xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/Disassembler/AMDGPUDisassembler.cpp (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 //===- AMDGPUDisassembler.cpp - Disassembler for AMDGPU ISA ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 /// \file
12 ///
13 /// This file contains definition for AMDGPU ISA disassembler
14 //
15 //===----------------------------------------------------------------------===//
16 
17 // ToDo: What to do with instruction suffixes (v_mov_b32 vs v_mov_b32_e32)?
18 
19 #include "Disassembler/AMDGPUDisassembler.h"
20 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
21 #include "TargetInfo/AMDGPUTargetInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm-c/DisassemblerTypes.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/MC/MCFixedLenDisassembler.h"
28 #include "llvm/MC/TargetRegistry.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/Support/AMDHSAKernelDescriptor.h"
31 
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "amdgpu-disassembler"
35 
36 #define SGPR_MAX                                                               \
37   (isGFX10Plus() ? AMDGPU::EncValues::SGPR_MAX_GFX10                           \
38                  : AMDGPU::EncValues::SGPR_MAX_SI)
39 
40 using DecodeStatus = llvm::MCDisassembler::DecodeStatus;
41 
42 AMDGPUDisassembler::AMDGPUDisassembler(const MCSubtargetInfo &STI,
43                                        MCContext &Ctx,
44                                        MCInstrInfo const *MCII) :
45   MCDisassembler(STI, Ctx), MCII(MCII), MRI(*Ctx.getRegisterInfo()),
46   TargetMaxInstBytes(Ctx.getAsmInfo()->getMaxInstLength(&STI)) {
47 
48   // ToDo: AMDGPUDisassembler supports only VI ISA.
49   if (!STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding] && !isGFX10Plus())
50     report_fatal_error("Disassembly not yet supported for subtarget");
51 }
52 
53 inline static MCDisassembler::DecodeStatus
54 addOperand(MCInst &Inst, const MCOperand& Opnd) {
55   Inst.addOperand(Opnd);
56   return Opnd.isValid() ?
57     MCDisassembler::Success :
58     MCDisassembler::Fail;
59 }
60 
61 static int insertNamedMCOperand(MCInst &MI, const MCOperand &Op,
62                                 uint16_t NameIdx) {
63   int OpIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), NameIdx);
64   if (OpIdx != -1) {
65     auto I = MI.begin();
66     std::advance(I, OpIdx);
67     MI.insert(I, Op);
68   }
69   return OpIdx;
70 }
71 
72 static DecodeStatus decodeSoppBrTarget(MCInst &Inst, unsigned Imm,
73                                        uint64_t Addr, const void *Decoder) {
74   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
75 
76   // Our branches take a simm16, but we need two extra bits to account for the
77   // factor of 4.
78   APInt SignedOffset(18, Imm * 4, true);
79   int64_t Offset = (SignedOffset.sext(64) + 4 + Addr).getSExtValue();
80 
81   if (DAsm->tryAddingSymbolicOperand(Inst, Offset, Addr, true, 2, 2))
82     return MCDisassembler::Success;
83   return addOperand(Inst, MCOperand::createImm(Imm));
84 }
85 
86 static DecodeStatus decodeSMEMOffset(MCInst &Inst, unsigned Imm,
87                                      uint64_t Addr, const void *Decoder) {
88   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
89   int64_t Offset;
90   if (DAsm->isVI()) {         // VI supports 20-bit unsigned offsets.
91     Offset = Imm & 0xFFFFF;
92   } else {                    // GFX9+ supports 21-bit signed offsets.
93     Offset = SignExtend64<21>(Imm);
94   }
95   return addOperand(Inst, MCOperand::createImm(Offset));
96 }
97 
98 static DecodeStatus decodeBoolReg(MCInst &Inst, unsigned Val,
99                                   uint64_t Addr, const void *Decoder) {
100   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
101   return addOperand(Inst, DAsm->decodeBoolReg(Val));
102 }
103 
104 #define DECODE_OPERAND(StaticDecoderName, DecoderName) \
105 static DecodeStatus StaticDecoderName(MCInst &Inst, \
106                                        unsigned Imm, \
107                                        uint64_t /*Addr*/, \
108                                        const void *Decoder) { \
109   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder); \
110   return addOperand(Inst, DAsm->DecoderName(Imm)); \
111 }
112 
113 #define DECODE_OPERAND_REG(RegClass) \
114 DECODE_OPERAND(Decode##RegClass##RegisterClass, decodeOperand_##RegClass)
115 
116 DECODE_OPERAND_REG(VGPR_32)
117 DECODE_OPERAND_REG(VRegOrLds_32)
118 DECODE_OPERAND_REG(VS_32)
119 DECODE_OPERAND_REG(VS_64)
120 DECODE_OPERAND_REG(VS_128)
121 
122 DECODE_OPERAND_REG(VReg_64)
123 DECODE_OPERAND_REG(VReg_96)
124 DECODE_OPERAND_REG(VReg_128)
125 DECODE_OPERAND_REG(VReg_256)
126 DECODE_OPERAND_REG(VReg_512)
127 DECODE_OPERAND_REG(VReg_1024)
128 
129 DECODE_OPERAND_REG(SReg_32)
130 DECODE_OPERAND_REG(SReg_32_XM0_XEXEC)
131 DECODE_OPERAND_REG(SReg_32_XEXEC_HI)
132 DECODE_OPERAND_REG(SRegOrLds_32)
133 DECODE_OPERAND_REG(SReg_64)
134 DECODE_OPERAND_REG(SReg_64_XEXEC)
135 DECODE_OPERAND_REG(SReg_128)
136 DECODE_OPERAND_REG(SReg_256)
137 DECODE_OPERAND_REG(SReg_512)
138 
139 DECODE_OPERAND_REG(AGPR_32)
140 DECODE_OPERAND_REG(AReg_64)
141 DECODE_OPERAND_REG(AReg_128)
142 DECODE_OPERAND_REG(AReg_256)
143 DECODE_OPERAND_REG(AReg_512)
144 DECODE_OPERAND_REG(AReg_1024)
145 DECODE_OPERAND_REG(AV_32)
146 DECODE_OPERAND_REG(AV_64)
147 
148 static DecodeStatus decodeOperand_VSrc16(MCInst &Inst,
149                                          unsigned Imm,
150                                          uint64_t Addr,
151                                          const void *Decoder) {
152   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
153   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
154 }
155 
156 static DecodeStatus decodeOperand_VSrcV216(MCInst &Inst,
157                                          unsigned Imm,
158                                          uint64_t Addr,
159                                          const void *Decoder) {
160   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
161   return addOperand(Inst, DAsm->decodeOperand_VSrcV216(Imm));
162 }
163 
164 static DecodeStatus decodeOperand_VSrcV232(MCInst &Inst,
165                                            unsigned Imm,
166                                            uint64_t Addr,
167                                            const void *Decoder) {
168   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
169   return addOperand(Inst, DAsm->decodeOperand_VSrcV232(Imm));
170 }
171 
172 static DecodeStatus decodeOperand_VS_16(MCInst &Inst,
173                                         unsigned Imm,
174                                         uint64_t Addr,
175                                         const void *Decoder) {
176   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
177   return addOperand(Inst, DAsm->decodeOperand_VSrc16(Imm));
178 }
179 
180 static DecodeStatus decodeOperand_VS_32(MCInst &Inst,
181                                         unsigned Imm,
182                                         uint64_t Addr,
183                                         const void *Decoder) {
184   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
185   return addOperand(Inst, DAsm->decodeOperand_VS_32(Imm));
186 }
187 
188 static DecodeStatus decodeOperand_AReg_64(MCInst &Inst,
189                                           unsigned Imm,
190                                           uint64_t Addr,
191                                           const void *Decoder) {
192   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
193   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm | 512));
194 }
195 
196 static DecodeStatus decodeOperand_AReg_128(MCInst &Inst,
197                                            unsigned Imm,
198                                            uint64_t Addr,
199                                            const void *Decoder) {
200   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
201   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm | 512));
202 }
203 
204 static DecodeStatus decodeOperand_AReg_256(MCInst &Inst,
205                                            unsigned Imm,
206                                            uint64_t Addr,
207                                            const void *Decoder) {
208   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
209   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm | 512));
210 }
211 
212 static DecodeStatus decodeOperand_AReg_512(MCInst &Inst,
213                                            unsigned Imm,
214                                            uint64_t Addr,
215                                            const void *Decoder) {
216   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
217   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm | 512));
218 }
219 
220 static DecodeStatus decodeOperand_AReg_1024(MCInst &Inst,
221                                             unsigned Imm,
222                                             uint64_t Addr,
223                                             const void *Decoder) {
224   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
225   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm | 512));
226 }
227 
228 static DecodeStatus decodeOperand_VReg_64(MCInst &Inst,
229                                           unsigned Imm,
230                                           uint64_t Addr,
231                                           const void *Decoder) {
232   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
233   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW64, Imm));
234 }
235 
236 static DecodeStatus decodeOperand_VReg_128(MCInst &Inst,
237                                            unsigned Imm,
238                                            uint64_t Addr,
239                                            const void *Decoder) {
240   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
241   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW128, Imm));
242 }
243 
244 static DecodeStatus decodeOperand_VReg_256(MCInst &Inst,
245                                            unsigned Imm,
246                                            uint64_t Addr,
247                                            const void *Decoder) {
248   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
249   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW256, Imm));
250 }
251 
252 static DecodeStatus decodeOperand_VReg_512(MCInst &Inst,
253                                            unsigned Imm,
254                                            uint64_t Addr,
255                                            const void *Decoder) {
256   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
257   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW512, Imm));
258 }
259 
260 static DecodeStatus decodeOperand_VReg_1024(MCInst &Inst,
261                                             unsigned Imm,
262                                             uint64_t Addr,
263                                             const void *Decoder) {
264   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
265   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW1024, Imm));
266 }
267 
268 static DecodeStatus decodeOperand_f32kimm(MCInst &Inst, unsigned Imm,
269                                           uint64_t Addr, const void *Decoder) {
270   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
271   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
272 }
273 
274 static DecodeStatus decodeOperand_f16kimm(MCInst &Inst, unsigned Imm,
275                                           uint64_t Addr, const void *Decoder) {
276   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
277   return addOperand(Inst, DAsm->decodeMandatoryLiteralConstant(Imm));
278 }
279 
280 static DecodeStatus decodeOperand_VS_16_Deferred(MCInst &Inst, unsigned Imm,
281                                                  uint64_t Addr,
282                                                  const void *Decoder) {
283   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
284   return addOperand(
285       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW16, Imm, true));
286 }
287 
288 static DecodeStatus decodeOperand_VS_32_Deferred(MCInst &Inst, unsigned Imm,
289                                                  uint64_t Addr,
290                                                  const void *Decoder) {
291   const auto *DAsm = static_cast<const AMDGPUDisassembler *>(Decoder);
292   return addOperand(
293       Inst, DAsm->decodeSrcOp(llvm::AMDGPUDisassembler::OPW32, Imm, true));
294 }
295 
296 static bool IsAGPROperand(const MCInst &Inst, int OpIdx,
297                           const MCRegisterInfo *MRI) {
298   if (OpIdx < 0)
299     return false;
300 
301   const MCOperand &Op = Inst.getOperand(OpIdx);
302   if (!Op.isReg())
303     return false;
304 
305   unsigned Sub = MRI->getSubReg(Op.getReg(), AMDGPU::sub0);
306   auto Reg = Sub ? Sub : Op.getReg();
307   return Reg >= AMDGPU::AGPR0 && Reg <= AMDGPU::AGPR255;
308 }
309 
310 static DecodeStatus decodeOperand_AVLdSt_Any(MCInst &Inst,
311                                              unsigned Imm,
312                                              AMDGPUDisassembler::OpWidthTy Opw,
313                                              const void *Decoder) {
314   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
315   if (!DAsm->isGFX90A()) {
316     Imm &= 511;
317   } else {
318     // If atomic has both vdata and vdst their register classes are tied.
319     // The bit is decoded along with the vdst, first operand. We need to
320     // change register class to AGPR if vdst was AGPR.
321     // If a DS instruction has both data0 and data1 their register classes
322     // are also tied.
323     unsigned Opc = Inst.getOpcode();
324     uint64_t TSFlags = DAsm->getMCII()->get(Opc).TSFlags;
325     uint16_t DataNameIdx = (TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
326                                                         : AMDGPU::OpName::vdata;
327     const MCRegisterInfo *MRI = DAsm->getContext().getRegisterInfo();
328     int DataIdx = AMDGPU::getNamedOperandIdx(Opc, DataNameIdx);
329     if ((int)Inst.getNumOperands() == DataIdx) {
330       int DstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
331       if (IsAGPROperand(Inst, DstIdx, MRI))
332         Imm |= 512;
333     }
334 
335     if (TSFlags & SIInstrFlags::DS) {
336       int Data2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
337       if ((int)Inst.getNumOperands() == Data2Idx &&
338           IsAGPROperand(Inst, DataIdx, MRI))
339         Imm |= 512;
340     }
341   }
342   return addOperand(Inst, DAsm->decodeSrcOp(Opw, Imm | 256));
343 }
344 
345 static DecodeStatus DecodeAVLdSt_32RegisterClass(MCInst &Inst,
346                                                  unsigned Imm,
347                                                  uint64_t Addr,
348                                                  const void *Decoder) {
349   return decodeOperand_AVLdSt_Any(Inst, Imm,
350                                   AMDGPUDisassembler::OPW32, Decoder);
351 }
352 
353 static DecodeStatus DecodeAVLdSt_64RegisterClass(MCInst &Inst,
354                                                  unsigned Imm,
355                                                  uint64_t Addr,
356                                                  const void *Decoder) {
357   return decodeOperand_AVLdSt_Any(Inst, Imm,
358                                   AMDGPUDisassembler::OPW64, Decoder);
359 }
360 
361 static DecodeStatus DecodeAVLdSt_96RegisterClass(MCInst &Inst,
362                                                  unsigned Imm,
363                                                  uint64_t Addr,
364                                                  const void *Decoder) {
365   return decodeOperand_AVLdSt_Any(Inst, Imm,
366                                   AMDGPUDisassembler::OPW96, Decoder);
367 }
368 
369 static DecodeStatus DecodeAVLdSt_128RegisterClass(MCInst &Inst,
370                                                   unsigned Imm,
371                                                   uint64_t Addr,
372                                                   const void *Decoder) {
373   return decodeOperand_AVLdSt_Any(Inst, Imm,
374                                   AMDGPUDisassembler::OPW128, Decoder);
375 }
376 
377 static DecodeStatus decodeOperand_SReg_32(MCInst &Inst,
378                                           unsigned Imm,
379                                           uint64_t Addr,
380                                           const void *Decoder) {
381   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
382   return addOperand(Inst, DAsm->decodeOperand_SReg_32(Imm));
383 }
384 
385 static DecodeStatus decodeOperand_VGPR_32(MCInst &Inst,
386                                          unsigned Imm,
387                                          uint64_t Addr,
388                                          const void *Decoder) {
389   auto DAsm = static_cast<const AMDGPUDisassembler*>(Decoder);
390   return addOperand(Inst, DAsm->decodeSrcOp(AMDGPUDisassembler::OPW32, Imm));
391 }
392 
393 #define DECODE_SDWA(DecName) \
394 DECODE_OPERAND(decodeSDWA##DecName, decodeSDWA##DecName)
395 
396 DECODE_SDWA(Src32)
397 DECODE_SDWA(Src16)
398 DECODE_SDWA(VopcDst)
399 
400 #include "AMDGPUGenDisassemblerTables.inc"
401 
402 //===----------------------------------------------------------------------===//
403 //
404 //===----------------------------------------------------------------------===//
405 
406 template <typename T> static inline T eatBytes(ArrayRef<uint8_t>& Bytes) {
407   assert(Bytes.size() >= sizeof(T));
408   const auto Res = support::endian::read<T, support::endianness::little>(Bytes.data());
409   Bytes = Bytes.slice(sizeof(T));
410   return Res;
411 }
412 
413 DecodeStatus AMDGPUDisassembler::tryDecodeInst(const uint8_t* Table,
414                                                MCInst &MI,
415                                                uint64_t Inst,
416                                                uint64_t Address) const {
417   assert(MI.getOpcode() == 0);
418   assert(MI.getNumOperands() == 0);
419   MCInst TmpInst;
420   HasLiteral = false;
421   const auto SavedBytes = Bytes;
422   if (decodeInstruction(Table, TmpInst, Inst, Address, this, STI)) {
423     MI = TmpInst;
424     return MCDisassembler::Success;
425   }
426   Bytes = SavedBytes;
427   return MCDisassembler::Fail;
428 }
429 
430 // The disassembler is greedy, so we need to check FI operand value to
431 // not parse a dpp if the correct literal is not set. For dpp16 the
432 // autogenerated decoder checks the dpp literal
433 static bool isValidDPP8(const MCInst &MI) {
434   using namespace llvm::AMDGPU::DPP;
435   int FiIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::fi);
436   assert(FiIdx != -1);
437   if ((unsigned)FiIdx >= MI.getNumOperands())
438     return false;
439   unsigned Fi = MI.getOperand(FiIdx).getImm();
440   return Fi == DPP8_FI_0 || Fi == DPP8_FI_1;
441 }
442 
443 DecodeStatus AMDGPUDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
444                                                 ArrayRef<uint8_t> Bytes_,
445                                                 uint64_t Address,
446                                                 raw_ostream &CS) const {
447   CommentStream = &CS;
448   bool IsSDWA = false;
449 
450   unsigned MaxInstBytesNum = std::min((size_t)TargetMaxInstBytes, Bytes_.size());
451   Bytes = Bytes_.slice(0, MaxInstBytesNum);
452 
453   DecodeStatus Res = MCDisassembler::Fail;
454   do {
455     // ToDo: better to switch encoding length using some bit predicate
456     // but it is unknown yet, so try all we can
457 
458     // Try to decode DPP and SDWA first to solve conflict with VOP1 and VOP2
459     // encodings
460     if (Bytes.size() >= 8) {
461       const uint64_t QW = eatBytes<uint64_t>(Bytes);
462 
463       if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
464         Res = tryDecodeInst(DecoderTableGFX10_B64, MI, QW, Address);
465         if (Res) {
466           if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dpp8)
467               == -1)
468             break;
469           if (convertDPP8Inst(MI) == MCDisassembler::Success)
470             break;
471           MI = MCInst(); // clear
472         }
473       }
474 
475       Res = tryDecodeInst(DecoderTableDPP864, MI, QW, Address);
476       if (Res && convertDPP8Inst(MI) == MCDisassembler::Success)
477         break;
478 
479       MI = MCInst(); // clear
480 
481       Res = tryDecodeInst(DecoderTableDPP64, MI, QW, Address);
482       if (Res) break;
483 
484       Res = tryDecodeInst(DecoderTableSDWA64, MI, QW, Address);
485       if (Res) { IsSDWA = true;  break; }
486 
487       Res = tryDecodeInst(DecoderTableSDWA964, MI, QW, Address);
488       if (Res) { IsSDWA = true;  break; }
489 
490       Res = tryDecodeInst(DecoderTableSDWA1064, MI, QW, Address);
491       if (Res) { IsSDWA = true;  break; }
492 
493       if (STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]) {
494         Res = tryDecodeInst(DecoderTableGFX80_UNPACKED64, MI, QW, Address);
495         if (Res)
496           break;
497       }
498 
499       // Some GFX9 subtargets repurposed the v_mad_mix_f32, v_mad_mixlo_f16 and
500       // v_mad_mixhi_f16 for FMA variants. Try to decode using this special
501       // table first so we print the correct name.
502       if (STI.getFeatureBits()[AMDGPU::FeatureFmaMixInsts]) {
503         Res = tryDecodeInst(DecoderTableGFX9_DL64, MI, QW, Address);
504         if (Res)
505           break;
506       }
507     }
508 
509     // Reinitialize Bytes as DPP64 could have eaten too much
510     Bytes = Bytes_.slice(0, MaxInstBytesNum);
511 
512     // Try decode 32-bit instruction
513     if (Bytes.size() < 4) break;
514     const uint32_t DW = eatBytes<uint32_t>(Bytes);
515     Res = tryDecodeInst(DecoderTableGFX832, MI, DW, Address);
516     if (Res) break;
517 
518     Res = tryDecodeInst(DecoderTableAMDGPU32, MI, DW, Address);
519     if (Res) break;
520 
521     Res = tryDecodeInst(DecoderTableGFX932, MI, DW, Address);
522     if (Res) break;
523 
524     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
525       Res = tryDecodeInst(DecoderTableGFX90A32, MI, DW, Address);
526       if (Res)
527         break;
528     }
529 
530     if (STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]) {
531       Res = tryDecodeInst(DecoderTableGFX10_B32, MI, DW, Address);
532       if (Res) break;
533     }
534 
535     Res = tryDecodeInst(DecoderTableGFX1032, MI, DW, Address);
536     if (Res) break;
537 
538     if (Bytes.size() < 4) break;
539     const uint64_t QW = ((uint64_t)eatBytes<uint32_t>(Bytes) << 32) | DW;
540 
541     if (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]) {
542       Res = tryDecodeInst(DecoderTableGFX90A64, MI, QW, Address);
543       if (Res)
544         break;
545     }
546 
547     Res = tryDecodeInst(DecoderTableGFX864, MI, QW, Address);
548     if (Res) break;
549 
550     Res = tryDecodeInst(DecoderTableAMDGPU64, MI, QW, Address);
551     if (Res) break;
552 
553     Res = tryDecodeInst(DecoderTableGFX964, MI, QW, Address);
554     if (Res) break;
555 
556     Res = tryDecodeInst(DecoderTableGFX1064, MI, QW, Address);
557   } while (false);
558 
559   if (Res && (MI.getOpcode() == AMDGPU::V_MAC_F32_e64_vi ||
560               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx6_gfx7 ||
561               MI.getOpcode() == AMDGPU::V_MAC_F32_e64_gfx10 ||
562               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx6_gfx7 ||
563               MI.getOpcode() == AMDGPU::V_MAC_LEGACY_F32_e64_gfx10 ||
564               MI.getOpcode() == AMDGPU::V_MAC_F16_e64_vi ||
565               MI.getOpcode() == AMDGPU::V_FMAC_F64_e64_gfx90a ||
566               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_vi ||
567               MI.getOpcode() == AMDGPU::V_FMAC_F32_e64_gfx10 ||
568               MI.getOpcode() == AMDGPU::V_FMAC_LEGACY_F32_e64_gfx10 ||
569               MI.getOpcode() == AMDGPU::V_FMAC_F16_e64_gfx10)) {
570     // Insert dummy unused src2_modifiers.
571     insertNamedMCOperand(MI, MCOperand::createImm(0),
572                          AMDGPU::OpName::src2_modifiers);
573   }
574 
575   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
576           (SIInstrFlags::MUBUF | SIInstrFlags::FLAT | SIInstrFlags::SMRD))) {
577     int CPolPos = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
578                                              AMDGPU::OpName::cpol);
579     if (CPolPos != -1) {
580       unsigned CPol =
581           (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::IsAtomicRet) ?
582               AMDGPU::CPol::GLC : 0;
583       if (MI.getNumOperands() <= (unsigned)CPolPos) {
584         insertNamedMCOperand(MI, MCOperand::createImm(CPol),
585                              AMDGPU::OpName::cpol);
586       } else if (CPol) {
587         MI.getOperand(CPolPos).setImm(MI.getOperand(CPolPos).getImm() | CPol);
588       }
589     }
590   }
591 
592   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
593               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF)) &&
594              (STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts])) {
595     // GFX90A lost TFE, its place is occupied by ACC.
596     int TFEOpIdx =
597         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
598     if (TFEOpIdx != -1) {
599       auto TFEIter = MI.begin();
600       std::advance(TFEIter, TFEOpIdx);
601       MI.insert(TFEIter, MCOperand::createImm(0));
602     }
603   }
604 
605   if (Res && (MCII->get(MI.getOpcode()).TSFlags &
606               (SIInstrFlags::MTBUF | SIInstrFlags::MUBUF))) {
607     int SWZOpIdx =
608         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::swz);
609     if (SWZOpIdx != -1) {
610       auto SWZIter = MI.begin();
611       std::advance(SWZIter, SWZOpIdx);
612       MI.insert(SWZIter, MCOperand::createImm(0));
613     }
614   }
615 
616   if (Res && (MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::MIMG)) {
617     int VAddr0Idx =
618         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
619     int RsrcIdx =
620         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
621     unsigned NSAArgs = RsrcIdx - VAddr0Idx - 1;
622     if (VAddr0Idx >= 0 && NSAArgs > 0) {
623       unsigned NSAWords = (NSAArgs + 3) / 4;
624       if (Bytes.size() < 4 * NSAWords) {
625         Res = MCDisassembler::Fail;
626       } else {
627         for (unsigned i = 0; i < NSAArgs; ++i) {
628           MI.insert(MI.begin() + VAddr0Idx + 1 + i,
629                     decodeOperand_VGPR_32(Bytes[i]));
630         }
631         Bytes = Bytes.slice(4 * NSAWords);
632       }
633     }
634 
635     if (Res)
636       Res = convertMIMGInst(MI);
637   }
638 
639   if (Res && IsSDWA)
640     Res = convertSDWAInst(MI);
641 
642   int VDstIn_Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
643                                               AMDGPU::OpName::vdst_in);
644   if (VDstIn_Idx != -1) {
645     int Tied = MCII->get(MI.getOpcode()).getOperandConstraint(VDstIn_Idx,
646                            MCOI::OperandConstraint::TIED_TO);
647     if (Tied != -1 && (MI.getNumOperands() <= (unsigned)VDstIn_Idx ||
648          !MI.getOperand(VDstIn_Idx).isReg() ||
649          MI.getOperand(VDstIn_Idx).getReg() != MI.getOperand(Tied).getReg())) {
650       if (MI.getNumOperands() > (unsigned)VDstIn_Idx)
651         MI.erase(&MI.getOperand(VDstIn_Idx));
652       insertNamedMCOperand(MI,
653         MCOperand::createReg(MI.getOperand(Tied).getReg()),
654         AMDGPU::OpName::vdst_in);
655     }
656   }
657 
658   int ImmLitIdx =
659       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::imm);
660   if (Res && ImmLitIdx != -1)
661     Res = convertFMAanyK(MI, ImmLitIdx);
662 
663   // if the opcode was not recognized we'll assume a Size of 4 bytes
664   // (unless there are fewer bytes left)
665   Size = Res ? (MaxInstBytesNum - Bytes.size())
666              : std::min((size_t)4, Bytes_.size());
667   return Res;
668 }
669 
670 DecodeStatus AMDGPUDisassembler::convertSDWAInst(MCInst &MI) const {
671   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
672       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
673     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst) != -1)
674       // VOPC - insert clamp
675       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::clamp);
676   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
677     int SDst = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sdst);
678     if (SDst != -1) {
679       // VOPC - insert VCC register as sdst
680       insertNamedMCOperand(MI, createRegOperand(AMDGPU::VCC),
681                            AMDGPU::OpName::sdst);
682     } else {
683       // VOP1/2 - insert omod if present in instruction
684       insertNamedMCOperand(MI, MCOperand::createImm(0), AMDGPU::OpName::omod);
685     }
686   }
687   return MCDisassembler::Success;
688 }
689 
690 // We must check FI == literal to reject not genuine dpp8 insts, and we must
691 // first add optional MI operands to check FI
692 DecodeStatus AMDGPUDisassembler::convertDPP8Inst(MCInst &MI) const {
693   unsigned Opc = MI.getOpcode();
694   unsigned DescNumOps = MCII->get(Opc).getNumOperands();
695 
696   // Insert dummy unused src modifiers.
697   if (MI.getNumOperands() < DescNumOps &&
698       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers) != -1)
699     insertNamedMCOperand(MI, MCOperand::createImm(0),
700                          AMDGPU::OpName::src0_modifiers);
701 
702   if (MI.getNumOperands() < DescNumOps &&
703       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers) != -1)
704     insertNamedMCOperand(MI, MCOperand::createImm(0),
705                          AMDGPU::OpName::src1_modifiers);
706 
707   return isValidDPP8(MI) ? MCDisassembler::Success : MCDisassembler::SoftFail;
708 }
709 
710 // Note that before gfx10, the MIMG encoding provided no information about
711 // VADDR size. Consequently, decoded instructions always show address as if it
712 // has 1 dword, which could be not really so.
713 DecodeStatus AMDGPUDisassembler::convertMIMGInst(MCInst &MI) const {
714 
715   int VDstIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
716                                            AMDGPU::OpName::vdst);
717 
718   int VDataIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
719                                             AMDGPU::OpName::vdata);
720   int VAddr0Idx =
721       AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
722   int DMaskIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
723                                             AMDGPU::OpName::dmask);
724 
725   int TFEIdx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
726                                             AMDGPU::OpName::tfe);
727   int D16Idx   = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
728                                             AMDGPU::OpName::d16);
729 
730   const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
731   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
732       AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
733 
734   assert(VDataIdx != -1);
735   if (BaseOpcode->BVH) {
736     // Add A16 operand for intersect_ray instructions
737     if (AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16) > -1) {
738       addOperand(MI, MCOperand::createImm(1));
739     }
740     return MCDisassembler::Success;
741   }
742 
743   bool IsAtomic = (VDstIdx != -1);
744   bool IsGather4 = MCII->get(MI.getOpcode()).TSFlags & SIInstrFlags::Gather4;
745   bool IsNSA = false;
746   unsigned AddrSize = Info->VAddrDwords;
747 
748   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
749     unsigned DimIdx =
750         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dim);
751     int A16Idx =
752         AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::a16);
753     const AMDGPU::MIMGDimInfo *Dim =
754         AMDGPU::getMIMGDimInfoByEncoding(MI.getOperand(DimIdx).getImm());
755     const bool IsA16 = (A16Idx != -1 && MI.getOperand(A16Idx).getImm());
756 
757     AddrSize =
758         AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, AMDGPU::hasG16(STI));
759 
760     IsNSA = Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA;
761     if (!IsNSA) {
762       if (AddrSize > 8)
763         AddrSize = 16;
764     } else {
765       if (AddrSize > Info->VAddrDwords) {
766         // The NSA encoding does not contain enough operands for the combination
767         // of base opcode / dimension. Should this be an error?
768         return MCDisassembler::Success;
769       }
770     }
771   }
772 
773   unsigned DMask = MI.getOperand(DMaskIdx).getImm() & 0xf;
774   unsigned DstSize = IsGather4 ? 4 : std::max(countPopulation(DMask), 1u);
775 
776   bool D16 = D16Idx >= 0 && MI.getOperand(D16Idx).getImm();
777   if (D16 && AMDGPU::hasPackedD16(STI)) {
778     DstSize = (DstSize + 1) / 2;
779   }
780 
781   if (TFEIdx != -1 && MI.getOperand(TFEIdx).getImm())
782     DstSize += 1;
783 
784   if (DstSize == Info->VDataDwords && AddrSize == Info->VAddrDwords)
785     return MCDisassembler::Success;
786 
787   int NewOpcode =
788       AMDGPU::getMIMGOpcode(Info->BaseOpcode, Info->MIMGEncoding, DstSize, AddrSize);
789   if (NewOpcode == -1)
790     return MCDisassembler::Success;
791 
792   // Widen the register to the correct number of enabled channels.
793   unsigned NewVdata = AMDGPU::NoRegister;
794   if (DstSize != Info->VDataDwords) {
795     auto DataRCID = MCII->get(NewOpcode).OpInfo[VDataIdx].RegClass;
796 
797     // Get first subregister of VData
798     unsigned Vdata0 = MI.getOperand(VDataIdx).getReg();
799     unsigned VdataSub0 = MRI.getSubReg(Vdata0, AMDGPU::sub0);
800     Vdata0 = (VdataSub0 != 0)? VdataSub0 : Vdata0;
801 
802     NewVdata = MRI.getMatchingSuperReg(Vdata0, AMDGPU::sub0,
803                                        &MRI.getRegClass(DataRCID));
804     if (NewVdata == AMDGPU::NoRegister) {
805       // It's possible to encode this such that the low register + enabled
806       // components exceeds the register count.
807       return MCDisassembler::Success;
808     }
809   }
810 
811   unsigned NewVAddr0 = AMDGPU::NoRegister;
812   if (STI.getFeatureBits()[AMDGPU::FeatureGFX10] && !IsNSA &&
813       AddrSize != Info->VAddrDwords) {
814     unsigned VAddr0 = MI.getOperand(VAddr0Idx).getReg();
815     unsigned VAddrSub0 = MRI.getSubReg(VAddr0, AMDGPU::sub0);
816     VAddr0 = (VAddrSub0 != 0) ? VAddrSub0 : VAddr0;
817 
818     auto AddrRCID = MCII->get(NewOpcode).OpInfo[VAddr0Idx].RegClass;
819     NewVAddr0 = MRI.getMatchingSuperReg(VAddr0, AMDGPU::sub0,
820                                         &MRI.getRegClass(AddrRCID));
821     if (NewVAddr0 == AMDGPU::NoRegister)
822       return MCDisassembler::Success;
823   }
824 
825   MI.setOpcode(NewOpcode);
826 
827   if (NewVdata != AMDGPU::NoRegister) {
828     MI.getOperand(VDataIdx) = MCOperand::createReg(NewVdata);
829 
830     if (IsAtomic) {
831       // Atomic operations have an additional operand (a copy of data)
832       MI.getOperand(VDstIdx) = MCOperand::createReg(NewVdata);
833     }
834   }
835 
836   if (NewVAddr0 != AMDGPU::NoRegister) {
837     MI.getOperand(VAddr0Idx) = MCOperand::createReg(NewVAddr0);
838   } else if (IsNSA) {
839     assert(AddrSize <= Info->VAddrDwords);
840     MI.erase(MI.begin() + VAddr0Idx + AddrSize,
841              MI.begin() + VAddr0Idx + Info->VAddrDwords);
842   }
843 
844   return MCDisassembler::Success;
845 }
846 
847 DecodeStatus AMDGPUDisassembler::convertFMAanyK(MCInst &MI,
848                                                 int ImmLitIdx) const {
849   assert(HasLiteral && "Should have decoded a literal");
850   const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
851   unsigned DescNumOps = Desc.getNumOperands();
852   assert(DescNumOps == MI.getNumOperands());
853   for (unsigned I = 0; I < DescNumOps; ++I) {
854     auto &Op = MI.getOperand(I);
855     auto OpType = Desc.OpInfo[I].OperandType;
856     bool IsDeferredOp = (OpType == AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED ||
857                          OpType == AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED);
858     if (Op.isImm() && Op.getImm() == AMDGPU::EncValues::LITERAL_CONST &&
859         IsDeferredOp)
860       Op.setImm(Literal);
861   }
862   return MCDisassembler::Success;
863 }
864 
865 const char* AMDGPUDisassembler::getRegClassName(unsigned RegClassID) const {
866   return getContext().getRegisterInfo()->
867     getRegClassName(&AMDGPUMCRegisterClasses[RegClassID]);
868 }
869 
870 inline
871 MCOperand AMDGPUDisassembler::errOperand(unsigned V,
872                                          const Twine& ErrMsg) const {
873   *CommentStream << "Error: " + ErrMsg;
874 
875   // ToDo: add support for error operands to MCInst.h
876   // return MCOperand::createError(V);
877   return MCOperand();
878 }
879 
880 inline
881 MCOperand AMDGPUDisassembler::createRegOperand(unsigned int RegId) const {
882   return MCOperand::createReg(AMDGPU::getMCReg(RegId, STI));
883 }
884 
885 inline
886 MCOperand AMDGPUDisassembler::createRegOperand(unsigned RegClassID,
887                                                unsigned Val) const {
888   const auto& RegCl = AMDGPUMCRegisterClasses[RegClassID];
889   if (Val >= RegCl.getNumRegs())
890     return errOperand(Val, Twine(getRegClassName(RegClassID)) +
891                            ": unknown register " + Twine(Val));
892   return createRegOperand(RegCl.getRegister(Val));
893 }
894 
895 inline
896 MCOperand AMDGPUDisassembler::createSRegOperand(unsigned SRegClassID,
897                                                 unsigned Val) const {
898   // ToDo: SI/CI have 104 SGPRs, VI - 102
899   // Valery: here we accepting as much as we can, let assembler sort it out
900   int shift = 0;
901   switch (SRegClassID) {
902   case AMDGPU::SGPR_32RegClassID:
903   case AMDGPU::TTMP_32RegClassID:
904     break;
905   case AMDGPU::SGPR_64RegClassID:
906   case AMDGPU::TTMP_64RegClassID:
907     shift = 1;
908     break;
909   case AMDGPU::SGPR_128RegClassID:
910   case AMDGPU::TTMP_128RegClassID:
911   // ToDo: unclear if s[100:104] is available on VI. Can we use VCC as SGPR in
912   // this bundle?
913   case AMDGPU::SGPR_256RegClassID:
914   case AMDGPU::TTMP_256RegClassID:
915     // ToDo: unclear if s[96:104] is available on VI. Can we use VCC as SGPR in
916   // this bundle?
917   case AMDGPU::SGPR_512RegClassID:
918   case AMDGPU::TTMP_512RegClassID:
919     shift = 2;
920     break;
921   // ToDo: unclear if s[88:104] is available on VI. Can we use VCC as SGPR in
922   // this bundle?
923   default:
924     llvm_unreachable("unhandled register class");
925   }
926 
927   if (Val % (1 << shift)) {
928     *CommentStream << "Warning: " << getRegClassName(SRegClassID)
929                    << ": scalar reg isn't aligned " << Val;
930   }
931 
932   return createRegOperand(SRegClassID, Val >> shift);
933 }
934 
935 MCOperand AMDGPUDisassembler::decodeOperand_VS_32(unsigned Val) const {
936   return decodeSrcOp(OPW32, Val);
937 }
938 
939 MCOperand AMDGPUDisassembler::decodeOperand_VS_64(unsigned Val) const {
940   return decodeSrcOp(OPW64, Val);
941 }
942 
943 MCOperand AMDGPUDisassembler::decodeOperand_VS_128(unsigned Val) const {
944   return decodeSrcOp(OPW128, Val);
945 }
946 
947 MCOperand AMDGPUDisassembler::decodeOperand_VSrc16(unsigned Val) const {
948   return decodeSrcOp(OPW16, Val);
949 }
950 
951 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV216(unsigned Val) const {
952   return decodeSrcOp(OPWV216, Val);
953 }
954 
955 MCOperand AMDGPUDisassembler::decodeOperand_VSrcV232(unsigned Val) const {
956   return decodeSrcOp(OPWV232, Val);
957 }
958 
959 MCOperand AMDGPUDisassembler::decodeOperand_VGPR_32(unsigned Val) const {
960   // Some instructions have operand restrictions beyond what the encoding
961   // allows. Some ordinarily VSrc_32 operands are VGPR_32, so clear the extra
962   // high bit.
963   Val &= 255;
964 
965   return createRegOperand(AMDGPU::VGPR_32RegClassID, Val);
966 }
967 
968 MCOperand AMDGPUDisassembler::decodeOperand_VRegOrLds_32(unsigned Val) const {
969   return decodeSrcOp(OPW32, Val);
970 }
971 
972 MCOperand AMDGPUDisassembler::decodeOperand_AGPR_32(unsigned Val) const {
973   return createRegOperand(AMDGPU::AGPR_32RegClassID, Val & 255);
974 }
975 
976 MCOperand AMDGPUDisassembler::decodeOperand_AReg_64(unsigned Val) const {
977   return createRegOperand(AMDGPU::AReg_64RegClassID, Val & 255);
978 }
979 
980 MCOperand AMDGPUDisassembler::decodeOperand_AReg_128(unsigned Val) const {
981   return createRegOperand(AMDGPU::AReg_128RegClassID, Val & 255);
982 }
983 
984 MCOperand AMDGPUDisassembler::decodeOperand_AReg_256(unsigned Val) const {
985   return createRegOperand(AMDGPU::AReg_256RegClassID, Val & 255);
986 }
987 
988 MCOperand AMDGPUDisassembler::decodeOperand_AReg_512(unsigned Val) const {
989   return createRegOperand(AMDGPU::AReg_512RegClassID, Val & 255);
990 }
991 
992 MCOperand AMDGPUDisassembler::decodeOperand_AReg_1024(unsigned Val) const {
993   return createRegOperand(AMDGPU::AReg_1024RegClassID, Val & 255);
994 }
995 
996 MCOperand AMDGPUDisassembler::decodeOperand_AV_32(unsigned Val) const {
997   return decodeSrcOp(OPW32, Val);
998 }
999 
1000 MCOperand AMDGPUDisassembler::decodeOperand_AV_64(unsigned Val) const {
1001   return decodeSrcOp(OPW64, Val);
1002 }
1003 
1004 MCOperand AMDGPUDisassembler::decodeOperand_VReg_64(unsigned Val) const {
1005   return createRegOperand(AMDGPU::VReg_64RegClassID, Val);
1006 }
1007 
1008 MCOperand AMDGPUDisassembler::decodeOperand_VReg_96(unsigned Val) const {
1009   return createRegOperand(AMDGPU::VReg_96RegClassID, Val);
1010 }
1011 
1012 MCOperand AMDGPUDisassembler::decodeOperand_VReg_128(unsigned Val) const {
1013   return createRegOperand(AMDGPU::VReg_128RegClassID, Val);
1014 }
1015 
1016 MCOperand AMDGPUDisassembler::decodeOperand_VReg_256(unsigned Val) const {
1017   return createRegOperand(AMDGPU::VReg_256RegClassID, Val);
1018 }
1019 
1020 MCOperand AMDGPUDisassembler::decodeOperand_VReg_512(unsigned Val) const {
1021   return createRegOperand(AMDGPU::VReg_512RegClassID, Val);
1022 }
1023 
1024 MCOperand AMDGPUDisassembler::decodeOperand_VReg_1024(unsigned Val) const {
1025   return createRegOperand(AMDGPU::VReg_1024RegClassID, Val);
1026 }
1027 
1028 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32(unsigned Val) const {
1029   // table-gen generated disassembler doesn't care about operand types
1030   // leaving only registry class so SSrc_32 operand turns into SReg_32
1031   // and therefore we accept immediates and literals here as well
1032   return decodeSrcOp(OPW32, Val);
1033 }
1034 
1035 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XM0_XEXEC(
1036   unsigned Val) const {
1037   // SReg_32_XM0 is SReg_32 without M0 or EXEC_LO/EXEC_HI
1038   return decodeOperand_SReg_32(Val);
1039 }
1040 
1041 MCOperand AMDGPUDisassembler::decodeOperand_SReg_32_XEXEC_HI(
1042   unsigned Val) const {
1043   // SReg_32_XM0 is SReg_32 without EXEC_HI
1044   return decodeOperand_SReg_32(Val);
1045 }
1046 
1047 MCOperand AMDGPUDisassembler::decodeOperand_SRegOrLds_32(unsigned Val) const {
1048   // table-gen generated disassembler doesn't care about operand types
1049   // leaving only registry class so SSrc_32 operand turns into SReg_32
1050   // and therefore we accept immediates and literals here as well
1051   return decodeSrcOp(OPW32, Val);
1052 }
1053 
1054 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64(unsigned Val) const {
1055   return decodeSrcOp(OPW64, Val);
1056 }
1057 
1058 MCOperand AMDGPUDisassembler::decodeOperand_SReg_64_XEXEC(unsigned Val) const {
1059   return decodeSrcOp(OPW64, Val);
1060 }
1061 
1062 MCOperand AMDGPUDisassembler::decodeOperand_SReg_128(unsigned Val) const {
1063   return decodeSrcOp(OPW128, Val);
1064 }
1065 
1066 MCOperand AMDGPUDisassembler::decodeOperand_SReg_256(unsigned Val) const {
1067   return decodeDstOp(OPW256, Val);
1068 }
1069 
1070 MCOperand AMDGPUDisassembler::decodeOperand_SReg_512(unsigned Val) const {
1071   return decodeDstOp(OPW512, Val);
1072 }
1073 
1074 // Decode Literals for insts which always have a literal in the encoding
1075 MCOperand
1076 AMDGPUDisassembler::decodeMandatoryLiteralConstant(unsigned Val) const {
1077   if (HasLiteral) {
1078     if (Literal != Val)
1079       return errOperand(Val, "More than one unique literal is illegal");
1080   }
1081   HasLiteral = true;
1082   Literal = Val;
1083   return MCOperand::createImm(Literal);
1084 }
1085 
1086 MCOperand AMDGPUDisassembler::decodeLiteralConstant() const {
1087   // For now all literal constants are supposed to be unsigned integer
1088   // ToDo: deal with signed/unsigned 64-bit integer constants
1089   // ToDo: deal with float/double constants
1090   if (!HasLiteral) {
1091     if (Bytes.size() < 4) {
1092       return errOperand(0, "cannot read literal, inst bytes left " +
1093                         Twine(Bytes.size()));
1094     }
1095     HasLiteral = true;
1096     Literal = eatBytes<uint32_t>(Bytes);
1097   }
1098   return MCOperand::createImm(Literal);
1099 }
1100 
1101 MCOperand AMDGPUDisassembler::decodeIntImmed(unsigned Imm) {
1102   using namespace AMDGPU::EncValues;
1103 
1104   assert(Imm >= INLINE_INTEGER_C_MIN && Imm <= INLINE_INTEGER_C_MAX);
1105   return MCOperand::createImm((Imm <= INLINE_INTEGER_C_POSITIVE_MAX) ?
1106     (static_cast<int64_t>(Imm) - INLINE_INTEGER_C_MIN) :
1107     (INLINE_INTEGER_C_POSITIVE_MAX - static_cast<int64_t>(Imm)));
1108       // Cast prevents negative overflow.
1109 }
1110 
1111 static int64_t getInlineImmVal32(unsigned Imm) {
1112   switch (Imm) {
1113   case 240:
1114     return FloatToBits(0.5f);
1115   case 241:
1116     return FloatToBits(-0.5f);
1117   case 242:
1118     return FloatToBits(1.0f);
1119   case 243:
1120     return FloatToBits(-1.0f);
1121   case 244:
1122     return FloatToBits(2.0f);
1123   case 245:
1124     return FloatToBits(-2.0f);
1125   case 246:
1126     return FloatToBits(4.0f);
1127   case 247:
1128     return FloatToBits(-4.0f);
1129   case 248: // 1 / (2 * PI)
1130     return 0x3e22f983;
1131   default:
1132     llvm_unreachable("invalid fp inline imm");
1133   }
1134 }
1135 
1136 static int64_t getInlineImmVal64(unsigned Imm) {
1137   switch (Imm) {
1138   case 240:
1139     return DoubleToBits(0.5);
1140   case 241:
1141     return DoubleToBits(-0.5);
1142   case 242:
1143     return DoubleToBits(1.0);
1144   case 243:
1145     return DoubleToBits(-1.0);
1146   case 244:
1147     return DoubleToBits(2.0);
1148   case 245:
1149     return DoubleToBits(-2.0);
1150   case 246:
1151     return DoubleToBits(4.0);
1152   case 247:
1153     return DoubleToBits(-4.0);
1154   case 248: // 1 / (2 * PI)
1155     return 0x3fc45f306dc9c882;
1156   default:
1157     llvm_unreachable("invalid fp inline imm");
1158   }
1159 }
1160 
1161 static int64_t getInlineImmVal16(unsigned Imm) {
1162   switch (Imm) {
1163   case 240:
1164     return 0x3800;
1165   case 241:
1166     return 0xB800;
1167   case 242:
1168     return 0x3C00;
1169   case 243:
1170     return 0xBC00;
1171   case 244:
1172     return 0x4000;
1173   case 245:
1174     return 0xC000;
1175   case 246:
1176     return 0x4400;
1177   case 247:
1178     return 0xC400;
1179   case 248: // 1 / (2 * PI)
1180     return 0x3118;
1181   default:
1182     llvm_unreachable("invalid fp inline imm");
1183   }
1184 }
1185 
1186 MCOperand AMDGPUDisassembler::decodeFPImmed(OpWidthTy Width, unsigned Imm) {
1187   assert(Imm >= AMDGPU::EncValues::INLINE_FLOATING_C_MIN
1188       && Imm <= AMDGPU::EncValues::INLINE_FLOATING_C_MAX);
1189 
1190   // ToDo: case 248: 1/(2*PI) - is allowed only on VI
1191   switch (Width) {
1192   case OPW32:
1193   case OPW128: // splat constants
1194   case OPW512:
1195   case OPW1024:
1196   case OPWV232:
1197     return MCOperand::createImm(getInlineImmVal32(Imm));
1198   case OPW64:
1199   case OPW256:
1200     return MCOperand::createImm(getInlineImmVal64(Imm));
1201   case OPW16:
1202   case OPWV216:
1203     return MCOperand::createImm(getInlineImmVal16(Imm));
1204   default:
1205     llvm_unreachable("implement me");
1206   }
1207 }
1208 
1209 unsigned AMDGPUDisassembler::getVgprClassId(const OpWidthTy Width) const {
1210   using namespace AMDGPU;
1211 
1212   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1213   switch (Width) {
1214   default: // fall
1215   case OPW32:
1216   case OPW16:
1217   case OPWV216:
1218     return VGPR_32RegClassID;
1219   case OPW64:
1220   case OPWV232: return VReg_64RegClassID;
1221   case OPW96: return VReg_96RegClassID;
1222   case OPW128: return VReg_128RegClassID;
1223   case OPW160: return VReg_160RegClassID;
1224   case OPW256: return VReg_256RegClassID;
1225   case OPW512: return VReg_512RegClassID;
1226   case OPW1024: return VReg_1024RegClassID;
1227   }
1228 }
1229 
1230 unsigned AMDGPUDisassembler::getAgprClassId(const OpWidthTy Width) const {
1231   using namespace AMDGPU;
1232 
1233   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1234   switch (Width) {
1235   default: // fall
1236   case OPW32:
1237   case OPW16:
1238   case OPWV216:
1239     return AGPR_32RegClassID;
1240   case OPW64:
1241   case OPWV232: return AReg_64RegClassID;
1242   case OPW96: return AReg_96RegClassID;
1243   case OPW128: return AReg_128RegClassID;
1244   case OPW160: return AReg_160RegClassID;
1245   case OPW256: return AReg_256RegClassID;
1246   case OPW512: return AReg_512RegClassID;
1247   case OPW1024: return AReg_1024RegClassID;
1248   }
1249 }
1250 
1251 
1252 unsigned AMDGPUDisassembler::getSgprClassId(const OpWidthTy Width) const {
1253   using namespace AMDGPU;
1254 
1255   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1256   switch (Width) {
1257   default: // fall
1258   case OPW32:
1259   case OPW16:
1260   case OPWV216:
1261     return SGPR_32RegClassID;
1262   case OPW64:
1263   case OPWV232: return SGPR_64RegClassID;
1264   case OPW96: return SGPR_96RegClassID;
1265   case OPW128: return SGPR_128RegClassID;
1266   case OPW160: return SGPR_160RegClassID;
1267   case OPW256: return SGPR_256RegClassID;
1268   case OPW512: return SGPR_512RegClassID;
1269   }
1270 }
1271 
1272 unsigned AMDGPUDisassembler::getTtmpClassId(const OpWidthTy Width) const {
1273   using namespace AMDGPU;
1274 
1275   assert(OPW_FIRST_ <= Width && Width < OPW_LAST_);
1276   switch (Width) {
1277   default: // fall
1278   case OPW32:
1279   case OPW16:
1280   case OPWV216:
1281     return TTMP_32RegClassID;
1282   case OPW64:
1283   case OPWV232: return TTMP_64RegClassID;
1284   case OPW128: return TTMP_128RegClassID;
1285   case OPW256: return TTMP_256RegClassID;
1286   case OPW512: return TTMP_512RegClassID;
1287   }
1288 }
1289 
1290 int AMDGPUDisassembler::getTTmpIdx(unsigned Val) const {
1291   using namespace AMDGPU::EncValues;
1292 
1293   unsigned TTmpMin = isGFX9Plus() ? TTMP_GFX9PLUS_MIN : TTMP_VI_MIN;
1294   unsigned TTmpMax = isGFX9Plus() ? TTMP_GFX9PLUS_MAX : TTMP_VI_MAX;
1295 
1296   return (TTmpMin <= Val && Val <= TTmpMax)? Val - TTmpMin : -1;
1297 }
1298 
1299 MCOperand AMDGPUDisassembler::decodeSrcOp(const OpWidthTy Width, unsigned Val,
1300                                           bool MandatoryLiteral) const {
1301   using namespace AMDGPU::EncValues;
1302 
1303   assert(Val < 1024); // enum10
1304 
1305   bool IsAGPR = Val & 512;
1306   Val &= 511;
1307 
1308   if (VGPR_MIN <= Val && Val <= VGPR_MAX) {
1309     return createRegOperand(IsAGPR ? getAgprClassId(Width)
1310                                    : getVgprClassId(Width), Val - VGPR_MIN);
1311   }
1312   if (Val <= SGPR_MAX) {
1313     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1314     static_assert(SGPR_MIN == 0, "");
1315     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1316   }
1317 
1318   int TTmpIdx = getTTmpIdx(Val);
1319   if (TTmpIdx >= 0) {
1320     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1321   }
1322 
1323   if (INLINE_INTEGER_C_MIN <= Val && Val <= INLINE_INTEGER_C_MAX)
1324     return decodeIntImmed(Val);
1325 
1326   if (INLINE_FLOATING_C_MIN <= Val && Val <= INLINE_FLOATING_C_MAX)
1327     return decodeFPImmed(Width, Val);
1328 
1329   if (Val == LITERAL_CONST) {
1330     if (MandatoryLiteral)
1331       // Keep a sentinel value for deferred setting
1332       return MCOperand::createImm(LITERAL_CONST);
1333     else
1334       return decodeLiteralConstant();
1335   }
1336 
1337   switch (Width) {
1338   case OPW32:
1339   case OPW16:
1340   case OPWV216:
1341     return decodeSpecialReg32(Val);
1342   case OPW64:
1343   case OPWV232:
1344     return decodeSpecialReg64(Val);
1345   default:
1346     llvm_unreachable("unexpected immediate type");
1347   }
1348 }
1349 
1350 MCOperand AMDGPUDisassembler::decodeDstOp(const OpWidthTy Width, unsigned Val) const {
1351   using namespace AMDGPU::EncValues;
1352 
1353   assert(Val < 128);
1354   assert(Width == OPW256 || Width == OPW512);
1355 
1356   if (Val <= SGPR_MAX) {
1357     // "SGPR_MIN <= Val" is always true and causes compilation warning.
1358     static_assert(SGPR_MIN == 0, "");
1359     return createSRegOperand(getSgprClassId(Width), Val - SGPR_MIN);
1360   }
1361 
1362   int TTmpIdx = getTTmpIdx(Val);
1363   if (TTmpIdx >= 0) {
1364     return createSRegOperand(getTtmpClassId(Width), TTmpIdx);
1365   }
1366 
1367   llvm_unreachable("unknown dst register");
1368 }
1369 
1370 MCOperand AMDGPUDisassembler::decodeSpecialReg32(unsigned Val) const {
1371   using namespace AMDGPU;
1372 
1373   switch (Val) {
1374   case 102: return createRegOperand(FLAT_SCR_LO);
1375   case 103: return createRegOperand(FLAT_SCR_HI);
1376   case 104: return createRegOperand(XNACK_MASK_LO);
1377   case 105: return createRegOperand(XNACK_MASK_HI);
1378   case 106: return createRegOperand(VCC_LO);
1379   case 107: return createRegOperand(VCC_HI);
1380   case 108: return createRegOperand(TBA_LO);
1381   case 109: return createRegOperand(TBA_HI);
1382   case 110: return createRegOperand(TMA_LO);
1383   case 111: return createRegOperand(TMA_HI);
1384   case 124: return createRegOperand(M0);
1385   case 125: return createRegOperand(SGPR_NULL);
1386   case 126: return createRegOperand(EXEC_LO);
1387   case 127: return createRegOperand(EXEC_HI);
1388   case 235: return createRegOperand(SRC_SHARED_BASE);
1389   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1390   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1391   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1392   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1393   case 251: return createRegOperand(SRC_VCCZ);
1394   case 252: return createRegOperand(SRC_EXECZ);
1395   case 253: return createRegOperand(SRC_SCC);
1396   case 254: return createRegOperand(LDS_DIRECT);
1397   default: break;
1398   }
1399   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1400 }
1401 
1402 MCOperand AMDGPUDisassembler::decodeSpecialReg64(unsigned Val) const {
1403   using namespace AMDGPU;
1404 
1405   switch (Val) {
1406   case 102: return createRegOperand(FLAT_SCR);
1407   case 104: return createRegOperand(XNACK_MASK);
1408   case 106: return createRegOperand(VCC);
1409   case 108: return createRegOperand(TBA);
1410   case 110: return createRegOperand(TMA);
1411   case 125: return createRegOperand(SGPR_NULL);
1412   case 126: return createRegOperand(EXEC);
1413   case 235: return createRegOperand(SRC_SHARED_BASE);
1414   case 236: return createRegOperand(SRC_SHARED_LIMIT);
1415   case 237: return createRegOperand(SRC_PRIVATE_BASE);
1416   case 238: return createRegOperand(SRC_PRIVATE_LIMIT);
1417   case 239: return createRegOperand(SRC_POPS_EXITING_WAVE_ID);
1418   case 251: return createRegOperand(SRC_VCCZ);
1419   case 252: return createRegOperand(SRC_EXECZ);
1420   case 253: return createRegOperand(SRC_SCC);
1421   default: break;
1422   }
1423   return errOperand(Val, "unknown operand encoding " + Twine(Val));
1424 }
1425 
1426 MCOperand AMDGPUDisassembler::decodeSDWASrc(const OpWidthTy Width,
1427                                             const unsigned Val) const {
1428   using namespace AMDGPU::SDWA;
1429   using namespace AMDGPU::EncValues;
1430 
1431   if (STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1432       STI.getFeatureBits()[AMDGPU::FeatureGFX10]) {
1433     // XXX: cast to int is needed to avoid stupid warning:
1434     // compare with unsigned is always true
1435     if (int(SDWA9EncValues::SRC_VGPR_MIN) <= int(Val) &&
1436         Val <= SDWA9EncValues::SRC_VGPR_MAX) {
1437       return createRegOperand(getVgprClassId(Width),
1438                               Val - SDWA9EncValues::SRC_VGPR_MIN);
1439     }
1440     if (SDWA9EncValues::SRC_SGPR_MIN <= Val &&
1441         Val <= (isGFX10Plus() ? SDWA9EncValues::SRC_SGPR_MAX_GFX10
1442                               : SDWA9EncValues::SRC_SGPR_MAX_SI)) {
1443       return createSRegOperand(getSgprClassId(Width),
1444                                Val - SDWA9EncValues::SRC_SGPR_MIN);
1445     }
1446     if (SDWA9EncValues::SRC_TTMP_MIN <= Val &&
1447         Val <= SDWA9EncValues::SRC_TTMP_MAX) {
1448       return createSRegOperand(getTtmpClassId(Width),
1449                                Val - SDWA9EncValues::SRC_TTMP_MIN);
1450     }
1451 
1452     const unsigned SVal = Val - SDWA9EncValues::SRC_SGPR_MIN;
1453 
1454     if (INLINE_INTEGER_C_MIN <= SVal && SVal <= INLINE_INTEGER_C_MAX)
1455       return decodeIntImmed(SVal);
1456 
1457     if (INLINE_FLOATING_C_MIN <= SVal && SVal <= INLINE_FLOATING_C_MAX)
1458       return decodeFPImmed(Width, SVal);
1459 
1460     return decodeSpecialReg32(SVal);
1461   } else if (STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]) {
1462     return createRegOperand(getVgprClassId(Width), Val);
1463   }
1464   llvm_unreachable("unsupported target");
1465 }
1466 
1467 MCOperand AMDGPUDisassembler::decodeSDWASrc16(unsigned Val) const {
1468   return decodeSDWASrc(OPW16, Val);
1469 }
1470 
1471 MCOperand AMDGPUDisassembler::decodeSDWASrc32(unsigned Val) const {
1472   return decodeSDWASrc(OPW32, Val);
1473 }
1474 
1475 MCOperand AMDGPUDisassembler::decodeSDWAVopcDst(unsigned Val) const {
1476   using namespace AMDGPU::SDWA;
1477 
1478   assert((STI.getFeatureBits()[AMDGPU::FeatureGFX9] ||
1479           STI.getFeatureBits()[AMDGPU::FeatureGFX10]) &&
1480          "SDWAVopcDst should be present only on GFX9+");
1481 
1482   bool IsWave64 = STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64];
1483 
1484   if (Val & SDWA9EncValues::VOPC_DST_VCC_MASK) {
1485     Val &= SDWA9EncValues::VOPC_DST_SGPR_MASK;
1486 
1487     int TTmpIdx = getTTmpIdx(Val);
1488     if (TTmpIdx >= 0) {
1489       auto TTmpClsId = getTtmpClassId(IsWave64 ? OPW64 : OPW32);
1490       return createSRegOperand(TTmpClsId, TTmpIdx);
1491     } else if (Val > SGPR_MAX) {
1492       return IsWave64 ? decodeSpecialReg64(Val)
1493                       : decodeSpecialReg32(Val);
1494     } else {
1495       return createSRegOperand(getSgprClassId(IsWave64 ? OPW64 : OPW32), Val);
1496     }
1497   } else {
1498     return createRegOperand(IsWave64 ? AMDGPU::VCC : AMDGPU::VCC_LO);
1499   }
1500 }
1501 
1502 MCOperand AMDGPUDisassembler::decodeBoolReg(unsigned Val) const {
1503   return STI.getFeatureBits()[AMDGPU::FeatureWavefrontSize64] ?
1504     decodeOperand_SReg_64(Val) : decodeOperand_SReg_32(Val);
1505 }
1506 
1507 bool AMDGPUDisassembler::isVI() const {
1508   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1509 }
1510 
1511 bool AMDGPUDisassembler::isGFX9() const { return AMDGPU::isGFX9(STI); }
1512 
1513 bool AMDGPUDisassembler::isGFX90A() const {
1514   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1515 }
1516 
1517 bool AMDGPUDisassembler::isGFX9Plus() const { return AMDGPU::isGFX9Plus(STI); }
1518 
1519 bool AMDGPUDisassembler::isGFX10() const { return AMDGPU::isGFX10(STI); }
1520 
1521 bool AMDGPUDisassembler::isGFX10Plus() const {
1522   return AMDGPU::isGFX10Plus(STI);
1523 }
1524 
1525 bool AMDGPUDisassembler::hasArchitectedFlatScratch() const {
1526   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1527 }
1528 
1529 //===----------------------------------------------------------------------===//
1530 // AMDGPU specific symbol handling
1531 //===----------------------------------------------------------------------===//
1532 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1533   do {                                                                         \
1534     KdStream << Indent << DIRECTIVE " "                                        \
1535              << ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';           \
1536   } while (0)
1537 
1538 // NOLINTNEXTLINE(readability-identifier-naming)
1539 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
1540     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1541   using namespace amdhsa;
1542   StringRef Indent = "\t";
1543 
1544   // We cannot accurately backward compute #VGPRs used from
1545   // GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
1546   // value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
1547   // simply calculate the inverse of what the assembler does.
1548 
1549   uint32_t GranulatedWorkitemVGPRCount =
1550       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
1551       COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
1552 
1553   uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
1554                           AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
1555 
1556   KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
1557 
1558   // We cannot backward compute values used to calculate
1559   // GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
1560   // directives can't be computed:
1561   // .amdhsa_reserve_vcc
1562   // .amdhsa_reserve_flat_scratch
1563   // .amdhsa_reserve_xnack_mask
1564   // They take their respective default values if not specified in the assembly.
1565   //
1566   // GRANULATED_WAVEFRONT_SGPR_COUNT
1567   //    = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
1568   //
1569   // We compute the inverse as though all directives apart from NEXT_FREE_SGPR
1570   // are set to 0. So while disassembling we consider that:
1571   //
1572   // GRANULATED_WAVEFRONT_SGPR_COUNT
1573   //    = f(NEXT_FREE_SGPR + 0 + 0 + 0)
1574   //
1575   // The disassembler cannot recover the original values of those 3 directives.
1576 
1577   uint32_t GranulatedWavefrontSGPRCount =
1578       (FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
1579       COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
1580 
1581   if (isGFX10Plus() && GranulatedWavefrontSGPRCount)
1582     return MCDisassembler::Fail;
1583 
1584   uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
1585                           AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
1586 
1587   KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
1588   if (!hasArchitectedFlatScratch())
1589     KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
1590   KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
1591   KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
1592 
1593   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
1594     return MCDisassembler::Fail;
1595 
1596   PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
1597                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
1598   PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
1599                   COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
1600   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
1601                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
1602   PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
1603                   COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
1604 
1605   if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
1606     return MCDisassembler::Fail;
1607 
1608   PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
1609 
1610   if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
1611     return MCDisassembler::Fail;
1612 
1613   PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
1614 
1615   if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
1616     return MCDisassembler::Fail;
1617 
1618   if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
1619     return MCDisassembler::Fail;
1620 
1621   PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
1622 
1623   if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
1624     return MCDisassembler::Fail;
1625 
1626   if (isGFX10Plus()) {
1627     PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
1628                     COMPUTE_PGM_RSRC1_WGP_MODE);
1629     PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
1630     PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
1631   }
1632   return MCDisassembler::Success;
1633 }
1634 
1635 // NOLINTNEXTLINE(readability-identifier-naming)
1636 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
1637     uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
1638   using namespace amdhsa;
1639   StringRef Indent = "\t";
1640   if (hasArchitectedFlatScratch())
1641     PRINT_DIRECTIVE(".amdhsa_enable_private_segment",
1642                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1643   else
1644     PRINT_DIRECTIVE(".amdhsa_system_sgpr_private_segment_wavefront_offset",
1645                     COMPUTE_PGM_RSRC2_ENABLE_PRIVATE_SEGMENT);
1646   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
1647                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
1648   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
1649                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
1650   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
1651                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
1652   PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
1653                   COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
1654   PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
1655                   COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
1656 
1657   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
1658     return MCDisassembler::Fail;
1659 
1660   if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
1661     return MCDisassembler::Fail;
1662 
1663   if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
1664     return MCDisassembler::Fail;
1665 
1666   PRINT_DIRECTIVE(
1667       ".amdhsa_exception_fp_ieee_invalid_op",
1668       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
1669   PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
1670                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
1671   PRINT_DIRECTIVE(
1672       ".amdhsa_exception_fp_ieee_div_zero",
1673       COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
1674   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
1675                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
1676   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
1677                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
1678   PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
1679                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
1680   PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
1681                   COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
1682 
1683   if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
1684     return MCDisassembler::Fail;
1685 
1686   return MCDisassembler::Success;
1687 }
1688 
1689 #undef PRINT_DIRECTIVE
1690 
1691 MCDisassembler::DecodeStatus
1692 AMDGPUDisassembler::decodeKernelDescriptorDirective(
1693     DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
1694     raw_string_ostream &KdStream) const {
1695 #define PRINT_DIRECTIVE(DIRECTIVE, MASK)                                       \
1696   do {                                                                         \
1697     KdStream << Indent << DIRECTIVE " "                                        \
1698              << ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n';            \
1699   } while (0)
1700 
1701   uint16_t TwoByteBuffer = 0;
1702   uint32_t FourByteBuffer = 0;
1703 
1704   StringRef ReservedBytes;
1705   StringRef Indent = "\t";
1706 
1707   assert(Bytes.size() == 64);
1708   DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
1709 
1710   switch (Cursor.tell()) {
1711   case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
1712     FourByteBuffer = DE.getU32(Cursor);
1713     KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
1714              << '\n';
1715     return MCDisassembler::Success;
1716 
1717   case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
1718     FourByteBuffer = DE.getU32(Cursor);
1719     KdStream << Indent << ".amdhsa_private_segment_fixed_size "
1720              << FourByteBuffer << '\n';
1721     return MCDisassembler::Success;
1722 
1723   case amdhsa::KERNARG_SIZE_OFFSET:
1724     FourByteBuffer = DE.getU32(Cursor);
1725     KdStream << Indent << ".amdhsa_kernarg_size "
1726              << FourByteBuffer << '\n';
1727     return MCDisassembler::Success;
1728 
1729   case amdhsa::RESERVED0_OFFSET:
1730     // 4 reserved bytes, must be 0.
1731     ReservedBytes = DE.getBytes(Cursor, 4);
1732     for (int I = 0; I < 4; ++I) {
1733       if (ReservedBytes[I] != 0) {
1734         return MCDisassembler::Fail;
1735       }
1736     }
1737     return MCDisassembler::Success;
1738 
1739   case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
1740     // KERNEL_CODE_ENTRY_BYTE_OFFSET
1741     // So far no directive controls this for Code Object V3, so simply skip for
1742     // disassembly.
1743     DE.skip(Cursor, 8);
1744     return MCDisassembler::Success;
1745 
1746   case amdhsa::RESERVED1_OFFSET:
1747     // 20 reserved bytes, must be 0.
1748     ReservedBytes = DE.getBytes(Cursor, 20);
1749     for (int I = 0; I < 20; ++I) {
1750       if (ReservedBytes[I] != 0) {
1751         return MCDisassembler::Fail;
1752       }
1753     }
1754     return MCDisassembler::Success;
1755 
1756   case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
1757     // COMPUTE_PGM_RSRC3
1758     //  - Only set for GFX10, GFX6-9 have this to be 0.
1759     //  - Currently no directives directly control this.
1760     FourByteBuffer = DE.getU32(Cursor);
1761     if (!isGFX10Plus() && FourByteBuffer) {
1762       return MCDisassembler::Fail;
1763     }
1764     return MCDisassembler::Success;
1765 
1766   case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
1767     FourByteBuffer = DE.getU32(Cursor);
1768     if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
1769         MCDisassembler::Fail) {
1770       return MCDisassembler::Fail;
1771     }
1772     return MCDisassembler::Success;
1773 
1774   case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
1775     FourByteBuffer = DE.getU32(Cursor);
1776     if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
1777         MCDisassembler::Fail) {
1778       return MCDisassembler::Fail;
1779     }
1780     return MCDisassembler::Success;
1781 
1782   case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
1783     using namespace amdhsa;
1784     TwoByteBuffer = DE.getU16(Cursor);
1785 
1786     if (!hasArchitectedFlatScratch())
1787       PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
1788                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
1789     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
1790                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
1791     PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
1792                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
1793     PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
1794                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
1795     PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
1796                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
1797     if (!hasArchitectedFlatScratch())
1798       PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
1799                       KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
1800     PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
1801                     KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
1802 
1803     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
1804       return MCDisassembler::Fail;
1805 
1806     // Reserved for GFX9
1807     if (isGFX9() &&
1808         (TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
1809       return MCDisassembler::Fail;
1810     } else if (isGFX10Plus()) {
1811       PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
1812                       KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
1813     }
1814 
1815     if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
1816       return MCDisassembler::Fail;
1817 
1818     return MCDisassembler::Success;
1819 
1820   case amdhsa::RESERVED2_OFFSET:
1821     // 6 bytes from here are reserved, must be 0.
1822     ReservedBytes = DE.getBytes(Cursor, 6);
1823     for (int I = 0; I < 6; ++I) {
1824       if (ReservedBytes[I] != 0)
1825         return MCDisassembler::Fail;
1826     }
1827     return MCDisassembler::Success;
1828 
1829   default:
1830     llvm_unreachable("Unhandled index. Case statements cover everything.");
1831     return MCDisassembler::Fail;
1832   }
1833 #undef PRINT_DIRECTIVE
1834 }
1835 
1836 MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
1837     StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
1838   // CP microcode requires the kernel descriptor to be 64 aligned.
1839   if (Bytes.size() != 64 || KdAddress % 64 != 0)
1840     return MCDisassembler::Fail;
1841 
1842   std::string Kd;
1843   raw_string_ostream KdStream(Kd);
1844   KdStream << ".amdhsa_kernel " << KdName << '\n';
1845 
1846   DataExtractor::Cursor C(0);
1847   while (C && C.tell() < Bytes.size()) {
1848     MCDisassembler::DecodeStatus Status =
1849         decodeKernelDescriptorDirective(C, Bytes, KdStream);
1850 
1851     cantFail(C.takeError());
1852 
1853     if (Status == MCDisassembler::Fail)
1854       return MCDisassembler::Fail;
1855   }
1856   KdStream << ".end_amdhsa_kernel\n";
1857   outs() << KdStream.str();
1858   return MCDisassembler::Success;
1859 }
1860 
1861 Optional<MCDisassembler::DecodeStatus>
1862 AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
1863                                   ArrayRef<uint8_t> Bytes, uint64_t Address,
1864                                   raw_ostream &CStream) const {
1865   // Right now only kernel descriptor needs to be handled.
1866   // We ignore all other symbols for target specific handling.
1867   // TODO:
1868   // Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
1869   // Object V2 and V3 when symbols are marked protected.
1870 
1871   // amd_kernel_code_t for Code Object V2.
1872   if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
1873     Size = 256;
1874     return MCDisassembler::Fail;
1875   }
1876 
1877   // Code Object V3 kernel descriptors.
1878   StringRef Name = Symbol.Name;
1879   if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
1880     Size = 64; // Size = 64 regardless of success or failure.
1881     return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
1882   }
1883   return None;
1884 }
1885 
1886 //===----------------------------------------------------------------------===//
1887 // AMDGPUSymbolizer
1888 //===----------------------------------------------------------------------===//
1889 
1890 // Try to find symbol name for specified label
1891 bool AMDGPUSymbolizer::tryAddingSymbolicOperand(MCInst &Inst,
1892                                 raw_ostream &/*cStream*/, int64_t Value,
1893                                 uint64_t /*Address*/, bool IsBranch,
1894                                 uint64_t /*Offset*/, uint64_t /*InstSize*/) {
1895 
1896   if (!IsBranch) {
1897     return false;
1898   }
1899 
1900   auto *Symbols = static_cast<SectionSymbolsTy *>(DisInfo);
1901   if (!Symbols)
1902     return false;
1903 
1904   auto Result = llvm::find_if(*Symbols, [Value](const SymbolInfoTy &Val) {
1905     return Val.Addr == static_cast<uint64_t>(Value) &&
1906            Val.Type == ELF::STT_NOTYPE;
1907   });
1908   if (Result != Symbols->end()) {
1909     auto *Sym = Ctx.getOrCreateSymbol(Result->Name);
1910     const auto *Add = MCSymbolRefExpr::create(Sym, Ctx);
1911     Inst.addOperand(MCOperand::createExpr(Add));
1912     return true;
1913   }
1914   // Add to list of referenced addresses, so caller can synthesize a label.
1915   ReferencedAddresses.push_back(static_cast<uint64_t>(Value));
1916   return false;
1917 }
1918 
1919 void AMDGPUSymbolizer::tryAddingPcLoadReferenceComment(raw_ostream &cStream,
1920                                                        int64_t Value,
1921                                                        uint64_t Address) {
1922   llvm_unreachable("unimplemented");
1923 }
1924 
1925 //===----------------------------------------------------------------------===//
1926 // Initialization
1927 //===----------------------------------------------------------------------===//
1928 
1929 static MCSymbolizer *createAMDGPUSymbolizer(const Triple &/*TT*/,
1930                               LLVMOpInfoCallback /*GetOpInfo*/,
1931                               LLVMSymbolLookupCallback /*SymbolLookUp*/,
1932                               void *DisInfo,
1933                               MCContext *Ctx,
1934                               std::unique_ptr<MCRelocationInfo> &&RelInfo) {
1935   return new AMDGPUSymbolizer(*Ctx, std::move(RelInfo), DisInfo);
1936 }
1937 
1938 static MCDisassembler *createAMDGPUDisassembler(const Target &T,
1939                                                 const MCSubtargetInfo &STI,
1940                                                 MCContext &Ctx) {
1941   return new AMDGPUDisassembler(STI, Ctx, T.createMCInstrInfo());
1942 }
1943 
1944 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUDisassembler() {
1945   TargetRegistry::RegisterMCDisassembler(getTheGCNTarget(),
1946                                          createAMDGPUDisassembler);
1947   TargetRegistry::RegisterMCSymbolizer(getTheGCNTarget(),
1948                                        createAMDGPUSymbolizer);
1949 }
1950