFn, 16);
2757     if (MAI)
2758       return W < (int)TSchedModel.computeInstrLatency(MAI);
2759   }
2760 
2761   return false;
2762 }
2763 
2764 bool GCNHazardRecognizer::fixVALUMaskWriteHazard(MachineInstr *MI) {
2765   if (!ST.hasVALUMaskWriteHazard())
2766     return false;
2767   assert(!ST.hasExtendedWaitCounts());
2768 
2769   if (!ST.isWave64() || !SIInstrInfo::isSALU(*MI))
2770     return false;
2771 
2772   // The hazard sequence is three instructions:
2773   //   1. VALU reads SGPR as mask
2774   //   2. SALU writes SGPR
2775   //   3. SALU reads SGPR
2776   // The hazard can expire if the distance between 2 and 3 is sufficient.
2777   // In practice this happens <10% of the time, hence this always assumes
2778   // the hazard exists if 1 and 2 are present to avoid searching.
2779 
2780   const MachineOperand *SDSTOp = TII.getNamedOperand(*MI, AMDGPU::OpName::sdst);
2781   if (!SDSTOp || !SDSTOp->isReg())
2782     return false;
2783 
2784   const Register HazardReg = SDSTOp->getReg();
2785   if (HazardReg == AMDGPU::EXEC ||
2786       HazardReg == AMDGPU::EXEC_LO ||
2787       HazardReg == AMDGPU::EXEC_HI ||
2788       HazardReg == AMDGPU::M0)
2789     return false;
2790 
2791   auto IsHazardFn = [HazardReg, this](const MachineInstr &I) {
2792     switch (I.getOpcode()) {
2793     case AMDGPU::V_ADDC_U32_e32:
2794     case AMDGPU::V_ADDC_U32_dpp:
2795     case AMDGPU::V_CNDMASK_B16_e32:
2796     case AMDGPU::V_CNDMASK_B16_dpp:
2797     case AMDGPU::V_CNDMASK_B32_e32:
2798     case AMDGPU::V_CNDMASK_B32_dpp:
2799     case AMDGPU::V_DIV_FMAS_F32_e64:
2800     case AMDGPU::V_DIV_FMAS_F64_e64:
2801     case AMDGPU::V_SUBB_U32_e32:
2802     case AMDGPU::V_SUBB_U32_dpp:
2803     case AMDGPU::V_SUBBREV_U32_e32:
2804     case AMDGPU::V_SUBBREV_U32_dpp:
2805       // These implicitly read VCC as mask source.
2806       return HazardReg == AMDGPU::VCC ||
2807              HazardReg == AMDGPU::VCC_LO ||
2808              HazardReg == AMDGPU::VCC_HI;
2809     case AMDGPU::V_ADDC_U32_e64:
2810     case AMDGPU::V_ADDC_U32_e64_dpp:
2811     case AMDGPU::V_CNDMASK_B16_e64:
2812     case AMDGPU::V_CNDMASK_B16_e64_dpp:
2813     case AMDGPU::V_CNDMASK_B32_e64:
2814     case AMDGPU::V_CNDMASK_B32_e64_dpp:
2815     case AMDGPU::V_SUBB_U32_e64:
2816     case AMDGPU::V_SUBB_U32_e64_dpp:
2817     case AMDGPU::V_SUBBREV_U32_e64:
2818     case AMDGPU::V_SUBBREV_U32_e64_dpp: {
2819       // Only check mask register overlaps.
2820       const MachineOperand *SSRCOp = TII.getNamedOperand(I, AMDGPU::OpName::src2);
2821       assert(SSRCOp);
2822       return TRI.regsOverlap(SSRCOp->getReg(), HazardReg);
2823     }
2824     default:
2825       return false;
2826     }
2827   };
2828 
2829   const MachineRegisterInfo &MRI = MF.getRegInfo();
2830   auto IsExpiredFn = [&MRI, this](const MachineInstr &I, int) {
2831     // s_waitcnt_depctr sa_sdst(0) mitigates hazard.
2832     if (I.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
2833         AMDGPU::DepCtr::decodeFieldSaSdst(I.getOperand(0).getImm()) == 0)
2834       return true;
2835 
2836     // VALU access to any SGPR or literal constant other than HazardReg
2837     // mitigates hazard. No need to check HazardReg here as this will
2838     // only be called when !IsHazardFn.
2839     if (!SIInstrInfo::isVALU(I))
2840       return false;
2841     for (int OpNo = 0, End = I.getNumOperands(); OpNo < End; ++OpNo) {
2842       const MachineOperand &Op = I.getOperand(OpNo);
2843       if (Op.isReg()) {
2844         Register OpReg = Op.getReg();
2845         // Only consider uses
2846         if (!Op.isUse())
2847           continue;
2848         // Ignore EXEC
2849         if (OpReg == AMDGPU::EXEC ||
2850             OpReg == AMDGPU::EXEC_LO ||
2851             OpReg == AMDGPU::EXEC_HI)
2852           continue;
2853         // Ignore all implicit uses except VCC
2854         if (Op.isImplicit()) {
2855           if (OpReg == AMDGPU::VCC ||
2856               OpReg == AMDGPU::VCC_LO ||
2857               OpReg == AMDGPU::VCC_HI)
2858             return true;
2859           continue;
2860         }
2861         if (TRI.isSGPRReg(MRI, OpReg))
2862           return true;
2863       } else {
2864         const MCInstrDesc &InstDesc = I.getDesc();
2865         const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo];
2866         if (!TII.isInlineConstant(Op, OpInfo))
2867           return true;
2868       }
2869     }
2870     return false;
2871   };
2872 
2873   // Check for hazard
2874   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
2875       std::numeric_limits<int>::max())
2876     return false;
2877 
2878   auto NextMI = std::next(MI->getIterator());
2879 
2880   // Add s_waitcnt_depctr sa_sdst(0) after SALU write.
2881   BuildMI(*MI->getParent(), NextMI, MI->getDebugLoc(),
2882           TII.get(AMDGPU::S_WAITCNT_DEPCTR))
2883       .addImm(AMDGPU::DepCtr::encodeFieldSaSdst(0));
2884 
2885   // SALU write may be s_getpc in a bundle.
2886   if (MI->getOpcode() == AMDGPU::S_GETPC_B64) {
2887     // Update offsets of any references in the bundle.
2888     while (NextMI != MI->getParent()->end() &&
2889            NextMI->isBundledWithPred()) {
2890       for (auto &Operand : NextMI->operands()) {
2891         if (Operand.isGlobal())
2892           Operand.setOffset(Operand.getOffset() + 4);
2893       }
2894       NextMI++;
2895     }
2896   }
2897 
2898   return true;
2899 }
2900 
2901 static bool ensureEntrySetPrio(MachineFunction *MF, int Priority,
2902                                const SIInstrInfo &TII) {
2903   MachineBasicBlock &EntryMBB = MF->front();
2904   if (EntryMBB.begin() != EntryMBB.end()) {
2905     auto &EntryMI = *EntryMBB.begin();
2906     if (EntryMI.getOpcode() == AMDGPU::S_SETPRIO &&
2907         EntryMI.getOperand(0).getImm() >= Priority)
2908       return false;
2909   }
2910 
2911   BuildMI(EntryMBB, EntryMBB.begin(), DebugLoc(), TII.get(AMDGPU::S_SETPRIO))
2912       .addImm(Priority);
2913   return true;
2914 }
2915 
2916 bool GCNHazardRecognizer::fixRequiredExportPriority(MachineInstr *MI) {
2917   if (!ST.hasRequiredExportPriority())
2918     return false;
2919 
2920   // Assume the following shader types will never have exports,
2921   // and avoid adding or adjusting S_SETPRIO.
2922   MachineBasicBlock *MBB = MI->getParent();
2923   MachineFunction *MF = MBB->getParent();
2924   auto CC = MF->getFunction().getCallingConv();
2925   switch (CC) {
2926   case CallingConv::AMDGPU_CS:
2927   case CallingConv::AMDGPU_CS_Chain:
2928   case CallingConv::AMDGPU_CS_ChainPreserve:
2929   case CallingConv::AMDGPU_KERNEL:
2930     return false;
2931   default:
2932     break;
2933   }
2934 
2935   const int MaxPriority = 3;
2936   const int NormalPriority = 2;
2937   const int PostExportPriority = 0;
2938 
2939   auto It = MI->getIterator();
2940   switch (MI->getOpcode()) {
2941   case AMDGPU::S_ENDPGM:
2942   case AMDGPU::S_ENDPGM_SAVED:
2943   case AMDGPU::S_ENDPGM_ORDERED_PS_DONE:
2944   case AMDGPU::SI_RETURN_TO_EPILOG:
2945     // Ensure shader with calls raises priority at entry.
2946     // This ensures correct priority if exports exist in callee.
2947     if (MF->getFrameInfo().hasCalls())
2948       return ensureEntrySetPrio(MF, NormalPriority, TII);
2949     return false;
2950   case AMDGPU::S_SETPRIO: {
2951     // Raise minimum priority unless in workaround.
2952     auto &PrioOp = MI->getOperand(0);
2953     int Prio = PrioOp.getImm();
2954     bool InWA = (Prio == PostExportPriority) &&
2955                 (It != MBB->begin() && TII.isEXP(*std::prev(It)));
2956     if (InWA || Prio >= NormalPriority)
2957       return false;
2958     PrioOp.setImm(std::min(Prio + NormalPriority, MaxPriority));
2959     return true;
2960   }
2961   default:
2962     if (!TII.isEXP(*MI))
2963       return false;
2964     break;
2965   }
2966 
2967   // Check entry priority at each export (as there will only be a few).
2968   // Note: amdgpu_gfx can only be a callee, so defer to caller setprio.
2969   bool Changed = false;
2970   if (CC != CallingConv::AMDGPU_Gfx)
2971     Changed = ensureEntrySetPrio(MF, NormalPriority, TII);
2972 
2973   auto NextMI = std::next(It);
2974   bool EndOfShader = false;
2975   if (NextMI != MBB->end()) {
2976     // Only need WA at end of sequence of exports.
2977     if (TII.isEXP(*NextMI))
2978       return Changed;
2979     // Assume appropriate S_SETPRIO after export means WA already applied.
2980     if (NextMI->getOpcode() == AMDGPU::S_SETPRIO &&
2981         NextMI->getOperand(0).getImm() == PostExportPriority)
2982       return Changed;
2983     EndOfShader = NextMI->getOpcode() == AMDGPU::S_ENDPGM;
2984   }
2985 
2986   const DebugLoc &DL = MI->getDebugLoc();
2987 
2988   // Lower priority.
2989   BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_SETPRIO))
2990       .addImm(PostExportPriority);
2991 
2992   if (!EndOfShader) {
2993     // Wait for exports to complete.
2994     BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_WAITCNT_EXPCNT))
2995         .addReg(AMDGPU::SGPR_NULL)
2996         .addImm(0);
2997   }
2998 
2999   BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_NOP)).addImm(0);
3000   BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_NOP)).addImm(0);
3001 
3002   if (!EndOfShader) {
3003     // Return to normal (higher) priority.
3004     BuildMI(*MBB, NextMI, DL, TII.get(AMDGPU::S_SETPRIO))
3005         .addImm(NormalPriority);
3006   }
3007 
3008   return true;
3009 }
3010