xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision e92ffd9b626833ebdbf2742c8ffddc6cd94b963e)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "TargetInfo/AMDGPUTargetInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm-c/DisassemblerTypes.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/MC/MCFixedLenDisassembler.h"
28 #include "llvm/Support/AMDHSAKernelDescriptor.h"
29 #include "llvm/Support/TargetRegistry.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "amdgpu-disassembler"
34 
35 #define SGPR_MAX                                                               \
36   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
37                  : AMDGPU::EncValues::SGPR_MAX_SI)
38 
39 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
40 
41 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
42                                        MCContext &Ctx,
43                                        MCInstrInfo const *MCII) :
44   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
45   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
46 
47   // ToDo: AMDGPUDisassembler supports only VI ISA.
48   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
49     report_fatal_error("Disassembly not yet supported for subtarget");
50 }
51 
52 inline static MCDisassembler::DecodeStatus
53 addOperand(MCInst &Inst, const MCOperand& Opnd) {
54   Inst.addOperand(Opnd);
55   return Opnd.isValid() ?
56     MCDisassembler::Success :
57     MCDisassembler::Fail;
58 }
59 
60 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
61                                 uint16_t NameIdx) {
62   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
63   if (OpIdx != -1) {
64     auto I = MI.begin();
65     std::advance(I, OpIdx);
66     MI.insert(I, Op);
67   }
68   return OpIdx;
69 }
70 
71 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
72                                        uint64_t Addr, const void *Decoder) {
73   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
74 
75   // Our branches take a simm16, but we need two extra bits to account for the
76   // factor of 4.
77   APInt SignedOffset(18, Imm * 4, true);
78   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
79 
80   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
81     return MCDisassembler::Success;
82   return addOperand(Inst, MCOperand::createImm(Imm));
83 }
84 
85 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm,
86                                      uint64_t Addr, const void *Decoder) {
87   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
88   int64_t Offset;
89   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
90     Offset = Imm & 0xFFFFF;
91   } else {                    // GFX9+ supports 21-bit signed offsets.
92     Offset = SignExtend64<21>(Imm);
93   }
94   return addOperand(Inst, MCOperand::createImm(Offset));
95 }
96 
97 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val,
98                                   uint64_t Addr, const void *Decoder) {
99   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
100   return addOperand(Inst, DAsm->decodeBoolReg(Val));
101 }
102 
103 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \
104 static DecodeStatus StaticDecoderName(MCInst &Inst, \
105                                        unsigned Imm, \
106                                        uint64_t /*Addr*/, \
107                                        const void *Decoder) { \
108   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); \
109   return addOperand(Inst, DAsm->DecoderName(Imm)); \
110 }
111 
112 #define DECODE_OPERAND_REG(RegClass) \
113 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
114 
115 DECODE_OPERAND_REG(VGPR_32)
116 DECODE_OPERAND_REG(VRegOrLds_32)
117 DECODE_OPERAND_REG(VS_32)
118 DECODE_OPERAND_REG(VS_64)
119 DECODE_OPERAND_REG(VS_128)
120 
121 DECODE_OPERAND_REG(VReg_64)
122 DECODE_OPERAND_REG(VReg_96)
123 DECODE_OPERAND_REG(VReg_128)
124 DECODE_OPERAND_REG(VReg_256)
125 DECODE_OPERAND_REG(VReg_512)
126 DECODE_OPERAND_REG(VReg_1024)
127 
128 DECODE_OPERAND_REG(SReg_32)
129 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
130 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
131 DECODE_OPERAND_REG(SRegOrLds_32)
132 DECODE_OPERAND_REG(SReg_64)
133 DECODE_OPERAND_REG(SReg_64_XEXEC)
134 DECODE_OPERAND_REG(SReg_128)
135 DECODE_OPERAND_REG(SReg_256)
136 DECODE_OPERAND_REG(SReg_512)
137 
138 DECODE_OPERAND_REG(AGPR_32)
139 DECODE_OPERAND_REG(AReg_64)
140 DECODE_OPERAND_REG(AReg_128)
141 DECODE_OPERAND_REG(AReg_256)
142 DECODE_OPERAND_REG(AReg_512)
143 DECODE_OPERAND_REG(AReg_1024)
144 DECODE_OPERAND_REG(AV_32)
145 DECODE_OPERAND_REG(AV_64)
146 
147 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst,
148                                          unsigned Imm,
149                                          uint64_t Addr,
150                                          const void *Decoder) {
151   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
152   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
153 }
154 
155 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst,
156                                          unsigned Imm,
157                                          uint64_t Addr,
158                                          const void *Decoder) {
159   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
160   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
161 }
162 
163 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst,
164                                            unsigned Imm,
165                                            uint64_t Addr,
166                                            const void *Decoder) {
167   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
168   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
169 }
170 
171 static DecodeStatus decodeOperand_VS_16(MCInst &Inst,
172                                         unsigned Imm,
173                                         uint64_t Addr,
174                                         const void *Decoder) {
175   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
176   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
177 }
178 
179 static DecodeStatus decodeOperand_VS_32(MCInst &Inst,
180                                         unsigned Imm,
181                                         uint64_t Addr,
182                                         const void *Decoder) {
183   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
184   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
185 }
186 
187 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst,
188                                           unsigned Imm,
189                                           uint64_t Addr,
190                                           const void *Decoder) {
191   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
192   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
193 }
194 
195 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst,
196                                            unsigned Imm,
197                                            uint64_t Addr,
198                                            const void *Decoder) {
199   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
200   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
201 }
202 
203 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst,
204                                            unsigned Imm,
205                                            uint64_t Addr,
206                                            const void *Decoder) {
207   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
208   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
209 }
210 
211 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst,
212                                            unsigned Imm,
213                                            uint64_t Addr,
214                                            const void *Decoder) {
215   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
216   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
217 }
218 
219 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst,
220                                             unsigned Imm,
221                                             uint64_t Addr,
222                                             const void *Decoder) {
223   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
224   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
225 }
226 
227 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst,
228                                           unsigned Imm,
229                                           uint64_t Addr,
230                                           const void *Decoder) {
231   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
232   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
233 }
234 
235 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst,
236                                            unsigned Imm,
237                                            uint64_t Addr,
238                                            const void *Decoder) {
239   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
240   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
241 }
242 
243 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst,
244                                            unsigned Imm,
245                                            uint64_t Addr,
246                                            const void *Decoder) {
247   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
248   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
249 }
250 
251 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst,
252                                            unsigned Imm,
253                                            uint64_t Addr,
254                                            const void *Decoder) {
255   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
256   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
257 }
258 
259 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst,
260                                             unsigned Imm,
261                                             uint64_t Addr,
262                                             const void *Decoder) {
263   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
264   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
265 }
266 
267 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
268                           const MCRegisterInfo *MRI) {
269   if (OpIdx < 0)
270     return false;
271 
272   const MCOperand &Op = Inst.getOperand(OpIdx);
273   if (!Op.isReg())
274     return false;
275 
276   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
277   auto Reg = Sub ? Sub : Op.getReg();
278   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
279 }
280 
281 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst,
282                                              unsigned Imm,
283                                              AMDGPUDisassembler::OpWidthTy Opw,
284                                              const void *Decoder) {
285   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
286   if (!DAsm->isGFX90A()) {
287     Imm &= 511;
288   } else {
289     // If atomic has both vdata and vdst their register classes are tied.
290     // The bit is decoded along with the vdst, first operand. We need to
291     // change register class to AGPR if vdst was AGPR.
292     // If a DS instruction has both data0 and data1 their register classes
293     // are also tied.
294     unsigned Opc = Inst.getOpcode();
295     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
296     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
297                                                         : AMDGPU::OpName::vdata;
298     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
299     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
300     if ((int)Inst.getNumOperands() == DataIdx) {
301       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
302       if (IsAGPROperand(Inst, DstIdx, MRI))
303         Imm |= 512;
304     }
305 
306     if (TSFlags & SIInstrFlags::DS) {
307       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
308       if ((int)Inst.getNumOperands() == Data2Idx &&
309           IsAGPROperand(Inst, DataIdx, MRI))
310         Imm |= 512;
311     }
312   }
313   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
314 }
315 
316 static DecodeStatus DecodeAVLdSt_32RegisterClass(MCInst &Inst,
317                                                  unsigned Imm,
318                                                  uint64_t Addr,
319                                                  const void *Decoder) {
320   return decodeOperand_AVLdSt_Any(Inst, Imm,
321                                   AMDGPUDisassembler::OPW32, Decoder);
322 }
323 
324 static DecodeStatus DecodeAVLdSt_64RegisterClass(MCInst &Inst,
325                                                  unsigned Imm,
326                                                  uint64_t Addr,
327                                                  const void *Decoder) {
328   return decodeOperand_AVLdSt_Any(Inst, Imm,
329                                   AMDGPUDisassembler::OPW64, Decoder);
330 }
331 
332 static DecodeStatus DecodeAVLdSt_96RegisterClass(MCInst &Inst,
333                                                  unsigned Imm,
334                                                  uint64_t Addr,
335                                                  const void *Decoder) {
336   return decodeOperand_AVLdSt_Any(Inst, Imm,
337                                   AMDGPUDisassembler::OPW96, Decoder);
338 }
339 
340 static DecodeStatus DecodeAVLdSt_128RegisterClass(MCInst &Inst,
341                                                   unsigned Imm,
342                                                   uint64_t Addr,
343                                                   const void *Decoder) {
344   return decodeOperand_AVLdSt_Any(Inst, Imm,
345                                   AMDGPUDisassembler::OPW128, Decoder);
346 }
347 
348 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst,
349                                           unsigned Imm,
350                                           uint64_t Addr,
351                                           const void *Decoder) {
352   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
353   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
354 }
355 
356 static DecodeStatus decodeOperand_VGPR_32(MCInst &Inst,
357                                          unsigned Imm,
358                                          uint64_t Addr,
359                                          const void *Decoder) {
360   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
361   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW32, Imm));
362 }
363 
364 #define DECODE_SDWA(DecName) \
365 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
366 
367 DECODE_SDWA(Src32)
368 DECODE_SDWA(Src16)
369 DECODE_SDWA(VopcDst)
370 
371 #include "AMDGPUGenDisassemblerTables.inc"
372 
373 //===----------------------------------------------------------------------===//
374 //
375 //===----------------------------------------------------------------------===//
376 
377 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
378   assert(Bytes.size() >= sizeof(T));
379   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
380   Bytes = Bytes.slice(sizeof(T));
381   return Res;
382 }
383 
384 DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table,
385                                                MCInst &MI,
386                                                uint64_t Inst,
387                                                uint64_t Address) const {
388   assert(MI.getOpcode() == 0);
389   assert(MI.getNumOperands() == 0);
390   MCInst TmpInst;
391   HasLiteral = false;
392   const auto SavedBytes = Bytes;
393   if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) {
394     MI = TmpInst;
395     return MCDisassembler::Success;
396   }
397   Bytes = SavedBytes;
398   return MCDisassembler::Fail;
399 }
400 
401 // The disassembler is greedy, so we need to check FI operand value to
402 // not parse a dpp if the correct literal is not set. For dpp16 the
403 // autogenerated decoder checks the dpp literal
404 static bool isValidDPP8(const MCInst &MI) {
405   using namespace llvm::AMDGPU::DPP;
406   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
407   assert(FiIdx != -1);
408   if ((unsigned)FiIdx >= MI.getNumOperands())
409     return false;
410   unsigned Fi = MI.getOperand(FiIdx).getImm();
411   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
412 }
413 
414 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
415                                                 ArrayRef<uint8_t> Bytes_,
416                                                 uint64_t Address,
417                                                 raw_ostream &CS) const {
418   CommentStream = &CS;
419   bool IsSDWA = false;
420 
421   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
422   Bytes = Bytes_.slice(0, MaxInstBytesNum);
423 
424   DecodeStatus Res = MCDisassembler::Fail;
425   do {
426     // ToDo: better to switch encoding length using some bit predicate
427     // but it is unknown yet, so try all we can
428 
429     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
430     // encodings
431     if (Bytes.size() >= 8) {
432       const uint64_t QW = eatBytes<uint64_t>(Bytes);
433 
434       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
435         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
436         if (Res) {
437           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
438               == -1)
439             break;
440           if (convertDPP8Inst(MI) == MCDisassembler::Success)
441             break;
442           MI = MCInst(); // clear
443         }
444       }
445 
446       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
447       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
448         break;
449 
450       MI = MCInst(); // clear
451 
452       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
453       if (Res) break;
454 
455       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
456       if (Res) { IsSDWA = true;  break; }
457 
458       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
459       if (Res) { IsSDWA = true;  break; }
460 
461       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
462       if (Res) { IsSDWA = true;  break; }
463 
464       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
465         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
466         if (Res)
467           break;
468       }
469 
470       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
471       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
472       // table first so we print the correct name.
473       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
474         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
475         if (Res)
476           break;
477       }
478     }
479 
480     // Reinitialize Bytes as DPP64 could have eaten too much
481     Bytes = Bytes_.slice(0, MaxInstBytesNum);
482 
483     // Try decode 32-bit instruction
484     if (Bytes.size() < 4) break;
485     const uint32_t DW = eatBytes<uint32_t>(Bytes);
486     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
487     if (Res) break;
488 
489     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
490     if (Res) break;
491 
492     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
493     if (Res) break;
494 
495     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
496       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
497       if (Res)
498         break;
499     }
500 
501     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
502       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
503       if (Res) break;
504     }
505 
506     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
507     if (Res) break;
508 
509     if (Bytes.size() < 4) break;
510     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
511 
512     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
513       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
514       if (Res)
515         break;
516     }
517 
518     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
519     if (Res) break;
520 
521     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
522     if (Res) break;
523 
524     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
525     if (Res) break;
526 
527     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
528   } while (false);
529 
530   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
531               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
532               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
533               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
534               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
535               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
536               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
537               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
538               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
539               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
540               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
541     // Insert dummy unused src2_modifiers.
542     insertNamedMCOperand(MI, MCOperand::createImm(0),
543                          AMDGPU::OpName::src2_modifiers);
544   }
545 
546   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
547           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
548     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
549                                              AMDGPU::OpName::cpol);
550     if (CPolPos != -1) {
551       unsigned CPol =
552           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
553               AMDGPU::CPol::GLC : 0;
554       if (MI.getNumOperands() <= (unsigned)CPolPos) {
555         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
556                              AMDGPU::OpName::cpol);
557       } else if (CPol) {
558         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
559       }
560     }
561   }
562 
563   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
564               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
565              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
566     // GFX90A lost TFE, its place is occupied by ACC.
567     int TFEOpIdx =
568         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
569     if (TFEOpIdx != -1) {
570       auto TFEIter = MI.begin();
571       std::advance(TFEIter, TFEOpIdx);
572       MI.insert(TFEIter, MCOperand::createImm(0));
573     }
574   }
575 
576   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
577               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
578     int SWZOpIdx =
579         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
580     if (SWZOpIdx != -1) {
581       auto SWZIter = MI.begin();
582       std::advance(SWZIter, SWZOpIdx);
583       MI.insert(SWZIter, MCOperand::createImm(0));
584     }
585   }
586 
587   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
588     int VAddr0Idx =
589         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
590     int RsrcIdx =
591         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
592     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
593     if (VAddr0Idx >= 0 && NSAArgs > 0) {
594       unsigned NSAWords = (NSAArgs + 3) / 4;
595       if (Bytes.size() < 4 * NSAWords) {
596         Res = MCDisassembler::Fail;
597       } else {
598         for (unsigned i = 0; i < NSAArgs; ++i) {
599           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
600                     decodeOperand_VGPR_32(Bytes[i]));
601         }
602         Bytes = Bytes.slice(4 * NSAWords);
603       }
604     }
605 
606     if (Res)
607       Res = convertMIMGInst(MI);
608   }
609 
610   if (Res && IsSDWA)
611     Res = convertSDWAInst(MI);
612 
613   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
614                                               AMDGPU::OpName::vdst_in);
615   if (VDstIn_Idx != -1) {
616     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
617                            MCOI::OperandConstraint::TIED_TO);
618     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
619          !MI.getOperand(VDstIn_Idx).isReg() ||
620          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
621       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
622         MI.erase(&MI.getOperand(VDstIn_Idx));
623       insertNamedMCOperand(MI,
624         MCOperand::createReg(MI.getOperand(Tied).getReg()),
625         AMDGPU::OpName::vdst_in);
626     }
627   }
628 
629   // if the opcode was not recognized we'll assume a Size of 4 bytes
630   // (unless there are fewer bytes left)
631   Size = Res ? (MaxInstBytesNum - Bytes.size())
632              : std::min((size_t)4, Bytes_.size());
633   return Res;
634 }
635 
636 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
637   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
638       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
639     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
640       // VOPC - insert clamp
641       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
642   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
643     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
644     if (SDst != -1) {
645       // VOPC - insert VCC register as sdst
646       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
647                            AMDGPU::OpName::sdst);
648     } else {
649       // VOP1/2 - insert omod if present in instruction
650       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
651     }
652   }
653   return MCDisassembler::Success;
654 }
655 
656 // We must check FI == literal to reject not genuine dpp8 insts, and we must
657 // first add optional MI operands to check FI
658 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
659   unsigned Opc = MI.getOpcode();
660   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
661 
662   // Insert dummy unused src modifiers.
663   if (MI.getNumOperands() < DescNumOps &&
664       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
665     insertNamedMCOperand(MI, MCOperand::createImm(0),
666                          AMDGPU::OpName::src0_modifiers);
667 
668   if (MI.getNumOperands() < DescNumOps &&
669       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
670     insertNamedMCOperand(MI, MCOperand::createImm(0),
671                          AMDGPU::OpName::src1_modifiers);
672 
673   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
674 }
675 
676 // Note that before gfx10, the MIMG encoding provided no information about
677 // VADDR size. Consequently, decoded instructions always show address as if it
678 // has 1 dword, which could be not really so.
679 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
680 
681   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
682                                            AMDGPU::OpName::vdst);
683 
684   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
685                                             AMDGPU::OpName::vdata);
686   int VAddr0Idx =
687       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
688   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
689                                             AMDGPU::OpName::dmask);
690 
691   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
692                                             AMDGPU::OpName::tfe);
693   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
694                                             AMDGPU::OpName::d16);
695 
696   assert(VDataIdx != -1);
697   if (DMaskIdx == -1 || TFEIdx == -1) {// intersect_ray
698     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
699       assert(MI.getOpcode() == AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_sa ||
700              MI.getOpcode() == AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa ||
701              MI.getOpcode() == AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_sa ||
702              MI.getOpcode() == AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa);
703       addOperand(MI, MCOperand::createImm(1));
704     }
705     return MCDisassembler::Success;
706   }
707 
708   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
709   bool IsAtomic = (VDstIdx != -1);
710   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
711 
712   bool IsNSA = false;
713   unsigned AddrSize = Info->VAddrDwords;
714 
715   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
716     unsigned DimIdx =
717         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
718     int A16Idx =
719         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
720     const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
721         AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
722     const AMDGPU::MIMGDimInfo *Dim =
723         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
724     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
725 
726     AddrSize =
727         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
728 
729     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
730     if (!IsNSA) {
731       if (AddrSize > 8)
732         AddrSize = 16;
733     } else {
734       if (AddrSize > Info->VAddrDwords) {
735         // The NSA encoding does not contain enough operands for the combination
736         // of base opcode / dimension. Should this be an error?
737         return MCDisassembler::Success;
738       }
739     }
740   }
741 
742   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
743   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
744 
745   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
746   if (D16 && AMDGPU::hasPackedD16(STI)) {
747     DstSize = (DstSize + 1) / 2;
748   }
749 
750   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
751     DstSize += 1;
752 
753   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
754     return MCDisassembler::Success;
755 
756   int NewOpcode =
757       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
758   if (NewOpcode == -1)
759     return MCDisassembler::Success;
760 
761   // Widen the register to the correct number of enabled channels.
762   unsigned NewVdata = AMDGPU::NoRegister;
763   if (DstSize != Info->VDataDwords) {
764     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
765 
766     // Get first subregister of VData
767     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
768     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
769     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
770 
771     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
772                                        &MRI.getRegClass(DataRCID));
773     if (NewVdata == AMDGPU::NoRegister) {
774       // It's possible to encode this such that the low register + enabled
775       // components exceeds the register count.
776       return MCDisassembler::Success;
777     }
778   }
779 
780   unsigned NewVAddr0 = AMDGPU::NoRegister;
781   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
782       AddrSize != Info->VAddrDwords) {
783     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
784     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
785     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
786 
787     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
788     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
789                                         &MRI.getRegClass(AddrRCID));
790     if (NewVAddr0 == AMDGPU::NoRegister)
791       return MCDisassembler::Success;
792   }
793 
794   MI.setOpcode(NewOpcode);
795 
796   if (NewVdata != AMDGPU::NoRegister) {
797     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
798 
799     if (IsAtomic) {
800       // Atomic operations have an additional operand (a copy of data)
801       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
802     }
803   }
804 
805   if (NewVAddr0 != AMDGPU::NoRegister) {
806     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
807   } else if (IsNSA) {
808     assert(AddrSize <= Info->VAddrDwords);
809     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
810              MI.begin() + VAddr0Idx + Info->VAddrDwords);
811   }
812 
813   return MCDisassembler::Success;
814 }
815 
816 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
817   return getContext().getRegisterInfo()->
818     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
819 }
820 
821 inline
822 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
823                                          const Twine& ErrMsg) const {
824   *CommentStream << "Error: " + ErrMsg;
825 
826   // ToDo: add support for error operands to MCInst.h
827   // return MCOperand::createError(V);
828   return MCOperand();
829 }
830 
831 inline
832 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
833   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
834 }
835 
836 inline
837 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
838                                                unsigned Val) const {
839   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
840   if (Val >= RegCl.getNumRegs())
841     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
842                            ": unknown register " + Twine(Val));
843   return createRegOperand(RegCl.getRegister(Val));
844 }
845 
846 inline
847 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
848                                                 unsigned Val) const {
849   // ToDo: SI/CI have 104 SGPRs, VI - 102
850   // Valery: here we accepting as much as we can, let assembler sort it out
851   int shift = 0;
852   switch (SRegClassID) {
853   case AMDGPU::SGPR_32RegClassID:
854   case AMDGPU::TTMP_32RegClassID:
855     break;
856   case AMDGPU::SGPR_64RegClassID:
857   case AMDGPU::TTMP_64RegClassID:
858     shift = 1;
859     break;
860   case AMDGPU::SGPR_128RegClassID:
861   case AMDGPU::TTMP_128RegClassID:
862   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
863   // this bundle?
864   case AMDGPU::SGPR_256RegClassID:
865   case AMDGPU::TTMP_256RegClassID:
866     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
867   // this bundle?
868   case AMDGPU::SGPR_512RegClassID:
869   case AMDGPU::TTMP_512RegClassID:
870     shift = 2;
871     break;
872   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
873   // this bundle?
874   default:
875     llvm_unreachable("unhandled register class");
876   }
877 
878   if (Val % (1 << shift)) {
879     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
880                    << ": scalar reg isn't aligned " << Val;
881   }
882 
883   return createRegOperand(SRegClassID, Val >> shift);
884 }
885 
886 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
887   return decodeSrcOp(OPW32, Val);
888 }
889 
890 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
891   return decodeSrcOp(OPW64, Val);
892 }
893 
894 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
895   return decodeSrcOp(OPW128, Val);
896 }
897 
898 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
899   return decodeSrcOp(OPW16, Val);
900 }
901 
902 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
903   return decodeSrcOp(OPWV216, Val);
904 }
905 
906 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
907   return decodeSrcOp(OPWV232, Val);
908 }
909 
910 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
911   // Some instructions have operand restrictions beyond what the encoding
912   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
913   // high bit.
914   Val &= 255;
915 
916   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
917 }
918 
919 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
920   return decodeSrcOp(OPW32, Val);
921 }
922 
923 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
924   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
925 }
926 
927 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
928   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
929 }
930 
931 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
932   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
933 }
934 
935 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
936   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
937 }
938 
939 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
940   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
941 }
942 
943 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
944   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
945 }
946 
947 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
948   return decodeSrcOp(OPW32, Val);
949 }
950 
951 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
952   return decodeSrcOp(OPW64, Val);
953 }
954 
955 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
956   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
957 }
958 
959 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
960   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
961 }
962 
963 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
964   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
965 }
966 
967 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
968   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
969 }
970 
971 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
972   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
973 }
974 
975 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
976   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
977 }
978 
979 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
980   // table-gen generated disassembler doesn't care about operand types
981   // leaving only registry class so SSrc_32 operand turns into SReg_32
982   // and therefore we accept immediates and literals here as well
983   return decodeSrcOp(OPW32, Val);
984 }
985 
986 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
987   unsigned Val) const {
988   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
989   return decodeOperand_SReg_32(Val);
990 }
991 
992 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
993   unsigned Val) const {
994   // SReg_32_XM0 is SReg_32 without EXEC_HI
995   return decodeOperand_SReg_32(Val);
996 }
997 
998 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
999   // table-gen generated disassembler doesn't care about operand types
1000   // leaving only registry class so SSrc_32 operand turns into SReg_32
1001   // and therefore we accept immediates and literals here as well
1002   return decodeSrcOp(OPW32, Val);
1003 }
1004 
1005 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1006   return decodeSrcOp(OPW64, Val);
1007 }
1008 
1009 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1010   return decodeSrcOp(OPW64, Val);
1011 }
1012 
1013 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1014   return decodeSrcOp(OPW128, Val);
1015 }
1016 
1017 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1018   return decodeDstOp(OPW256, Val);
1019 }
1020 
1021 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1022   return decodeDstOp(OPW512, Val);
1023 }
1024 
1025 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1026   // For now all literal constants are supposed to be unsigned integer
1027   // ToDo: deal with signed/unsigned 64-bit integer constants
1028   // ToDo: deal with float/double constants
1029   if (!HasLiteral) {
1030     if (Bytes.size() < 4) {
1031       return errOperand(0, "cannot read literal, inst bytes left " +
1032                         Twine(Bytes.size()));
1033     }
1034     HasLiteral = true;
1035     Literal = eatBytes<uint32_t>(Bytes);
1036   }
1037   return MCOperand::createImm(Literal);
1038 }
1039 
1040 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1041   using namespace AMDGPU::EncValues;
1042 
1043   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1044   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1045     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1046     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1047       // Cast prevents negative overflow.
1048 }
1049 
1050 static int64_t getInlineImmVal32(unsigned Imm) {
1051   switch (Imm) {
1052   case 240:
1053     return FloatToBits(0.5f);
1054   case 241:
1055     return FloatToBits(-0.5f);
1056   case 242:
1057     return FloatToBits(1.0f);
1058   case 243:
1059     return FloatToBits(-1.0f);
1060   case 244:
1061     return FloatToBits(2.0f);
1062   case 245:
1063     return FloatToBits(-2.0f);
1064   case 246:
1065     return FloatToBits(4.0f);
1066   case 247:
1067     return FloatToBits(-4.0f);
1068   case 248: // 1 / (2 * PI)
1069     return 0x3e22f983;
1070   default:
1071     llvm_unreachable("invalid fp inline imm");
1072   }
1073 }
1074 
1075 static int64_t getInlineImmVal64(unsigned Imm) {
1076   switch (Imm) {
1077   case 240:
1078     return DoubleToBits(0.5);
1079   case 241:
1080     return DoubleToBits(-0.5);
1081   case 242:
1082     return DoubleToBits(1.0);
1083   case 243:
1084     return DoubleToBits(-1.0);
1085   case 244:
1086     return DoubleToBits(2.0);
1087   case 245:
1088     return DoubleToBits(-2.0);
1089   case 246:
1090     return DoubleToBits(4.0);
1091   case 247:
1092     return DoubleToBits(-4.0);
1093   case 248: // 1 / (2 * PI)
1094     return 0x3fc45f306dc9c882;
1095   default:
1096     llvm_unreachable("invalid fp inline imm");
1097   }
1098 }
1099 
1100 static int64_t getInlineImmVal16(unsigned Imm) {
1101   switch (Imm) {
1102   case 240:
1103     return 0x3800;
1104   case 241:
1105     return 0xB800;
1106   case 242:
1107     return 0x3C00;
1108   case 243:
1109     return 0xBC00;
1110   case 244:
1111     return 0x4000;
1112   case 245:
1113     return 0xC000;
1114   case 246:
1115     return 0x4400;
1116   case 247:
1117     return 0xC400;
1118   case 248: // 1 / (2 * PI)
1119     return 0x3118;
1120   default:
1121     llvm_unreachable("invalid fp inline imm");
1122   }
1123 }
1124 
1125 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1126   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1127       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1128 
1129   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1130   switch (Width) {
1131   case OPW32:
1132   case OPW128: // splat constants
1133   case OPW512:
1134   case OPW1024:
1135   case OPWV232:
1136     return MCOperand::createImm(getInlineImmVal32(Imm));
1137   case OPW64:
1138   case OPW256:
1139     return MCOperand::createImm(getInlineImmVal64(Imm));
1140   case OPW16:
1141   case OPWV216:
1142     return MCOperand::createImm(getInlineImmVal16(Imm));
1143   default:
1144     llvm_unreachable("implement me");
1145   }
1146 }
1147 
1148 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1149   using namespace AMDGPU;
1150 
1151   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1152   switch (Width) {
1153   default: // fall
1154   case OPW32:
1155   case OPW16:
1156   case OPWV216:
1157     return VGPR_32RegClassID;
1158   case OPW64:
1159   case OPWV232: return VReg_64RegClassID;
1160   case OPW96: return VReg_96RegClassID;
1161   case OPW128: return VReg_128RegClassID;
1162   case OPW160: return VReg_160RegClassID;
1163   case OPW256: return VReg_256RegClassID;
1164   case OPW512: return VReg_512RegClassID;
1165   case OPW1024: return VReg_1024RegClassID;
1166   }
1167 }
1168 
1169 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1170   using namespace AMDGPU;
1171 
1172   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1173   switch (Width) {
1174   default: // fall
1175   case OPW32:
1176   case OPW16:
1177   case OPWV216:
1178     return AGPR_32RegClassID;
1179   case OPW64:
1180   case OPWV232: return AReg_64RegClassID;
1181   case OPW96: return AReg_96RegClassID;
1182   case OPW128: return AReg_128RegClassID;
1183   case OPW160: return AReg_160RegClassID;
1184   case OPW256: return AReg_256RegClassID;
1185   case OPW512: return AReg_512RegClassID;
1186   case OPW1024: return AReg_1024RegClassID;
1187   }
1188 }
1189 
1190 
1191 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1192   using namespace AMDGPU;
1193 
1194   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1195   switch (Width) {
1196   default: // fall
1197   case OPW32:
1198   case OPW16:
1199   case OPWV216:
1200     return SGPR_32RegClassID;
1201   case OPW64:
1202   case OPWV232: return SGPR_64RegClassID;
1203   case OPW96: return SGPR_96RegClassID;
1204   case OPW128: return SGPR_128RegClassID;
1205   case OPW160: return SGPR_160RegClassID;
1206   case OPW256: return SGPR_256RegClassID;
1207   case OPW512: return SGPR_512RegClassID;
1208   }
1209 }
1210 
1211 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1212   using namespace AMDGPU;
1213 
1214   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1215   switch (Width) {
1216   default: // fall
1217   case OPW32:
1218   case OPW16:
1219   case OPWV216:
1220     return TTMP_32RegClassID;
1221   case OPW64:
1222   case OPWV232: return TTMP_64RegClassID;
1223   case OPW128: return TTMP_128RegClassID;
1224   case OPW256: return TTMP_256RegClassID;
1225   case OPW512: return TTMP_512RegClassID;
1226   }
1227 }
1228 
1229 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1230   using namespace AMDGPU::EncValues;
1231 
1232   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1233   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1234 
1235   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1236 }
1237 
1238 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val) const {
1239   using namespace AMDGPU::EncValues;
1240 
1241   assert(Val < 1024); // enum10
1242 
1243   bool IsAGPR = Val & 512;
1244   Val &= 511;
1245 
1246   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1247     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1248                                    : getVgprClassId(Width), Val - VGPR_MIN);
1249   }
1250   if (Val <= SGPR_MAX) {
1251     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1252     static_assert(SGPR_MIN == 0, "");
1253     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1254   }
1255 
1256   int TTmpIdx = getTTmpIdx(Val);
1257   if (TTmpIdx >= 0) {
1258     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1259   }
1260 
1261   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1262     return decodeIntImmed(Val);
1263 
1264   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1265     return decodeFPImmed(Width, Val);
1266 
1267   if (Val == LITERAL_CONST)
1268     return decodeLiteralConstant();
1269 
1270   switch (Width) {
1271   case OPW32:
1272   case OPW16:
1273   case OPWV216:
1274     return decodeSpecialReg32(Val);
1275   case OPW64:
1276   case OPWV232:
1277     return decodeSpecialReg64(Val);
1278   default:
1279     llvm_unreachable("unexpected immediate type");
1280   }
1281 }
1282 
1283 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1284   using namespace AMDGPU::EncValues;
1285 
1286   assert(Val < 128);
1287   assert(Width == OPW256 || Width == OPW512);
1288 
1289   if (Val <= SGPR_MAX) {
1290     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1291     static_assert(SGPR_MIN == 0, "");
1292     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1293   }
1294 
1295   int TTmpIdx = getTTmpIdx(Val);
1296   if (TTmpIdx >= 0) {
1297     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1298   }
1299 
1300   llvm_unreachable("unknown dst register");
1301 }
1302 
1303 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1304   using namespace AMDGPU;
1305 
1306   switch (Val) {
1307   case 102: return createRegOperand(FLAT_SCR_LO);
1308   case 103: return createRegOperand(FLAT_SCR_HI);
1309   case 104: return createRegOperand(XNACK_MASK_LO);
1310   case 105: return createRegOperand(XNACK_MASK_HI);
1311   case 106: return createRegOperand(VCC_LO);
1312   case 107: return createRegOperand(VCC_HI);
1313   case 108: return createRegOperand(TBA_LO);
1314   case 109: return createRegOperand(TBA_HI);
1315   case 110: return createRegOperand(TMA_LO);
1316   case 111: return createRegOperand(TMA_HI);
1317   case 124: return createRegOperand(M0);
1318   case 125: return createRegOperand(SGPR_NULL);
1319   case 126: return createRegOperand(EXEC_LO);
1320   case 127: return createRegOperand(EXEC_HI);
1321   case 235: return createRegOperand(SRC_SHARED_BASE);
1322   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1323   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1324   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1325   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1326   case 251: return createRegOperand(SRC_VCCZ);
1327   case 252: return createRegOperand(SRC_EXECZ);
1328   case 253: return createRegOperand(SRC_SCC);
1329   case 254: return createRegOperand(LDS_DIRECT);
1330   default: break;
1331   }
1332   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1333 }
1334 
1335 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1336   using namespace AMDGPU;
1337 
1338   switch (Val) {
1339   case 102: return createRegOperand(FLAT_SCR);
1340   case 104: return createRegOperand(XNACK_MASK);
1341   case 106: return createRegOperand(VCC);
1342   case 108: return createRegOperand(TBA);
1343   case 110: return createRegOperand(TMA);
1344   case 125: return createRegOperand(SGPR_NULL);
1345   case 126: return createRegOperand(EXEC);
1346   case 235: return createRegOperand(SRC_SHARED_BASE);
1347   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1348   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1349   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1350   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1351   case 251: return createRegOperand(SRC_VCCZ);
1352   case 252: return createRegOperand(SRC_EXECZ);
1353   case 253: return createRegOperand(SRC_SCC);
1354   default: break;
1355   }
1356   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1357 }
1358 
1359 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1360                                             const unsigned Val) const {
1361   using namespace AMDGPU::SDWA;
1362   using namespace AMDGPU::EncValues;
1363 
1364   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1365       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1366     // XXX: cast to int is needed to avoid stupid warning:
1367     // compare with unsigned is always true
1368     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1369         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1370       return createRegOperand(getVgprClassId(Width),
1371                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1372     }
1373     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1374         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1375                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1376       return createSRegOperand(getSgprClassId(Width),
1377                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1378     }
1379     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1380         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1381       return createSRegOperand(getTtmpClassId(Width),
1382                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1383     }
1384 
1385     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1386 
1387     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1388       return decodeIntImmed(SVal);
1389 
1390     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1391       return decodeFPImmed(Width, SVal);
1392 
1393     return decodeSpecialReg32(SVal);
1394   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1395     return createRegOperand(getVgprClassId(Width), Val);
1396   }
1397   llvm_unreachable("unsupported target");
1398 }
1399 
1400 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1401   return decodeSDWASrc(OPW16, Val);
1402 }
1403 
1404 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1405   return decodeSDWASrc(OPW32, Val);
1406 }
1407 
1408 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1409   using namespace AMDGPU::SDWA;
1410 
1411   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1412           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1413          "SDWAVopcDst should be present only on GFX9+");
1414 
1415   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1416 
1417   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1418     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1419 
1420     int TTmpIdx = getTTmpIdx(Val);
1421     if (TTmpIdx >= 0) {
1422       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1423       return createSRegOperand(TTmpClsId, TTmpIdx);
1424     } else if (Val > SGPR_MAX) {
1425       return IsWave64 ? decodeSpecialReg64(Val)
1426                       : decodeSpecialReg32(Val);
1427     } else {
1428       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1429     }
1430   } else {
1431     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1432   }
1433 }
1434 
1435 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1436   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1437     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1438 }
1439 
1440 bool AMDGPUDisassembler::isVI() const {
1441   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1442 }
1443 
1444 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1445 
1446 bool AMDGPUDisassembler::isGFX90A() const {
1447   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1448 }
1449 
1450 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1451 
1452 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1453 
1454 bool AMDGPUDisassembler::isGFX10Plus() const {
1455   return AMDGPU::isGFX10Plus(STI);
1456 }
1457 
1458 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1459   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1460 }
1461 
1462 //===----------------------------------------------------------------------===//
1463 // AMDGPU specific symbol handling
1464 //===----------------------------------------------------------------------===//
1465 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1466   do {                                                                         \
1467     KdStream << Indent << DIRECTIVE " "                                        \
1468              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1469   } while (0)
1470 
1471 // NOLINTNEXTLINE(readability-identifier-naming)
1472 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1473     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1474   using namespace amdhsa;
1475   StringRef Indent = "\t";
1476 
1477   // We cannot accurately backward compute #VGPRs used from
1478   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1479   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1480   // simply calculate the inverse of what the assembler does.
1481 
1482   uint32_t GranulatedWorkitemVGPRCount =
1483       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1484       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1485 
1486   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1487                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1488 
1489   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1490 
1491   // We cannot backward compute values used to calculate
1492   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1493   // directives can't be computed:
1494   // .amdhsa_reserve_vcc
1495   // .amdhsa_reserve_flat_scratch
1496   // .amdhsa_reserve_xnack_mask
1497   // They take their respective default values if not specified in the assembly.
1498   //
1499   // GRANULATED_WAVEFRONT_SGPR_COUNT
1500   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1501   //
1502   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1503   // are set to 0. So while disassembling we consider that:
1504   //
1505   // GRANULATED_WAVEFRONT_SGPR_COUNT
1506   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1507   //
1508   // The disassembler cannot recover the original values of those 3 directives.
1509 
1510   uint32_t GranulatedWavefrontSGPRCount =
1511       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1512       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1513 
1514   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1515     return MCDisassembler::Fail;
1516 
1517   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1518                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1519 
1520   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1521   if (!hasArchitectedFlatScratch())
1522     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1523   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1524   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1525 
1526   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1527     return MCDisassembler::Fail;
1528 
1529   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1530                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1531   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1532                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1533   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1534                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1535   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1536                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1537 
1538   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1539     return MCDisassembler::Fail;
1540 
1541   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1542 
1543   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1544     return MCDisassembler::Fail;
1545 
1546   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1547 
1548   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1549     return MCDisassembler::Fail;
1550 
1551   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1552     return MCDisassembler::Fail;
1553 
1554   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1555 
1556   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1557     return MCDisassembler::Fail;
1558 
1559   if (isGFX10Plus()) {
1560     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1561                     COMPUTE_PGM_RSRC1_WGP_MODE);
1562     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1563     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1564   }
1565   return MCDisassembler::Success;
1566 }
1567 
1568 // NOLINTNEXTLINE(readability-identifier-naming)
1569 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1570     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1571   using namespace amdhsa;
1572   StringRef Indent = "\t";
1573   if (hasArchitectedFlatScratch())
1574     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1575                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1576   else
1577     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1578                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1579   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1580                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1581   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1582                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1583   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1584                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1585   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1586                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1587   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1588                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1589 
1590   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1591     return MCDisassembler::Fail;
1592 
1593   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1594     return MCDisassembler::Fail;
1595 
1596   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1597     return MCDisassembler::Fail;
1598 
1599   PRINT_DIRECTIVE(
1600       ".amdhsa_exception_fp_ieee_invalid_op",
1601       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1602   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1603                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1604   PRINT_DIRECTIVE(
1605       ".amdhsa_exception_fp_ieee_div_zero",
1606       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1607   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1608                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1609   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1610                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1611   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1612                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1613   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1614                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1615 
1616   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1617     return MCDisassembler::Fail;
1618 
1619   return MCDisassembler::Success;
1620 }
1621 
1622 #undef PRINT_DIRECTIVE
1623 
1624 MCDisassembler::DecodeStatus
1625 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1626     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1627     raw_string_ostream &KdStream) const {
1628 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1629   do {                                                                         \
1630     KdStream << Indent << DIRECTIVE " "                                        \
1631              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1632   } while (0)
1633 
1634   uint16_t TwoByteBuffer = 0;
1635   uint32_t FourByteBuffer = 0;
1636 
1637   StringRef ReservedBytes;
1638   StringRef Indent = "\t";
1639 
1640   assert(Bytes.size() == 64);
1641   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1642 
1643   switch (Cursor.tell()) {
1644   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1645     FourByteBuffer = DE.getU32(Cursor);
1646     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1647              << '\n';
1648     return MCDisassembler::Success;
1649 
1650   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1651     FourByteBuffer = DE.getU32(Cursor);
1652     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1653              << FourByteBuffer << '\n';
1654     return MCDisassembler::Success;
1655 
1656   case amdhsa::KERNARG_SIZE_OFFSET:
1657     FourByteBuffer = DE.getU32(Cursor);
1658     KdStream << Indent << ".amdhsa_kernarg_size "
1659              << FourByteBuffer << '\n';
1660     return MCDisassembler::Success;
1661 
1662   case amdhsa::RESERVED0_OFFSET:
1663     // 4 reserved bytes, must be 0.
1664     ReservedBytes = DE.getBytes(Cursor, 4);
1665     for (int I = 0; I < 4; ++I) {
1666       if (ReservedBytes[I] != 0) {
1667         return MCDisassembler::Fail;
1668       }
1669     }
1670     return MCDisassembler::Success;
1671 
1672   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1673     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1674     // So far no directive controls this for Code Object V3, so simply skip for
1675     // disassembly.
1676     DE.skip(Cursor, 8);
1677     return MCDisassembler::Success;
1678 
1679   case amdhsa::RESERVED1_OFFSET:
1680     // 20 reserved bytes, must be 0.
1681     ReservedBytes = DE.getBytes(Cursor, 20);
1682     for (int I = 0; I < 20; ++I) {
1683       if (ReservedBytes[I] != 0) {
1684         return MCDisassembler::Fail;
1685       }
1686     }
1687     return MCDisassembler::Success;
1688 
1689   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1690     // COMPUTE_PGM_RSRC3
1691     //  - Only set for GFX10, GFX6-9 have this to be 0.
1692     //  - Currently no directives directly control this.
1693     FourByteBuffer = DE.getU32(Cursor);
1694     if (!isGFX10Plus() && FourByteBuffer) {
1695       return MCDisassembler::Fail;
1696     }
1697     return MCDisassembler::Success;
1698 
1699   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1700     FourByteBuffer = DE.getU32(Cursor);
1701     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1702         MCDisassembler::Fail) {
1703       return MCDisassembler::Fail;
1704     }
1705     return MCDisassembler::Success;
1706 
1707   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1708     FourByteBuffer = DE.getU32(Cursor);
1709     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1710         MCDisassembler::Fail) {
1711       return MCDisassembler::Fail;
1712     }
1713     return MCDisassembler::Success;
1714 
1715   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1716     using namespace amdhsa;
1717     TwoByteBuffer = DE.getU16(Cursor);
1718 
1719     if (!hasArchitectedFlatScratch())
1720       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1721                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1722     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1723                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1724     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1725                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1726     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1727                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1728     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1729                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1730     if (!hasArchitectedFlatScratch())
1731       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1732                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1733     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1734                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1735 
1736     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1737       return MCDisassembler::Fail;
1738 
1739     // Reserved for GFX9
1740     if (isGFX9() &&
1741         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1742       return MCDisassembler::Fail;
1743     } else if (isGFX10Plus()) {
1744       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1745                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1746     }
1747 
1748     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1749       return MCDisassembler::Fail;
1750 
1751     return MCDisassembler::Success;
1752 
1753   case amdhsa::RESERVED2_OFFSET:
1754     // 6 bytes from here are reserved, must be 0.
1755     ReservedBytes = DE.getBytes(Cursor, 6);
1756     for (int I = 0; I < 6; ++I) {
1757       if (ReservedBytes[I] != 0)
1758         return MCDisassembler::Fail;
1759     }
1760     return MCDisassembler::Success;
1761 
1762   default:
1763     llvm_unreachable("Unhandled index. Case statements cover everything.");
1764     return MCDisassembler::Fail;
1765   }
1766 #undef PRINT_DIRECTIVE
1767 }
1768 
1769 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1770     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1771   // CP microcode requires the kernel descriptor to be 64 aligned.
1772   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1773     return MCDisassembler::Fail;
1774 
1775   std::string Kd;
1776   raw_string_ostream KdStream(Kd);
1777   KdStream << ".amdhsa_kernel " << KdName << '\n';
1778 
1779   DataExtractor::Cursor C(0);
1780   while (C && C.tell() < Bytes.size()) {
1781     MCDisassembler::DecodeStatus Status =
1782         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1783 
1784     cantFail(C.takeError());
1785 
1786     if (Status == MCDisassembler::Fail)
1787       return MCDisassembler::Fail;
1788   }
1789   KdStream << ".end_amdhsa_kernel\n";
1790   outs() << KdStream.str();
1791   return MCDisassembler::Success;
1792 }
1793 
1794 Optional<MCDisassembler::DecodeStatus>
1795 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1796                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1797                                   raw_ostream &CStream) const {
1798   // Right now only kernel descriptor needs to be handled.
1799   // We ignore all other symbols for target specific handling.
1800   // TODO:
1801   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1802   // Object V2 and V3 when symbols are marked protected.
1803 
1804   // amd_kernel_code_t for Code Object V2.
1805   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1806     Size = 256;
1807     return MCDisassembler::Fail;
1808   }
1809 
1810   // Code Object V3 kernel descriptors.
1811   StringRef Name = Symbol.Name;
1812   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1813     Size = 64; // Size = 64 regardless of success or failure.
1814     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1815   }
1816   return None;
1817 }
1818 
1819 //===----------------------------------------------------------------------===//
1820 // AMDGPUSymbolizer
1821 //===----------------------------------------------------------------------===//
1822 
1823 // Try to find symbol name for specified label
1824 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
1825                                 raw_ostream &/*cStream*/, int64_t Value,
1826                                 uint64_t /*Address*/, bool IsBranch,
1827                                 uint64_t /*Offset*/, uint64_t /*InstSize*/) {
1828 
1829   if (!IsBranch) {
1830     return false;
1831   }
1832 
1833   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1834   if (!Symbols)
1835     return false;
1836 
1837   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1838     return Val.Addr == static_cast<uint64_t>(Value) &&
1839            Val.Type == ELF::STT_NOTYPE;
1840   });
1841   if (Result != Symbols->end()) {
1842     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1843     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1844     Inst.addOperand(MCOperand::createExpr(Add));
1845     return true;
1846   }
1847   // Add to list of referenced addresses, so caller can synthesize a label.
1848   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1849   return false;
1850 }
1851 
1852 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1853                                                        int64_t Value,
1854                                                        uint64_t Address) {
1855   llvm_unreachable("unimplemented");
1856 }
1857 
1858 //===----------------------------------------------------------------------===//
1859 // Initialization
1860 //===----------------------------------------------------------------------===//
1861 
1862 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1863                               LLVMOpInfoCallback /*GetOpInfo*/,
1864                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1865                               void *DisInfo,
1866                               MCContext *Ctx,
1867                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1868   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1869 }
1870 
1871 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1872                                                 const MCSubtargetInfo &STI,
1873                                                 MCContext &Ctx) {
1874   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1875 }
1876 
1877 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1878   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1879                                          createAMDGPUDisassembler);
1880   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1881                                        createAMDGPUSymbolizer);
1882 }
1883