xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 5b56413d04e608379c9a306373554a8e4d321bc0)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "SIDefines.h"
22 #include "SIRegisterInfo.h"
23 #include "TargetInfo/AMDGPUTargetInfo.h"
24 #include "Utils/AMDGPUBaseInfo.h"
25 #include "llvm-c/DisassemblerTypes.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCContext.h"
29 #include "llvm/MC/MCDecoderOps.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/TargetRegistry.h"
35 #include "llvm/Support/AMDHSAKernelDescriptor.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "amdgpu-disassembler"
40 
41 #define SGPR_MAX                                                               \
42   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
43                  : AMDGPU::EncValues::SGPR_MAX_SI)
44 
45 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
46 
47 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
48                                        MCContext &Ctx, MCInstrInfo const *MCII)
49     : MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
50       MAI(*Ctx.getAsmInfo()), TargetMaxInstBytes(MAI.getMaxInstLength(&STI)) {
51   // ToDo: AMDGPUDisassembler supports only VI ISA.
52   if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus())
53     report_fatal_error("Disassembly not yet supported for subtarget");
54 }
55 
56 inline static MCDisassembler::DecodeStatus
57 addOperand(MCInst &Inst, const MCOperand& Opnd) {
58   Inst.addOperand(Opnd);
59   return Opnd.isValid() ?
60     MCDisassembler::Success :
61     MCDisassembler::Fail;
62 }
63 
64 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
65                                 uint16_t NameIdx) {
66   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
67   if (OpIdx != -1) {
68     auto I = MI.begin();
69     std::advance(I, OpIdx);
70     MI.insert(I, Op);
71   }
72   return OpIdx;
73 }
74 
75 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm,
76                                        uint64_t Addr,
77                                        const MCDisassembler *Decoder) {
78   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
79 
80   // Our branches take a simm16, but we need two extra bits to account for the
81   // factor of 4.
82   APInt SignedOffset(18, Imm * 4, true);
83   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
84 
85   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0))
86     return MCDisassembler::Success;
87   return addOperand(Inst, MCOperand::createImm(Imm));
88 }
89 
90 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr,
91                                      const MCDisassembler *Decoder) {
92   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
93   int64_t Offset;
94   if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets.
95     Offset = SignExtend64<24>(Imm);
96   } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets.
97     Offset = Imm & 0xFFFFF;
98   } else { // GFX9+ supports 21-bit signed offsets.
99     Offset = SignExtend64<21>(Imm);
100   }
101   return addOperand(Inst, MCOperand::createImm(Offset));
102 }
103 
104 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr,
105                                   const MCDisassembler *Decoder) {
106   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
107   return addOperand(Inst, DAsm->decodeBoolReg(Val));
108 }
109 
110 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val,
111                                        uint64_t Addr,
112                                        const MCDisassembler *Decoder) {
113   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
114   return addOperand(Inst, DAsm->decodeSplitBarrier(Val));
115 }
116 
117 #define DECODE_OPERAND(StaticDecoderName, DecoderName)                         \
118   static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm,            \
119                                         uint64_t /*Addr*/,                     \
120                                         const MCDisassembler *Decoder) {       \
121     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
122     return addOperand(Inst, DAsm->DecoderName(Imm));                           \
123   }
124 
125 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is
126 // number of register. Used by VGPR only and AGPR only operands.
127 #define DECODE_OPERAND_REG_8(RegClass)                                         \
128   static DecodeStatus Decode##RegClass##RegisterClass(                         \
129       MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,                           \
130       const MCDisassembler *Decoder) {                                         \
131     assert(Imm < (1 << 8) && "8-bit encoding");                                \
132     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
133     return addOperand(                                                         \
134         Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm));      \
135   }
136 
137 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral,         \
138                      ImmWidth)                                                 \
139   static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,      \
140                            const MCDisassembler *Decoder) {                    \
141     assert(Imm < (1 << EncSize) && #EncSize "-bit encoding");                  \
142     auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);              \
143     return addOperand(Inst,                                                    \
144                       DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm,   \
145                                         MandatoryLiteral, ImmWidth));          \
146   }
147 
148 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to
149 // get register class. Used by SGPR only operands.
150 #define DECODE_OPERAND_REG_7(RegClass, OpWidth)                                \
151   DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0)
152 
153 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register,
154 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC).
155 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp.
156 // Used by AV_ register classes (AGPR or VGPR only register operands).
157 #define DECODE_OPERAND_REG_AV10(RegClass, OpWidth)                             \
158   DECODE_SrcOp(Decode##RegClass##RegisterClass, 10, OpWidth,                   \
159                Imm | AMDGPU::EncValues::IS_VGPR, false, 0)
160 
161 // Decoder for Src(9-bit encoding) registers only.
162 #define DECODE_OPERAND_SRC_REG_9(RegClass, OpWidth)                            \
163   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm, false, 0)
164 
165 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set
166 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers
167 // only.
168 #define DECODE_OPERAND_SRC_REG_A9(RegClass, OpWidth)                           \
169   DECODE_SrcOp(decodeOperand_##RegClass, 9, OpWidth, Imm | 512, false, 0)
170 
171 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding
172 // Imm{9} is acc, registers only.
173 #define DECODE_SRC_OPERAND_REG_AV10(RegClass, OpWidth)                         \
174   DECODE_SrcOp(decodeOperand_##RegClass, 10, OpWidth, Imm, false, 0)
175 
176 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be
177 // register from RegClass or immediate. Registers that don't belong to RegClass
178 // will be decoded and InstPrinter will report warning. Immediate will be
179 // decoded into constant of size ImmWidth, should match width of immediate used
180 // by OperandType (important for floating point types).
181 #define DECODE_OPERAND_SRC_REG_OR_IMM_9(RegClass, OpWidth, ImmWidth)           \
182   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth, Imm,      \
183                false, ImmWidth)
184 
185 #define DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(Name, OpWidth, ImmWidth)         \
186   DECODE_SrcOp(decodeOperand_##Name, 9, OpWidth, Imm, false, ImmWidth)
187 
188 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc)
189 // and decode using 'enum10' from decodeSrcOp.
190 #define DECODE_OPERAND_SRC_REG_OR_IMM_A9(RegClass, OpWidth, ImmWidth)          \
191   DECODE_SrcOp(decodeOperand_##RegClass##_Imm##ImmWidth, 9, OpWidth,           \
192                Imm | 512, false, ImmWidth)
193 
194 #define DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(RegClass, OpWidth, ImmWidth)  \
195   DECODE_SrcOp(decodeOperand_##RegClass##_Deferred##_Imm##ImmWidth, 9,         \
196                OpWidth, Imm, true, ImmWidth)
197 
198 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass'
199 // when RegisterClass is used as an operand. Most often used for destination
200 // operands.
201 
202 DECODE_OPERAND_REG_8(VGPR_32)
203 DECODE_OPERAND_REG_8(VGPR_32_Lo128)
204 DECODE_OPERAND_REG_8(VReg_64)
205 DECODE_OPERAND_REG_8(VReg_96)
206 DECODE_OPERAND_REG_8(VReg_128)
207 DECODE_OPERAND_REG_8(VReg_256)
208 DECODE_OPERAND_REG_8(VReg_288)
209 DECODE_OPERAND_REG_8(VReg_352)
210 DECODE_OPERAND_REG_8(VReg_384)
211 DECODE_OPERAND_REG_8(VReg_512)
212 DECODE_OPERAND_REG_8(VReg_1024)
213 
214 DECODE_OPERAND_REG_7(SReg_32, OPW32)
215 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32)
216 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32)
217 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32)
218 DECODE_OPERAND_REG_7(SReg_64, OPW64)
219 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64)
220 DECODE_OPERAND_REG_7(SReg_96, OPW96)
221 DECODE_OPERAND_REG_7(SReg_128, OPW128)
222 DECODE_OPERAND_REG_7(SReg_256, OPW256)
223 DECODE_OPERAND_REG_7(SReg_512, OPW512)
224 
225 DECODE_OPERAND_REG_8(AGPR_32)
226 DECODE_OPERAND_REG_8(AReg_64)
227 DECODE_OPERAND_REG_8(AReg_128)
228 DECODE_OPERAND_REG_8(AReg_256)
229 DECODE_OPERAND_REG_8(AReg_512)
230 DECODE_OPERAND_REG_8(AReg_1024)
231 
232 DECODE_OPERAND_REG_AV10(AVDst_128, OPW128)
233 DECODE_OPERAND_REG_AV10(AVDst_512, OPW512)
234 
235 // Decoders for register only source RegisterOperands that use use 9-bit Src
236 // encoding: 'decodeOperand_<RegClass>'.
237 
238 DECODE_OPERAND_SRC_REG_9(VGPR_32, OPW32)
239 DECODE_OPERAND_SRC_REG_9(VReg_64, OPW64)
240 DECODE_OPERAND_SRC_REG_9(VReg_128, OPW128)
241 DECODE_OPERAND_SRC_REG_9(VReg_256, OPW256)
242 DECODE_OPERAND_SRC_REG_9(VRegOrLds_32, OPW32)
243 
244 DECODE_OPERAND_SRC_REG_A9(AGPR_32, OPW32)
245 
246 DECODE_SRC_OPERAND_REG_AV10(AV_32, OPW32)
247 DECODE_SRC_OPERAND_REG_AV10(AV_64, OPW64)
248 DECODE_SRC_OPERAND_REG_AV10(AV_128, OPW128)
249 
250 // Decoders for register or immediate RegisterOperands that use 9-bit Src
251 // encoding: 'decodeOperand_<RegClass>_Imm<ImmWidth>'.
252 
253 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_64, OPW64, 64)
254 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 32)
255 DECODE_OPERAND_SRC_REG_OR_IMM_9(SReg_32, OPW32, 16)
256 DECODE_OPERAND_SRC_REG_OR_IMM_9(SRegOrLds_32, OPW32, 32)
257 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32_Lo128, OPW16, 16)
258 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 16)
259 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_32, OPW32, 32)
260 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 64)
261 DECODE_OPERAND_SRC_REG_OR_IMM_9(VS_64, OPW64, 32)
262 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 64)
263 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 32)
264 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_64, OPW64, 16)
265 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 32)
266 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_128, OPW128, 16)
267 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 64)
268 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_256, OPW256, 32)
269 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_512, OPW512, 32)
270 DECODE_OPERAND_SRC_REG_OR_IMM_9(VReg_1024, OPW1024, 32)
271 
272 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2I16, OPW32, 32)
273 DECODE_OPERAND_SRC_REG_OR_IMM_9_TYPED(VS_32_ImmV2F16, OPW32, 16)
274 
275 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_64, OPW64, 64)
276 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_128, OPW128, 32)
277 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_256, OPW256, 64)
278 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_512, OPW512, 32)
279 DECODE_OPERAND_SRC_REG_OR_IMM_A9(AReg_1024, OPW1024, 32)
280 
281 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32_Lo128, OPW16, 16)
282 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW16, 16)
283 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(VS_32, OPW32, 32)
284 DECODE_OPERAND_SRC_REG_OR_IMM_DEFERRED_9(SReg_32, OPW32, 32)
285 
286 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm,
287                                                uint64_t /*Addr*/,
288                                                const MCDisassembler *Decoder) {
289   assert(isUInt<10>(Imm) && "10-bit encoding expected");
290   assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used");
291 
292   bool IsHi = Imm & (1 << 9);
293   unsigned RegIdx = Imm & 0xff;
294   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
295   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
296 }
297 
298 static DecodeStatus
299 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/,
300                                  const MCDisassembler *Decoder) {
301   assert(isUInt<8>(Imm) && "8-bit encoding expected");
302 
303   bool IsHi = Imm & (1 << 7);
304   unsigned RegIdx = Imm & 0x7f;
305   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
306   return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
307 }
308 
309 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm,
310                                                 uint64_t /*Addr*/,
311                                                 const MCDisassembler *Decoder) {
312   assert(isUInt<9>(Imm) && "9-bit encoding expected");
313 
314   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
315   bool IsVGPR = Imm & (1 << 8);
316   if (IsVGPR) {
317     bool IsHi = Imm & (1 << 7);
318     unsigned RegIdx = Imm & 0x7f;
319     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
320   }
321   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
322                                                    Imm & 0xFF, false, 16));
323 }
324 
325 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm,
326                                           uint64_t /*Addr*/,
327                                           const MCDisassembler *Decoder) {
328   assert(isUInt<10>(Imm) && "10-bit encoding expected");
329 
330   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
331   bool IsVGPR = Imm & (1 << 8);
332   if (IsVGPR) {
333     bool IsHi = Imm & (1 << 9);
334     unsigned RegIdx = Imm & 0xff;
335     return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi));
336   }
337   return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16,
338                                                    Imm & 0xFF, false, 16));
339 }
340 
341 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm,
342                                          uint64_t Addr,
343                                          const MCDisassembler *Decoder) {
344   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
345   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
346 }
347 
348 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val,
349                                           uint64_t Addr, const void *Decoder) {
350   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
351   return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val));
352 }
353 
354 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
355                           const MCRegisterInfo *MRI) {
356   if (OpIdx < 0)
357     return false;
358 
359   const MCOperand &Op = Inst.getOperand(OpIdx);
360   if (!Op.isReg())
361     return false;
362 
363   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
364   auto Reg = Sub ? Sub : Op.getReg();
365   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
366 }
367 
368 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst, unsigned Imm,
369                                              AMDGPUDisassembler::OpWidthTy Opw,
370                                              const MCDisassembler *Decoder) {
371   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
372   if (!DAsm->isGFX90A()) {
373     Imm &= 511;
374   } else {
375     // If atomic has both vdata and vdst their register classes are tied.
376     // The bit is decoded along with the vdst, first operand. We need to
377     // change register class to AGPR if vdst was AGPR.
378     // If a DS instruction has both data0 and data1 their register classes
379     // are also tied.
380     unsigned Opc = Inst.getOpcode();
381     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
382     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
383                                                         : AMDGPU::OpName::vdata;
384     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
385     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
386     if ((int)Inst.getNumOperands() == DataIdx) {
387       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
388       if (IsAGPROperand(Inst, DstIdx, MRI))
389         Imm |= 512;
390     }
391 
392     if (TSFlags & SIInstrFlags::DS) {
393       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
394       if ((int)Inst.getNumOperands() == Data2Idx &&
395           IsAGPROperand(Inst, DataIdx, MRI))
396         Imm |= 512;
397     }
398   }
399   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
400 }
401 
402 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm,
403                                            uint64_t Addr,
404                                            const MCDisassembler *Decoder) {
405   assert(Imm < (1 << 9) && "9-bit encoding");
406   auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
407   return addOperand(
408       Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, true));
409 }
410 
411 static DecodeStatus
412 DecodeAVLdSt_32RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
413                              const MCDisassembler *Decoder) {
414   return decodeOperand_AVLdSt_Any(Inst, Imm,
415                                   AMDGPUDisassembler::OPW32, Decoder);
416 }
417 
418 static DecodeStatus
419 DecodeAVLdSt_64RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
420                              const MCDisassembler *Decoder) {
421   return decodeOperand_AVLdSt_Any(Inst, Imm,
422                                   AMDGPUDisassembler::OPW64, Decoder);
423 }
424 
425 static DecodeStatus
426 DecodeAVLdSt_96RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
427                              const MCDisassembler *Decoder) {
428   return decodeOperand_AVLdSt_Any(Inst, Imm,
429                                   AMDGPUDisassembler::OPW96, Decoder);
430 }
431 
432 static DecodeStatus
433 DecodeAVLdSt_128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
434                               const MCDisassembler *Decoder) {
435   return decodeOperand_AVLdSt_Any(Inst, Imm,
436                                   AMDGPUDisassembler::OPW128, Decoder);
437 }
438 
439 static DecodeStatus
440 DecodeAVLdSt_160RegisterClass(MCInst &Inst, unsigned Imm, uint64_t Addr,
441                               const MCDisassembler *Decoder) {
442   return decodeOperand_AVLdSt_Any(Inst, Imm, AMDGPUDisassembler::OPW160,
443                                   Decoder);
444 }
445 
446 #define DECODE_SDWA(DecName) \
447 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
448 
449 DECODE_SDWA(Src32)
450 DECODE_SDWA(Src16)
451 DECODE_SDWA(VopcDst)
452 
453 #include "AMDGPUGenDisassemblerTables.inc"
454 
455 //===----------------------------------------------------------------------===//
456 //
457 //===----------------------------------------------------------------------===//
458 
459 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
460   assert(Bytes.size() >= sizeof(T));
461   const auto Res =
462       support::endian::read<T, llvm::endianness::little>(Bytes.data());
463   Bytes = Bytes.slice(sizeof(T));
464   return Res;
465 }
466 
467 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) {
468   assert(Bytes.size() >= 12);
469   uint64_t Lo =
470       support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data());
471   Bytes = Bytes.slice(8);
472   uint64_t Hi =
473       support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data());
474   Bytes = Bytes.slice(4);
475   return DecoderUInt128(Lo, Hi);
476 }
477 
478 // The disassembler is greedy, so we need to check FI operand value to
479 // not parse a dpp if the correct literal is not set. For dpp16 the
480 // autogenerated decoder checks the dpp literal
481 static bool isValidDPP8(const MCInst &MI) {
482   using namespace llvm::AMDGPU::DPP;
483   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
484   assert(FiIdx != -1);
485   if ((unsigned)FiIdx >= MI.getNumOperands())
486     return false;
487   unsigned Fi = MI.getOperand(FiIdx).getImm();
488   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
489 }
490 
491 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
492                                                 ArrayRef<uint8_t> Bytes_,
493                                                 uint64_t Address,
494                                                 raw_ostream &CS) const {
495   bool IsSDWA = false;
496 
497   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
498   Bytes = Bytes_.slice(0, MaxInstBytesNum);
499 
500   DecodeStatus Res = MCDisassembler::Fail;
501   do {
502     // ToDo: better to switch encoding length using some bit predicate
503     // but it is unknown yet, so try all we can
504 
505     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
506     // encodings
507     if (isGFX11Plus() && Bytes.size() >= 12 ) {
508       DecoderUInt128 DecW = eat12Bytes(Bytes);
509       Res =
510           tryDecodeInst(DecoderTableDPP8GFX1196, DecoderTableDPP8GFX11_FAKE1696,
511                         MI, DecW, Address, CS);
512       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
513         break;
514       MI = MCInst(); // clear
515       Res =
516           tryDecodeInst(DecoderTableDPP8GFX1296, DecoderTableDPP8GFX12_FAKE1696,
517                         MI, DecW, Address, CS);
518       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
519         break;
520       MI = MCInst(); // clear
521 
522       const auto convertVOPDPP = [&]() {
523         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) {
524           convertVOP3PDPPInst(MI);
525         } else if (AMDGPU::isVOPC64DPP(MI.getOpcode())) {
526           convertVOPCDPPInst(MI); // Special VOP3 case
527         } else {
528           assert(MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3);
529           convertVOP3DPPInst(MI); // Regular VOP3 case
530         }
531       };
532       Res = tryDecodeInst(DecoderTableDPPGFX1196, DecoderTableDPPGFX11_FAKE1696,
533                           MI, DecW, Address, CS);
534       if (Res) {
535         convertVOPDPP();
536         break;
537       }
538       Res = tryDecodeInst(DecoderTableDPPGFX1296, DecoderTableDPPGFX12_FAKE1696,
539                           MI, DecW, Address, CS);
540       if (Res) {
541         convertVOPDPP();
542         break;
543       }
544       Res = tryDecodeInst(DecoderTableGFX1196, MI, DecW, Address, CS);
545       if (Res)
546         break;
547 
548       Res = tryDecodeInst(DecoderTableGFX1296, MI, DecW, Address, CS);
549       if (Res)
550         break;
551 
552       Res = tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS);
553       if (Res)
554         break;
555     }
556     // Reinitialize Bytes
557     Bytes = Bytes_.slice(0, MaxInstBytesNum);
558 
559     if (Bytes.size() >= 8) {
560       const uint64_t QW = eatBytes<uint64_t>(Bytes);
561 
562       if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
563         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS);
564         if (Res) {
565           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
566               == -1)
567             break;
568           if (convertDPP8Inst(MI) == MCDisassembler::Success)
569             break;
570           MI = MCInst(); // clear
571         }
572       }
573 
574       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address, CS);
575       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
576         break;
577       MI = MCInst(); // clear
578 
579       Res = tryDecodeInst(DecoderTableDPP8GFX1164,
580                           DecoderTableDPP8GFX11_FAKE1664, MI, QW, Address, CS);
581       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
582         break;
583       MI = MCInst(); // clear
584 
585       Res = tryDecodeInst(DecoderTableDPP8GFX1264,
586                           DecoderTableDPP8GFX12_FAKE1664, MI, QW, Address, CS);
587       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
588         break;
589       MI = MCInst(); // clear
590 
591       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address, CS);
592       if (Res) break;
593 
594       Res = tryDecodeInst(DecoderTableDPPGFX1164, DecoderTableDPPGFX11_FAKE1664,
595                           MI, QW, Address, CS);
596       if (Res) {
597         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
598           convertVOPCDPPInst(MI);
599         break;
600       }
601 
602       Res = tryDecodeInst(DecoderTableDPPGFX1264, DecoderTableDPPGFX12_FAKE1664,
603                           MI, QW, Address, CS);
604       if (Res) {
605         if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC)
606           convertVOPCDPPInst(MI);
607         break;
608       }
609 
610       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address, CS);
611       if (Res) { IsSDWA = true;  break; }
612 
613       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address, CS);
614       if (Res) { IsSDWA = true;  break; }
615 
616       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address, CS);
617       if (Res) { IsSDWA = true;  break; }
618 
619       if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem)) {
620         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS);
621         if (Res)
622           break;
623       }
624 
625       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
626       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
627       // table first so we print the correct name.
628       if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts)) {
629         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS);
630         if (Res)
631           break;
632       }
633     }
634 
635     // Reinitialize Bytes as DPP64 could have eaten too much
636     Bytes = Bytes_.slice(0, MaxInstBytesNum);
637 
638     // Try decode 32-bit instruction
639     if (Bytes.size() < 4) break;
640     const uint32_t DW = eatBytes<uint32_t>(Bytes);
641     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS);
642     if (Res) break;
643 
644     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS);
645     if (Res) break;
646 
647     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS);
648     if (Res) break;
649 
650     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
651       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS);
652       if (Res)
653         break;
654     }
655 
656     if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding)) {
657       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS);
658       if (Res) break;
659     }
660 
661     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS);
662     if (Res) break;
663 
664     Res = tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW,
665                         Address, CS);
666     if (Res) break;
667 
668     Res = tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW,
669                         Address, CS);
670     if (Res)
671       break;
672 
673     if (Bytes.size() < 4) break;
674     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
675 
676     if (STI.hasFeature(AMDGPU::FeatureGFX940Insts)) {
677       Res = tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS);
678       if (Res)
679         break;
680     }
681 
682     if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts)) {
683       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS);
684       if (Res)
685         break;
686     }
687 
688     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS);
689     if (Res) break;
690 
691     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address, CS);
692     if (Res) break;
693 
694     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS);
695     if (Res) break;
696 
697     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS);
698     if (Res) break;
699 
700     Res = tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW,
701                         Address, CS);
702     if (Res)
703       break;
704 
705     Res = tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW,
706                         Address, CS);
707     if (Res)
708       break;
709 
710     Res = tryDecodeInst(DecoderTableWMMAGFX1164, MI, QW, Address, CS);
711     if (Res)
712       break;
713 
714     Res = tryDecodeInst(DecoderTableWMMAGFX1264, MI, QW, Address, CS);
715   } while (false);
716 
717   if (Res && AMDGPU::isMAC(MI.getOpcode())) {
718     // Insert dummy unused src2_modifiers.
719     insertNamedMCOperand(MI, MCOperand::createImm(0),
720                          AMDGPU::OpName::src2_modifiers);
721   }
722 
723   if (Res && (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp ||
724               MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp)) {
725     // Insert dummy unused src2_modifiers.
726     insertNamedMCOperand(MI, MCOperand::createImm(0),
727                          AMDGPU::OpName::src2_modifiers);
728   }
729 
730   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) &&
731       !AMDGPU::hasGDS(STI)) {
732     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds);
733   }
734 
735   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
736           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
737     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
738                                              AMDGPU::OpName::cpol);
739     if (CPolPos != -1) {
740       unsigned CPol =
741           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
742               AMDGPU::CPol::GLC : 0;
743       if (MI.getNumOperands() <= (unsigned)CPolPos) {
744         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
745                              AMDGPU::OpName::cpol);
746       } else if (CPol) {
747         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
748       }
749     }
750   }
751 
752   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
753               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
754              (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) {
755     // GFX90A lost TFE, its place is occupied by ACC.
756     int TFEOpIdx =
757         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
758     if (TFEOpIdx != -1) {
759       auto TFEIter = MI.begin();
760       std::advance(TFEIter, TFEOpIdx);
761       MI.insert(TFEIter, MCOperand::createImm(0));
762     }
763   }
764 
765   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
766               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
767     int SWZOpIdx =
768         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
769     if (SWZOpIdx != -1) {
770       auto SWZIter = MI.begin();
771       std::advance(SWZIter, SWZOpIdx);
772       MI.insert(SWZIter, MCOperand::createImm(0));
773     }
774   }
775 
776   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
777     int VAddr0Idx =
778         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
779     int RsrcIdx =
780         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
781     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
782     if (VAddr0Idx >= 0 && NSAArgs > 0) {
783       unsigned NSAWords = (NSAArgs + 3) / 4;
784       if (Bytes.size() < 4 * NSAWords) {
785         Res = MCDisassembler::Fail;
786       } else {
787         for (unsigned i = 0; i < NSAArgs; ++i) {
788           const unsigned VAddrIdx = VAddr0Idx + 1 + i;
789           auto VAddrRCID =
790               MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass;
791           MI.insert(MI.begin() + VAddrIdx,
792                     createRegOperand(VAddrRCID, Bytes[i]));
793         }
794         Bytes = Bytes.slice(4 * NSAWords);
795       }
796     }
797 
798     if (Res)
799       Res = convertMIMGInst(MI);
800   }
801 
802   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
803               (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)))
804     Res = convertMIMGInst(MI);
805 
806   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP))
807     Res = convertEXPInst(MI);
808 
809   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP))
810     Res = convertVINTERPInst(MI);
811 
812   if (Res && IsSDWA)
813     Res = convertSDWAInst(MI);
814 
815   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
816                                               AMDGPU::OpName::vdst_in);
817   if (VDstIn_Idx != -1) {
818     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
819                            MCOI::OperandConstraint::TIED_TO);
820     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
821          !MI.getOperand(VDstIn_Idx).isReg() ||
822          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
823       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
824         MI.erase(&MI.getOperand(VDstIn_Idx));
825       insertNamedMCOperand(MI,
826         MCOperand::createReg(MI.getOperand(Tied).getReg()),
827         AMDGPU::OpName::vdst_in);
828     }
829   }
830 
831   int ImmLitIdx =
832       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
833   bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK;
834   if (Res && ImmLitIdx != -1 && !IsSOPK)
835     Res = convertFMAanyK(MI, ImmLitIdx);
836 
837   // if the opcode was not recognized we'll assume a Size of 4 bytes
838   // (unless there are fewer bytes left)
839   Size = Res ? (MaxInstBytesNum - Bytes.size())
840              : std::min((size_t)4, Bytes_.size());
841   return Res;
842 }
843 
844 DecodeStatus AMDGPUDisassembler::convertEXPInst(MCInst &MI) const {
845   if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) {
846     // The MCInst still has these fields even though they are no longer encoded
847     // in the GFX11 instruction.
848     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm);
849     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr);
850   }
851   return MCDisassembler::Success;
852 }
853 
854 DecodeStatus AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const {
855   if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 ||
856       MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 ||
857       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 ||
858       MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 ||
859       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 ||
860       MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 ||
861       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 ||
862       MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) {
863     // The MCInst has this field that is not directly encoded in the
864     // instruction.
865     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel);
866   }
867   return MCDisassembler::Success;
868 }
869 
870 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
871   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
872       STI.hasFeature(AMDGPU::FeatureGFX10)) {
873     if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst))
874       // VOPC - insert clamp
875       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
876   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
877     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
878     if (SDst != -1) {
879       // VOPC - insert VCC register as sdst
880       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
881                            AMDGPU::OpName::sdst);
882     } else {
883       // VOP1/2 - insert omod if present in instruction
884       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
885     }
886   }
887   return MCDisassembler::Success;
888 }
889 
890 struct VOPModifiers {
891   unsigned OpSel = 0;
892   unsigned OpSelHi = 0;
893   unsigned NegLo = 0;
894   unsigned NegHi = 0;
895 };
896 
897 // Reconstruct values of VOP3/VOP3P operands such as op_sel.
898 // Note that these values do not affect disassembler output,
899 // so this is only necessary for consistency with src_modifiers.
900 static VOPModifiers collectVOPModifiers(const MCInst &MI,
901                                         bool IsVOP3P = false) {
902   VOPModifiers Modifiers;
903   unsigned Opc = MI.getOpcode();
904   const int ModOps[] = {AMDGPU::OpName::src0_modifiers,
905                         AMDGPU::OpName::src1_modifiers,
906                         AMDGPU::OpName::src2_modifiers};
907   for (int J = 0; J < 3; ++J) {
908     int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]);
909     if (OpIdx == -1)
910       continue;
911 
912     unsigned Val = MI.getOperand(OpIdx).getImm();
913 
914     Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J;
915     if (IsVOP3P) {
916       Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J;
917       Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J;
918       Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J;
919     } else if (J == 0) {
920       Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3;
921     }
922   }
923 
924   return Modifiers;
925 }
926 
927 // MAC opcodes have special old and src2 operands.
928 // src2 is tied to dst, while old is not tied (but assumed to be).
929 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const {
930   constexpr int DST_IDX = 0;
931   auto Opcode = MI.getOpcode();
932   const auto &Desc = MCII->get(Opcode);
933   auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old);
934 
935   if (OldIdx != -1 && Desc.getOperandConstraint(
936                           OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) {
937     assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2));
938     assert(Desc.getOperandConstraint(
939                AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2),
940                MCOI::OperandConstraint::TIED_TO) == DST_IDX);
941     (void)DST_IDX;
942     return true;
943   }
944 
945   return false;
946 }
947 
948 // Create dummy old operand and insert dummy unused src2_modifiers
949 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const {
950   assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands());
951   insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
952   insertNamedMCOperand(MI, MCOperand::createImm(0),
953                        AMDGPU::OpName::src2_modifiers);
954 }
955 
956 // We must check FI == literal to reject not genuine dpp8 insts, and we must
957 // first add optional MI operands to check FI
958 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
959   unsigned Opc = MI.getOpcode();
960 
961   if (MCII->get(Opc).TSFlags & SIInstrFlags::VOP3P) {
962     convertVOP3PDPPInst(MI);
963   } else if ((MCII->get(Opc).TSFlags & SIInstrFlags::VOPC) ||
964              AMDGPU::isVOPC64DPP(Opc)) {
965     convertVOPCDPPInst(MI);
966   } else {
967     if (isMacDPP(MI))
968       convertMacDPPInst(MI);
969 
970     int VDstInIdx =
971         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
972     if (VDstInIdx != -1)
973       insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
974 
975     if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp8_gfx12 ||
976         MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp8_gfx12)
977       insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
978 
979     unsigned DescNumOps = MCII->get(Opc).getNumOperands();
980     if (MI.getNumOperands() < DescNumOps &&
981         AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
982       auto Mods = collectVOPModifiers(MI);
983       insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
984                            AMDGPU::OpName::op_sel);
985     } else {
986       // Insert dummy unused src modifiers.
987       if (MI.getNumOperands() < DescNumOps &&
988           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
989         insertNamedMCOperand(MI, MCOperand::createImm(0),
990                              AMDGPU::OpName::src0_modifiers);
991 
992       if (MI.getNumOperands() < DescNumOps &&
993           AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
994         insertNamedMCOperand(MI, MCOperand::createImm(0),
995                              AMDGPU::OpName::src1_modifiers);
996     }
997   }
998   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
999 }
1000 
1001 DecodeStatus AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const {
1002   if (isMacDPP(MI))
1003     convertMacDPPInst(MI);
1004 
1005   int VDstInIdx =
1006       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in);
1007   if (VDstInIdx != -1)
1008     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in);
1009 
1010   if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp_gfx12 ||
1011       MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp_gfx12)
1012     insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::src2);
1013 
1014   unsigned Opc = MI.getOpcode();
1015   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1016   if (MI.getNumOperands() < DescNumOps &&
1017       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) {
1018     auto Mods = collectVOPModifiers(MI);
1019     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1020                          AMDGPU::OpName::op_sel);
1021   }
1022   return MCDisassembler::Success;
1023 }
1024 
1025 // Note that before gfx10, the MIMG encoding provided no information about
1026 // VADDR size. Consequently, decoded instructions always show address as if it
1027 // has 1 dword, which could be not really so.
1028 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
1029   auto TSFlags = MCII->get(MI.getOpcode()).TSFlags;
1030 
1031   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1032                                            AMDGPU::OpName::vdst);
1033 
1034   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1035                                             AMDGPU::OpName::vdata);
1036   int VAddr0Idx =
1037       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
1038   int RsrcOpName = TSFlags & SIInstrFlags::MIMG ? AMDGPU::OpName::srsrc
1039                                                 : AMDGPU::OpName::rsrc;
1040   int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName);
1041   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1042                                             AMDGPU::OpName::dmask);
1043 
1044   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1045                                             AMDGPU::OpName::tfe);
1046   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
1047                                             AMDGPU::OpName::d16);
1048 
1049   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
1050   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1051       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
1052 
1053   assert(VDataIdx != -1);
1054   if (BaseOpcode->BVH) {
1055     // Add A16 operand for intersect_ray instructions
1056     addOperand(MI, MCOperand::createImm(BaseOpcode->A16));
1057     return MCDisassembler::Success;
1058   }
1059 
1060   bool IsAtomic = (VDstIdx != -1);
1061   bool IsGather4 = TSFlags & SIInstrFlags::Gather4;
1062   bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE;
1063   bool IsNSA = false;
1064   bool IsPartialNSA = false;
1065   unsigned AddrSize = Info->VAddrDwords;
1066 
1067   if (isGFX10Plus()) {
1068     unsigned DimIdx =
1069         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
1070     int A16Idx =
1071         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
1072     const AMDGPU::MIMGDimInfo *Dim =
1073         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
1074     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
1075 
1076     AddrSize =
1077         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
1078 
1079     // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms.
1080     // VIMAGE insts other than BVH never use vaddr4.
1081     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA ||
1082             Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA ||
1083             Info->MIMGEncoding == AMDGPU::MIMGEncGfx12;
1084     if (!IsNSA) {
1085       if (!IsVSample && AddrSize > 12)
1086         AddrSize = 16;
1087     } else {
1088       if (AddrSize > Info->VAddrDwords) {
1089         if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) {
1090           // The NSA encoding does not contain enough operands for the
1091           // combination of base opcode / dimension. Should this be an error?
1092           return MCDisassembler::Success;
1093         }
1094         IsPartialNSA = true;
1095       }
1096     }
1097   }
1098 
1099   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
1100   unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1);
1101 
1102   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
1103   if (D16 && AMDGPU::hasPackedD16(STI)) {
1104     DstSize = (DstSize + 1) / 2;
1105   }
1106 
1107   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
1108     DstSize += 1;
1109 
1110   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
1111     return MCDisassembler::Success;
1112 
1113   int NewOpcode =
1114       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
1115   if (NewOpcode == -1)
1116     return MCDisassembler::Success;
1117 
1118   // Widen the register to the correct number of enabled channels.
1119   unsigned NewVdata = AMDGPU::NoRegister;
1120   if (DstSize != Info->VDataDwords) {
1121     auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass;
1122 
1123     // Get first subregister of VData
1124     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
1125     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
1126     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
1127 
1128     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
1129                                        &MRI.getRegClass(DataRCID));
1130     if (NewVdata == AMDGPU::NoRegister) {
1131       // It's possible to encode this such that the low register + enabled
1132       // components exceeds the register count.
1133       return MCDisassembler::Success;
1134     }
1135   }
1136 
1137   // If not using NSA on GFX10+, widen vaddr0 address register to correct size.
1138   // If using partial NSA on GFX11+ widen last address register.
1139   int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx;
1140   unsigned NewVAddrSA = AMDGPU::NoRegister;
1141   if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) &&
1142       AddrSize != Info->VAddrDwords) {
1143     unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg();
1144     unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0);
1145     VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA;
1146 
1147     auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass;
1148     NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0,
1149                                         &MRI.getRegClass(AddrRCID));
1150     if (!NewVAddrSA)
1151       return MCDisassembler::Success;
1152   }
1153 
1154   MI.setOpcode(NewOpcode);
1155 
1156   if (NewVdata != AMDGPU::NoRegister) {
1157     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
1158 
1159     if (IsAtomic) {
1160       // Atomic operations have an additional operand (a copy of data)
1161       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
1162     }
1163   }
1164 
1165   if (NewVAddrSA) {
1166     MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA);
1167   } else if (IsNSA) {
1168     assert(AddrSize <= Info->VAddrDwords);
1169     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
1170              MI.begin() + VAddr0Idx + Info->VAddrDwords);
1171   }
1172 
1173   return MCDisassembler::Success;
1174 }
1175 
1176 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen
1177 // decoder only adds to src_modifiers, so manually add the bits to the other
1178 // operands.
1179 DecodeStatus AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const {
1180   unsigned Opc = MI.getOpcode();
1181   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1182   auto Mods = collectVOPModifiers(MI, true);
1183 
1184   if (MI.getNumOperands() < DescNumOps &&
1185       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in))
1186     insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in);
1187 
1188   if (MI.getNumOperands() < DescNumOps &&
1189       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel))
1190     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel),
1191                          AMDGPU::OpName::op_sel);
1192   if (MI.getNumOperands() < DescNumOps &&
1193       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi))
1194     insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi),
1195                          AMDGPU::OpName::op_sel_hi);
1196   if (MI.getNumOperands() < DescNumOps &&
1197       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo))
1198     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo),
1199                          AMDGPU::OpName::neg_lo);
1200   if (MI.getNumOperands() < DescNumOps &&
1201       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi))
1202     insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi),
1203                          AMDGPU::OpName::neg_hi);
1204 
1205   return MCDisassembler::Success;
1206 }
1207 
1208 // Create dummy old operand and insert optional operands
1209 DecodeStatus AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const {
1210   unsigned Opc = MI.getOpcode();
1211   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
1212 
1213   if (MI.getNumOperands() < DescNumOps &&
1214       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old))
1215     insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old);
1216 
1217   if (MI.getNumOperands() < DescNumOps &&
1218       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers))
1219     insertNamedMCOperand(MI, MCOperand::createImm(0),
1220                          AMDGPU::OpName::src0_modifiers);
1221 
1222   if (MI.getNumOperands() < DescNumOps &&
1223       AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers))
1224     insertNamedMCOperand(MI, MCOperand::createImm(0),
1225                          AMDGPU::OpName::src1_modifiers);
1226   return MCDisassembler::Success;
1227 }
1228 
1229 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
1230                                                 int ImmLitIdx) const {
1231   assert(HasLiteral && "Should have decoded a literal");
1232   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
1233   unsigned DescNumOps = Desc.getNumOperands();
1234   insertNamedMCOperand(MI, MCOperand::createImm(Literal),
1235                        AMDGPU::OpName::immDeferred);
1236   assert(DescNumOps == MI.getNumOperands());
1237   for (unsigned I = 0; I < DescNumOps; ++I) {
1238     auto &Op = MI.getOperand(I);
1239     auto OpType = Desc.operands()[I].OperandType;
1240     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
1241                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
1242     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
1243         IsDeferredOp)
1244       Op.setImm(Literal);
1245   }
1246   return MCDisassembler::Success;
1247 }
1248 
1249 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
1250   return getContext().getRegisterInfo()->
1251     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
1252 }
1253 
1254 inline
1255 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
1256                                          const Twine& ErrMsg) const {
1257   *CommentStream << "Error: " + ErrMsg;
1258 
1259   // ToDo: add support for error operands to MCInst.h
1260   // return MCOperand::createError(V);
1261   return MCOperand();
1262 }
1263 
1264 inline
1265 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
1266   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
1267 }
1268 
1269 inline
1270 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
1271                                                unsigned Val) const {
1272   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
1273   if (Val >= RegCl.getNumRegs())
1274     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
1275                            ": unknown register " + Twine(Val));
1276   return createRegOperand(RegCl.getRegister(Val));
1277 }
1278 
1279 inline
1280 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
1281                                                 unsigned Val) const {
1282   // ToDo: SI/CI have 104 SGPRs, VI - 102
1283   // Valery: here we accepting as much as we can, let assembler sort it out
1284   int shift = 0;
1285   switch (SRegClassID) {
1286   case AMDGPU::SGPR_32RegClassID:
1287   case AMDGPU::TTMP_32RegClassID:
1288     break;
1289   case AMDGPU::SGPR_64RegClassID:
1290   case AMDGPU::TTMP_64RegClassID:
1291     shift = 1;
1292     break;
1293   case AMDGPU::SGPR_96RegClassID:
1294   case AMDGPU::TTMP_96RegClassID:
1295   case AMDGPU::SGPR_128RegClassID:
1296   case AMDGPU::TTMP_128RegClassID:
1297   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
1298   // this bundle?
1299   case AMDGPU::SGPR_256RegClassID:
1300   case AMDGPU::TTMP_256RegClassID:
1301     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
1302   // this bundle?
1303   case AMDGPU::SGPR_288RegClassID:
1304   case AMDGPU::TTMP_288RegClassID:
1305   case AMDGPU::SGPR_320RegClassID:
1306   case AMDGPU::TTMP_320RegClassID:
1307   case AMDGPU::SGPR_352RegClassID:
1308   case AMDGPU::TTMP_352RegClassID:
1309   case AMDGPU::SGPR_384RegClassID:
1310   case AMDGPU::TTMP_384RegClassID:
1311   case AMDGPU::SGPR_512RegClassID:
1312   case AMDGPU::TTMP_512RegClassID:
1313     shift = 2;
1314     break;
1315   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
1316   // this bundle?
1317   default:
1318     llvm_unreachable("unhandled register class");
1319   }
1320 
1321   if (Val % (1 << shift)) {
1322     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
1323                    << ": scalar reg isn't aligned " << Val;
1324   }
1325 
1326   return createRegOperand(SRegClassID, Val >> shift);
1327 }
1328 
1329 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx,
1330                                                   bool IsHi) const {
1331   unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0);
1332   return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16);
1333 }
1334 
1335 // Decode Literals for insts which always have a literal in the encoding
1336 MCOperand
1337 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1338   if (HasLiteral) {
1339     assert(
1340         AMDGPU::hasVOPD(STI) &&
1341         "Should only decode multiple kimm with VOPD, check VSrc operand types");
1342     if (Literal != Val)
1343       return errOperand(Val, "More than one unique literal is illegal");
1344   }
1345   HasLiteral = true;
1346   Literal = Val;
1347   return MCOperand::createImm(Literal);
1348 }
1349 
1350 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const {
1351   // For now all literal constants are supposed to be unsigned integer
1352   // ToDo: deal with signed/unsigned 64-bit integer constants
1353   // ToDo: deal with float/double constants
1354   if (!HasLiteral) {
1355     if (Bytes.size() < 4) {
1356       return errOperand(0, "cannot read literal, inst bytes left " +
1357                         Twine(Bytes.size()));
1358     }
1359     HasLiteral = true;
1360     Literal = Literal64 = eatBytes<uint32_t>(Bytes);
1361     if (ExtendFP64)
1362       Literal64 <<= 32;
1363   }
1364   return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal);
1365 }
1366 
1367 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1368   using namespace AMDGPU::EncValues;
1369 
1370   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1371   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1372     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1373     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1374       // Cast prevents negative overflow.
1375 }
1376 
1377 static int64_t getInlineImmVal32(unsigned Imm) {
1378   switch (Imm) {
1379   case 240:
1380     return llvm::bit_cast<uint32_t>(0.5f);
1381   case 241:
1382     return llvm::bit_cast<uint32_t>(-0.5f);
1383   case 242:
1384     return llvm::bit_cast<uint32_t>(1.0f);
1385   case 243:
1386     return llvm::bit_cast<uint32_t>(-1.0f);
1387   case 244:
1388     return llvm::bit_cast<uint32_t>(2.0f);
1389   case 245:
1390     return llvm::bit_cast<uint32_t>(-2.0f);
1391   case 246:
1392     return llvm::bit_cast<uint32_t>(4.0f);
1393   case 247:
1394     return llvm::bit_cast<uint32_t>(-4.0f);
1395   case 248: // 1 / (2 * PI)
1396     return 0x3e22f983;
1397   default:
1398     llvm_unreachable("invalid fp inline imm");
1399   }
1400 }
1401 
1402 static int64_t getInlineImmVal64(unsigned Imm) {
1403   switch (Imm) {
1404   case 240:
1405     return llvm::bit_cast<uint64_t>(0.5);
1406   case 241:
1407     return llvm::bit_cast<uint64_t>(-0.5);
1408   case 242:
1409     return llvm::bit_cast<uint64_t>(1.0);
1410   case 243:
1411     return llvm::bit_cast<uint64_t>(-1.0);
1412   case 244:
1413     return llvm::bit_cast<uint64_t>(2.0);
1414   case 245:
1415     return llvm::bit_cast<uint64_t>(-2.0);
1416   case 246:
1417     return llvm::bit_cast<uint64_t>(4.0);
1418   case 247:
1419     return llvm::bit_cast<uint64_t>(-4.0);
1420   case 248: // 1 / (2 * PI)
1421     return 0x3fc45f306dc9c882;
1422   default:
1423     llvm_unreachable("invalid fp inline imm");
1424   }
1425 }
1426 
1427 static int64_t getInlineImmVal16(unsigned Imm) {
1428   switch (Imm) {
1429   case 240:
1430     return 0x3800;
1431   case 241:
1432     return 0xB800;
1433   case 242:
1434     return 0x3C00;
1435   case 243:
1436     return 0xBC00;
1437   case 244:
1438     return 0x4000;
1439   case 245:
1440     return 0xC000;
1441   case 246:
1442     return 0x4400;
1443   case 247:
1444     return 0xC400;
1445   case 248: // 1 / (2 * PI)
1446     return 0x3118;
1447   default:
1448     llvm_unreachable("invalid fp inline imm");
1449   }
1450 }
1451 
1452 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm) {
1453   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1454       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1455 
1456   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1457   // ImmWidth 0 is a default case where operand should not allow immediates.
1458   // Imm value is still decoded into 32 bit immediate operand, inst printer will
1459   // use it to print verbose error message.
1460   switch (ImmWidth) {
1461   case 0:
1462   case 32:
1463     return MCOperand::createImm(getInlineImmVal32(Imm));
1464   case 64:
1465     return MCOperand::createImm(getInlineImmVal64(Imm));
1466   case 16:
1467     return MCOperand::createImm(getInlineImmVal16(Imm));
1468   default:
1469     llvm_unreachable("implement me");
1470   }
1471 }
1472 
1473 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1474   using namespace AMDGPU;
1475 
1476   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1477   switch (Width) {
1478   default: // fall
1479   case OPW32:
1480   case OPW16:
1481   case OPWV216:
1482     return VGPR_32RegClassID;
1483   case OPW64:
1484   case OPWV232: return VReg_64RegClassID;
1485   case OPW96: return VReg_96RegClassID;
1486   case OPW128: return VReg_128RegClassID;
1487   case OPW160: return VReg_160RegClassID;
1488   case OPW256: return VReg_256RegClassID;
1489   case OPW288: return VReg_288RegClassID;
1490   case OPW320: return VReg_320RegClassID;
1491   case OPW352: return VReg_352RegClassID;
1492   case OPW384: return VReg_384RegClassID;
1493   case OPW512: return VReg_512RegClassID;
1494   case OPW1024: return VReg_1024RegClassID;
1495   }
1496 }
1497 
1498 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1499   using namespace AMDGPU;
1500 
1501   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1502   switch (Width) {
1503   default: // fall
1504   case OPW32:
1505   case OPW16:
1506   case OPWV216:
1507     return AGPR_32RegClassID;
1508   case OPW64:
1509   case OPWV232: return AReg_64RegClassID;
1510   case OPW96: return AReg_96RegClassID;
1511   case OPW128: return AReg_128RegClassID;
1512   case OPW160: return AReg_160RegClassID;
1513   case OPW256: return AReg_256RegClassID;
1514   case OPW288: return AReg_288RegClassID;
1515   case OPW320: return AReg_320RegClassID;
1516   case OPW352: return AReg_352RegClassID;
1517   case OPW384: return AReg_384RegClassID;
1518   case OPW512: return AReg_512RegClassID;
1519   case OPW1024: return AReg_1024RegClassID;
1520   }
1521 }
1522 
1523 
1524 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1525   using namespace AMDGPU;
1526 
1527   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1528   switch (Width) {
1529   default: // fall
1530   case OPW32:
1531   case OPW16:
1532   case OPWV216:
1533     return SGPR_32RegClassID;
1534   case OPW64:
1535   case OPWV232: return SGPR_64RegClassID;
1536   case OPW96: return SGPR_96RegClassID;
1537   case OPW128: return SGPR_128RegClassID;
1538   case OPW160: return SGPR_160RegClassID;
1539   case OPW256: return SGPR_256RegClassID;
1540   case OPW288: return SGPR_288RegClassID;
1541   case OPW320: return SGPR_320RegClassID;
1542   case OPW352: return SGPR_352RegClassID;
1543   case OPW384: return SGPR_384RegClassID;
1544   case OPW512: return SGPR_512RegClassID;
1545   }
1546 }
1547 
1548 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1549   using namespace AMDGPU;
1550 
1551   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1552   switch (Width) {
1553   default: // fall
1554   case OPW32:
1555   case OPW16:
1556   case OPWV216:
1557     return TTMP_32RegClassID;
1558   case OPW64:
1559   case OPWV232: return TTMP_64RegClassID;
1560   case OPW128: return TTMP_128RegClassID;
1561   case OPW256: return TTMP_256RegClassID;
1562   case OPW288: return TTMP_288RegClassID;
1563   case OPW320: return TTMP_320RegClassID;
1564   case OPW352: return TTMP_352RegClassID;
1565   case OPW384: return TTMP_384RegClassID;
1566   case OPW512: return TTMP_512RegClassID;
1567   }
1568 }
1569 
1570 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1571   using namespace AMDGPU::EncValues;
1572 
1573   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1574   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1575 
1576   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1577 }
1578 
1579 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1580                                           bool MandatoryLiteral,
1581                                           unsigned ImmWidth, bool IsFP) const {
1582   using namespace AMDGPU::EncValues;
1583 
1584   assert(Val < 1024); // enum10
1585 
1586   bool IsAGPR = Val & 512;
1587   Val &= 511;
1588 
1589   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1590     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1591                                    : getVgprClassId(Width), Val - VGPR_MIN);
1592   }
1593   return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth,
1594                             IsFP);
1595 }
1596 
1597 MCOperand AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width,
1598                                                  unsigned Val,
1599                                                  bool MandatoryLiteral,
1600                                                  unsigned ImmWidth,
1601                                                  bool IsFP) const {
1602   // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been
1603   // decoded earlier.
1604   assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0");
1605   using namespace AMDGPU::EncValues;
1606 
1607   if (Val <= SGPR_MAX) {
1608     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1609     static_assert(SGPR_MIN == 0);
1610     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1611   }
1612 
1613   int TTmpIdx = getTTmpIdx(Val);
1614   if (TTmpIdx >= 0) {
1615     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1616   }
1617 
1618   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1619     return decodeIntImmed(Val);
1620 
1621   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1622     return decodeFPImmed(ImmWidth, Val);
1623 
1624   if (Val == LITERAL_CONST) {
1625     if (MandatoryLiteral)
1626       // Keep a sentinel value for deferred setting
1627       return MCOperand::createImm(LITERAL_CONST);
1628     else
1629       return decodeLiteralConstant(IsFP && ImmWidth == 64);
1630   }
1631 
1632   switch (Width) {
1633   case OPW32:
1634   case OPW16:
1635   case OPWV216:
1636     return decodeSpecialReg32(Val);
1637   case OPW64:
1638   case OPWV232:
1639     return decodeSpecialReg64(Val);
1640   default:
1641     llvm_unreachable("unexpected immediate type");
1642   }
1643 }
1644 
1645 // Bit 0 of DstY isn't stored in the instruction, because it's always the
1646 // opposite of bit 0 of DstX.
1647 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst,
1648                                                unsigned Val) const {
1649   int VDstXInd =
1650       AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX);
1651   assert(VDstXInd != -1);
1652   assert(Inst.getOperand(VDstXInd).isReg());
1653   unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg());
1654   Val |= ~XDstReg & 1;
1655   auto Width = llvm::AMDGPUDisassembler::OPW32;
1656   return createRegOperand(getVgprClassId(Width), Val);
1657 }
1658 
1659 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1660   using namespace AMDGPU;
1661 
1662   switch (Val) {
1663   // clang-format off
1664   case 102: return createRegOperand(FLAT_SCR_LO);
1665   case 103: return createRegOperand(FLAT_SCR_HI);
1666   case 104: return createRegOperand(XNACK_MASK_LO);
1667   case 105: return createRegOperand(XNACK_MASK_HI);
1668   case 106: return createRegOperand(VCC_LO);
1669   case 107: return createRegOperand(VCC_HI);
1670   case 108: return createRegOperand(TBA_LO);
1671   case 109: return createRegOperand(TBA_HI);
1672   case 110: return createRegOperand(TMA_LO);
1673   case 111: return createRegOperand(TMA_HI);
1674   case 124:
1675     return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0);
1676   case 125:
1677     return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL);
1678   case 126: return createRegOperand(EXEC_LO);
1679   case 127: return createRegOperand(EXEC_HI);
1680   case 235: return createRegOperand(SRC_SHARED_BASE_LO);
1681   case 236: return createRegOperand(SRC_SHARED_LIMIT_LO);
1682   case 237: return createRegOperand(SRC_PRIVATE_BASE_LO);
1683   case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO);
1684   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1685   case 251: return createRegOperand(SRC_VCCZ);
1686   case 252: return createRegOperand(SRC_EXECZ);
1687   case 253: return createRegOperand(SRC_SCC);
1688   case 254: return createRegOperand(LDS_DIRECT);
1689   default: break;
1690     // clang-format on
1691   }
1692   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1693 }
1694 
1695 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1696   using namespace AMDGPU;
1697 
1698   switch (Val) {
1699   case 102: return createRegOperand(FLAT_SCR);
1700   case 104: return createRegOperand(XNACK_MASK);
1701   case 106: return createRegOperand(VCC);
1702   case 108: return createRegOperand(TBA);
1703   case 110: return createRegOperand(TMA);
1704   case 124:
1705     if (isGFX11Plus())
1706       return createRegOperand(SGPR_NULL);
1707     break;
1708   case 125:
1709     if (!isGFX11Plus())
1710       return createRegOperand(SGPR_NULL);
1711     break;
1712   case 126: return createRegOperand(EXEC);
1713   case 235: return createRegOperand(SRC_SHARED_BASE);
1714   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1715   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1716   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1717   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1718   case 251: return createRegOperand(SRC_VCCZ);
1719   case 252: return createRegOperand(SRC_EXECZ);
1720   case 253: return createRegOperand(SRC_SCC);
1721   default: break;
1722   }
1723   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1724 }
1725 
1726 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1727                                             const unsigned Val,
1728                                             unsigned ImmWidth) const {
1729   using namespace AMDGPU::SDWA;
1730   using namespace AMDGPU::EncValues;
1731 
1732   if (STI.hasFeature(AMDGPU::FeatureGFX9) ||
1733       STI.hasFeature(AMDGPU::FeatureGFX10)) {
1734     // XXX: cast to int is needed to avoid stupid warning:
1735     // compare with unsigned is always true
1736     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1737         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1738       return createRegOperand(getVgprClassId(Width),
1739                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1740     }
1741     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1742         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1743                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1744       return createSRegOperand(getSgprClassId(Width),
1745                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1746     }
1747     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1748         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1749       return createSRegOperand(getTtmpClassId(Width),
1750                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1751     }
1752 
1753     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1754 
1755     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1756       return decodeIntImmed(SVal);
1757 
1758     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1759       return decodeFPImmed(ImmWidth, SVal);
1760 
1761     return decodeSpecialReg32(SVal);
1762   } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) {
1763     return createRegOperand(getVgprClassId(Width), Val);
1764   }
1765   llvm_unreachable("unsupported target");
1766 }
1767 
1768 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1769   return decodeSDWASrc(OPW16, Val, 16);
1770 }
1771 
1772 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1773   return decodeSDWASrc(OPW32, Val, 32);
1774 }
1775 
1776 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1777   using namespace AMDGPU::SDWA;
1778 
1779   assert((STI.hasFeature(AMDGPU::FeatureGFX9) ||
1780           STI.hasFeature(AMDGPU::FeatureGFX10)) &&
1781          "SDWAVopcDst should be present only on GFX9+");
1782 
1783   bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64);
1784 
1785   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1786     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1787 
1788     int TTmpIdx = getTTmpIdx(Val);
1789     if (TTmpIdx >= 0) {
1790       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1791       return createSRegOperand(TTmpClsId, TTmpIdx);
1792     } else if (Val > SGPR_MAX) {
1793       return IsWave64 ? decodeSpecialReg64(Val)
1794                       : decodeSpecialReg32(Val);
1795     } else {
1796       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1797     }
1798   } else {
1799     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1800   }
1801 }
1802 
1803 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1804   return STI.hasFeature(AMDGPU::FeatureWavefrontSize64)
1805              ? decodeSrcOp(OPW64, Val)
1806              : decodeSrcOp(OPW32, Val);
1807 }
1808 
1809 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const {
1810   return decodeSrcOp(OPW32, Val);
1811 }
1812 
1813 bool AMDGPUDisassembler::isVI() const {
1814   return STI.hasFeature(AMDGPU::FeatureVolcanicIslands);
1815 }
1816 
1817 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1818 
1819 bool AMDGPUDisassembler::isGFX90A() const {
1820   return STI.hasFeature(AMDGPU::FeatureGFX90AInsts);
1821 }
1822 
1823 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1824 
1825 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1826 
1827 bool AMDGPUDisassembler::isGFX10Plus() const {
1828   return AMDGPU::isGFX10Plus(STI);
1829 }
1830 
1831 bool AMDGPUDisassembler::isGFX11() const {
1832   return STI.hasFeature(AMDGPU::FeatureGFX11);
1833 }
1834 
1835 bool AMDGPUDisassembler::isGFX11Plus() const {
1836   return AMDGPU::isGFX11Plus(STI);
1837 }
1838 
1839 bool AMDGPUDisassembler::isGFX12Plus() const {
1840   return AMDGPU::isGFX12Plus(STI);
1841 }
1842 
1843 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1844   return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch);
1845 }
1846 
1847 bool AMDGPUDisassembler::hasKernargPreload() const {
1848   return AMDGPU::hasKernargPreload(STI);
1849 }
1850 
1851 //===----------------------------------------------------------------------===//
1852 // AMDGPU specific symbol handling
1853 //===----------------------------------------------------------------------===//
1854 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK))
1855 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1856   do {                                                                         \
1857     KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n';            \
1858   } while (0)
1859 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK)                        \
1860   do {                                                                         \
1861     KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " "       \
1862              << GET_FIELD(MASK) << '\n';                                       \
1863   } while (0)
1864 
1865 // NOLINTNEXTLINE(readability-identifier-naming)
1866 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1867     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1868   using namespace amdhsa;
1869   StringRef Indent = "\t";
1870 
1871   // We cannot accurately backward compute #VGPRs used from
1872   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1873   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1874   // simply calculate the inverse of what the assembler does.
1875 
1876   uint32_t GranulatedWorkitemVGPRCount =
1877       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT);
1878 
1879   uint32_t NextFreeVGPR =
1880       (GranulatedWorkitemVGPRCount + 1) *
1881       AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32);
1882 
1883   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1884 
1885   // We cannot backward compute values used to calculate
1886   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1887   // directives can't be computed:
1888   // .amdhsa_reserve_vcc
1889   // .amdhsa_reserve_flat_scratch
1890   // .amdhsa_reserve_xnack_mask
1891   // They take their respective default values if not specified in the assembly.
1892   //
1893   // GRANULATED_WAVEFRONT_SGPR_COUNT
1894   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1895   //
1896   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1897   // are set to 0. So while disassembling we consider that:
1898   //
1899   // GRANULATED_WAVEFRONT_SGPR_COUNT
1900   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1901   //
1902   // The disassembler cannot recover the original values of those 3 directives.
1903 
1904   uint32_t GranulatedWavefrontSGPRCount =
1905       GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT);
1906 
1907   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1908     return MCDisassembler::Fail;
1909 
1910   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1911                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1912 
1913   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1914   if (!hasArchitectedFlatScratch())
1915     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1916   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1917   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1918 
1919   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1920     return MCDisassembler::Fail;
1921 
1922   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1923                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1924   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1925                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1926   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1927                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1928   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1929                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1930 
1931   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1932     return MCDisassembler::Fail;
1933 
1934   if (!isGFX12Plus())
1935     PRINT_DIRECTIVE(".amdhsa_dx10_clamp",
1936                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP);
1937 
1938   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1939     return MCDisassembler::Fail;
1940 
1941   if (!isGFX12Plus())
1942     PRINT_DIRECTIVE(".amdhsa_ieee_mode",
1943                     COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE);
1944 
1945   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1946     return MCDisassembler::Fail;
1947 
1948   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1949     return MCDisassembler::Fail;
1950 
1951   if (isGFX9Plus())
1952     PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL);
1953 
1954   if (!isGFX9Plus())
1955     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0)
1956       return MCDisassembler::Fail;
1957   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED1)
1958     return MCDisassembler::Fail;
1959   if (!isGFX10Plus())
1960     if (FourByteBuffer & COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2)
1961       return MCDisassembler::Fail;
1962 
1963   if (isGFX10Plus()) {
1964     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1965                     COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE);
1966     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED);
1967     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS);
1968   }
1969 
1970   if (isGFX12Plus())
1971     PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling",
1972                     COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN);
1973 
1974   return MCDisassembler::Success;
1975 }
1976 
1977 // NOLINTNEXTLINE(readability-identifier-naming)
1978 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1979     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1980   using namespace amdhsa;
1981   StringRef Indent = "\t";
1982   if (hasArchitectedFlatScratch())
1983     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1984                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1985   else
1986     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1987                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1988   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1989                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1990   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1991                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1992   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1993                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1994   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1995                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1996   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1997                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1998 
1999   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
2000     return MCDisassembler::Fail;
2001 
2002   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
2003     return MCDisassembler::Fail;
2004 
2005   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
2006     return MCDisassembler::Fail;
2007 
2008   PRINT_DIRECTIVE(
2009       ".amdhsa_exception_fp_ieee_invalid_op",
2010       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
2011   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
2012                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
2013   PRINT_DIRECTIVE(
2014       ".amdhsa_exception_fp_ieee_div_zero",
2015       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
2016   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
2017                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
2018   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
2019                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
2020   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
2021                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
2022   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
2023                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
2024 
2025   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
2026     return MCDisassembler::Fail;
2027 
2028   return MCDisassembler::Success;
2029 }
2030 
2031 // NOLINTNEXTLINE(readability-identifier-naming)
2032 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3(
2033     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
2034   using namespace amdhsa;
2035   StringRef Indent = "\t";
2036   if (isGFX90A()) {
2037     KdStream << Indent << ".amdhsa_accum_offset "
2038              << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4
2039              << '\n';
2040     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED0)
2041       return MCDisassembler::Fail;
2042     PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT);
2043     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX90A_RESERVED1)
2044       return MCDisassembler::Fail;
2045   } else if (isGFX10Plus()) {
2046     // Bits [0-3].
2047     if (!isGFX12Plus()) {
2048       if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) {
2049         PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count",
2050                         COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2051       } else {
2052         PRINT_PSEUDO_DIRECTIVE_COMMENT(
2053             "SHARED_VGPR_COUNT",
2054             COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT);
2055       }
2056     } else {
2057       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0)
2058         return MCDisassembler::Fail;
2059     }
2060 
2061     // Bits [4-11].
2062     if (isGFX11()) {
2063       PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE",
2064                                      COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE);
2065       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START",
2066                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START);
2067       PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END",
2068                                      COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END);
2069     } else if (isGFX12Plus()) {
2070       PRINT_PSEUDO_DIRECTIVE_COMMENT(
2071           "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE);
2072     } else {
2073       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED1)
2074         return MCDisassembler::Fail;
2075     }
2076 
2077     // Bits [12].
2078     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2)
2079       return MCDisassembler::Fail;
2080 
2081     // Bits [13].
2082     if (isGFX12Plus()) {
2083       PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN",
2084                                      COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN);
2085     } else {
2086       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3)
2087         return MCDisassembler::Fail;
2088     }
2089 
2090     // Bits [14-30].
2091     if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4)
2092       return MCDisassembler::Fail;
2093 
2094     // Bits [31].
2095     if (isGFX11Plus()) {
2096       PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP",
2097                                      COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP);
2098     } else {
2099       if (FourByteBuffer & COMPUTE_PGM_RSRC3_GFX10_RESERVED5)
2100         return MCDisassembler::Fail;
2101     }
2102   } else if (FourByteBuffer) {
2103     return MCDisassembler::Fail;
2104   }
2105   return MCDisassembler::Success;
2106 }
2107 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT
2108 #undef PRINT_DIRECTIVE
2109 #undef GET_FIELD
2110 
2111 MCDisassembler::DecodeStatus
2112 AMDGPUDisassembler::decodeKernelDescriptorDirective(
2113     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
2114     raw_string_ostream &KdStream) const {
2115 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
2116   do {                                                                         \
2117     KdStream << Indent << DIRECTIVE " "                                        \
2118              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
2119   } while (0)
2120 
2121   uint16_t TwoByteBuffer = 0;
2122   uint32_t FourByteBuffer = 0;
2123 
2124   StringRef ReservedBytes;
2125   StringRef Indent = "\t";
2126 
2127   assert(Bytes.size() == 64);
2128   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
2129 
2130   switch (Cursor.tell()) {
2131   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
2132     FourByteBuffer = DE.getU32(Cursor);
2133     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
2134              << '\n';
2135     return MCDisassembler::Success;
2136 
2137   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
2138     FourByteBuffer = DE.getU32(Cursor);
2139     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
2140              << FourByteBuffer << '\n';
2141     return MCDisassembler::Success;
2142 
2143   case amdhsa::KERNARG_SIZE_OFFSET:
2144     FourByteBuffer = DE.getU32(Cursor);
2145     KdStream << Indent << ".amdhsa_kernarg_size "
2146              << FourByteBuffer << '\n';
2147     return MCDisassembler::Success;
2148 
2149   case amdhsa::RESERVED0_OFFSET:
2150     // 4 reserved bytes, must be 0.
2151     ReservedBytes = DE.getBytes(Cursor, 4);
2152     for (int I = 0; I < 4; ++I) {
2153       if (ReservedBytes[I] != 0) {
2154         return MCDisassembler::Fail;
2155       }
2156     }
2157     return MCDisassembler::Success;
2158 
2159   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
2160     // KERNEL_CODE_ENTRY_BYTE_OFFSET
2161     // So far no directive controls this for Code Object V3, so simply skip for
2162     // disassembly.
2163     DE.skip(Cursor, 8);
2164     return MCDisassembler::Success;
2165 
2166   case amdhsa::RESERVED1_OFFSET:
2167     // 20 reserved bytes, must be 0.
2168     ReservedBytes = DE.getBytes(Cursor, 20);
2169     for (int I = 0; I < 20; ++I) {
2170       if (ReservedBytes[I] != 0) {
2171         return MCDisassembler::Fail;
2172       }
2173     }
2174     return MCDisassembler::Success;
2175 
2176   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
2177     FourByteBuffer = DE.getU32(Cursor);
2178     return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream);
2179 
2180   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
2181     FourByteBuffer = DE.getU32(Cursor);
2182     return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream);
2183 
2184   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
2185     FourByteBuffer = DE.getU32(Cursor);
2186     return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream);
2187 
2188   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
2189     using namespace amdhsa;
2190     TwoByteBuffer = DE.getU16(Cursor);
2191 
2192     if (!hasArchitectedFlatScratch())
2193       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
2194                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
2195     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
2196                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
2197     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
2198                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
2199     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
2200                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
2201     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
2202                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
2203     if (!hasArchitectedFlatScratch())
2204       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
2205                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
2206     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
2207                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
2208 
2209     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
2210       return MCDisassembler::Fail;
2211 
2212     // Reserved for GFX9
2213     if (isGFX9() &&
2214         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
2215       return MCDisassembler::Fail;
2216     } else if (isGFX10Plus()) {
2217       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
2218                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2219     }
2220 
2221     // FIXME: We should be looking at the ELF header ABI version for this.
2222     if (AMDGPU::getDefaultAMDHSACodeObjectVersion() >= AMDGPU::AMDHSA_COV5)
2223       PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack",
2224                       KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK);
2225 
2226     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
2227       return MCDisassembler::Fail;
2228 
2229     return MCDisassembler::Success;
2230 
2231   case amdhsa::KERNARG_PRELOAD_OFFSET:
2232     using namespace amdhsa;
2233     TwoByteBuffer = DE.getU16(Cursor);
2234     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) {
2235       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length",
2236                       KERNARG_PRELOAD_SPEC_LENGTH);
2237     }
2238 
2239     if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) {
2240       PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset",
2241                       KERNARG_PRELOAD_SPEC_OFFSET);
2242     }
2243     return MCDisassembler::Success;
2244 
2245   case amdhsa::RESERVED3_OFFSET:
2246     // 4 bytes from here are reserved, must be 0.
2247     ReservedBytes = DE.getBytes(Cursor, 4);
2248     for (int I = 0; I < 4; ++I) {
2249       if (ReservedBytes[I] != 0)
2250         return MCDisassembler::Fail;
2251     }
2252     return MCDisassembler::Success;
2253 
2254   default:
2255     llvm_unreachable("Unhandled index. Case statements cover everything.");
2256     return MCDisassembler::Fail;
2257   }
2258 #undef PRINT_DIRECTIVE
2259 }
2260 
2261 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
2262     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
2263   // CP microcode requires the kernel descriptor to be 64 aligned.
2264   if (Bytes.size() != 64 || KdAddress % 64 != 0)
2265     return MCDisassembler::Fail;
2266 
2267   // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10
2268   // requires us to know the setting of .amdhsa_wavefront_size32 in order to
2269   // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong
2270   // order. Workaround this by first looking up .amdhsa_wavefront_size32 here
2271   // when required.
2272   if (isGFX10Plus()) {
2273     uint16_t KernelCodeProperties =
2274         support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET],
2275                                 llvm::endianness::little);
2276     EnableWavefrontSize32 =
2277         AMDHSA_BITS_GET(KernelCodeProperties,
2278                         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
2279   }
2280 
2281   std::string Kd;
2282   raw_string_ostream KdStream(Kd);
2283   KdStream << ".amdhsa_kernel " << KdName << '\n';
2284 
2285   DataExtractor::Cursor C(0);
2286   while (C && C.tell() < Bytes.size()) {
2287     MCDisassembler::DecodeStatus Status =
2288         decodeKernelDescriptorDirective(C, Bytes, KdStream);
2289 
2290     cantFail(C.takeError());
2291 
2292     if (Status == MCDisassembler::Fail)
2293       return MCDisassembler::Fail;
2294   }
2295   KdStream << ".end_amdhsa_kernel\n";
2296   outs() << KdStream.str();
2297   return MCDisassembler::Success;
2298 }
2299 
2300 std::optional<MCDisassembler::DecodeStatus>
2301 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
2302                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
2303                                   raw_ostream &CStream) const {
2304   // Right now only kernel descriptor needs to be handled.
2305   // We ignore all other symbols for target specific handling.
2306   // TODO:
2307   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
2308   // Object V2 and V3 when symbols are marked protected.
2309 
2310   // amd_kernel_code_t for Code Object V2.
2311   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
2312     Size = 256;
2313     return MCDisassembler::Fail;
2314   }
2315 
2316   // Code Object V3 kernel descriptors.
2317   StringRef Name = Symbol.Name;
2318   if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) {
2319     Size = 64; // Size = 64 regardless of success or failure.
2320     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
2321   }
2322   return std::nullopt;
2323 }
2324 
2325 //===----------------------------------------------------------------------===//
2326 // AMDGPUSymbolizer
2327 //===----------------------------------------------------------------------===//
2328 
2329 // Try to find symbol name for specified label
2330 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(
2331     MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value,
2332     uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/,
2333     uint64_t /*OpSize*/, uint64_t /*InstSize*/) {
2334 
2335   if (!IsBranch) {
2336     return false;
2337   }
2338 
2339   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
2340   if (!Symbols)
2341     return false;
2342 
2343   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
2344     return Val.Addr == static_cast<uint64_t>(Value) &&
2345            Val.Type == ELF::STT_NOTYPE;
2346   });
2347   if (Result != Symbols->end()) {
2348     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
2349     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
2350     Inst.addOperand(MCOperand::createExpr(Add));
2351     return true;
2352   }
2353   // Add to list of referenced addresses, so caller can synthesize a label.
2354   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
2355   return false;
2356 }
2357 
2358 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
2359                                                        int64_t Value,
2360                                                        uint64_t Address) {
2361   llvm_unreachable("unimplemented");
2362 }
2363 
2364 //===----------------------------------------------------------------------===//
2365 // Initialization
2366 //===----------------------------------------------------------------------===//
2367 
2368 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
2369                               LLVMOpInfoCallback /*GetOpInfo*/,
2370                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
2371                               void *DisInfo,
2372                               MCContext *Ctx,
2373                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
2374   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
2375 }
2376 
2377 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
2378                                                 const MCSubtargetInfo &STI,
2379                                                 MCContext &Ctx) {
2380   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
2381 }
2382 
2383 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
2384   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
2385                                          createAMDGPUDisassembler);
2386   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
2387                                        createAMDGPUSymbolizer);
2388 }
2389