xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/EvergreenInstructions.td (revision 833a452e9f082a7982a31c21f0da437dbbe0a39d)
1//===-- EvergreenInstructions.td - EG Instruction defs  ----*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// TableGen definitions for instructions which are:
10// - Available to Evergreen and newer VLIW4/VLIW5 GPUs
11// - Available only on Evergreen family GPUs.
12//
13//===----------------------------------------------------------------------===//
14
15def isEG : Predicate<
16  "Subtarget->getGeneration() >= AMDGPUSubtarget::EVERGREEN && "
17  "!Subtarget->hasCaymanISA()"
18>;
19
20def isEGorCayman : Predicate<
21  "Subtarget->getGeneration() == AMDGPUSubtarget::EVERGREEN ||"
22  "Subtarget->getGeneration() == AMDGPUSubtarget::NORTHERN_ISLANDS"
23>;
24
25class EGPat<dag pattern, dag result> : AMDGPUPat<pattern, result> {
26  let SubtargetPredicate = isEG;
27}
28
29class EGOrCaymanPat<dag pattern, dag result> : AMDGPUPat<pattern, result> {
30  let SubtargetPredicate = isEGorCayman;
31}
32
33def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{
34  return isMask_32(Imm);
35}]>;
36
37def IMMPopCount : SDNodeXForm<imm, [{
38  return CurDAG->getTargetConstant(countPopulation(N->getZExtValue()), SDLoc(N),
39                                   MVT::i32);
40}]>;
41
42//===----------------------------------------------------------------------===//
43// Evergreen / Cayman store instructions
44//===----------------------------------------------------------------------===//
45
46let SubtargetPredicate = isEGorCayman in {
47
48class CF_MEM_RAT_CACHELESS <bits<6> rat_inst, bits<4> rat_id, bits<4> mask, dag ins,
49                           string name, list<dag> pattern>
50    : EG_CF_RAT <0x57, rat_inst, rat_id, mask, (outs), ins,
51                 "MEM_RAT_CACHELESS "#name, pattern>;
52
53class CF_MEM_RAT <bits<6> rat_inst, bits<4> rat_id, bits<4> mask, dag ins,
54                  dag outs, string name, list<dag> pattern>
55    : EG_CF_RAT <0x56, rat_inst, rat_id, mask, outs, ins,
56                 "MEM_RAT "#name, pattern>;
57
58class CF_MEM_RAT_STORE_TYPED<bits<1> has_eop>
59    : CF_MEM_RAT <0x1, ?, 0xf, (ins R600_Reg128:$rw_gpr, R600_Reg128:$index_gpr,
60                           i32imm:$rat_id, InstFlag:$eop), (outs),
61                  "STORE_TYPED RAT($rat_id) $rw_gpr, $index_gpr"
62                               #!if(has_eop, ", $eop", ""),
63                  [(int_r600_rat_store_typed R600_Reg128:$rw_gpr,
64                                             R600_Reg128:$index_gpr,
65                                             (i32 imm:$rat_id))]>;
66
67def RAT_MSKOR : CF_MEM_RAT <0x11, 0, 0xf,
68  (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr), (outs),
69  "MSKOR $rw_gpr.XW, $index_gpr",
70  [(mskor_global v4i32:$rw_gpr, i32:$index_gpr)]
71> {
72  let eop = 0;
73}
74
75
76multiclass RAT_ATOMIC<bits<6> op_ret, bits<6> op_noret, string name> {
77  let Constraints = "$rw_gpr = $out_gpr", eop = 0, mayStore = 1 in {
78  def  _RTN: CF_MEM_RAT <op_ret, 0, 0xf,
79             (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr),
80             (outs R600_Reg128:$out_gpr),
81             name # "_RTN $rw_gpr, $index_gpr", [] >;
82  def _NORET: CF_MEM_RAT <op_noret, 0, 0xf,
83              (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr),
84              (outs R600_Reg128:$out_gpr),
85              name # " $rw_gpr, $index_gpr", [] >;
86  }
87}
88
89// Swap no-ret is just store. Raw store to cached target
90// can only store on dword, which exactly matches swap_no_ret.
91defm RAT_ATOMIC_XCHG_INT : RAT_ATOMIC<1, 34, "ATOMIC_XCHG_INT">;
92defm RAT_ATOMIC_CMPXCHG_INT : RAT_ATOMIC<4, 36, "ATOMIC_CMPXCHG_INT">;
93defm RAT_ATOMIC_ADD : RAT_ATOMIC<7, 39, "ATOMIC_ADD">;
94defm RAT_ATOMIC_SUB : RAT_ATOMIC<8, 40, "ATOMIC_SUB">;
95defm RAT_ATOMIC_RSUB : RAT_ATOMIC<9, 41, "ATOMIC_RSUB">;
96defm RAT_ATOMIC_MIN_INT : RAT_ATOMIC<10, 42, "ATOMIC_MIN_INT">;
97defm RAT_ATOMIC_MIN_UINT : RAT_ATOMIC<11, 43, "ATOMIC_MIN_UINT">;
98defm RAT_ATOMIC_MAX_INT : RAT_ATOMIC<12, 44, "ATOMIC_MAX_INT">;
99defm RAT_ATOMIC_MAX_UINT : RAT_ATOMIC<13, 45, "ATOMIC_MAX_UINT">;
100defm RAT_ATOMIC_AND : RAT_ATOMIC<14, 46, "ATOMIC_AND">;
101defm RAT_ATOMIC_OR : RAT_ATOMIC<15, 47, "ATOMIC_OR">;
102defm RAT_ATOMIC_XOR : RAT_ATOMIC<16, 48, "ATOMIC_XOR">;
103defm RAT_ATOMIC_INC_UINT : RAT_ATOMIC<18, 50, "ATOMIC_INC_UINT">;
104defm RAT_ATOMIC_DEC_UINT : RAT_ATOMIC<19, 51, "ATOMIC_DEC_UINT">;
105
106} // End SubtargetPredicate = isEGorCayman
107
108//===----------------------------------------------------------------------===//
109// Evergreen Only instructions
110//===----------------------------------------------------------------------===//
111
112let SubtargetPredicate = isEG in {
113
114def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
115defm DIV_eg : DIV_Common<RECIP_IEEE_eg>;
116
117def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
118def MULHI_INT_eg : MULHI_INT_Common<0x90>;
119def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
120def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
121def MULHI_UINT24_eg : MULHI_UINT24_Common<0xb2>;
122
123def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
124def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
125def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
126def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
127def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
128def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
129def : RsqPat<RECIPSQRT_IEEE_eg, f32>;
130def : SqrtPat<RECIPSQRT_IEEE_eg, RECIP_IEEE_eg>;
131
132def SIN_eg : SIN_Common<0x8D>;
133def COS_eg : COS_Common<0x8E>;
134
135def : POW_Common <LOG_IEEE_eg, EXP_IEEE_eg, MUL>;
136} // End SubtargetPredicate = isEG
137
138//===----------------------------------------------------------------------===//
139// Memory read/write instructions
140//===----------------------------------------------------------------------===//
141
142let usesCustomInserter = 1 in {
143
144// 32-bit store
145def RAT_WRITE_CACHELESS_32_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x1,
146  (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
147  "STORE_RAW $rw_gpr, $index_gpr, $eop",
148  [(store_global i32:$rw_gpr, i32:$index_gpr)]
149>;
150
151// 64-bit store
152def RAT_WRITE_CACHELESS_64_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x3,
153  (ins R600_Reg64:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
154  "STORE_RAW $rw_gpr.XY, $index_gpr, $eop",
155  [(store_global v2i32:$rw_gpr, i32:$index_gpr)]
156>;
157
158//128-bit store
159def RAT_WRITE_CACHELESS_128_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0xf,
160  (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
161  "STORE_RAW $rw_gpr.XYZW, $index_gpr, $eop",
162  [(store_global v4i32:$rw_gpr, i32:$index_gpr)]
163>;
164
165def RAT_STORE_TYPED_eg: CF_MEM_RAT_STORE_TYPED<1>;
166
167} // End usesCustomInserter = 1
168
169class VTX_READ_eg <string name, dag outs>
170    : VTX_WORD0_eg, VTX_READ<name, outs, []> {
171
172  // Static fields
173  let VC_INST = 0;
174  let FETCH_TYPE = 2;
175  let FETCH_WHOLE_QUAD = 0;
176  let SRC_REL = 0;
177  // XXX: We can infer this field based on the SRC_GPR.  This would allow us
178  // to store vertex addresses in any channel, not just X.
179  let SRC_SEL_X = 0;
180
181  let Inst{31-0} = Word0;
182}
183
184def VTX_READ_8_eg
185    : VTX_READ_eg <"VTX_READ_8 $dst_gpr, $src_gpr",
186                   (outs R600_TReg32_X:$dst_gpr)> {
187
188  let MEGA_FETCH_COUNT = 1;
189  let DST_SEL_X = 0;
190  let DST_SEL_Y = 7;   // Masked
191  let DST_SEL_Z = 7;   // Masked
192  let DST_SEL_W = 7;   // Masked
193  let DATA_FORMAT = 1; // FMT_8
194}
195
196def VTX_READ_16_eg
197    : VTX_READ_eg <"VTX_READ_16 $dst_gpr, $src_gpr",
198                   (outs R600_TReg32_X:$dst_gpr)> {
199  let MEGA_FETCH_COUNT = 2;
200  let DST_SEL_X = 0;
201  let DST_SEL_Y = 7;   // Masked
202  let DST_SEL_Z = 7;   // Masked
203  let DST_SEL_W = 7;   // Masked
204  let DATA_FORMAT = 5; // FMT_16
205
206}
207
208def VTX_READ_32_eg
209    : VTX_READ_eg <"VTX_READ_32 $dst_gpr, $src_gpr",
210                   (outs R600_TReg32_X:$dst_gpr)> {
211
212  let MEGA_FETCH_COUNT = 4;
213  let DST_SEL_X        = 0;
214  let DST_SEL_Y        = 7;   // Masked
215  let DST_SEL_Z        = 7;   // Masked
216  let DST_SEL_W        = 7;   // Masked
217  let DATA_FORMAT      = 0xD; // COLOR_32
218
219  // This is not really necessary, but there were some GPU hangs that appeared
220  // to be caused by ALU instructions in the next instruction group that wrote
221  // to the $src_gpr registers of the VTX_READ.
222  // e.g.
223  // %t3_x = VTX_READ_PARAM_32_eg killed %t2_x, 24
224  // %t2_x = MOV %zero
225  //Adding this constraint prevents this from happening.
226  let Constraints = "$src_gpr.ptr = $dst_gpr";
227}
228
229def VTX_READ_64_eg
230    : VTX_READ_eg <"VTX_READ_64 $dst_gpr.XY, $src_gpr",
231                   (outs R600_Reg64:$dst_gpr)> {
232
233  let MEGA_FETCH_COUNT = 8;
234  let DST_SEL_X        = 0;
235  let DST_SEL_Y        = 1;
236  let DST_SEL_Z        = 7;
237  let DST_SEL_W        = 7;
238  let DATA_FORMAT      = 0x1D; // COLOR_32_32
239}
240
241def VTX_READ_128_eg
242    : VTX_READ_eg <"VTX_READ_128 $dst_gpr.XYZW, $src_gpr",
243                   (outs R600_Reg128:$dst_gpr)> {
244
245  let MEGA_FETCH_COUNT = 16;
246  let DST_SEL_X        =  0;
247  let DST_SEL_Y        =  1;
248  let DST_SEL_Z        =  2;
249  let DST_SEL_W        =  3;
250  let DATA_FORMAT      =  0x22; // COLOR_32_32_32_32
251
252  // XXX: Need to force VTX_READ_128 instructions to write to the same register
253  // that holds its buffer address to avoid potential hangs.  We can't use
254  // the same constraint as VTX_READ_32_eg, because the $src_gpr.ptr and $dst
255  // registers are different sizes.
256}
257
258//===----------------------------------------------------------------------===//
259// VTX Read from parameter memory space
260//===----------------------------------------------------------------------===//
261def : EGPat<(i32:$dst_gpr (vtx_id3_az_extloadi8 ADDRVTX_READ:$src_gpr)),
262          (VTX_READ_8_eg MEMxi:$src_gpr, 3)>;
263def : EGPat<(i32:$dst_gpr (vtx_id3_az_extloadi16 ADDRVTX_READ:$src_gpr)),
264          (VTX_READ_16_eg MEMxi:$src_gpr, 3)>;
265def : EGPat<(i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)),
266          (VTX_READ_32_eg MEMxi:$src_gpr, 3)>;
267def : EGPat<(v2i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)),
268          (VTX_READ_64_eg MEMxi:$src_gpr, 3)>;
269def : EGPat<(v4i32:$dst_gpr (vtx_id3_load ADDRVTX_READ:$src_gpr)),
270          (VTX_READ_128_eg MEMxi:$src_gpr, 3)>;
271
272//===----------------------------------------------------------------------===//
273// VTX Read from constant memory space
274//===----------------------------------------------------------------------===//
275def : EGPat<(i32:$dst_gpr (vtx_id2_az_extloadi8 ADDRVTX_READ:$src_gpr)),
276          (VTX_READ_8_eg MEMxi:$src_gpr, 2)>;
277def : EGPat<(i32:$dst_gpr (vtx_id2_az_extloadi16 ADDRVTX_READ:$src_gpr)),
278          (VTX_READ_16_eg MEMxi:$src_gpr, 2)>;
279def : EGPat<(i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)),
280          (VTX_READ_32_eg MEMxi:$src_gpr, 2)>;
281def : EGPat<(v2i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)),
282          (VTX_READ_64_eg MEMxi:$src_gpr, 2)>;
283def : EGPat<(v4i32:$dst_gpr (vtx_id2_load ADDRVTX_READ:$src_gpr)),
284          (VTX_READ_128_eg MEMxi:$src_gpr, 2)>;
285
286//===----------------------------------------------------------------------===//
287// VTX Read from global memory space
288//===----------------------------------------------------------------------===//
289def : EGPat<(i32:$dst_gpr (vtx_id1_az_extloadi8 ADDRVTX_READ:$src_gpr)),
290          (VTX_READ_8_eg MEMxi:$src_gpr, 1)>;
291def : EGPat<(i32:$dst_gpr (vtx_id1_az_extloadi16 ADDRVTX_READ:$src_gpr)),
292          (VTX_READ_16_eg MEMxi:$src_gpr, 1)>;
293def : EGPat<(i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)),
294          (VTX_READ_32_eg MEMxi:$src_gpr, 1)>;
295def : EGPat<(v2i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)),
296          (VTX_READ_64_eg MEMxi:$src_gpr, 1)>;
297def : EGPat<(v4i32:$dst_gpr (vtx_id1_load ADDRVTX_READ:$src_gpr)),
298          (VTX_READ_128_eg MEMxi:$src_gpr, 1)>;
299
300//===----------------------------------------------------------------------===//
301// Evergreen / Cayman Instructions
302//===----------------------------------------------------------------------===//
303
304let SubtargetPredicate = isEGorCayman in {
305
306multiclass AtomicPat<Instruction inst_ret, Instruction inst_noret,
307                     SDPatternOperator node_ret, SDPatternOperator node_noret> {
308  // FIXME: Add _RTN version. We need per WI scratch location to store the old value
309  // EXTRACT_SUBREG here is dummy, we know the node has no uses
310  def : EGOrCaymanPat<(i32 (node_noret i32:$ptr, i32:$data)),
311            (EXTRACT_SUBREG (inst_noret
312              (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), $data, sub0), $ptr), sub1)>;
313}
314multiclass AtomicIncDecPat<Instruction inst_ret, Instruction inst_noret,
315                     SDPatternOperator node_ret, SDPatternOperator node_noret, int C> {
316  // FIXME: Add _RTN version. We need per WI scratch location to store the old value
317  // EXTRACT_SUBREG here is dummy, we know the node has no uses
318  def : EGOrCaymanPat<(i32 (node_noret i32:$ptr, C)),
319            (EXTRACT_SUBREG (inst_noret
320              (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), (MOV_IMM_I32 -1), sub0), $ptr), sub1)>;
321}
322
323// CMPSWAP is pattern is special
324// EXTRACT_SUBREG here is dummy, we know the node has no uses
325// FIXME: Add _RTN version. We need per WI scratch location to store the old value
326def : EGOrCaymanPat<(i32 (atomic_cmp_swap_global_noret i32:$ptr, i32:$cmp, i32:$data)),
327          (EXTRACT_SUBREG (RAT_ATOMIC_CMPXCHG_INT_NORET
328            (INSERT_SUBREG
329              (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), $cmp, sub3),
330            $data, sub0),
331          $ptr), sub1)>;
332
333defm AtomicSwapPat : AtomicPat <RAT_ATOMIC_XCHG_INT_RTN,
334                                RAT_ATOMIC_XCHG_INT_NORET,
335                                atomic_swap_global_ret_32,
336                                atomic_swap_global_noret_32>;
337defm AtomicAddPat : AtomicPat <RAT_ATOMIC_ADD_RTN, RAT_ATOMIC_ADD_NORET,
338                               atomic_load_add_global_ret_32, atomic_load_add_global_noret_32>;
339defm AtomicSubPat : AtomicPat <RAT_ATOMIC_SUB_RTN, RAT_ATOMIC_SUB_NORET,
340                               atomic_load_sub_global_ret_32, atomic_load_sub_global_noret_32>;
341defm AtomicMinPat : AtomicPat <RAT_ATOMIC_MIN_INT_RTN,
342                               RAT_ATOMIC_MIN_INT_NORET,
343                               atomic_load_min_global_ret_32, atomic_load_min_global_noret_32>;
344defm AtomicUMinPat : AtomicPat <RAT_ATOMIC_MIN_UINT_RTN,
345                                RAT_ATOMIC_MIN_UINT_NORET,
346                                atomic_load_umin_global_ret_32, atomic_load_umin_global_noret_32>;
347defm AtomicMaxPat : AtomicPat <RAT_ATOMIC_MAX_INT_RTN,
348                               RAT_ATOMIC_MAX_INT_NORET,
349                               atomic_load_max_global_ret_32, atomic_load_max_global_noret_32>;
350defm AtomicUMaxPat : AtomicPat <RAT_ATOMIC_MAX_UINT_RTN,
351                                RAT_ATOMIC_MAX_UINT_NORET,
352                                atomic_load_umax_global_ret_32, atomic_load_umax_global_noret_32>;
353defm AtomicAndPat : AtomicPat <RAT_ATOMIC_AND_RTN, RAT_ATOMIC_AND_NORET,
354                               atomic_load_and_global_ret_32, atomic_load_and_global_noret_32>;
355defm AtomicOrPat : AtomicPat <RAT_ATOMIC_OR_RTN, RAT_ATOMIC_OR_NORET,
356                              atomic_load_or_global_ret_32, atomic_load_or_global_noret_32>;
357defm AtomicXorPat : AtomicPat <RAT_ATOMIC_XOR_RTN, RAT_ATOMIC_XOR_NORET,
358                               atomic_load_xor_global_ret_32, atomic_load_xor_global_noret_32>;
359defm AtomicIncAddPat : AtomicIncDecPat <RAT_ATOMIC_INC_UINT_RTN,
360                                        RAT_ATOMIC_INC_UINT_NORET,
361                                        atomic_load_add_global_ret_32,
362                                        atomic_load_add_global_noret_32, 1>;
363defm AtomicIncSubPat : AtomicIncDecPat <RAT_ATOMIC_INC_UINT_RTN,
364                                        RAT_ATOMIC_INC_UINT_NORET,
365                                        atomic_load_sub_global_ret_32,
366                                        atomic_load_sub_global_noret_32, -1>;
367defm AtomicDecAddPat : AtomicIncDecPat <RAT_ATOMIC_DEC_UINT_RTN,
368                                        RAT_ATOMIC_DEC_UINT_NORET,
369                                        atomic_load_add_global_ret_32,
370                                        atomic_load_add_global_noret_32, -1>;
371defm AtomicDecSubPat : AtomicIncDecPat <RAT_ATOMIC_DEC_UINT_RTN,
372                                        RAT_ATOMIC_DEC_UINT_NORET,
373                                        atomic_load_sub_global_ret_32,
374                                        atomic_load_sub_global_noret_32, 1>;
375
376// Should be predicated on FeatureFP64
377// def FMA_64 : R600_3OP <
378//   0xA, "FMA_64",
379//   [(set f64:$dst, (fma f64:$src0, f64:$src1, f64:$src2))]
380// >;
381
382// BFE_UINT - bit_extract, an optimization for mask and shift
383// Src0 = Input
384// Src1 = Offset
385// Src2 = Width
386//
387// bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
388//
389// Example Usage:
390// (Offset, Width)
391//
392// (0, 8)  = (Input << 24) >> 24 = (Input &  0xff)       >> 0
393// (8, 8)  = (Input << 16) >> 24 = (Input &  0xffff)     >> 8
394// (16, 8) = (Input <<  8) >> 24 = (Input &  0xffffff)   >> 16
395// (24, 8) = (Input <<  0) >> 24 = (Input &  0xffffffff) >> 24
396def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
397  [(set i32:$dst, (AMDGPUbfe_u32 i32:$src0, i32:$src1, i32:$src2))],
398  VecALU
399>;
400
401def BFE_INT_eg : R600_3OP <0x5, "BFE_INT",
402  [(set i32:$dst, (AMDGPUbfe_i32 i32:$src0, i32:$src1, i32:$src2))],
403  VecALU
404>;
405
406// Bitfield extract patterns
407
408def : AMDGPUPat <
409  (and (i32 (srl i32:$src, i32:$rshift)), IMMZeroBasedBitfieldMask:$mask),
410  (BFE_UINT_eg $src, $rshift, (MOV_IMM_I32 (i32 (IMMPopCount $mask))))
411>;
412
413// x & ((1 << y) - 1)
414def : AMDGPUPat <
415  (and i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)),
416  (BFE_UINT_eg $src, (MOV_IMM_I32 (i32 0)), $width)
417>;
418
419// x & ~(-1 << y)
420def : AMDGPUPat <
421  (and i32:$src, (xor_oneuse (shl_oneuse -1, i32:$width), -1)),
422  (BFE_UINT_eg $src, (MOV_IMM_I32 (i32 0)), $width)
423>;
424
425// x & (-1 >> (bitwidth - y))
426def : AMDGPUPat <
427  (and i32:$src, (srl_oneuse -1, (sub 32, i32:$width))),
428  (BFE_UINT_eg $src, (MOV_IMM_I32 (i32 0)), $width)
429>;
430
431// x << (bitwidth - y) >> (bitwidth - y)
432def : AMDGPUPat <
433  (srl (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)),
434  (BFE_UINT_eg $src, (MOV_IMM_I32 (i32 0)), $width)
435>;
436
437def : AMDGPUPat <
438  (sra (shl_oneuse i32:$src, (sub 32, i32:$width)), (sub 32, i32:$width)),
439  (BFE_INT_eg $src, (MOV_IMM_I32 (i32 0)), $width)
440>;
441
442def BFI_INT_eg : R600_3OP <0x06, "BFI_INT",
443  [(set i32:$dst, (AMDGPUbfi i32:$src0, i32:$src1, i32:$src2))],
444  VecALU
445>;
446
447def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i1)),
448  (BFE_INT_eg i32:$src, (i32 ZERO), (i32 ONE_INT))>;
449def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i8)),
450  (BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 8))>;
451def : EGOrCaymanPat<(i32 (sext_inreg i32:$src, i16)),
452  (BFE_INT_eg i32:$src, (i32 ZERO), (MOV_IMM_I32 16))>;
453
454// BFI patterns
455
456// Definition from ISA doc:
457// (y & x) | (z & ~x)
458def : AMDGPUPat <
459  (or (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))),
460  (BFI_INT_eg $x, $y, $z)
461>;
462
463// 64-bit version
464def : AMDGPUPat <
465  (or (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))),
466  (REG_SEQUENCE R600_Reg64,
467    (BFI_INT_eg (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub0)),
468                (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub0)),
469                (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub0))), sub0,
470    (BFI_INT_eg (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub1)),
471                (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub1)),
472                (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub1))), sub1)
473>;
474
475// SHA-256 Ch function
476// z ^ (x & (y ^ z))
477def : AMDGPUPat <
478  (xor i32:$z, (and i32:$x, (xor i32:$y, i32:$z))),
479  (BFI_INT_eg $x, $y, $z)
480>;
481
482// 64-bit version
483def : AMDGPUPat <
484  (xor i64:$z, (and i64:$x, (xor i64:$y, i64:$z))),
485  (REG_SEQUENCE R600_Reg64,
486    (BFI_INT_eg (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub0)),
487                (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub0)),
488                (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub0))), sub0,
489    (BFI_INT_eg (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub1)),
490                (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub1)),
491                (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub1))), sub1)
492>;
493
494def : AMDGPUPat <
495  (fcopysign f32:$src0, f32:$src1),
496  (BFI_INT_eg (MOV_IMM_I32 (i32 0x7fffffff)), $src0, $src1)
497>;
498
499def : AMDGPUPat <
500  (fcopysign f32:$src0, f64:$src1),
501  (BFI_INT_eg (MOV_IMM_I32 (i32 0x7fffffff)), $src0,
502              (i32 (EXTRACT_SUBREG R600_Reg64:$src1, sub1)))
503>;
504
505def : AMDGPUPat <
506  (fcopysign f64:$src0, f64:$src1),
507  (REG_SEQUENCE R600_Reg64,
508    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
509    (BFI_INT_eg (MOV_IMM_I32 (i32 0x7fffffff)),
510                (i32 (EXTRACT_SUBREG R600_Reg64:$src0, sub1)),
511                (i32 (EXTRACT_SUBREG R600_Reg64:$src1, sub1))), sub1)
512>;
513
514def : AMDGPUPat <
515  (fcopysign f64:$src0, f32:$src1),
516  (REG_SEQUENCE R600_Reg64,
517    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
518    (BFI_INT_eg (MOV_IMM_I32 (i32 0x7fffffff)),
519                (i32 (EXTRACT_SUBREG R600_Reg64:$src0, sub1)),
520                $src1), sub1)
521>;
522
523def BFM_INT_eg : R600_2OP <0xA0, "BFM_INT",
524  [(set i32:$dst, (AMDGPUbfm i32:$src0, i32:$src1))],
525  VecALU
526>;
527
528def MULADD_UINT24_eg : R600_3OP <0x10, "MULADD_UINT24",
529  [(set i32:$dst, (AMDGPUmad_u24 i32:$src0, i32:$src1, i32:$src2))], VecALU
530>;
531
532def : UMad24Pat<MULADD_UINT24_eg>;
533
534def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT", [], VecALU>;
535def : AMDGPUPat <
536  (fshr i32:$src0, i32:$src1, i32:$src2),
537  (BIT_ALIGN_INT_eg $src0, $src1, $src2)
538>;
539def : ROTRPattern <BIT_ALIGN_INT_eg>;
540def MULADD_eg : MULADD_Common<0x14>;
541def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>;
542def FMA_eg : FMA_Common<0x7>;
543def ASHR_eg : ASHR_Common<0x15>;
544def LSHR_eg : LSHR_Common<0x16>;
545def LSHL_eg : LSHL_Common<0x17>;
546def CNDE_eg : CNDE_Common<0x19>;
547def CNDGT_eg : CNDGT_Common<0x1A>;
548def CNDGE_eg : CNDGE_Common<0x1B>;
549def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
550def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
551def MUL_UINT24_eg : R600_2OP <0xB5, "MUL_UINT24",
552  [(set i32:$dst, (AMDGPUmul_u24 i32:$src0, i32:$src1))], VecALU
553>;
554def DOT4_eg : DOT4_Common<0xBE>;
555defm CUBE_eg : CUBE_Common<0xC0>;
556
557
558def ADDC_UINT : R600_2OP_Helper <0x52, "ADDC_UINT", AMDGPUcarry>;
559def SUBB_UINT : R600_2OP_Helper <0x53, "SUBB_UINT", AMDGPUborrow>;
560
561def FLT32_TO_FLT16 : R600_1OP_Helper <0xA2, "FLT32_TO_FLT16", AMDGPUfp_to_f16, VecALU>;
562def FLT16_TO_FLT32 : R600_1OP_Helper <0xA3, "FLT16_TO_FLT32", f16_to_fp, VecALU>;
563def BCNT_INT : R600_1OP_Helper <0xAA, "BCNT_INT", ctpop, VecALU>;
564def FFBH_UINT : R600_1OP_Helper <0xAB, "FFBH_UINT", AMDGPUffbh_u32, VecALU>;
565def FFBL_INT : R600_1OP_Helper <0xAC, "FFBL_INT", AMDGPUffbl_b32, VecALU>;
566
567let hasSideEffects = 1 in {
568  def MOVA_INT_eg : R600_1OP <0xCC, "MOVA_INT", [], VecALU>;
569}
570
571def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
572  let Pattern = [];
573  let Itinerary = AnyALU;
574}
575
576def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
577
578def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
579  let Pattern = [];
580}
581
582def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
583
584def GROUP_BARRIER : InstR600 <
585    (outs), (ins), "  GROUP_BARRIER", [(int_r600_group_barrier)], AnyALU>,
586    R600ALU_Word0,
587    R600ALU_Word1_OP2 <0x54> {
588
589  let dst = 0;
590  let dst_rel = 0;
591  let src0 = 0;
592  let src0_rel = 0;
593  let src0_neg = 0;
594  let src0_abs = 0;
595  let src1 = 0;
596  let src1_rel = 0;
597  let src1_neg = 0;
598  let src1_abs = 0;
599  let write = 0;
600  let omod = 0;
601  let clamp = 0;
602  let last = 1;
603  let bank_swizzle = 0;
604  let pred_sel = 0;
605  let update_exec_mask = 0;
606  let update_pred = 0;
607
608  let Inst{31-0}  = Word0;
609  let Inst{63-32} = Word1;
610
611  let ALUInst = 1;
612}
613
614//===----------------------------------------------------------------------===//
615// LDS Instructions
616//===----------------------------------------------------------------------===//
617class R600_LDS  <bits<6> op, dag outs, dag ins, string asm,
618                 list<dag> pattern = []> :
619
620    InstR600 <outs, ins, asm, pattern, XALU>,
621    R600_ALU_LDS_Word0,
622    R600LDS_Word1 {
623
624  bits<6>  offset = 0;
625  let lds_op = op;
626
627  let Word1{27} = offset{0};
628  let Word1{12} = offset{1};
629  let Word1{28} = offset{2};
630  let Word1{31} = offset{3};
631  let Word0{12} = offset{4};
632  let Word0{25} = offset{5};
633
634
635  let Inst{31-0}  = Word0;
636  let Inst{63-32} = Word1;
637
638  let ALUInst = 1;
639  let HasNativeOperands = 1;
640  let UseNamedOperandTable = 1;
641}
642
643class R600_LDS_1A <bits<6> lds_op, string name, list<dag> pattern> : R600_LDS <
644  lds_op,
645  (outs R600_Reg32:$dst),
646  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
647       LAST:$last, R600_Pred:$pred_sel,
648       BANK_SWIZZLE:$bank_swizzle),
649  "  "#name#" $last OQAP, $src0$src0_rel $pred_sel",
650  pattern
651  > {
652
653  let src1 = 0;
654  let src1_rel = 0;
655  let src2 = 0;
656  let src2_rel = 0;
657
658  let usesCustomInserter = 1;
659  let LDS_1A = 1;
660  let DisableEncoding = "$dst";
661}
662
663class R600_LDS_1A1D <bits<6> lds_op, dag outs, string name, list<dag> pattern,
664                     string dst =""> :
665    R600_LDS <
666  lds_op, outs,
667  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
668       R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
669       LAST:$last, R600_Pred:$pred_sel,
670       BANK_SWIZZLE:$bank_swizzle),
671  "  "#name#" $last "#dst#"$src0$src0_rel, $src1$src1_rel, $pred_sel",
672  pattern
673  > {
674
675  field string BaseOp;
676
677  let src2 = 0;
678  let src2_rel = 0;
679  let LDS_1A1D = 1;
680}
681
682class R600_LDS_1A1D_NORET <bits<6> lds_op, string name, list<dag> pattern> :
683    R600_LDS_1A1D <lds_op, (outs), name, pattern> {
684  let BaseOp = name;
685}
686
687class R600_LDS_1A1D_RET <bits<6> lds_op, string name, list<dag> pattern> :
688    R600_LDS_1A1D <lds_op,  (outs R600_Reg32:$dst), name#"_RET", pattern, "OQAP, "> {
689
690  let BaseOp = name;
691  let usesCustomInserter = 1;
692  let DisableEncoding = "$dst";
693}
694
695class R600_LDS_1A2D <bits<6> lds_op, dag outs, string name, list<dag> pattern,
696                     string dst =""> :
697    R600_LDS <
698  lds_op, outs,
699  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
700       R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
701       R600_Reg32:$src2, REL:$src2_rel, SEL:$src2_sel,
702       LAST:$last, R600_Pred:$pred_sel, BANK_SWIZZLE:$bank_swizzle),
703  "  "#name# "$last "#dst#"$src0$src0_rel, $src1$src1_rel, $src2$src2_rel, $pred_sel",
704  pattern> {
705
706  field string BaseOp;
707
708  let LDS_1A1D = 0;
709  let LDS_1A2D = 1;
710}
711
712class R600_LDS_1A2D_NORET <bits<6> lds_op, string name, list<dag> pattern> :
713    R600_LDS_1A2D <lds_op, (outs), name, pattern> {
714  let BaseOp = name;
715}
716
717class R600_LDS_1A2D_RET <bits<6> lds_op, string name, list<dag> pattern> :
718    R600_LDS_1A2D <lds_op, (outs R600_Reg32:$dst), name, pattern> {
719
720  let BaseOp = name;
721  let usesCustomInserter = 1;
722  let DisableEncoding = "$dst";
723}
724
725def LDS_ADD : R600_LDS_1A1D_NORET <0x0, "LDS_ADD", [] >;
726def LDS_SUB : R600_LDS_1A1D_NORET <0x1, "LDS_SUB", [] >;
727def LDS_AND : R600_LDS_1A1D_NORET <0x9, "LDS_AND", [] >;
728def LDS_OR : R600_LDS_1A1D_NORET <0xa, "LDS_OR", [] >;
729def LDS_XOR : R600_LDS_1A1D_NORET <0xb, "LDS_XOR", [] >;
730def LDS_WRXCHG: R600_LDS_1A1D_NORET <0xd, "LDS_WRXCHG", [] >;
731def LDS_CMPST: R600_LDS_1A2D_NORET <0x10, "LDS_CMPST", [] >;
732def LDS_MIN_INT : R600_LDS_1A1D_NORET <0x5, "LDS_MIN_INT", [] >;
733def LDS_MAX_INT : R600_LDS_1A1D_NORET <0x6, "LDS_MAX_INT", [] >;
734def LDS_MIN_UINT : R600_LDS_1A1D_NORET <0x7, "LDS_MIN_UINT", [] >;
735def LDS_MAX_UINT : R600_LDS_1A1D_NORET <0x8, "LDS_MAX_UINT", [] >;
736def LDS_WRITE : R600_LDS_1A1D_NORET <0xD, "LDS_WRITE",
737  [(store_local (i32 R600_Reg32:$src1), R600_Reg32:$src0)]
738>;
739def LDS_BYTE_WRITE : R600_LDS_1A1D_NORET<0x12, "LDS_BYTE_WRITE",
740  [(truncstorei8_local i32:$src1, i32:$src0)]
741>;
742def LDS_SHORT_WRITE : R600_LDS_1A1D_NORET<0x13, "LDS_SHORT_WRITE",
743  [(truncstorei16_local i32:$src1, i32:$src0)]
744>;
745def LDS_ADD_RET : R600_LDS_1A1D_RET <0x20, "LDS_ADD",
746  [(set i32:$dst, (atomic_load_add_local_32 i32:$src0, i32:$src1))]
747>;
748def LDS_SUB_RET : R600_LDS_1A1D_RET <0x21, "LDS_SUB",
749  [(set i32:$dst, (atomic_load_sub_local_32 i32:$src0, i32:$src1))]
750>;
751def LDS_AND_RET : R600_LDS_1A1D_RET <0x29, "LDS_AND",
752  [(set i32:$dst, (atomic_load_and_local_32 i32:$src0, i32:$src1))]
753>;
754def LDS_OR_RET : R600_LDS_1A1D_RET <0x2a, "LDS_OR",
755  [(set i32:$dst, (atomic_load_or_local_32 i32:$src0, i32:$src1))]
756>;
757def LDS_XOR_RET : R600_LDS_1A1D_RET <0x2b, "LDS_XOR",
758  [(set i32:$dst, (atomic_load_xor_local_32 i32:$src0, i32:$src1))]
759>;
760def LDS_MIN_INT_RET : R600_LDS_1A1D_RET <0x25, "LDS_MIN_INT",
761  [(set i32:$dst, (atomic_load_min_local_32 i32:$src0, i32:$src1))]
762>;
763def LDS_MAX_INT_RET : R600_LDS_1A1D_RET <0x26, "LDS_MAX_INT",
764  [(set i32:$dst, (atomic_load_max_local_32 i32:$src0, i32:$src1))]
765>;
766def LDS_MIN_UINT_RET : R600_LDS_1A1D_RET <0x27, "LDS_MIN_UINT",
767  [(set i32:$dst, (atomic_load_umin_local_32 i32:$src0, i32:$src1))]
768>;
769def LDS_MAX_UINT_RET : R600_LDS_1A1D_RET <0x28, "LDS_MAX_UINT",
770  [(set i32:$dst, (atomic_load_umax_local_32 i32:$src0, i32:$src1))]
771>;
772def LDS_WRXCHG_RET : R600_LDS_1A1D_RET <0x2d, "LDS_WRXCHG",
773  [(set i32:$dst, (atomic_swap_local_32 i32:$src0, i32:$src1))]
774>;
775def LDS_CMPST_RET : R600_LDS_1A2D_RET <0x30, "LDS_CMPST",
776  [(set i32:$dst, (atomic_cmp_swap_local_32 i32:$src0, i32:$src1, i32:$src2))]
777>;
778def LDS_READ_RET : R600_LDS_1A <0x32, "LDS_READ_RET",
779  [(set (i32 R600_Reg32:$dst), (load_local R600_Reg32:$src0))]
780>;
781def LDS_BYTE_READ_RET : R600_LDS_1A <0x36, "LDS_BYTE_READ_RET",
782  [(set i32:$dst, (sextloadi8_local i32:$src0))]
783>;
784def LDS_UBYTE_READ_RET : R600_LDS_1A <0x37, "LDS_UBYTE_READ_RET",
785  [(set i32:$dst, (az_extloadi8_local i32:$src0))]
786>;
787def LDS_SHORT_READ_RET : R600_LDS_1A <0x38, "LDS_SHORT_READ_RET",
788  [(set i32:$dst, (sextloadi16_local i32:$src0))]
789>;
790def LDS_USHORT_READ_RET : R600_LDS_1A <0x39, "LDS_USHORT_READ_RET",
791  [(set i32:$dst, (az_extloadi16_local i32:$src0))]
792>;
793
794// TRUNC is used for the FLT_TO_INT instructions to work around a
795// perceived problem where the rounding modes are applied differently
796// depending on the instruction and the slot they are in.
797// See:
798// https://bugs.freedesktop.org/show_bug.cgi?id=50232
799// Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c
800//
801// XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes,
802// which do not need to be truncated since the fp values are 0.0f or 1.0f.
803// We should look into handling these cases separately.
804def : EGOrCaymanPat<(fp_to_sint f32:$src0), (FLT_TO_INT_eg (TRUNC $src0))>;
805
806def : EGOrCaymanPat<(fp_to_uint f32:$src0), (FLT_TO_UINT_eg (TRUNC $src0))>;
807
808// SHA-256 Ma patterns
809
810// ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y
811def : AMDGPUPat <
812  (or (and i32:$x, i32:$z), (and i32:$y, (or i32:$x, i32:$z))),
813  (BFI_INT_eg (XOR_INT i32:$x, i32:$y), i32:$z, i32:$y)
814>;
815
816def : AMDGPUPat <
817  (or (and i64:$x, i64:$z), (and i64:$y, (or i64:$x, i64:$z))),
818  (REG_SEQUENCE R600_Reg64,
819    (BFI_INT_eg (XOR_INT (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub0)),
820                     (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub0))),
821                (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub0)),
822                (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub0))), sub0,
823    (BFI_INT_eg (XOR_INT (i32 (EXTRACT_SUBREG R600_Reg64:$x, sub1)),
824                     (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub1))),
825                (i32 (EXTRACT_SUBREG R600_Reg64:$z, sub1)),
826                (i32 (EXTRACT_SUBREG R600_Reg64:$y, sub1))), sub1)
827>;
828
829def EG_ExportSwz : ExportSwzInst {
830  let Word1{19-16} = 0; // BURST_COUNT
831  let Word1{20} = 0; // VALID_PIXEL_MODE
832  let Word1{21} = eop;
833  let Word1{29-22} = inst;
834  let Word1{30} = 0; // MARK
835  let Word1{31} = 1; // BARRIER
836}
837defm : ExportPattern<EG_ExportSwz, 83>;
838
839def EG_ExportBuf : ExportBufInst {
840  let Word1{19-16} = 0; // BURST_COUNT
841  let Word1{20} = 0; // VALID_PIXEL_MODE
842  let Word1{21} = eop;
843  let Word1{29-22} = inst;
844  let Word1{30} = 0; // MARK
845  let Word1{31} = 1; // BARRIER
846}
847defm : SteamOutputExportPattern<EG_ExportBuf, 0x40, 0x41, 0x42, 0x43>;
848
849def CF_TC_EG : CF_CLAUSE_EG<1, (ins i32imm:$ADDR, i32imm:$COUNT),
850  "TEX $COUNT @$ADDR"> {
851  let POP_COUNT = 0;
852}
853def CF_VC_EG : CF_CLAUSE_EG<2, (ins i32imm:$ADDR, i32imm:$COUNT),
854  "VTX $COUNT @$ADDR"> {
855  let POP_COUNT = 0;
856}
857def WHILE_LOOP_EG : CF_CLAUSE_EG<6, (ins i32imm:$ADDR),
858  "LOOP_START_DX10 @$ADDR"> {
859  let POP_COUNT = 0;
860  let COUNT = 0;
861}
862def END_LOOP_EG : CF_CLAUSE_EG<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
863  let POP_COUNT = 0;
864  let COUNT = 0;
865}
866def LOOP_BREAK_EG : CF_CLAUSE_EG<9, (ins i32imm:$ADDR),
867  "LOOP_BREAK @$ADDR"> {
868  let POP_COUNT = 0;
869  let COUNT = 0;
870}
871def CF_CONTINUE_EG : CF_CLAUSE_EG<8, (ins i32imm:$ADDR),
872  "CONTINUE @$ADDR"> {
873  let POP_COUNT = 0;
874  let COUNT = 0;
875}
876def CF_JUMP_EG : CF_CLAUSE_EG<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
877  "JUMP @$ADDR POP:$POP_COUNT"> {
878  let COUNT = 0;
879}
880def CF_PUSH_EG : CF_CLAUSE_EG<11, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
881                              "PUSH @$ADDR POP:$POP_COUNT"> {
882  let COUNT = 0;
883}
884def CF_ELSE_EG : CF_CLAUSE_EG<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
885  "ELSE @$ADDR POP:$POP_COUNT"> {
886  let COUNT = 0;
887}
888def CF_CALL_FS_EG : CF_CLAUSE_EG<19, (ins), "CALL_FS"> {
889  let ADDR = 0;
890  let COUNT = 0;
891  let POP_COUNT = 0;
892}
893def POP_EG : CF_CLAUSE_EG<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
894  "POP @$ADDR POP:$POP_COUNT"> {
895  let COUNT = 0;
896}
897def CF_END_EG :  CF_CLAUSE_EG<0, (ins), "CF_END"> {
898  let COUNT = 0;
899  let POP_COUNT = 0;
900  let ADDR = 0;
901  let END_OF_PROGRAM = 1;
902}
903
904} // End Predicates = [isEGorCayman]
905