1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 // 11 /// \file 12 /// 13 /// This file contains definition for AMDGPU ISA disassembler 14 // 15 //===----------------------------------------------------------------------===// 16 17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)? 18 19 #include "Disassembler/AMDGPUDisassembler.h" 20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 21 #include "SIDefines.h" 22 #include "SIRegisterInfo.h" 23 #include "TargetInfo/AMDGPUTargetInfo.h" 24 #include "Utils/AMDGPUAsmUtils.h" 25 #include "Utils/AMDGPUBaseInfo.h" 26 #include "llvm-c/DisassemblerTypes.h" 27 #include "llvm/BinaryFormat/ELF.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCDecoderOps.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInstrDesc.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/MC/MCSubtargetInfo.h" 35 #include "llvm/MC/TargetRegistry.h" 36 #include "llvm/Support/AMDHSAKernelDescriptor.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "amdgpu-disassembler" 41 42 #define SGPR_MAX \ 43 (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10 \ 44 : AMDGPU::EncValues::SGPR_MAX_SI) 45 46 using DecodeStatus = llvm::MCDisassembler::DecodeStatus; 47 48 static const MCSubtargetInfo &addDefaultWaveSize(const MCSubtargetInfo &STI, 49 MCContext &Ctx) { 50 if (!STI.hasFeature(AMDGPU::FeatureWavefrontSize64) && 51 !STI.hasFeature(AMDGPU::FeatureWavefrontSize32)) { 52 MCSubtargetInfo &STICopy = Ctx.getSubtargetCopy(STI); 53 // If there is no default wave size it must be a generation before gfx10, 54 // these have FeatureWavefrontSize64 in their definition already. For gfx10+ 55 // set wave32 as a default. 56 STICopy.ToggleFeature(AMDGPU::FeatureWavefrontSize32); 57 return STICopy; 58 } 59 60 return STI; 61 } 62 63 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI, 64 MCContext &Ctx, MCInstrInfo const *MCII) 65 : MCDisassembler(addDefaultWaveSize(STI, Ctx), Ctx), MCII(MCII), 66 MRI(*Ctx.getRegisterInfo()), MAI(*Ctx.getAsmInfo()), 67 TargetMaxInstBytes(MAI.getMaxInstLength(&STI)), 68 CodeObjectVersion(AMDGPU::getDefaultAMDHSACodeObjectVersion()) { 69 // ToDo: AMDGPUDisassembler supports only VI ISA. 70 if (!STI.hasFeature(AMDGPU::FeatureGCN3Encoding) && !isGFX10Plus()) 71 report_fatal_error("Disassembly not yet supported for subtarget"); 72 73 for (auto [Symbol, Code] : AMDGPU::UCVersion::getGFXVersions()) 74 createConstantSymbolExpr(Symbol, Code); 75 76 UCVersionW64Expr = createConstantSymbolExpr("UC_VERSION_W64_BIT", 0x2000); 77 UCVersionW32Expr = createConstantSymbolExpr("UC_VERSION_W32_BIT", 0x4000); 78 UCVersionMDPExpr = createConstantSymbolExpr("UC_VERSION_MDP_BIT", 0x8000); 79 } 80 81 void AMDGPUDisassembler::setABIVersion(unsigned Version) { 82 CodeObjectVersion = AMDGPU::getAMDHSACodeObjectVersion(Version); 83 } 84 85 inline static MCDisassembler::DecodeStatus 86 addOperand(MCInst &Inst, const MCOperand& Opnd) { 87 Inst.addOperand(Opnd); 88 return Opnd.isValid() ? 89 MCDisassembler::Success : 90 MCDisassembler::Fail; 91 } 92 93 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op, 94 uint16_t NameIdx) { 95 int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx); 96 if (OpIdx != -1) { 97 auto I = MI.begin(); 98 std::advance(I, OpIdx); 99 MI.insert(I, Op); 100 } 101 return OpIdx; 102 } 103 104 static DecodeStatus decodeSOPPBrTarget(MCInst &Inst, unsigned Imm, 105 uint64_t Addr, 106 const MCDisassembler *Decoder) { 107 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 108 109 // Our branches take a simm16, but we need two extra bits to account for the 110 // factor of 4. 111 APInt SignedOffset(18, Imm * 4, true); 112 int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue(); 113 114 if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2, 0)) 115 return MCDisassembler::Success; 116 return addOperand(Inst, MCOperand::createImm(Imm)); 117 } 118 119 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm, uint64_t Addr, 120 const MCDisassembler *Decoder) { 121 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 122 int64_t Offset; 123 if (DAsm->isGFX12Plus()) { // GFX12 supports 24-bit signed offsets. 124 Offset = SignExtend64<24>(Imm); 125 } else if (DAsm->isVI()) { // VI supports 20-bit unsigned offsets. 126 Offset = Imm & 0xFFFFF; 127 } else { // GFX9+ supports 21-bit signed offsets. 128 Offset = SignExtend64<21>(Imm); 129 } 130 return addOperand(Inst, MCOperand::createImm(Offset)); 131 } 132 133 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val, uint64_t Addr, 134 const MCDisassembler *Decoder) { 135 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 136 return addOperand(Inst, DAsm->decodeBoolReg(Val)); 137 } 138 139 static DecodeStatus decodeSplitBarrier(MCInst &Inst, unsigned Val, 140 uint64_t Addr, 141 const MCDisassembler *Decoder) { 142 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 143 return addOperand(Inst, DAsm->decodeSplitBarrier(Val)); 144 } 145 146 static DecodeStatus decodeDpp8FI(MCInst &Inst, unsigned Val, uint64_t Addr, 147 const MCDisassembler *Decoder) { 148 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 149 return addOperand(Inst, DAsm->decodeDpp8FI(Val)); 150 } 151 152 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \ 153 static DecodeStatus StaticDecoderName(MCInst &Inst, unsigned Imm, \ 154 uint64_t /*Addr*/, \ 155 const MCDisassembler *Decoder) { \ 156 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 157 return addOperand(Inst, DAsm->DecoderName(Imm)); \ 158 } 159 160 // Decoder for registers, decode directly using RegClassID. Imm(8-bit) is 161 // number of register. Used by VGPR only and AGPR only operands. 162 #define DECODE_OPERAND_REG_8(RegClass) \ 163 static DecodeStatus Decode##RegClass##RegisterClass( \ 164 MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 165 const MCDisassembler *Decoder) { \ 166 assert(Imm < (1 << 8) && "8-bit encoding"); \ 167 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 168 return addOperand( \ 169 Inst, DAsm->createRegOperand(AMDGPU::RegClass##RegClassID, Imm)); \ 170 } 171 172 #define DECODE_SrcOp(Name, EncSize, OpWidth, EncImm, MandatoryLiteral, \ 173 ImmWidth) \ 174 static DecodeStatus Name(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, \ 175 const MCDisassembler *Decoder) { \ 176 assert(Imm < (1 << EncSize) && #EncSize "-bit encoding"); \ 177 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); \ 178 return addOperand(Inst, \ 179 DAsm->decodeSrcOp(AMDGPUDisassembler::OpWidth, EncImm, \ 180 MandatoryLiteral, ImmWidth)); \ 181 } 182 183 static DecodeStatus decodeSrcOp(MCInst &Inst, unsigned EncSize, 184 AMDGPUDisassembler::OpWidthTy OpWidth, 185 unsigned Imm, unsigned EncImm, 186 bool MandatoryLiteral, unsigned ImmWidth, 187 AMDGPU::OperandSemantics Sema, 188 const MCDisassembler *Decoder) { 189 assert(Imm < (1U << EncSize) && "Operand doesn't fit encoding!"); 190 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 191 return addOperand(Inst, DAsm->decodeSrcOp(OpWidth, EncImm, MandatoryLiteral, 192 ImmWidth, Sema)); 193 } 194 195 // Decoder for registers. Imm(7-bit) is number of register, uses decodeSrcOp to 196 // get register class. Used by SGPR only operands. 197 #define DECODE_OPERAND_REG_7(RegClass, OpWidth) \ 198 DECODE_SrcOp(Decode##RegClass##RegisterClass, 7, OpWidth, Imm, false, 0) 199 200 // Decoder for registers. Imm(10-bit): Imm{7-0} is number of register, 201 // Imm{9} is acc(agpr or vgpr) Imm{8} should be 0 (see VOP3Pe_SMFMAC). 202 // Set Imm{8} to 1 (IS_VGPR) to decode using 'enum10' from decodeSrcOp. 203 // Used by AV_ register classes (AGPR or VGPR only register operands). 204 template <AMDGPUDisassembler::OpWidthTy OpWidth> 205 static DecodeStatus decodeAV10(MCInst &Inst, unsigned Imm, uint64_t /* Addr */, 206 const MCDisassembler *Decoder) { 207 return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm | AMDGPU::EncValues::IS_VGPR, 208 false, 0, AMDGPU::OperandSemantics::INT, Decoder); 209 } 210 211 // Decoder for Src(9-bit encoding) registers only. 212 template <AMDGPUDisassembler::OpWidthTy OpWidth> 213 static DecodeStatus decodeSrcReg9(MCInst &Inst, unsigned Imm, 214 uint64_t /* Addr */, 215 const MCDisassembler *Decoder) { 216 return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, 0, 217 AMDGPU::OperandSemantics::INT, Decoder); 218 } 219 220 // Decoder for Src(9-bit encoding) AGPR, register number encoded in 9bits, set 221 // Imm{9} to 1 (set acc) and decode using 'enum10' from decodeSrcOp, registers 222 // only. 223 template <AMDGPUDisassembler::OpWidthTy OpWidth> 224 static DecodeStatus decodeSrcA9(MCInst &Inst, unsigned Imm, uint64_t /* Addr */, 225 const MCDisassembler *Decoder) { 226 return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, 0, 227 AMDGPU::OperandSemantics::INT, Decoder); 228 } 229 230 // Decoder for 'enum10' from decodeSrcOp, Imm{0-8} is 9-bit Src encoding 231 // Imm{9} is acc, registers only. 232 template <AMDGPUDisassembler::OpWidthTy OpWidth> 233 static DecodeStatus decodeSrcAV10(MCInst &Inst, unsigned Imm, 234 uint64_t /* Addr */, 235 const MCDisassembler *Decoder) { 236 return decodeSrcOp(Inst, 10, OpWidth, Imm, Imm, false, 0, 237 AMDGPU::OperandSemantics::INT, Decoder); 238 } 239 240 // Decoder for RegisterOperands using 9-bit Src encoding. Operand can be 241 // register from RegClass or immediate. Registers that don't belong to RegClass 242 // will be decoded and InstPrinter will report warning. Immediate will be 243 // decoded into constant of size ImmWidth, should match width of immediate used 244 // by OperandType (important for floating point types). 245 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth, 246 unsigned OperandSemantics> 247 static DecodeStatus decodeSrcRegOrImm9(MCInst &Inst, unsigned Imm, 248 uint64_t /* Addr */, 249 const MCDisassembler *Decoder) { 250 return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, false, ImmWidth, 251 (AMDGPU::OperandSemantics)OperandSemantics, Decoder); 252 } 253 254 // Decoder for Src(9-bit encoding) AGPR or immediate. Set Imm{9} to 1 (set acc) 255 // and decode using 'enum10' from decodeSrcOp. 256 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth, 257 unsigned OperandSemantics> 258 static DecodeStatus decodeSrcRegOrImmA9(MCInst &Inst, unsigned Imm, 259 uint64_t /* Addr */, 260 const MCDisassembler *Decoder) { 261 return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm | 512, false, ImmWidth, 262 (AMDGPU::OperandSemantics)OperandSemantics, Decoder); 263 } 264 265 template <AMDGPUDisassembler::OpWidthTy OpWidth, unsigned ImmWidth, 266 unsigned OperandSemantics> 267 static DecodeStatus decodeSrcRegOrImmDeferred9(MCInst &Inst, unsigned Imm, 268 uint64_t /* Addr */, 269 const MCDisassembler *Decoder) { 270 return decodeSrcOp(Inst, 9, OpWidth, Imm, Imm, true, ImmWidth, 271 (AMDGPU::OperandSemantics)OperandSemantics, Decoder); 272 } 273 274 // Default decoders generated by tablegen: 'Decode<RegClass>RegisterClass' 275 // when RegisterClass is used as an operand. Most often used for destination 276 // operands. 277 278 DECODE_OPERAND_REG_8(VGPR_32) 279 DECODE_OPERAND_REG_8(VGPR_32_Lo128) 280 DECODE_OPERAND_REG_8(VReg_64) 281 DECODE_OPERAND_REG_8(VReg_96) 282 DECODE_OPERAND_REG_8(VReg_128) 283 DECODE_OPERAND_REG_8(VReg_256) 284 DECODE_OPERAND_REG_8(VReg_288) 285 DECODE_OPERAND_REG_8(VReg_352) 286 DECODE_OPERAND_REG_8(VReg_384) 287 DECODE_OPERAND_REG_8(VReg_512) 288 DECODE_OPERAND_REG_8(VReg_1024) 289 290 DECODE_OPERAND_REG_7(SReg_32, OPW32) 291 DECODE_OPERAND_REG_7(SReg_32_XEXEC, OPW32) 292 DECODE_OPERAND_REG_7(SReg_32_XM0_XEXEC, OPW32) 293 DECODE_OPERAND_REG_7(SReg_32_XEXEC_HI, OPW32) 294 DECODE_OPERAND_REG_7(SReg_64, OPW64) 295 DECODE_OPERAND_REG_7(SReg_64_XEXEC, OPW64) 296 DECODE_OPERAND_REG_7(SReg_96, OPW96) 297 DECODE_OPERAND_REG_7(SReg_128, OPW128) 298 DECODE_OPERAND_REG_7(SReg_256, OPW256) 299 DECODE_OPERAND_REG_7(SReg_512, OPW512) 300 301 DECODE_OPERAND_REG_8(AGPR_32) 302 DECODE_OPERAND_REG_8(AReg_64) 303 DECODE_OPERAND_REG_8(AReg_128) 304 DECODE_OPERAND_REG_8(AReg_256) 305 DECODE_OPERAND_REG_8(AReg_512) 306 DECODE_OPERAND_REG_8(AReg_1024) 307 308 static DecodeStatus DecodeVGPR_16RegisterClass(MCInst &Inst, unsigned Imm, 309 uint64_t /*Addr*/, 310 const MCDisassembler *Decoder) { 311 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 312 assert((Imm & (1 << 8)) == 0 && "Imm{8} should not be used"); 313 314 bool IsHi = Imm & (1 << 9); 315 unsigned RegIdx = Imm & 0xff; 316 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 317 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 318 } 319 320 static DecodeStatus 321 DecodeVGPR_16_Lo128RegisterClass(MCInst &Inst, unsigned Imm, uint64_t /*Addr*/, 322 const MCDisassembler *Decoder) { 323 assert(isUInt<8>(Imm) && "8-bit encoding expected"); 324 325 bool IsHi = Imm & (1 << 7); 326 unsigned RegIdx = Imm & 0x7f; 327 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 328 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 329 } 330 331 static DecodeStatus decodeOperand_VSrcT16_Lo128(MCInst &Inst, unsigned Imm, 332 uint64_t /*Addr*/, 333 const MCDisassembler *Decoder) { 334 assert(isUInt<9>(Imm) && "9-bit encoding expected"); 335 336 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 337 bool IsVGPR = Imm & (1 << 8); 338 if (IsVGPR) { 339 bool IsHi = Imm & (1 << 7); 340 unsigned RegIdx = Imm & 0x7f; 341 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 342 } 343 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 344 Imm & 0xFF, false, 16)); 345 } 346 347 static DecodeStatus decodeOperand_VSrcT16(MCInst &Inst, unsigned Imm, 348 uint64_t /*Addr*/, 349 const MCDisassembler *Decoder) { 350 assert(isUInt<10>(Imm) && "10-bit encoding expected"); 351 352 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 353 bool IsVGPR = Imm & (1 << 8); 354 if (IsVGPR) { 355 bool IsHi = Imm & (1 << 9); 356 unsigned RegIdx = Imm & 0xff; 357 return addOperand(Inst, DAsm->createVGPR16Operand(RegIdx, IsHi)); 358 } 359 return addOperand(Inst, DAsm->decodeNonVGPRSrcOp(AMDGPUDisassembler::OPW16, 360 Imm & 0xFF, false, 16)); 361 } 362 363 static DecodeStatus decodeOperand_KImmFP(MCInst &Inst, unsigned Imm, 364 uint64_t Addr, 365 const MCDisassembler *Decoder) { 366 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 367 return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm)); 368 } 369 370 static DecodeStatus decodeOperandVOPDDstY(MCInst &Inst, unsigned Val, 371 uint64_t Addr, const void *Decoder) { 372 const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 373 return addOperand(Inst, DAsm->decodeVOPDDstYOp(Inst, Val)); 374 } 375 376 static bool IsAGPROperand(const MCInst &Inst, int OpIdx, 377 const MCRegisterInfo *MRI) { 378 if (OpIdx < 0) 379 return false; 380 381 const MCOperand &Op = Inst.getOperand(OpIdx); 382 if (!Op.isReg()) 383 return false; 384 385 unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0); 386 auto Reg = Sub ? Sub : Op.getReg(); 387 return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255; 388 } 389 390 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm, 391 AMDGPUDisassembler::OpWidthTy Opw, 392 const MCDisassembler *Decoder) { 393 auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); 394 if (!DAsm->isGFX90A()) { 395 Imm &= 511; 396 } else { 397 // If atomic has both vdata and vdst their register classes are tied. 398 // The bit is decoded along with the vdst, first operand. We need to 399 // change register class to AGPR if vdst was AGPR. 400 // If a DS instruction has both data0 and data1 their register classes 401 // are also tied. 402 unsigned Opc = Inst.getOpcode(); 403 uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags; 404 uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 405 : AMDGPU::OpName::vdata; 406 const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo(); 407 int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx); 408 if ((int)Inst.getNumOperands() == DataIdx) { 409 int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 410 if (IsAGPROperand(Inst, DstIdx, MRI)) 411 Imm |= 512; 412 } 413 414 if (TSFlags & SIInstrFlags::DS) { 415 int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 416 if ((int)Inst.getNumOperands() == Data2Idx && 417 IsAGPROperand(Inst, DataIdx, MRI)) 418 Imm |= 512; 419 } 420 } 421 return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256)); 422 } 423 424 template <AMDGPUDisassembler::OpWidthTy Opw> 425 static DecodeStatus decodeAVLdSt(MCInst &Inst, unsigned Imm, 426 uint64_t /* Addr */, 427 const MCDisassembler *Decoder) { 428 return decodeAVLdSt(Inst, Imm, Opw, Decoder); 429 } 430 431 static DecodeStatus decodeOperand_VSrc_f64(MCInst &Inst, unsigned Imm, 432 uint64_t Addr, 433 const MCDisassembler *Decoder) { 434 assert(Imm < (1 << 9) && "9-bit encoding"); 435 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 436 return addOperand(Inst, 437 DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm, false, 64, 438 AMDGPU::OperandSemantics::FP64)); 439 } 440 441 #define DECODE_SDWA(DecName) \ 442 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName) 443 444 DECODE_SDWA(Src32) 445 DECODE_SDWA(Src16) 446 DECODE_SDWA(VopcDst) 447 448 static DecodeStatus decodeVersionImm(MCInst &Inst, unsigned Imm, 449 uint64_t /* Addr */, 450 const MCDisassembler *Decoder) { 451 auto DAsm = static_cast<const AMDGPUDisassembler *>(Decoder); 452 return addOperand(Inst, DAsm->decodeVersionImm(Imm)); 453 } 454 455 #include "AMDGPUGenDisassemblerTables.inc" 456 457 //===----------------------------------------------------------------------===// 458 // 459 //===----------------------------------------------------------------------===// 460 461 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) { 462 assert(Bytes.size() >= sizeof(T)); 463 const auto Res = 464 support::endian::read<T, llvm::endianness::little>(Bytes.data()); 465 Bytes = Bytes.slice(sizeof(T)); 466 return Res; 467 } 468 469 static inline DecoderUInt128 eat12Bytes(ArrayRef<uint8_t> &Bytes) { 470 assert(Bytes.size() >= 12); 471 uint64_t Lo = 472 support::endian::read<uint64_t, llvm::endianness::little>(Bytes.data()); 473 Bytes = Bytes.slice(8); 474 uint64_t Hi = 475 support::endian::read<uint32_t, llvm::endianness::little>(Bytes.data()); 476 Bytes = Bytes.slice(4); 477 return DecoderUInt128(Lo, Hi); 478 } 479 480 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size, 481 ArrayRef<uint8_t> Bytes_, 482 uint64_t Address, 483 raw_ostream &CS) const { 484 unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size()); 485 Bytes = Bytes_.slice(0, MaxInstBytesNum); 486 487 // In case the opcode is not recognized we'll assume a Size of 4 bytes (unless 488 // there are fewer bytes left). This will be overridden on success. 489 Size = std::min((size_t)4, Bytes_.size()); 490 491 do { 492 // ToDo: better to switch encoding length using some bit predicate 493 // but it is unknown yet, so try all we can 494 495 // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2 496 // encodings 497 if (isGFX11Plus() && Bytes.size() >= 12 ) { 498 DecoderUInt128 DecW = eat12Bytes(Bytes); 499 500 if (isGFX11() && 501 tryDecodeInst(DecoderTableGFX1196, DecoderTableGFX11_FAKE1696, MI, 502 DecW, Address, CS)) 503 break; 504 505 if (isGFX12() && 506 tryDecodeInst(DecoderTableGFX1296, DecoderTableGFX12_FAKE1696, MI, 507 DecW, Address, CS)) 508 break; 509 510 if (isGFX12() && 511 tryDecodeInst(DecoderTableGFX12W6496, MI, DecW, Address, CS)) 512 break; 513 514 // Reinitialize Bytes 515 Bytes = Bytes_.slice(0, MaxInstBytesNum); 516 } 517 518 if (Bytes.size() >= 8) { 519 const uint64_t QW = eatBytes<uint64_t>(Bytes); 520 521 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) && 522 tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address, CS)) 523 break; 524 525 if (STI.hasFeature(AMDGPU::FeatureUnpackedD16VMem) && 526 tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address, CS)) 527 break; 528 529 // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and 530 // v_mad_mixhi_f16 for FMA variants. Try to decode using this special 531 // table first so we print the correct name. 532 if (STI.hasFeature(AMDGPU::FeatureFmaMixInsts) && 533 tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address, CS)) 534 break; 535 536 if (STI.hasFeature(AMDGPU::FeatureGFX940Insts) && 537 tryDecodeInst(DecoderTableGFX94064, MI, QW, Address, CS)) 538 break; 539 540 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) && 541 tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address, CS)) 542 break; 543 544 if ((isVI() || isGFX9()) && 545 tryDecodeInst(DecoderTableGFX864, MI, QW, Address, CS)) 546 break; 547 548 if (isGFX9() && tryDecodeInst(DecoderTableGFX964, MI, QW, Address, CS)) 549 break; 550 551 if (isGFX10() && tryDecodeInst(DecoderTableGFX1064, MI, QW, Address, CS)) 552 break; 553 554 if (isGFX12() && 555 tryDecodeInst(DecoderTableGFX1264, DecoderTableGFX12_FAKE1664, MI, QW, 556 Address, CS)) 557 break; 558 559 if (isGFX11() && 560 tryDecodeInst(DecoderTableGFX1164, DecoderTableGFX11_FAKE1664, MI, QW, 561 Address, CS)) 562 break; 563 564 if (isGFX11() && 565 tryDecodeInst(DecoderTableGFX11W6464, MI, QW, Address, CS)) 566 break; 567 568 if (isGFX12() && 569 tryDecodeInst(DecoderTableGFX12W6464, MI, QW, Address, CS)) 570 break; 571 572 // Reinitialize Bytes 573 Bytes = Bytes_.slice(0, MaxInstBytesNum); 574 } 575 576 // Try decode 32-bit instruction 577 if (Bytes.size() >= 4) { 578 const uint32_t DW = eatBytes<uint32_t>(Bytes); 579 580 if ((isVI() || isGFX9()) && 581 tryDecodeInst(DecoderTableGFX832, MI, DW, Address, CS)) 582 break; 583 584 if (tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address, CS)) 585 break; 586 587 if (isGFX9() && tryDecodeInst(DecoderTableGFX932, MI, DW, Address, CS)) 588 break; 589 590 if (STI.hasFeature(AMDGPU::FeatureGFX90AInsts) && 591 tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address, CS)) 592 break; 593 594 if (STI.hasFeature(AMDGPU::FeatureGFX10_BEncoding) && 595 tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address, CS)) 596 break; 597 598 if (isGFX10() && tryDecodeInst(DecoderTableGFX1032, MI, DW, Address, CS)) 599 break; 600 601 if (isGFX11() && 602 tryDecodeInst(DecoderTableGFX1132, DecoderTableGFX11_FAKE1632, MI, DW, 603 Address, CS)) 604 break; 605 606 if (isGFX12() && 607 tryDecodeInst(DecoderTableGFX1232, DecoderTableGFX12_FAKE1632, MI, DW, 608 Address, CS)) 609 break; 610 } 611 612 return MCDisassembler::Fail; 613 } while (false); 614 615 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DPP) { 616 if (isMacDPP(MI)) 617 convertMacDPPInst(MI); 618 619 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3P) 620 convertVOP3PDPPInst(MI); 621 else if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOPC) || 622 AMDGPU::isVOPC64DPP(MI.getOpcode())) 623 convertVOPCDPPInst(MI); // Special VOP3 case 624 else if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8) != 625 -1) 626 convertDPP8Inst(MI); 627 else if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VOP3) 628 convertVOP3DPPInst(MI); // Regular VOP3 case 629 } 630 631 if (AMDGPU::isMAC(MI.getOpcode())) { 632 // Insert dummy unused src2_modifiers. 633 insertNamedMCOperand(MI, MCOperand::createImm(0), 634 AMDGPU::OpName::src2_modifiers); 635 } 636 637 if (MI.getOpcode() == AMDGPU::V_CVT_SR_BF8_F32_e64_dpp || 638 MI.getOpcode() == AMDGPU::V_CVT_SR_FP8_F32_e64_dpp) { 639 // Insert dummy unused src2_modifiers. 640 insertNamedMCOperand(MI, MCOperand::createImm(0), 641 AMDGPU::OpName::src2_modifiers); 642 } 643 644 if ((MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::DS) && 645 !AMDGPU::hasGDS(STI)) { 646 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::gds); 647 } 648 649 if (MCII->get(MI.getOpcode()).TSFlags & 650 (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD)) { 651 int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 652 AMDGPU::OpName::cpol); 653 if (CPolPos != -1) { 654 unsigned CPol = 655 (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ? 656 AMDGPU::CPol::GLC : 0; 657 if (MI.getNumOperands() <= (unsigned)CPolPos) { 658 insertNamedMCOperand(MI, MCOperand::createImm(CPol), 659 AMDGPU::OpName::cpol); 660 } else if (CPol) { 661 MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol); 662 } 663 } 664 } 665 666 if ((MCII->get(MI.getOpcode()).TSFlags & 667 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) && 668 (STI.hasFeature(AMDGPU::FeatureGFX90AInsts))) { 669 // GFX90A lost TFE, its place is occupied by ACC. 670 int TFEOpIdx = 671 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe); 672 if (TFEOpIdx != -1) { 673 auto TFEIter = MI.begin(); 674 std::advance(TFEIter, TFEOpIdx); 675 MI.insert(TFEIter, MCOperand::createImm(0)); 676 } 677 } 678 679 if (MCII->get(MI.getOpcode()).TSFlags & 680 (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) { 681 int SWZOpIdx = 682 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz); 683 if (SWZOpIdx != -1) { 684 auto SWZIter = MI.begin(); 685 std::advance(SWZIter, SWZOpIdx); 686 MI.insert(SWZIter, MCOperand::createImm(0)); 687 } 688 } 689 690 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG) { 691 int VAddr0Idx = 692 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 693 int RsrcIdx = 694 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 695 unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1; 696 if (VAddr0Idx >= 0 && NSAArgs > 0) { 697 unsigned NSAWords = (NSAArgs + 3) / 4; 698 if (Bytes.size() < 4 * NSAWords) 699 return MCDisassembler::Fail; 700 for (unsigned i = 0; i < NSAArgs; ++i) { 701 const unsigned VAddrIdx = VAddr0Idx + 1 + i; 702 auto VAddrRCID = 703 MCII->get(MI.getOpcode()).operands()[VAddrIdx].RegClass; 704 MI.insert(MI.begin() + VAddrIdx, createRegOperand(VAddrRCID, Bytes[i])); 705 } 706 Bytes = Bytes.slice(4 * NSAWords); 707 } 708 709 convertMIMGInst(MI); 710 } 711 712 if (MCII->get(MI.getOpcode()).TSFlags & 713 (SIInstrFlags::VIMAGE | SIInstrFlags::VSAMPLE)) 714 convertMIMGInst(MI); 715 716 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::EXP) 717 convertEXPInst(MI); 718 719 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::VINTERP) 720 convertVINTERPInst(MI); 721 722 if (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SDWA) 723 convertSDWAInst(MI); 724 725 int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 726 AMDGPU::OpName::vdst_in); 727 if (VDstIn_Idx != -1) { 728 int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx, 729 MCOI::OperandConstraint::TIED_TO); 730 if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx || 731 !MI.getOperand(VDstIn_Idx).isReg() || 732 MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) { 733 if (MI.getNumOperands() > (unsigned)VDstIn_Idx) 734 MI.erase(&MI.getOperand(VDstIn_Idx)); 735 insertNamedMCOperand(MI, 736 MCOperand::createReg(MI.getOperand(Tied).getReg()), 737 AMDGPU::OpName::vdst_in); 738 } 739 } 740 741 int ImmLitIdx = 742 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm); 743 bool IsSOPK = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::SOPK; 744 if (ImmLitIdx != -1 && !IsSOPK) 745 convertFMAanyK(MI, ImmLitIdx); 746 747 Size = MaxInstBytesNum - Bytes.size(); 748 return MCDisassembler::Success; 749 } 750 751 void AMDGPUDisassembler::convertEXPInst(MCInst &MI) const { 752 if (STI.hasFeature(AMDGPU::FeatureGFX11Insts)) { 753 // The MCInst still has these fields even though they are no longer encoded 754 // in the GFX11 instruction. 755 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vm); 756 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::compr); 757 } 758 } 759 760 void AMDGPUDisassembler::convertVINTERPInst(MCInst &MI) const { 761 if (MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx11 || 762 MI.getOpcode() == AMDGPU::V_INTERP_P10_F16_F32_inreg_gfx12 || 763 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx11 || 764 MI.getOpcode() == AMDGPU::V_INTERP_P10_RTZ_F16_F32_inreg_gfx12 || 765 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx11 || 766 MI.getOpcode() == AMDGPU::V_INTERP_P2_F16_F32_inreg_gfx12 || 767 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx11 || 768 MI.getOpcode() == AMDGPU::V_INTERP_P2_RTZ_F16_F32_inreg_gfx12) { 769 // The MCInst has this field that is not directly encoded in the 770 // instruction. 771 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::op_sel); 772 } 773 } 774 775 void AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const { 776 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 777 STI.hasFeature(AMDGPU::FeatureGFX10)) { 778 if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::sdst)) 779 // VOPC - insert clamp 780 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp); 781 } else if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) { 782 int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst); 783 if (SDst != -1) { 784 // VOPC - insert VCC register as sdst 785 insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC), 786 AMDGPU::OpName::sdst); 787 } else { 788 // VOP1/2 - insert omod if present in instruction 789 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod); 790 } 791 } 792 } 793 794 struct VOPModifiers { 795 unsigned OpSel = 0; 796 unsigned OpSelHi = 0; 797 unsigned NegLo = 0; 798 unsigned NegHi = 0; 799 }; 800 801 // Reconstruct values of VOP3/VOP3P operands such as op_sel. 802 // Note that these values do not affect disassembler output, 803 // so this is only necessary for consistency with src_modifiers. 804 static VOPModifiers collectVOPModifiers(const MCInst &MI, 805 bool IsVOP3P = false) { 806 VOPModifiers Modifiers; 807 unsigned Opc = MI.getOpcode(); 808 const int ModOps[] = {AMDGPU::OpName::src0_modifiers, 809 AMDGPU::OpName::src1_modifiers, 810 AMDGPU::OpName::src2_modifiers}; 811 for (int J = 0; J < 3; ++J) { 812 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, ModOps[J]); 813 if (OpIdx == -1) 814 continue; 815 816 unsigned Val = MI.getOperand(OpIdx).getImm(); 817 818 Modifiers.OpSel |= !!(Val & SISrcMods::OP_SEL_0) << J; 819 if (IsVOP3P) { 820 Modifiers.OpSelHi |= !!(Val & SISrcMods::OP_SEL_1) << J; 821 Modifiers.NegLo |= !!(Val & SISrcMods::NEG) << J; 822 Modifiers.NegHi |= !!(Val & SISrcMods::NEG_HI) << J; 823 } else if (J == 0) { 824 Modifiers.OpSel |= !!(Val & SISrcMods::DST_OP_SEL) << 3; 825 } 826 } 827 828 return Modifiers; 829 } 830 831 // Instructions decode the op_sel/suffix bits into the src_modifier 832 // operands. Copy those bits into the src operands for true16 VGPRs. 833 void AMDGPUDisassembler::convertTrue16OpSel(MCInst &MI) const { 834 const unsigned Opc = MI.getOpcode(); 835 const MCRegisterClass &ConversionRC = 836 MRI.getRegClass(AMDGPU::VGPR_16RegClassID); 837 constexpr std::array<std::tuple<int, int, unsigned>, 4> OpAndOpMods = { 838 {{AMDGPU::OpName::src0, AMDGPU::OpName::src0_modifiers, 839 SISrcMods::OP_SEL_0}, 840 {AMDGPU::OpName::src1, AMDGPU::OpName::src1_modifiers, 841 SISrcMods::OP_SEL_0}, 842 {AMDGPU::OpName::src2, AMDGPU::OpName::src2_modifiers, 843 SISrcMods::OP_SEL_0}, 844 {AMDGPU::OpName::vdst, AMDGPU::OpName::src0_modifiers, 845 SISrcMods::DST_OP_SEL}}}; 846 for (const auto &[OpName, OpModsName, OpSelMask] : OpAndOpMods) { 847 int OpIdx = AMDGPU::getNamedOperandIdx(Opc, OpName); 848 int OpModsIdx = AMDGPU::getNamedOperandIdx(Opc, OpModsName); 849 if (OpIdx == -1 || OpModsIdx == -1) 850 continue; 851 MCOperand &Op = MI.getOperand(OpIdx); 852 if (!Op.isReg()) 853 continue; 854 if (!ConversionRC.contains(Op.getReg())) 855 continue; 856 unsigned OpEnc = MRI.getEncodingValue(Op.getReg()); 857 const MCOperand &OpMods = MI.getOperand(OpModsIdx); 858 unsigned ModVal = OpMods.getImm(); 859 if (ModVal & OpSelMask) { // isHi 860 unsigned RegIdx = OpEnc & AMDGPU::HWEncoding::REG_IDX_MASK; 861 Op.setReg(ConversionRC.getRegister(RegIdx * 2 + 1)); 862 } 863 } 864 } 865 866 // MAC opcodes have special old and src2 operands. 867 // src2 is tied to dst, while old is not tied (but assumed to be). 868 bool AMDGPUDisassembler::isMacDPP(MCInst &MI) const { 869 constexpr int DST_IDX = 0; 870 auto Opcode = MI.getOpcode(); 871 const auto &Desc = MCII->get(Opcode); 872 auto OldIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::old); 873 874 if (OldIdx != -1 && Desc.getOperandConstraint( 875 OldIdx, MCOI::OperandConstraint::TIED_TO) == -1) { 876 assert(AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src2)); 877 assert(Desc.getOperandConstraint( 878 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2), 879 MCOI::OperandConstraint::TIED_TO) == DST_IDX); 880 (void)DST_IDX; 881 return true; 882 } 883 884 return false; 885 } 886 887 // Create dummy old operand and insert dummy unused src2_modifiers 888 void AMDGPUDisassembler::convertMacDPPInst(MCInst &MI) const { 889 assert(MI.getNumOperands() + 1 < MCII->get(MI.getOpcode()).getNumOperands()); 890 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 891 insertNamedMCOperand(MI, MCOperand::createImm(0), 892 AMDGPU::OpName::src2_modifiers); 893 } 894 895 void AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const { 896 unsigned Opc = MI.getOpcode(); 897 898 int VDstInIdx = 899 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in); 900 if (VDstInIdx != -1) 901 insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in); 902 903 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 904 if (MI.getNumOperands() < DescNumOps && 905 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 906 convertTrue16OpSel(MI); 907 auto Mods = collectVOPModifiers(MI); 908 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 909 AMDGPU::OpName::op_sel); 910 } else { 911 // Insert dummy unused src modifiers. 912 if (MI.getNumOperands() < DescNumOps && 913 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 914 insertNamedMCOperand(MI, MCOperand::createImm(0), 915 AMDGPU::OpName::src0_modifiers); 916 917 if (MI.getNumOperands() < DescNumOps && 918 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 919 insertNamedMCOperand(MI, MCOperand::createImm(0), 920 AMDGPU::OpName::src1_modifiers); 921 } 922 } 923 924 void AMDGPUDisassembler::convertVOP3DPPInst(MCInst &MI) const { 925 convertTrue16OpSel(MI); 926 927 int VDstInIdx = 928 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdst_in); 929 if (VDstInIdx != -1) 930 insertNamedMCOperand(MI, MI.getOperand(0), AMDGPU::OpName::vdst_in); 931 932 unsigned Opc = MI.getOpcode(); 933 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 934 if (MI.getNumOperands() < DescNumOps && 935 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) { 936 auto Mods = collectVOPModifiers(MI); 937 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 938 AMDGPU::OpName::op_sel); 939 } 940 } 941 942 // Note that before gfx10, the MIMG encoding provided no information about 943 // VADDR size. Consequently, decoded instructions always show address as if it 944 // has 1 dword, which could be not really so. 945 void AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const { 946 auto TSFlags = MCII->get(MI.getOpcode()).TSFlags; 947 948 int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 949 AMDGPU::OpName::vdst); 950 951 int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 952 AMDGPU::OpName::vdata); 953 int VAddr0Idx = 954 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0); 955 int RsrcOpName = (TSFlags & SIInstrFlags::MIMG) ? AMDGPU::OpName::srsrc 956 : AMDGPU::OpName::rsrc; 957 int RsrcIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), RsrcOpName); 958 int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 959 AMDGPU::OpName::dmask); 960 961 int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 962 AMDGPU::OpName::tfe); 963 int D16Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 964 AMDGPU::OpName::d16); 965 966 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode()); 967 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 968 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 969 970 assert(VDataIdx != -1); 971 if (BaseOpcode->BVH) { 972 // Add A16 operand for intersect_ray instructions 973 addOperand(MI, MCOperand::createImm(BaseOpcode->A16)); 974 return; 975 } 976 977 bool IsAtomic = (VDstIdx != -1); 978 bool IsGather4 = TSFlags & SIInstrFlags::Gather4; 979 bool IsVSample = TSFlags & SIInstrFlags::VSAMPLE; 980 bool IsNSA = false; 981 bool IsPartialNSA = false; 982 unsigned AddrSize = Info->VAddrDwords; 983 984 if (isGFX10Plus()) { 985 unsigned DimIdx = 986 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim); 987 int A16Idx = 988 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16); 989 const AMDGPU::MIMGDimInfo *Dim = 990 AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm()); 991 const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm()); 992 993 AddrSize = 994 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI)); 995 996 // VSAMPLE insts that do not use vaddr3 behave the same as NSA forms. 997 // VIMAGE insts other than BVH never use vaddr4. 998 IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA || 999 Info->MIMGEncoding == AMDGPU::MIMGEncGfx11NSA || 1000 Info->MIMGEncoding == AMDGPU::MIMGEncGfx12; 1001 if (!IsNSA) { 1002 if (!IsVSample && AddrSize > 12) 1003 AddrSize = 16; 1004 } else { 1005 if (AddrSize > Info->VAddrDwords) { 1006 if (!STI.hasFeature(AMDGPU::FeaturePartialNSAEncoding)) { 1007 // The NSA encoding does not contain enough operands for the 1008 // combination of base opcode / dimension. Should this be an error? 1009 return; 1010 } 1011 IsPartialNSA = true; 1012 } 1013 } 1014 } 1015 1016 unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf; 1017 unsigned DstSize = IsGather4 ? 4 : std::max(llvm::popcount(DMask), 1); 1018 1019 bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm(); 1020 if (D16 && AMDGPU::hasPackedD16(STI)) { 1021 DstSize = (DstSize + 1) / 2; 1022 } 1023 1024 if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm()) 1025 DstSize += 1; 1026 1027 if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords) 1028 return; 1029 1030 int NewOpcode = 1031 AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize); 1032 if (NewOpcode == -1) 1033 return; 1034 1035 // Widen the register to the correct number of enabled channels. 1036 unsigned NewVdata = AMDGPU::NoRegister; 1037 if (DstSize != Info->VDataDwords) { 1038 auto DataRCID = MCII->get(NewOpcode).operands()[VDataIdx].RegClass; 1039 1040 // Get first subregister of VData 1041 unsigned Vdata0 = MI.getOperand(VDataIdx).getReg(); 1042 unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0); 1043 Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0; 1044 1045 NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0, 1046 &MRI.getRegClass(DataRCID)); 1047 if (NewVdata == AMDGPU::NoRegister) { 1048 // It's possible to encode this such that the low register + enabled 1049 // components exceeds the register count. 1050 return; 1051 } 1052 } 1053 1054 // If not using NSA on GFX10+, widen vaddr0 address register to correct size. 1055 // If using partial NSA on GFX11+ widen last address register. 1056 int VAddrSAIdx = IsPartialNSA ? (RsrcIdx - 1) : VAddr0Idx; 1057 unsigned NewVAddrSA = AMDGPU::NoRegister; 1058 if (STI.hasFeature(AMDGPU::FeatureNSAEncoding) && (!IsNSA || IsPartialNSA) && 1059 AddrSize != Info->VAddrDwords) { 1060 unsigned VAddrSA = MI.getOperand(VAddrSAIdx).getReg(); 1061 unsigned VAddrSubSA = MRI.getSubReg(VAddrSA, AMDGPU::sub0); 1062 VAddrSA = VAddrSubSA ? VAddrSubSA : VAddrSA; 1063 1064 auto AddrRCID = MCII->get(NewOpcode).operands()[VAddrSAIdx].RegClass; 1065 NewVAddrSA = MRI.getMatchingSuperReg(VAddrSA, AMDGPU::sub0, 1066 &MRI.getRegClass(AddrRCID)); 1067 if (!NewVAddrSA) 1068 return; 1069 } 1070 1071 MI.setOpcode(NewOpcode); 1072 1073 if (NewVdata != AMDGPU::NoRegister) { 1074 MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata); 1075 1076 if (IsAtomic) { 1077 // Atomic operations have an additional operand (a copy of data) 1078 MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata); 1079 } 1080 } 1081 1082 if (NewVAddrSA) { 1083 MI.getOperand(VAddrSAIdx) = MCOperand::createReg(NewVAddrSA); 1084 } else if (IsNSA) { 1085 assert(AddrSize <= Info->VAddrDwords); 1086 MI.erase(MI.begin() + VAddr0Idx + AddrSize, 1087 MI.begin() + VAddr0Idx + Info->VAddrDwords); 1088 } 1089 } 1090 1091 // Opsel and neg bits are used in src_modifiers and standalone operands. Autogen 1092 // decoder only adds to src_modifiers, so manually add the bits to the other 1093 // operands. 1094 void AMDGPUDisassembler::convertVOP3PDPPInst(MCInst &MI) const { 1095 unsigned Opc = MI.getOpcode(); 1096 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1097 auto Mods = collectVOPModifiers(MI, true); 1098 1099 if (MI.getNumOperands() < DescNumOps && 1100 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::vdst_in)) 1101 insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::vdst_in); 1102 1103 if (MI.getNumOperands() < DescNumOps && 1104 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel)) 1105 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSel), 1106 AMDGPU::OpName::op_sel); 1107 if (MI.getNumOperands() < DescNumOps && 1108 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::op_sel_hi)) 1109 insertNamedMCOperand(MI, MCOperand::createImm(Mods.OpSelHi), 1110 AMDGPU::OpName::op_sel_hi); 1111 if (MI.getNumOperands() < DescNumOps && 1112 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_lo)) 1113 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegLo), 1114 AMDGPU::OpName::neg_lo); 1115 if (MI.getNumOperands() < DescNumOps && 1116 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::neg_hi)) 1117 insertNamedMCOperand(MI, MCOperand::createImm(Mods.NegHi), 1118 AMDGPU::OpName::neg_hi); 1119 } 1120 1121 // Create dummy old operand and insert optional operands 1122 void AMDGPUDisassembler::convertVOPCDPPInst(MCInst &MI) const { 1123 unsigned Opc = MI.getOpcode(); 1124 unsigned DescNumOps = MCII->get(Opc).getNumOperands(); 1125 1126 if (MI.getNumOperands() < DescNumOps && 1127 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::old)) 1128 insertNamedMCOperand(MI, MCOperand::createReg(0), AMDGPU::OpName::old); 1129 1130 if (MI.getNumOperands() < DescNumOps && 1131 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src0_modifiers)) 1132 insertNamedMCOperand(MI, MCOperand::createImm(0), 1133 AMDGPU::OpName::src0_modifiers); 1134 1135 if (MI.getNumOperands() < DescNumOps && 1136 AMDGPU::hasNamedOperand(Opc, AMDGPU::OpName::src1_modifiers)) 1137 insertNamedMCOperand(MI, MCOperand::createImm(0), 1138 AMDGPU::OpName::src1_modifiers); 1139 } 1140 1141 void AMDGPUDisassembler::convertFMAanyK(MCInst &MI, int ImmLitIdx) const { 1142 assert(HasLiteral && "Should have decoded a literal"); 1143 const MCInstrDesc &Desc = MCII->get(MI.getOpcode()); 1144 unsigned DescNumOps = Desc.getNumOperands(); 1145 insertNamedMCOperand(MI, MCOperand::createImm(Literal), 1146 AMDGPU::OpName::immDeferred); 1147 assert(DescNumOps == MI.getNumOperands()); 1148 for (unsigned I = 0; I < DescNumOps; ++I) { 1149 auto &Op = MI.getOperand(I); 1150 auto OpType = Desc.operands()[I].OperandType; 1151 bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED || 1152 OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED); 1153 if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST && 1154 IsDeferredOp) 1155 Op.setImm(Literal); 1156 } 1157 } 1158 1159 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const { 1160 return getContext().getRegisterInfo()-> 1161 getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]); 1162 } 1163 1164 inline 1165 MCOperand AMDGPUDisassembler::errOperand(unsigned V, 1166 const Twine& ErrMsg) const { 1167 *CommentStream << "Error: " + ErrMsg; 1168 1169 // ToDo: add support for error operands to MCInst.h 1170 // return MCOperand::createError(V); 1171 return MCOperand(); 1172 } 1173 1174 inline 1175 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const { 1176 return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI)); 1177 } 1178 1179 inline 1180 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID, 1181 unsigned Val) const { 1182 const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID]; 1183 if (Val >= RegCl.getNumRegs()) 1184 return errOperand(Val, Twine(getRegClassName(RegClassID)) + 1185 ": unknown register " + Twine(Val)); 1186 return createRegOperand(RegCl.getRegister(Val)); 1187 } 1188 1189 inline 1190 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID, 1191 unsigned Val) const { 1192 // ToDo: SI/CI have 104 SGPRs, VI - 102 1193 // Valery: here we accepting as much as we can, let assembler sort it out 1194 int shift = 0; 1195 switch (SRegClassID) { 1196 case AMDGPU::SGPR_32RegClassID: 1197 case AMDGPU::TTMP_32RegClassID: 1198 break; 1199 case AMDGPU::SGPR_64RegClassID: 1200 case AMDGPU::TTMP_64RegClassID: 1201 shift = 1; 1202 break; 1203 case AMDGPU::SGPR_96RegClassID: 1204 case AMDGPU::TTMP_96RegClassID: 1205 case AMDGPU::SGPR_128RegClassID: 1206 case AMDGPU::TTMP_128RegClassID: 1207 // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in 1208 // this bundle? 1209 case AMDGPU::SGPR_256RegClassID: 1210 case AMDGPU::TTMP_256RegClassID: 1211 // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in 1212 // this bundle? 1213 case AMDGPU::SGPR_288RegClassID: 1214 case AMDGPU::TTMP_288RegClassID: 1215 case AMDGPU::SGPR_320RegClassID: 1216 case AMDGPU::TTMP_320RegClassID: 1217 case AMDGPU::SGPR_352RegClassID: 1218 case AMDGPU::TTMP_352RegClassID: 1219 case AMDGPU::SGPR_384RegClassID: 1220 case AMDGPU::TTMP_384RegClassID: 1221 case AMDGPU::SGPR_512RegClassID: 1222 case AMDGPU::TTMP_512RegClassID: 1223 shift = 2; 1224 break; 1225 // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in 1226 // this bundle? 1227 default: 1228 llvm_unreachable("unhandled register class"); 1229 } 1230 1231 if (Val % (1 << shift)) { 1232 *CommentStream << "Warning: " << getRegClassName(SRegClassID) 1233 << ": scalar reg isn't aligned " << Val; 1234 } 1235 1236 return createRegOperand(SRegClassID, Val >> shift); 1237 } 1238 1239 MCOperand AMDGPUDisassembler::createVGPR16Operand(unsigned RegIdx, 1240 bool IsHi) const { 1241 unsigned RegIdxInVGPR16 = RegIdx * 2 + (IsHi ? 1 : 0); 1242 return createRegOperand(AMDGPU::VGPR_16RegClassID, RegIdxInVGPR16); 1243 } 1244 1245 // Decode Literals for insts which always have a literal in the encoding 1246 MCOperand 1247 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const { 1248 if (HasLiteral) { 1249 assert( 1250 AMDGPU::hasVOPD(STI) && 1251 "Should only decode multiple kimm with VOPD, check VSrc operand types"); 1252 if (Literal != Val) 1253 return errOperand(Val, "More than one unique literal is illegal"); 1254 } 1255 HasLiteral = true; 1256 Literal = Val; 1257 return MCOperand::createImm(Literal); 1258 } 1259 1260 MCOperand AMDGPUDisassembler::decodeLiteralConstant(bool ExtendFP64) const { 1261 // For now all literal constants are supposed to be unsigned integer 1262 // ToDo: deal with signed/unsigned 64-bit integer constants 1263 // ToDo: deal with float/double constants 1264 if (!HasLiteral) { 1265 if (Bytes.size() < 4) { 1266 return errOperand(0, "cannot read literal, inst bytes left " + 1267 Twine(Bytes.size())); 1268 } 1269 HasLiteral = true; 1270 Literal = Literal64 = eatBytes<uint32_t>(Bytes); 1271 if (ExtendFP64) 1272 Literal64 <<= 32; 1273 } 1274 return MCOperand::createImm(ExtendFP64 ? Literal64 : Literal); 1275 } 1276 1277 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) { 1278 using namespace AMDGPU::EncValues; 1279 1280 assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX); 1281 return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ? 1282 (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) : 1283 (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm))); 1284 // Cast prevents negative overflow. 1285 } 1286 1287 static int64_t getInlineImmVal32(unsigned Imm) { 1288 switch (Imm) { 1289 case 240: 1290 return llvm::bit_cast<uint32_t>(0.5f); 1291 case 241: 1292 return llvm::bit_cast<uint32_t>(-0.5f); 1293 case 242: 1294 return llvm::bit_cast<uint32_t>(1.0f); 1295 case 243: 1296 return llvm::bit_cast<uint32_t>(-1.0f); 1297 case 244: 1298 return llvm::bit_cast<uint32_t>(2.0f); 1299 case 245: 1300 return llvm::bit_cast<uint32_t>(-2.0f); 1301 case 246: 1302 return llvm::bit_cast<uint32_t>(4.0f); 1303 case 247: 1304 return llvm::bit_cast<uint32_t>(-4.0f); 1305 case 248: // 1 / (2 * PI) 1306 return 0x3e22f983; 1307 default: 1308 llvm_unreachable("invalid fp inline imm"); 1309 } 1310 } 1311 1312 static int64_t getInlineImmVal64(unsigned Imm) { 1313 switch (Imm) { 1314 case 240: 1315 return llvm::bit_cast<uint64_t>(0.5); 1316 case 241: 1317 return llvm::bit_cast<uint64_t>(-0.5); 1318 case 242: 1319 return llvm::bit_cast<uint64_t>(1.0); 1320 case 243: 1321 return llvm::bit_cast<uint64_t>(-1.0); 1322 case 244: 1323 return llvm::bit_cast<uint64_t>(2.0); 1324 case 245: 1325 return llvm::bit_cast<uint64_t>(-2.0); 1326 case 246: 1327 return llvm::bit_cast<uint64_t>(4.0); 1328 case 247: 1329 return llvm::bit_cast<uint64_t>(-4.0); 1330 case 248: // 1 / (2 * PI) 1331 return 0x3fc45f306dc9c882; 1332 default: 1333 llvm_unreachable("invalid fp inline imm"); 1334 } 1335 } 1336 1337 static int64_t getInlineImmValF16(unsigned Imm) { 1338 switch (Imm) { 1339 case 240: 1340 return 0x3800; 1341 case 241: 1342 return 0xB800; 1343 case 242: 1344 return 0x3C00; 1345 case 243: 1346 return 0xBC00; 1347 case 244: 1348 return 0x4000; 1349 case 245: 1350 return 0xC000; 1351 case 246: 1352 return 0x4400; 1353 case 247: 1354 return 0xC400; 1355 case 248: // 1 / (2 * PI) 1356 return 0x3118; 1357 default: 1358 llvm_unreachable("invalid fp inline imm"); 1359 } 1360 } 1361 1362 static int64_t getInlineImmValBF16(unsigned Imm) { 1363 switch (Imm) { 1364 case 240: 1365 return 0x3F00; 1366 case 241: 1367 return 0xBF00; 1368 case 242: 1369 return 0x3F80; 1370 case 243: 1371 return 0xBF80; 1372 case 244: 1373 return 0x4000; 1374 case 245: 1375 return 0xC000; 1376 case 246: 1377 return 0x4080; 1378 case 247: 1379 return 0xC080; 1380 case 248: // 1 / (2 * PI) 1381 return 0x3E22; 1382 default: 1383 llvm_unreachable("invalid fp inline imm"); 1384 } 1385 } 1386 1387 static int64_t getInlineImmVal16(unsigned Imm, AMDGPU::OperandSemantics Sema) { 1388 return (Sema == AMDGPU::OperandSemantics::BF16) ? getInlineImmValBF16(Imm) 1389 : getInlineImmValF16(Imm); 1390 } 1391 1392 MCOperand AMDGPUDisassembler::decodeFPImmed(unsigned ImmWidth, unsigned Imm, 1393 AMDGPU::OperandSemantics Sema) { 1394 assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN && 1395 Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX); 1396 1397 // ToDo: case 248: 1/(2*PI) - is allowed only on VI 1398 // ImmWidth 0 is a default case where operand should not allow immediates. 1399 // Imm value is still decoded into 32 bit immediate operand, inst printer will 1400 // use it to print verbose error message. 1401 switch (ImmWidth) { 1402 case 0: 1403 case 32: 1404 return MCOperand::createImm(getInlineImmVal32(Imm)); 1405 case 64: 1406 return MCOperand::createImm(getInlineImmVal64(Imm)); 1407 case 16: 1408 return MCOperand::createImm(getInlineImmVal16(Imm, Sema)); 1409 default: 1410 llvm_unreachable("implement me"); 1411 } 1412 } 1413 1414 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const { 1415 using namespace AMDGPU; 1416 1417 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1418 switch (Width) { 1419 default: // fall 1420 case OPW32: 1421 case OPW16: 1422 case OPWV216: 1423 return VGPR_32RegClassID; 1424 case OPW64: 1425 case OPWV232: return VReg_64RegClassID; 1426 case OPW96: return VReg_96RegClassID; 1427 case OPW128: return VReg_128RegClassID; 1428 case OPW160: return VReg_160RegClassID; 1429 case OPW256: return VReg_256RegClassID; 1430 case OPW288: return VReg_288RegClassID; 1431 case OPW320: return VReg_320RegClassID; 1432 case OPW352: return VReg_352RegClassID; 1433 case OPW384: return VReg_384RegClassID; 1434 case OPW512: return VReg_512RegClassID; 1435 case OPW1024: return VReg_1024RegClassID; 1436 } 1437 } 1438 1439 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const { 1440 using namespace AMDGPU; 1441 1442 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1443 switch (Width) { 1444 default: // fall 1445 case OPW32: 1446 case OPW16: 1447 case OPWV216: 1448 return AGPR_32RegClassID; 1449 case OPW64: 1450 case OPWV232: return AReg_64RegClassID; 1451 case OPW96: return AReg_96RegClassID; 1452 case OPW128: return AReg_128RegClassID; 1453 case OPW160: return AReg_160RegClassID; 1454 case OPW256: return AReg_256RegClassID; 1455 case OPW288: return AReg_288RegClassID; 1456 case OPW320: return AReg_320RegClassID; 1457 case OPW352: return AReg_352RegClassID; 1458 case OPW384: return AReg_384RegClassID; 1459 case OPW512: return AReg_512RegClassID; 1460 case OPW1024: return AReg_1024RegClassID; 1461 } 1462 } 1463 1464 1465 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const { 1466 using namespace AMDGPU; 1467 1468 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1469 switch (Width) { 1470 default: // fall 1471 case OPW32: 1472 case OPW16: 1473 case OPWV216: 1474 return SGPR_32RegClassID; 1475 case OPW64: 1476 case OPWV232: return SGPR_64RegClassID; 1477 case OPW96: return SGPR_96RegClassID; 1478 case OPW128: return SGPR_128RegClassID; 1479 case OPW160: return SGPR_160RegClassID; 1480 case OPW256: return SGPR_256RegClassID; 1481 case OPW288: return SGPR_288RegClassID; 1482 case OPW320: return SGPR_320RegClassID; 1483 case OPW352: return SGPR_352RegClassID; 1484 case OPW384: return SGPR_384RegClassID; 1485 case OPW512: return SGPR_512RegClassID; 1486 } 1487 } 1488 1489 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const { 1490 using namespace AMDGPU; 1491 1492 assert(OPW_FIRST_ <= Width && Width < OPW_LAST_); 1493 switch (Width) { 1494 default: // fall 1495 case OPW32: 1496 case OPW16: 1497 case OPWV216: 1498 return TTMP_32RegClassID; 1499 case OPW64: 1500 case OPWV232: return TTMP_64RegClassID; 1501 case OPW128: return TTMP_128RegClassID; 1502 case OPW256: return TTMP_256RegClassID; 1503 case OPW288: return TTMP_288RegClassID; 1504 case OPW320: return TTMP_320RegClassID; 1505 case OPW352: return TTMP_352RegClassID; 1506 case OPW384: return TTMP_384RegClassID; 1507 case OPW512: return TTMP_512RegClassID; 1508 } 1509 } 1510 1511 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const { 1512 using namespace AMDGPU::EncValues; 1513 1514 unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN; 1515 unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX; 1516 1517 return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1; 1518 } 1519 1520 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val, 1521 bool MandatoryLiteral, 1522 unsigned ImmWidth, 1523 AMDGPU::OperandSemantics Sema) const { 1524 using namespace AMDGPU::EncValues; 1525 1526 assert(Val < 1024); // enum10 1527 1528 bool IsAGPR = Val & 512; 1529 Val &= 511; 1530 1531 if (VGPR_MIN <= Val && Val <= VGPR_MAX) { 1532 return createRegOperand(IsAGPR ? getAgprClassId(Width) 1533 : getVgprClassId(Width), Val - VGPR_MIN); 1534 } 1535 return decodeNonVGPRSrcOp(Width, Val & 0xFF, MandatoryLiteral, ImmWidth, 1536 Sema); 1537 } 1538 1539 MCOperand 1540 AMDGPUDisassembler::decodeNonVGPRSrcOp(const OpWidthTy Width, unsigned Val, 1541 bool MandatoryLiteral, unsigned ImmWidth, 1542 AMDGPU::OperandSemantics Sema) const { 1543 // Cases when Val{8} is 1 (vgpr, agpr or true 16 vgpr) should have been 1544 // decoded earlier. 1545 assert(Val < (1 << 8) && "9-bit Src encoding when Val{8} is 0"); 1546 using namespace AMDGPU::EncValues; 1547 1548 if (Val <= SGPR_MAX) { 1549 // "SGPR_MIN <= Val" is always true and causes compilation warning. 1550 static_assert(SGPR_MIN == 0); 1551 return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN); 1552 } 1553 1554 int TTmpIdx = getTTmpIdx(Val); 1555 if (TTmpIdx >= 0) { 1556 return createSRegOperand(getTtmpClassId(Width), TTmpIdx); 1557 } 1558 1559 if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX) 1560 return decodeIntImmed(Val); 1561 1562 if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX) 1563 return decodeFPImmed(ImmWidth, Val, Sema); 1564 1565 if (Val == LITERAL_CONST) { 1566 if (MandatoryLiteral) 1567 // Keep a sentinel value for deferred setting 1568 return MCOperand::createImm(LITERAL_CONST); 1569 return decodeLiteralConstant(Sema == AMDGPU::OperandSemantics::FP64); 1570 } 1571 1572 switch (Width) { 1573 case OPW32: 1574 case OPW16: 1575 case OPWV216: 1576 return decodeSpecialReg32(Val); 1577 case OPW64: 1578 case OPWV232: 1579 return decodeSpecialReg64(Val); 1580 default: 1581 llvm_unreachable("unexpected immediate type"); 1582 } 1583 } 1584 1585 // Bit 0 of DstY isn't stored in the instruction, because it's always the 1586 // opposite of bit 0 of DstX. 1587 MCOperand AMDGPUDisassembler::decodeVOPDDstYOp(MCInst &Inst, 1588 unsigned Val) const { 1589 int VDstXInd = 1590 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::vdstX); 1591 assert(VDstXInd != -1); 1592 assert(Inst.getOperand(VDstXInd).isReg()); 1593 unsigned XDstReg = MRI.getEncodingValue(Inst.getOperand(VDstXInd).getReg()); 1594 Val |= ~XDstReg & 1; 1595 auto Width = llvm::AMDGPUDisassembler::OPW32; 1596 return createRegOperand(getVgprClassId(Width), Val); 1597 } 1598 1599 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const { 1600 using namespace AMDGPU; 1601 1602 switch (Val) { 1603 // clang-format off 1604 case 102: return createRegOperand(FLAT_SCR_LO); 1605 case 103: return createRegOperand(FLAT_SCR_HI); 1606 case 104: return createRegOperand(XNACK_MASK_LO); 1607 case 105: return createRegOperand(XNACK_MASK_HI); 1608 case 106: return createRegOperand(VCC_LO); 1609 case 107: return createRegOperand(VCC_HI); 1610 case 108: return createRegOperand(TBA_LO); 1611 case 109: return createRegOperand(TBA_HI); 1612 case 110: return createRegOperand(TMA_LO); 1613 case 111: return createRegOperand(TMA_HI); 1614 case 124: 1615 return isGFX11Plus() ? createRegOperand(SGPR_NULL) : createRegOperand(M0); 1616 case 125: 1617 return isGFX11Plus() ? createRegOperand(M0) : createRegOperand(SGPR_NULL); 1618 case 126: return createRegOperand(EXEC_LO); 1619 case 127: return createRegOperand(EXEC_HI); 1620 case 235: return createRegOperand(SRC_SHARED_BASE_LO); 1621 case 236: return createRegOperand(SRC_SHARED_LIMIT_LO); 1622 case 237: return createRegOperand(SRC_PRIVATE_BASE_LO); 1623 case 238: return createRegOperand(SRC_PRIVATE_LIMIT_LO); 1624 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1625 case 251: return createRegOperand(SRC_VCCZ); 1626 case 252: return createRegOperand(SRC_EXECZ); 1627 case 253: return createRegOperand(SRC_SCC); 1628 case 254: return createRegOperand(LDS_DIRECT); 1629 default: break; 1630 // clang-format on 1631 } 1632 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1633 } 1634 1635 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const { 1636 using namespace AMDGPU; 1637 1638 switch (Val) { 1639 case 102: return createRegOperand(FLAT_SCR); 1640 case 104: return createRegOperand(XNACK_MASK); 1641 case 106: return createRegOperand(VCC); 1642 case 108: return createRegOperand(TBA); 1643 case 110: return createRegOperand(TMA); 1644 case 124: 1645 if (isGFX11Plus()) 1646 return createRegOperand(SGPR_NULL); 1647 break; 1648 case 125: 1649 if (!isGFX11Plus()) 1650 return createRegOperand(SGPR_NULL); 1651 break; 1652 case 126: return createRegOperand(EXEC); 1653 case 235: return createRegOperand(SRC_SHARED_BASE); 1654 case 236: return createRegOperand(SRC_SHARED_LIMIT); 1655 case 237: return createRegOperand(SRC_PRIVATE_BASE); 1656 case 238: return createRegOperand(SRC_PRIVATE_LIMIT); 1657 case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID); 1658 case 251: return createRegOperand(SRC_VCCZ); 1659 case 252: return createRegOperand(SRC_EXECZ); 1660 case 253: return createRegOperand(SRC_SCC); 1661 default: break; 1662 } 1663 return errOperand(Val, "unknown operand encoding " + Twine(Val)); 1664 } 1665 1666 MCOperand 1667 AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width, const unsigned Val, 1668 unsigned ImmWidth, 1669 AMDGPU::OperandSemantics Sema) const { 1670 using namespace AMDGPU::SDWA; 1671 using namespace AMDGPU::EncValues; 1672 1673 if (STI.hasFeature(AMDGPU::FeatureGFX9) || 1674 STI.hasFeature(AMDGPU::FeatureGFX10)) { 1675 // XXX: cast to int is needed to avoid stupid warning: 1676 // compare with unsigned is always true 1677 if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) && 1678 Val <= SDWA9EncValues::SRC_VGPR_MAX) { 1679 return createRegOperand(getVgprClassId(Width), 1680 Val - SDWA9EncValues::SRC_VGPR_MIN); 1681 } 1682 if (SDWA9EncValues::SRC_SGPR_MIN <= Val && 1683 Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10 1684 : SDWA9EncValues::SRC_SGPR_MAX_SI)) { 1685 return createSRegOperand(getSgprClassId(Width), 1686 Val - SDWA9EncValues::SRC_SGPR_MIN); 1687 } 1688 if (SDWA9EncValues::SRC_TTMP_MIN <= Val && 1689 Val <= SDWA9EncValues::SRC_TTMP_MAX) { 1690 return createSRegOperand(getTtmpClassId(Width), 1691 Val - SDWA9EncValues::SRC_TTMP_MIN); 1692 } 1693 1694 const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN; 1695 1696 if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX) 1697 return decodeIntImmed(SVal); 1698 1699 if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX) 1700 return decodeFPImmed(ImmWidth, SVal, Sema); 1701 1702 return decodeSpecialReg32(SVal); 1703 } 1704 if (STI.hasFeature(AMDGPU::FeatureVolcanicIslands)) 1705 return createRegOperand(getVgprClassId(Width), Val); 1706 llvm_unreachable("unsupported target"); 1707 } 1708 1709 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const { 1710 return decodeSDWASrc(OPW16, Val, 16, AMDGPU::OperandSemantics::FP16); 1711 } 1712 1713 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const { 1714 return decodeSDWASrc(OPW32, Val, 32, AMDGPU::OperandSemantics::FP32); 1715 } 1716 1717 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const { 1718 using namespace AMDGPU::SDWA; 1719 1720 assert((STI.hasFeature(AMDGPU::FeatureGFX9) || 1721 STI.hasFeature(AMDGPU::FeatureGFX10)) && 1722 "SDWAVopcDst should be present only on GFX9+"); 1723 1724 bool IsWave64 = STI.hasFeature(AMDGPU::FeatureWavefrontSize64); 1725 1726 if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) { 1727 Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK; 1728 1729 int TTmpIdx = getTTmpIdx(Val); 1730 if (TTmpIdx >= 0) { 1731 auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32); 1732 return createSRegOperand(TTmpClsId, TTmpIdx); 1733 } 1734 if (Val > SGPR_MAX) { 1735 return IsWave64 ? decodeSpecialReg64(Val) : decodeSpecialReg32(Val); 1736 } 1737 return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val); 1738 } 1739 return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO); 1740 } 1741 1742 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const { 1743 return STI.hasFeature(AMDGPU::FeatureWavefrontSize64) 1744 ? decodeSrcOp(OPW64, Val) 1745 : decodeSrcOp(OPW32, Val); 1746 } 1747 1748 MCOperand AMDGPUDisassembler::decodeSplitBarrier(unsigned Val) const { 1749 return decodeSrcOp(OPW32, Val); 1750 } 1751 1752 MCOperand AMDGPUDisassembler::decodeDpp8FI(unsigned Val) const { 1753 if (Val != AMDGPU::DPP::DPP8_FI_0 && Val != AMDGPU::DPP::DPP8_FI_1) 1754 return MCOperand(); 1755 return MCOperand::createImm(Val); 1756 } 1757 1758 MCOperand AMDGPUDisassembler::decodeVersionImm(unsigned Imm) const { 1759 using VersionField = AMDGPU::EncodingField<7, 0>; 1760 using W64Bit = AMDGPU::EncodingBit<13>; 1761 using W32Bit = AMDGPU::EncodingBit<14>; 1762 using MDPBit = AMDGPU::EncodingBit<15>; 1763 using Encoding = AMDGPU::EncodingFields<VersionField, W64Bit, W32Bit, MDPBit>; 1764 1765 auto [Version, W64, W32, MDP] = Encoding::decode(Imm); 1766 1767 // Decode into a plain immediate if any unused bits are raised. 1768 if (Encoding::encode(Version, W64, W32, MDP) != Imm) 1769 return MCOperand::createImm(Imm); 1770 1771 const auto &Versions = AMDGPU::UCVersion::getGFXVersions(); 1772 auto I = find_if(Versions, 1773 [Version = Version](const AMDGPU::UCVersion::GFXVersion &V) { 1774 return V.Code == Version; 1775 }); 1776 MCContext &Ctx = getContext(); 1777 const MCExpr *E; 1778 if (I == Versions.end()) 1779 E = MCConstantExpr::create(Version, Ctx); 1780 else 1781 E = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(I->Symbol), Ctx); 1782 1783 if (W64) 1784 E = MCBinaryExpr::createOr(E, UCVersionW64Expr, Ctx); 1785 if (W32) 1786 E = MCBinaryExpr::createOr(E, UCVersionW32Expr, Ctx); 1787 if (MDP) 1788 E = MCBinaryExpr::createOr(E, UCVersionMDPExpr, Ctx); 1789 1790 return MCOperand::createExpr(E); 1791 } 1792 1793 bool AMDGPUDisassembler::isVI() const { 1794 return STI.hasFeature(AMDGPU::FeatureVolcanicIslands); 1795 } 1796 1797 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); } 1798 1799 bool AMDGPUDisassembler::isGFX90A() const { 1800 return STI.hasFeature(AMDGPU::FeatureGFX90AInsts); 1801 } 1802 1803 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); } 1804 1805 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); } 1806 1807 bool AMDGPUDisassembler::isGFX10Plus() const { 1808 return AMDGPU::isGFX10Plus(STI); 1809 } 1810 1811 bool AMDGPUDisassembler::isGFX11() const { 1812 return STI.hasFeature(AMDGPU::FeatureGFX11); 1813 } 1814 1815 bool AMDGPUDisassembler::isGFX11Plus() const { 1816 return AMDGPU::isGFX11Plus(STI); 1817 } 1818 1819 bool AMDGPUDisassembler::isGFX12() const { 1820 return STI.hasFeature(AMDGPU::FeatureGFX12); 1821 } 1822 1823 bool AMDGPUDisassembler::isGFX12Plus() const { 1824 return AMDGPU::isGFX12Plus(STI); 1825 } 1826 1827 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const { 1828 return STI.hasFeature(AMDGPU::FeatureArchitectedFlatScratch); 1829 } 1830 1831 bool AMDGPUDisassembler::hasKernargPreload() const { 1832 return AMDGPU::hasKernargPreload(STI); 1833 } 1834 1835 //===----------------------------------------------------------------------===// 1836 // AMDGPU specific symbol handling 1837 //===----------------------------------------------------------------------===// 1838 1839 /// Print a string describing the reserved bit range specified by Mask with 1840 /// offset BaseBytes for use in error comments. Mask is a single continuous 1841 /// range of 1s surrounded by zeros. The format here is meant to align with the 1842 /// tables that describe these bits in llvm.org/docs/AMDGPUUsage.html. 1843 static SmallString<32> getBitRangeFromMask(uint32_t Mask, unsigned BaseBytes) { 1844 SmallString<32> Result; 1845 raw_svector_ostream S(Result); 1846 1847 int TrailingZeros = llvm::countr_zero(Mask); 1848 int PopCount = llvm::popcount(Mask); 1849 1850 if (PopCount == 1) { 1851 S << "bit (" << (TrailingZeros + BaseBytes * CHAR_BIT) << ')'; 1852 } else { 1853 S << "bits in range (" 1854 << (TrailingZeros + PopCount - 1 + BaseBytes * CHAR_BIT) << ':' 1855 << (TrailingZeros + BaseBytes * CHAR_BIT) << ')'; 1856 } 1857 1858 return Result; 1859 } 1860 1861 #define GET_FIELD(MASK) (AMDHSA_BITS_GET(FourByteBuffer, MASK)) 1862 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 1863 do { \ 1864 KdStream << Indent << DIRECTIVE " " << GET_FIELD(MASK) << '\n'; \ 1865 } while (0) 1866 #define PRINT_PSEUDO_DIRECTIVE_COMMENT(DIRECTIVE, MASK) \ 1867 do { \ 1868 KdStream << Indent << MAI.getCommentString() << ' ' << DIRECTIVE " " \ 1869 << GET_FIELD(MASK) << '\n'; \ 1870 } while (0) 1871 1872 #define CHECK_RESERVED_BITS_IMPL(MASK, DESC, MSG) \ 1873 do { \ 1874 if (FourByteBuffer & (MASK)) { \ 1875 return createStringError(std::errc::invalid_argument, \ 1876 "kernel descriptor " DESC \ 1877 " reserved %s set" MSG, \ 1878 getBitRangeFromMask((MASK), 0).c_str()); \ 1879 } \ 1880 } while (0) 1881 1882 #define CHECK_RESERVED_BITS(MASK) CHECK_RESERVED_BITS_IMPL(MASK, #MASK, "") 1883 #define CHECK_RESERVED_BITS_MSG(MASK, MSG) \ 1884 CHECK_RESERVED_BITS_IMPL(MASK, #MASK, ", " MSG) 1885 #define CHECK_RESERVED_BITS_DESC(MASK, DESC) \ 1886 CHECK_RESERVED_BITS_IMPL(MASK, DESC, "") 1887 #define CHECK_RESERVED_BITS_DESC_MSG(MASK, DESC, MSG) \ 1888 CHECK_RESERVED_BITS_IMPL(MASK, DESC, ", " MSG) 1889 1890 // NOLINTNEXTLINE(readability-identifier-naming) 1891 Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1( 1892 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 1893 using namespace amdhsa; 1894 StringRef Indent = "\t"; 1895 1896 // We cannot accurately backward compute #VGPRs used from 1897 // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same 1898 // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we 1899 // simply calculate the inverse of what the assembler does. 1900 1901 uint32_t GranulatedWorkitemVGPRCount = 1902 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT); 1903 1904 uint32_t NextFreeVGPR = 1905 (GranulatedWorkitemVGPRCount + 1) * 1906 AMDGPU::IsaInfo::getVGPREncodingGranule(&STI, EnableWavefrontSize32); 1907 1908 KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n'; 1909 1910 // We cannot backward compute values used to calculate 1911 // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following 1912 // directives can't be computed: 1913 // .amdhsa_reserve_vcc 1914 // .amdhsa_reserve_flat_scratch 1915 // .amdhsa_reserve_xnack_mask 1916 // They take their respective default values if not specified in the assembly. 1917 // 1918 // GRANULATED_WAVEFRONT_SGPR_COUNT 1919 // = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK) 1920 // 1921 // We compute the inverse as though all directives apart from NEXT_FREE_SGPR 1922 // are set to 0. So while disassembling we consider that: 1923 // 1924 // GRANULATED_WAVEFRONT_SGPR_COUNT 1925 // = f(NEXT_FREE_SGPR + 0 + 0 + 0) 1926 // 1927 // The disassembler cannot recover the original values of those 3 directives. 1928 1929 uint32_t GranulatedWavefrontSGPRCount = 1930 GET_FIELD(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT); 1931 1932 if (isGFX10Plus()) 1933 CHECK_RESERVED_BITS_MSG(COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT, 1934 "must be zero on gfx10+"); 1935 1936 uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) * 1937 AMDGPU::IsaInfo::getSGPREncodingGranule(&STI); 1938 1939 KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n'; 1940 if (!hasArchitectedFlatScratch()) 1941 KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n'; 1942 KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n'; 1943 KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n"; 1944 1945 CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_PRIORITY); 1946 1947 PRINT_DIRECTIVE(".amdhsa_float_round_mode_32", 1948 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32); 1949 PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64", 1950 COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64); 1951 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32", 1952 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32); 1953 PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64", 1954 COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64); 1955 1956 CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_PRIV); 1957 1958 if (!isGFX12Plus()) 1959 PRINT_DIRECTIVE(".amdhsa_dx10_clamp", 1960 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_DX10_CLAMP); 1961 1962 CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_DEBUG_MODE); 1963 1964 if (!isGFX12Plus()) 1965 PRINT_DIRECTIVE(".amdhsa_ieee_mode", 1966 COMPUTE_PGM_RSRC1_GFX6_GFX11_ENABLE_IEEE_MODE); 1967 1968 CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_BULKY); 1969 CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC1_CDBG_USER); 1970 1971 if (isGFX9Plus()) 1972 PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_GFX9_PLUS_FP16_OVFL); 1973 1974 if (!isGFX9Plus()) 1975 CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC1_GFX6_GFX8_RESERVED0, 1976 "COMPUTE_PGM_RSRC1", "must be zero pre-gfx9"); 1977 1978 CHECK_RESERVED_BITS_DESC(COMPUTE_PGM_RSRC1_RESERVED1, "COMPUTE_PGM_RSRC1"); 1979 1980 if (!isGFX10Plus()) 1981 CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC1_GFX6_GFX9_RESERVED2, 1982 "COMPUTE_PGM_RSRC1", "must be zero pre-gfx10"); 1983 1984 if (isGFX10Plus()) { 1985 PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode", 1986 COMPUTE_PGM_RSRC1_GFX10_PLUS_WGP_MODE); 1987 PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_GFX10_PLUS_MEM_ORDERED); 1988 PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_GFX10_PLUS_FWD_PROGRESS); 1989 } 1990 1991 if (isGFX12Plus()) 1992 PRINT_DIRECTIVE(".amdhsa_round_robin_scheduling", 1993 COMPUTE_PGM_RSRC1_GFX12_PLUS_ENABLE_WG_RR_EN); 1994 1995 return true; 1996 } 1997 1998 // NOLINTNEXTLINE(readability-identifier-naming) 1999 Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2( 2000 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 2001 using namespace amdhsa; 2002 StringRef Indent = "\t"; 2003 if (hasArchitectedFlatScratch()) 2004 PRINT_DIRECTIVE(".amdhsa_enable_private_segment", 2005 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 2006 else 2007 PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset", 2008 COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT); 2009 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x", 2010 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X); 2011 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y", 2012 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y); 2013 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z", 2014 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z); 2015 PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info", 2016 COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO); 2017 PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id", 2018 COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID); 2019 2020 CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH); 2021 CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY); 2022 CHECK_RESERVED_BITS(COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE); 2023 2024 PRINT_DIRECTIVE( 2025 ".amdhsa_exception_fp_ieee_invalid_op", 2026 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION); 2027 PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src", 2028 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE); 2029 PRINT_DIRECTIVE( 2030 ".amdhsa_exception_fp_ieee_div_zero", 2031 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO); 2032 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow", 2033 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW); 2034 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow", 2035 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW); 2036 PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact", 2037 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT); 2038 PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero", 2039 COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO); 2040 2041 CHECK_RESERVED_BITS_DESC(COMPUTE_PGM_RSRC2_RESERVED0, "COMPUTE_PGM_RSRC2"); 2042 2043 return true; 2044 } 2045 2046 // NOLINTNEXTLINE(readability-identifier-naming) 2047 Expected<bool> AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC3( 2048 uint32_t FourByteBuffer, raw_string_ostream &KdStream) const { 2049 using namespace amdhsa; 2050 StringRef Indent = "\t"; 2051 if (isGFX90A()) { 2052 KdStream << Indent << ".amdhsa_accum_offset " 2053 << (GET_FIELD(COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET) + 1) * 4 2054 << '\n'; 2055 2056 PRINT_DIRECTIVE(".amdhsa_tg_split", COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT); 2057 2058 CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX90A_RESERVED0, 2059 "COMPUTE_PGM_RSRC3", "must be zero on gfx90a"); 2060 CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX90A_RESERVED1, 2061 "COMPUTE_PGM_RSRC3", "must be zero on gfx90a"); 2062 } else if (isGFX10Plus()) { 2063 // Bits [0-3]. 2064 if (!isGFX12Plus()) { 2065 if (!EnableWavefrontSize32 || !*EnableWavefrontSize32) { 2066 PRINT_DIRECTIVE(".amdhsa_shared_vgpr_count", 2067 COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); 2068 } else { 2069 PRINT_PSEUDO_DIRECTIVE_COMMENT( 2070 "SHARED_VGPR_COUNT", 2071 COMPUTE_PGM_RSRC3_GFX10_GFX11_SHARED_VGPR_COUNT); 2072 } 2073 } else { 2074 CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX12_PLUS_RESERVED0, 2075 "COMPUTE_PGM_RSRC3", 2076 "must be zero on gfx12+"); 2077 } 2078 2079 // Bits [4-11]. 2080 if (isGFX11()) { 2081 PRINT_PSEUDO_DIRECTIVE_COMMENT("INST_PREF_SIZE", 2082 COMPUTE_PGM_RSRC3_GFX11_INST_PREF_SIZE); 2083 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_START", 2084 COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_START); 2085 PRINT_PSEUDO_DIRECTIVE_COMMENT("TRAP_ON_END", 2086 COMPUTE_PGM_RSRC3_GFX11_TRAP_ON_END); 2087 } else if (isGFX12Plus()) { 2088 PRINT_PSEUDO_DIRECTIVE_COMMENT( 2089 "INST_PREF_SIZE", COMPUTE_PGM_RSRC3_GFX12_PLUS_INST_PREF_SIZE); 2090 } else { 2091 CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_RESERVED1, 2092 "COMPUTE_PGM_RSRC3", 2093 "must be zero on gfx10"); 2094 } 2095 2096 // Bits [12]. 2097 CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED2, 2098 "COMPUTE_PGM_RSRC3", "must be zero on gfx10+"); 2099 2100 // Bits [13]. 2101 if (isGFX12Plus()) { 2102 PRINT_PSEUDO_DIRECTIVE_COMMENT("GLG_EN", 2103 COMPUTE_PGM_RSRC3_GFX12_PLUS_GLG_EN); 2104 } else { 2105 CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_GFX11_RESERVED3, 2106 "COMPUTE_PGM_RSRC3", 2107 "must be zero on gfx10 or gfx11"); 2108 } 2109 2110 // Bits [14-30]. 2111 CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_PLUS_RESERVED4, 2112 "COMPUTE_PGM_RSRC3", "must be zero on gfx10+"); 2113 2114 // Bits [31]. 2115 if (isGFX11Plus()) { 2116 PRINT_PSEUDO_DIRECTIVE_COMMENT("IMAGE_OP", 2117 COMPUTE_PGM_RSRC3_GFX11_PLUS_IMAGE_OP); 2118 } else { 2119 CHECK_RESERVED_BITS_DESC_MSG(COMPUTE_PGM_RSRC3_GFX10_RESERVED5, 2120 "COMPUTE_PGM_RSRC3", 2121 "must be zero on gfx10"); 2122 } 2123 } else if (FourByteBuffer) { 2124 return createStringError( 2125 std::errc::invalid_argument, 2126 "kernel descriptor COMPUTE_PGM_RSRC3 must be all zero before gfx9"); 2127 } 2128 return true; 2129 } 2130 #undef PRINT_PSEUDO_DIRECTIVE_COMMENT 2131 #undef PRINT_DIRECTIVE 2132 #undef GET_FIELD 2133 #undef CHECK_RESERVED_BITS_IMPL 2134 #undef CHECK_RESERVED_BITS 2135 #undef CHECK_RESERVED_BITS_MSG 2136 #undef CHECK_RESERVED_BITS_DESC 2137 #undef CHECK_RESERVED_BITS_DESC_MSG 2138 2139 /// Create an error object to return from onSymbolStart for reserved kernel 2140 /// descriptor bits being set. 2141 static Error createReservedKDBitsError(uint32_t Mask, unsigned BaseBytes, 2142 const char *Msg = "") { 2143 return createStringError( 2144 std::errc::invalid_argument, "kernel descriptor reserved %s set%s%s", 2145 getBitRangeFromMask(Mask, BaseBytes).c_str(), *Msg ? ", " : "", Msg); 2146 } 2147 2148 /// Create an error object to return from onSymbolStart for reserved kernel 2149 /// descriptor bytes being set. 2150 static Error createReservedKDBytesError(unsigned BaseInBytes, 2151 unsigned WidthInBytes) { 2152 // Create an error comment in the same format as the "Kernel Descriptor" 2153 // table here: https://llvm.org/docs/AMDGPUUsage.html#kernel-descriptor . 2154 return createStringError( 2155 std::errc::invalid_argument, 2156 "kernel descriptor reserved bits in range (%u:%u) set", 2157 (BaseInBytes + WidthInBytes) * CHAR_BIT - 1, BaseInBytes * CHAR_BIT); 2158 } 2159 2160 Expected<bool> AMDGPUDisassembler::decodeKernelDescriptorDirective( 2161 DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes, 2162 raw_string_ostream &KdStream) const { 2163 #define PRINT_DIRECTIVE(DIRECTIVE, MASK) \ 2164 do { \ 2165 KdStream << Indent << DIRECTIVE " " \ 2166 << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \ 2167 } while (0) 2168 2169 uint16_t TwoByteBuffer = 0; 2170 uint32_t FourByteBuffer = 0; 2171 2172 StringRef ReservedBytes; 2173 StringRef Indent = "\t"; 2174 2175 assert(Bytes.size() == 64); 2176 DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8); 2177 2178 switch (Cursor.tell()) { 2179 case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET: 2180 FourByteBuffer = DE.getU32(Cursor); 2181 KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer 2182 << '\n'; 2183 return true; 2184 2185 case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET: 2186 FourByteBuffer = DE.getU32(Cursor); 2187 KdStream << Indent << ".amdhsa_private_segment_fixed_size " 2188 << FourByteBuffer << '\n'; 2189 return true; 2190 2191 case amdhsa::KERNARG_SIZE_OFFSET: 2192 FourByteBuffer = DE.getU32(Cursor); 2193 KdStream << Indent << ".amdhsa_kernarg_size " 2194 << FourByteBuffer << '\n'; 2195 return true; 2196 2197 case amdhsa::RESERVED0_OFFSET: 2198 // 4 reserved bytes, must be 0. 2199 ReservedBytes = DE.getBytes(Cursor, 4); 2200 for (int I = 0; I < 4; ++I) { 2201 if (ReservedBytes[I] != 0) 2202 return createReservedKDBytesError(amdhsa::RESERVED0_OFFSET, 4); 2203 } 2204 return true; 2205 2206 case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET: 2207 // KERNEL_CODE_ENTRY_BYTE_OFFSET 2208 // So far no directive controls this for Code Object V3, so simply skip for 2209 // disassembly. 2210 DE.skip(Cursor, 8); 2211 return true; 2212 2213 case amdhsa::RESERVED1_OFFSET: 2214 // 20 reserved bytes, must be 0. 2215 ReservedBytes = DE.getBytes(Cursor, 20); 2216 for (int I = 0; I < 20; ++I) { 2217 if (ReservedBytes[I] != 0) 2218 return createReservedKDBytesError(amdhsa::RESERVED1_OFFSET, 20); 2219 } 2220 return true; 2221 2222 case amdhsa::COMPUTE_PGM_RSRC3_OFFSET: 2223 FourByteBuffer = DE.getU32(Cursor); 2224 return decodeCOMPUTE_PGM_RSRC3(FourByteBuffer, KdStream); 2225 2226 case amdhsa::COMPUTE_PGM_RSRC1_OFFSET: 2227 FourByteBuffer = DE.getU32(Cursor); 2228 return decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream); 2229 2230 case amdhsa::COMPUTE_PGM_RSRC2_OFFSET: 2231 FourByteBuffer = DE.getU32(Cursor); 2232 return decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream); 2233 2234 case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET: 2235 using namespace amdhsa; 2236 TwoByteBuffer = DE.getU16(Cursor); 2237 2238 if (!hasArchitectedFlatScratch()) 2239 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer", 2240 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER); 2241 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr", 2242 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR); 2243 PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr", 2244 KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR); 2245 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr", 2246 KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR); 2247 PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id", 2248 KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID); 2249 if (!hasArchitectedFlatScratch()) 2250 PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init", 2251 KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT); 2252 PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size", 2253 KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE); 2254 2255 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0) 2256 return createReservedKDBitsError(KERNEL_CODE_PROPERTY_RESERVED0, 2257 amdhsa::KERNEL_CODE_PROPERTIES_OFFSET); 2258 2259 // Reserved for GFX9 2260 if (isGFX9() && 2261 (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) { 2262 return createReservedKDBitsError( 2263 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 2264 amdhsa::KERNEL_CODE_PROPERTIES_OFFSET, "must be zero on gfx9"); 2265 } 2266 if (isGFX10Plus()) { 2267 PRINT_DIRECTIVE(".amdhsa_wavefront_size32", 2268 KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2269 } 2270 2271 if (CodeObjectVersion >= AMDGPU::AMDHSA_COV5) 2272 PRINT_DIRECTIVE(".amdhsa_uses_dynamic_stack", 2273 KERNEL_CODE_PROPERTY_USES_DYNAMIC_STACK); 2274 2275 if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1) { 2276 return createReservedKDBitsError(KERNEL_CODE_PROPERTY_RESERVED1, 2277 amdhsa::KERNEL_CODE_PROPERTIES_OFFSET); 2278 } 2279 2280 return true; 2281 2282 case amdhsa::KERNARG_PRELOAD_OFFSET: 2283 using namespace amdhsa; 2284 TwoByteBuffer = DE.getU16(Cursor); 2285 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_LENGTH) { 2286 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_length", 2287 KERNARG_PRELOAD_SPEC_LENGTH); 2288 } 2289 2290 if (TwoByteBuffer & KERNARG_PRELOAD_SPEC_OFFSET) { 2291 PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_preload_offset", 2292 KERNARG_PRELOAD_SPEC_OFFSET); 2293 } 2294 return true; 2295 2296 case amdhsa::RESERVED3_OFFSET: 2297 // 4 bytes from here are reserved, must be 0. 2298 ReservedBytes = DE.getBytes(Cursor, 4); 2299 for (int I = 0; I < 4; ++I) { 2300 if (ReservedBytes[I] != 0) 2301 return createReservedKDBytesError(amdhsa::RESERVED3_OFFSET, 4); 2302 } 2303 return true; 2304 2305 default: 2306 llvm_unreachable("Unhandled index. Case statements cover everything."); 2307 return true; 2308 } 2309 #undef PRINT_DIRECTIVE 2310 } 2311 2312 Expected<bool> AMDGPUDisassembler::decodeKernelDescriptor( 2313 StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const { 2314 2315 // CP microcode requires the kernel descriptor to be 64 aligned. 2316 if (Bytes.size() != 64 || KdAddress % 64 != 0) 2317 return createStringError(std::errc::invalid_argument, 2318 "kernel descriptor must be 64-byte aligned"); 2319 2320 // FIXME: We can't actually decode "in order" as is done below, as e.g. GFX10 2321 // requires us to know the setting of .amdhsa_wavefront_size32 in order to 2322 // accurately produce .amdhsa_next_free_vgpr, and they appear in the wrong 2323 // order. Workaround this by first looking up .amdhsa_wavefront_size32 here 2324 // when required. 2325 if (isGFX10Plus()) { 2326 uint16_t KernelCodeProperties = 2327 support::endian::read16(&Bytes[amdhsa::KERNEL_CODE_PROPERTIES_OFFSET], 2328 llvm::endianness::little); 2329 EnableWavefrontSize32 = 2330 AMDHSA_BITS_GET(KernelCodeProperties, 2331 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32); 2332 } 2333 2334 std::string Kd; 2335 raw_string_ostream KdStream(Kd); 2336 KdStream << ".amdhsa_kernel " << KdName << '\n'; 2337 2338 DataExtractor::Cursor C(0); 2339 while (C && C.tell() < Bytes.size()) { 2340 Expected<bool> Res = decodeKernelDescriptorDirective(C, Bytes, KdStream); 2341 2342 cantFail(C.takeError()); 2343 2344 if (!Res) 2345 return Res; 2346 } 2347 KdStream << ".end_amdhsa_kernel\n"; 2348 outs() << KdStream.str(); 2349 return true; 2350 } 2351 2352 Expected<bool> AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, 2353 uint64_t &Size, 2354 ArrayRef<uint8_t> Bytes, 2355 uint64_t Address) const { 2356 // Right now only kernel descriptor needs to be handled. 2357 // We ignore all other symbols for target specific handling. 2358 // TODO: 2359 // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code 2360 // Object V2 and V3 when symbols are marked protected. 2361 2362 // amd_kernel_code_t for Code Object V2. 2363 if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) { 2364 Size = 256; 2365 return createStringError(std::errc::invalid_argument, 2366 "code object v2 is not supported"); 2367 } 2368 2369 // Code Object V3 kernel descriptors. 2370 StringRef Name = Symbol.Name; 2371 if (Symbol.Type == ELF::STT_OBJECT && Name.ends_with(StringRef(".kd"))) { 2372 Size = 64; // Size = 64 regardless of success or failure. 2373 return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address); 2374 } 2375 2376 return false; 2377 } 2378 2379 const MCExpr *AMDGPUDisassembler::createConstantSymbolExpr(StringRef Id, 2380 int64_t Val) { 2381 MCContext &Ctx = getContext(); 2382 MCSymbol *Sym = Ctx.getOrCreateSymbol(Id); 2383 // Note: only set value to Val on a new symbol in case an dissassembler 2384 // has already been initialized in this context. 2385 if (!Sym->isVariable()) { 2386 Sym->setVariableValue(MCConstantExpr::create(Val, Ctx)); 2387 } else { 2388 int64_t Res = ~Val; 2389 bool Valid = Sym->getVariableValue()->evaluateAsAbsolute(Res); 2390 if (!Valid || Res != Val) 2391 Ctx.reportWarning(SMLoc(), "unsupported redefinition of " + Id); 2392 } 2393 return MCSymbolRefExpr::create(Sym, Ctx); 2394 } 2395 2396 //===----------------------------------------------------------------------===// 2397 // AMDGPUSymbolizer 2398 //===----------------------------------------------------------------------===// 2399 2400 // Try to find symbol name for specified label 2401 bool AMDGPUSymbolizer::tryAddingSymbolicOperand( 2402 MCInst &Inst, raw_ostream & /*cStream*/, int64_t Value, 2403 uint64_t /*Address*/, bool IsBranch, uint64_t /*Offset*/, 2404 uint64_t /*OpSize*/, uint64_t /*InstSize*/) { 2405 2406 if (!IsBranch) { 2407 return false; 2408 } 2409 2410 auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo); 2411 if (!Symbols) 2412 return false; 2413 2414 auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) { 2415 return Val.Addr == static_cast<uint64_t>(Value) && 2416 Val.Type == ELF::STT_NOTYPE; 2417 }); 2418 if (Result != Symbols->end()) { 2419 auto *Sym = Ctx.getOrCreateSymbol(Result->Name); 2420 const auto *Add = MCSymbolRefExpr::create(Sym, Ctx); 2421 Inst.addOperand(MCOperand::createExpr(Add)); 2422 return true; 2423 } 2424 // Add to list of referenced addresses, so caller can synthesize a label. 2425 ReferencedAddresses.push_back(static_cast<uint64_t>(Value)); 2426 return false; 2427 } 2428 2429 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream, 2430 int64_t Value, 2431 uint64_t Address) { 2432 llvm_unreachable("unimplemented"); 2433 } 2434 2435 //===----------------------------------------------------------------------===// 2436 // Initialization 2437 //===----------------------------------------------------------------------===// 2438 2439 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/, 2440 LLVMOpInfoCallback /*GetOpInfo*/, 2441 LLVMSymbolLookupCallback /*SymbolLookUp*/, 2442 void *DisInfo, 2443 MCContext *Ctx, 2444 std::unique_ptr<MCRelocationInfo> &&RelInfo) { 2445 return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo); 2446 } 2447 2448 static MCDisassembler *createAMDGPUDisassembler(const Target &T, 2449 const MCSubtargetInfo &STI, 2450 MCContext &Ctx) { 2451 return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo()); 2452 } 2453 2454 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() { 2455 TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(), 2456 createAMDGPUDisassembler); 2457 TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(), 2458 createAMDGPUSymbolizer); 2459 } 2460