xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDKernelCodeT.h (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- AMDGPUKernelCodeT.h - Print AMDGPU assembly code ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file AMDKernelCodeT.h
9 //===----------------------------------------------------------------------===//
10 
11 #ifndef AMDKERNELCODET_H
12 #define AMDKERNELCODET_H
13 
14 #include <cstdint>
15 
16 //---------------------------------------------------------------------------//
17 // AMD Kernel Code, and its dependencies                                     //
18 //---------------------------------------------------------------------------//
19 
20 typedef uint8_t hsa_powertwo8_t;
21 typedef uint32_t hsa_ext_code_kind_t;
22 typedef uint8_t hsa_ext_brig_profile8_t;
23 typedef uint8_t hsa_ext_brig_machine_model8_t;
24 typedef uint64_t hsa_ext_control_directive_present64_t;
25 typedef uint16_t hsa_ext_exception_kind16_t;
26 typedef uint32_t hsa_ext_code_kind32_t;
27 
28 typedef struct hsa_dim3_s {
29   uint32_t x;
30   uint32_t y;
31   uint32_t z;
32 } hsa_dim3_t;
33 
34 /// The version of the amd_*_code_t struct. Minor versions must be
35 /// backward compatible.
36 typedef uint32_t amd_code_version32_t;
37 enum amd_code_version_t {
38   AMD_CODE_VERSION_MAJOR = 0,
39   AMD_CODE_VERSION_MINOR = 1
40 };
41 
42 // Sets val bits for specified mask in specified dst packed instance.
43 #define AMD_HSA_BITS_SET(dst, mask, val)                                       \
44   dst &= (~(1 << mask ## _SHIFT) & ~mask);                                     \
45   dst |= (((val) << mask ## _SHIFT) & mask)
46 
47 // Gets bits for specified mask from specified src packed instance.
48 #define AMD_HSA_BITS_GET(src, mask)                                            \
49   ((src & mask) >> mask ## _SHIFT)                                             \
50 
51 /// The values used to define the number of bytes to use for the
52 /// swizzle element size.
53 enum amd_element_byte_size_t {
54   AMD_ELEMENT_2_BYTES = 0,
55   AMD_ELEMENT_4_BYTES = 1,
56   AMD_ELEMENT_8_BYTES = 2,
57   AMD_ELEMENT_16_BYTES = 3
58 };
59 
60 /// Shader program settings for CS. Contains COMPUTE_PGM_RSRC1 and
61 /// COMPUTE_PGM_RSRC2 registers.
62 typedef uint64_t amd_compute_pgm_resource_register64_t;
63 
64 /// Every amd_*_code_t has the following properties, which are composed of
65 /// a number of bit fields. Every bit field has a mask (AMD_CODE_PROPERTY_*),
66 /// bit width (AMD_CODE_PROPERTY_*_WIDTH, and bit shift amount
67 /// (AMD_CODE_PROPERTY_*_SHIFT) for convenient access. Unused bits must be 0.
68 ///
69 /// (Note that bit fields cannot be used as their layout is
70 /// implementation defined in the C standard and so cannot be used to
71 /// specify an ABI)
72 typedef uint32_t amd_code_property32_t;
73 enum amd_code_property_mask_t {
74 
75   /// Enable the setup of the SGPR user data registers
76   /// (AMD_CODE_PROPERTY_ENABLE_SGPR_*), see documentation of amd_kernel_code_t
77   /// for initial register state.
78   ///
79   /// The total number of SGPRuser data registers requested must not
80   /// exceed 16. Any requests beyond 16 will be ignored.
81   ///
82   /// Used to set COMPUTE_PGM_RSRC2.USER_SGPR (set to total count of
83   /// SGPR user data registers enabled up to 16).
84 
85   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_SHIFT = 0,
86   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_WIDTH = 1,
87   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_SHIFT,
88 
89   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_SHIFT = 1,
90   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_WIDTH = 1,
91   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_SHIFT,
92 
93   AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_SHIFT = 2,
94   AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_WIDTH = 1,
95   AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_SHIFT,
96 
97   AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_SHIFT = 3,
98   AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_WIDTH = 1,
99   AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_SHIFT,
100 
101   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_SHIFT = 4,
102   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_WIDTH = 1,
103   AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_SHIFT,
104 
105   AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_SHIFT = 5,
106   AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_WIDTH = 1,
107   AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_SHIFT,
108 
109   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_SHIFT = 6,
110   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_WIDTH = 1,
111   AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_SHIFT,
112 
113   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_SHIFT = 7,
114   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_WIDTH = 1,
115   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_SHIFT,
116 
117   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_SHIFT = 8,
118   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_WIDTH = 1,
119   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_SHIFT,
120 
121   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_SHIFT = 9,
122   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_WIDTH = 1,
123   AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_SHIFT,
124 
125   AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32_SHIFT = 10,
126   AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32_WIDTH = 1,
127   AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32 = ((1 << AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32_SHIFT,
128 
129   AMD_CODE_PROPERTY_RESERVED1_SHIFT = 11,
130   AMD_CODE_PROPERTY_RESERVED1_WIDTH = 5,
131   AMD_CODE_PROPERTY_RESERVED1 = ((1 << AMD_CODE_PROPERTY_RESERVED1_WIDTH) - 1) << AMD_CODE_PROPERTY_RESERVED1_SHIFT,
132 
133   /// Control wave ID base counter for GDS ordered-append. Used to set
134   /// COMPUTE_DISPATCH_INITIATOR.ORDERED_APPEND_ENBL. (Not sure if
135   /// ORDERED_APPEND_MODE also needs to be settable)
136   AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_SHIFT = 16,
137   AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_WIDTH = 1,
138   AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS = ((1 << AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_SHIFT,
139 
140   /// The interleave (swizzle) element size in bytes required by the
141   /// code for private memory. This must be 2, 4, 8 or 16. This value
142   /// is provided to the finalizer when it is invoked and is recorded
143   /// here. The hardware will interleave the memory requests of each
144   /// lane of a wavefront by this element size to ensure each
145   /// work-item gets a distinct memory memory location. Therefore, the
146   /// finalizer ensures that all load and store operations done to
147   /// private memory do not exceed this size. For example, if the
148   /// element size is 4 (32-bits or dword) and a 64-bit value must be
149   /// loaded, the finalizer will generate two 32-bit loads. This
150   /// ensures that the interleaving will get the work-item
151   /// specific dword for both halves of the 64-bit value. If it just
152   /// did a 64-bit load then it would get one dword which belonged to
153   /// its own work-item, but the second dword would belong to the
154   /// adjacent lane work-item since the interleaving is in dwords.
155   ///
156   /// The value used must match the value that the runtime configures
157   /// the GPU flat scratch (SH_STATIC_MEM_CONFIG.ELEMENT_SIZE). This
158   /// is generally DWORD.
159   ///
160   /// uSE VALUES FROM THE AMD_ELEMENT_BYTE_SIZE_T ENUM.
161   AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_SHIFT = 17,
162   AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_WIDTH = 2,
163   AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE = ((1 << AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_WIDTH) - 1) << AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_SHIFT,
164 
165   /// Are global memory addresses 64 bits. Must match
166   /// amd_kernel_code_t.hsail_machine_model ==
167   /// HSA_MACHINE_LARGE. Must also match
168   /// SH_MEM_CONFIG.PTR32 (GFX6 (SI)/GFX7 (CI)),
169   /// SH_MEM_CONFIG.ADDRESS_MODE (GFX8 (VI)+).
170   AMD_CODE_PROPERTY_IS_PTR64_SHIFT = 19,
171   AMD_CODE_PROPERTY_IS_PTR64_WIDTH = 1,
172   AMD_CODE_PROPERTY_IS_PTR64 = ((1 << AMD_CODE_PROPERTY_IS_PTR64_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_PTR64_SHIFT,
173 
174   /// Indicate if the generated ISA is using a dynamically sized call
175   /// stack. This can happen if calls are implemented using a call
176   /// stack and recursion, alloca or calls to indirect functions are
177   /// present. In these cases the Finalizer cannot compute the total
178   /// private segment size at compile time. In this case the
179   /// workitem_private_segment_byte_size only specifies the statically
180   /// know private segment size, and additional space must be added
181   /// for the call stack.
182   AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_SHIFT = 20,
183   AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_WIDTH = 1,
184   AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK = ((1 << AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_SHIFT,
185 
186   /// Indicate if code generated has support for debugging.
187   AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_SHIFT = 21,
188   AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_WIDTH = 1,
189   AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED = ((1 << AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_SHIFT,
190 
191   AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED_SHIFT = 22,
192   AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED_WIDTH = 1,
193   AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED = ((1 << AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED_SHIFT,
194 
195   AMD_CODE_PROPERTY_RESERVED2_SHIFT = 23,
196   AMD_CODE_PROPERTY_RESERVED2_WIDTH = 9,
197   AMD_CODE_PROPERTY_RESERVED2 = ((1 << AMD_CODE_PROPERTY_RESERVED2_WIDTH) - 1) << AMD_CODE_PROPERTY_RESERVED2_SHIFT
198 };
199 
200 /// The hsa_ext_control_directives_t specifies the values for the HSAIL
201 /// control directives. These control how the finalizer generates code. This
202 /// struct is used both as an argument to hsaFinalizeKernel to specify values for
203 /// the control directives, and is used in HsaKernelCode to record the values of
204 /// the control directives that the finalize used when generating the code which
205 /// either came from the finalizer argument or explicit HSAIL control
206 /// directives. See the definition of the control directives in HSA Programmer's
207 /// Reference Manual which also defines how the values specified as finalizer
208 /// arguments have to agree with the control directives in the HSAIL code.
209 typedef struct hsa_ext_control_directives_s {
210   /// This is a bit set indicating which control directives have been
211   /// specified. If the value is 0 then there are no control directives specified
212   /// and the rest of the fields can be ignored. The bits are accessed using the
213   /// hsa_ext_control_directives_present_mask_t. Any control directive that is not
214   /// enabled in this bit set must have the value of all 0s.
215   hsa_ext_control_directive_present64_t enabled_control_directives;
216 
217   /// If enableBreakExceptions is not enabled then must be 0, otherwise must be
218   /// non-0 and specifies the set of HSAIL exceptions that must have the BREAK
219   /// policy enabled. If this set is not empty then the generated code may have
220   /// lower performance than if the set is empty. If the kernel being finalized
221   /// has any enablebreakexceptions control directives, then the values specified
222   /// by this argument are unioned with the values in these control
223   /// directives. If any of the functions the kernel calls have an
224   /// enablebreakexceptions control directive, then they must be equal or a
225   /// subset of, this union.
226   hsa_ext_exception_kind16_t enable_break_exceptions;
227 
228   /// If enableDetectExceptions is not enabled then must be 0, otherwise must be
229   /// non-0 and specifies the set of HSAIL exceptions that must have the DETECT
230   /// policy enabled. If this set is not empty then the generated code may have
231   /// lower performance than if the set is empty. However, an implementation
232   /// should endeavour to make the performance impact small. If the kernel being
233   /// finalized has any enabledetectexceptions control directives, then the
234   /// values specified by this argument are unioned with the values in these
235   /// control directives. If any of the functions the kernel calls have an
236   /// enabledetectexceptions control directive, then they must be equal or a
237   /// subset of, this union.
238   hsa_ext_exception_kind16_t enable_detect_exceptions;
239 
240   /// If maxDynamicGroupSize is not enabled then must be 0, and any amount of
241   /// dynamic group segment can be allocated for a dispatch, otherwise the value
242   /// specifies the maximum number of bytes of dynamic group segment that can be
243   /// allocated for a dispatch. If the kernel being finalized has any
244   /// maxdynamicsize control directives, then the values must be the same, and
245   /// must be the same as this argument if it is enabled. This value can be used
246   /// by the finalizer to determine the maximum number of bytes of group memory
247   /// used by each work-group by adding this value to the group memory required
248   /// for all group segment variables used by the kernel and all functions it
249   /// calls, and group memory used to implement other HSAIL features such as
250   /// fbarriers and the detect exception operations. This can allow the finalizer
251   /// to determine the expected number of work-groups that can be executed by a
252   /// compute unit and allow more resources to be allocated to the work-items if
253   /// it is known that fewer work-groups can be executed due to group memory
254   /// limitations.
255   uint32_t max_dynamic_group_size;
256 
257   /// If maxFlatGridSize is not enabled then must be 0, otherwise must be greater
258   /// than 0. See HSA Programmer's Reference Manual description of
259   /// maxflatgridsize control directive.
260   uint32_t max_flat_grid_size;
261 
262   /// If maxFlatWorkgroupSize is not enabled then must be 0, otherwise must be
263   /// greater than 0. See HSA Programmer's Reference Manual description of
264   /// maxflatworkgroupsize control directive.
265   uint32_t max_flat_workgroup_size;
266 
267   /// If requestedWorkgroupsPerCu is not enabled then must be 0, and the
268   /// finalizer is free to generate ISA that may result in any number of
269   /// work-groups executing on a single compute unit. Otherwise, the finalizer
270   /// should attempt to generate ISA that will allow the specified number of
271   /// work-groups to execute on a single compute unit. This is only a hint and
272   /// can be ignored by the finalizer. If the kernel being finalized, or any of
273   /// the functions it calls, has a requested control directive, then the values
274   /// must be the same. This can be used to determine the number of resources
275   /// that should be allocated to a single work-group and work-item. For example,
276   /// a low value may allow more resources to be allocated, resulting in higher
277   /// per work-item performance, as it is known there will never be more than the
278   /// specified number of work-groups actually executing on the compute
279   /// unit. Conversely, a high value may allocate fewer resources, resulting in
280   /// lower per work-item performance, which is offset by the fact it allows more
281   /// work-groups to actually execute on the compute unit.
282   uint32_t requested_workgroups_per_cu;
283 
284   /// If not enabled then all elements for Dim3 must be 0, otherwise every
285   /// element must be greater than 0. See HSA Programmer's Reference Manual
286   /// description of requiredgridsize control directive.
287   hsa_dim3_t required_grid_size;
288 
289   /// If requiredWorkgroupSize is not enabled then all elements for Dim3 must be
290   /// 0, and the produced code can be dispatched with any legal work-group range
291   /// consistent with the dispatch dimensions. Otherwise, the code produced must
292   /// always be dispatched with the specified work-group range. No element of the
293   /// specified range must be 0. It must be consistent with required_dimensions
294   /// and max_flat_workgroup_size. If the kernel being finalized, or any of the
295   /// functions it calls, has a requiredworkgroupsize control directive, then the
296   /// values must be the same. Specifying a value can allow the finalizer to
297   /// optimize work-group id operations, and if the number of work-items in the
298   /// work-group is less than the WAVESIZE then barrier operations can be
299   /// optimized to just a memory fence.
300   hsa_dim3_t required_workgroup_size;
301 
302   /// If requiredDim is not enabled then must be 0 and the produced kernel code
303   /// can be dispatched with 1, 2 or 3 dimensions. If enabled then the value is
304   /// 1..3 and the code produced must only be dispatched with a dimension that
305   /// matches. Other values are illegal. If the kernel being finalized, or any of
306   /// the functions it calls, has a requireddimsize control directive, then the
307   /// values must be the same. This can be used to optimize the code generated to
308   /// compute the absolute and flat work-group and work-item id, and the dim
309   /// HSAIL operations.
310   uint8_t required_dim;
311 
312   /// Reserved. Must be 0.
313   uint8_t reserved[75];
314 } hsa_ext_control_directives_t;
315 
316 /// AMD Kernel Code Object (amd_kernel_code_t). GPU CP uses the AMD Kernel
317 /// Code Object to set up the hardware to execute the kernel dispatch.
318 ///
319 /// Initial Kernel Register State.
320 ///
321 /// Initial kernel register state will be set up by CP/SPI prior to the start
322 /// of execution of every wavefront. This is limited by the constraints of the
323 /// current hardware.
324 ///
325 /// The order of the SGPR registers is defined, but the Finalizer can specify
326 /// which ones are actually setup in the amd_kernel_code_t object using the
327 /// enable_sgpr_* bit fields. The register numbers used for enabled registers
328 /// are dense starting at SGPR0: the first enabled register is SGPR0, the next
329 /// enabled register is SGPR1 etc.; disabled registers do not have an SGPR
330 /// number.
331 ///
332 /// The initial SGPRs comprise up to 16 User SRGPs that are set up by CP and
333 /// apply to all waves of the grid. It is possible to specify more than 16 User
334 /// SGPRs using the enable_sgpr_* bit fields, in which case only the first 16
335 /// are actually initialized. These are then immediately followed by the System
336 /// SGPRs that are set up by ADC/SPI and can have different values for each wave
337 /// of the grid dispatch.
338 ///
339 /// SGPR register initial state is defined as follows:
340 ///
341 /// Private Segment Buffer (enable_sgpr_private_segment_buffer):
342 ///   Number of User SGPR registers: 4. V# that can be used, together with
343 ///   Scratch Wave Offset as an offset, to access the Private/Spill/Arg
344 ///   segments using a segment address. It must be set as follows:
345 ///     - Base address: of the scratch memory area used by the dispatch. It
346 ///       does not include the scratch wave offset. It will be the per process
347 ///       SH_HIDDEN_PRIVATE_BASE_VMID plus any offset from this dispatch (for
348 ///       example there may be a per pipe offset, or per AQL Queue offset).
349 ///     - Stride + data_format: Element Size * Index Stride (???)
350 ///     - Cache swizzle: ???
351 ///     - Swizzle enable: SH_STATIC_MEM_CONFIG.SWIZZLE_ENABLE (must be 1 for
352 ///       scratch)
353 ///     - Num records: Flat Scratch Work Item Size / Element Size (???)
354 ///     - Dst_sel_*: ???
355 ///     - Num_format: ???
356 ///     - Element_size: SH_STATIC_MEM_CONFIG.ELEMENT_SIZE (will be DWORD, must
357 ///       agree with amd_kernel_code_t.privateElementSize)
358 ///     - Index_stride: SH_STATIC_MEM_CONFIG.INDEX_STRIDE (will be 64 as must
359 ///       be number of wavefront lanes for scratch, must agree with
360 ///       amd_kernel_code_t.wavefrontSize)
361 ///     - Add tid enable: 1
362 ///     - ATC: from SH_MEM_CONFIG.PRIVATE_ATC,
363 ///     - Hash_enable: ???
364 ///     - Heap: ???
365 ///     - Mtype: from SH_STATIC_MEM_CONFIG.PRIVATE_MTYPE
366 ///     - Type: 0 (a buffer) (???)
367 ///
368 /// Dispatch Ptr (enable_sgpr_dispatch_ptr):
369 ///   Number of User SGPR registers: 2. 64 bit address of AQL dispatch packet
370 ///   for kernel actually executing.
371 ///
372 /// Queue Ptr (enable_sgpr_queue_ptr):
373 ///   Number of User SGPR registers: 2. 64 bit address of AmdQueue object for
374 ///   AQL queue on which the dispatch packet was queued.
375 ///
376 /// Kernarg Segment Ptr (enable_sgpr_kernarg_segment_ptr):
377 ///   Number of User SGPR registers: 2. 64 bit address of Kernarg segment. This
378 ///   is directly copied from the kernargPtr in the dispatch packet. Having CP
379 ///   load it once avoids loading it at the beginning of every wavefront.
380 ///
381 /// Dispatch Id (enable_sgpr_dispatch_id):
382 ///   Number of User SGPR registers: 2. 64 bit Dispatch ID of the dispatch
383 ///   packet being executed.
384 ///
385 /// Flat Scratch Init (enable_sgpr_flat_scratch_init):
386 ///   Number of User SGPR registers: 2. This is 2 SGPRs.
387 ///
388 ///   For CI/VI:
389 ///     The first SGPR is a 32 bit byte offset from SH_MEM_HIDDEN_PRIVATE_BASE
390 ///     to base of memory for scratch for this dispatch. This is the same offset
391 ///     used in computing the Scratch Segment Buffer base address. The value of
392 ///     Scratch Wave Offset must be added by the kernel code and moved to
393 ///     SGPRn-4 for use as the FLAT SCRATCH BASE in flat memory instructions.
394 ///
395 ///     The second SGPR is 32 bit byte size of a single work-item's scratch
396 ///     memory usage. This is directly loaded from the dispatch packet Private
397 ///     Segment Byte Size and rounded up to a multiple of DWORD.
398 ///
399 ///     \todo [Does CP need to round this to >4 byte alignment?]
400 ///
401 ///     The kernel code must move to SGPRn-3 for use as the FLAT SCRATCH SIZE in
402 ///     flat memory instructions. Having CP load it once avoids loading it at
403 ///     the beginning of every wavefront.
404 ///
405 ///   For PI:
406 ///     This is the 64 bit base address of the scratch backing memory for
407 ///     allocated by CP for this dispatch.
408 ///
409 /// Private Segment Size (enable_sgpr_private_segment_size):
410 ///   Number of User SGPR registers: 1. The 32 bit byte size of a single
411 ///   work-item's scratch memory allocation. This is the value from the dispatch
412 ///   packet. Private Segment Byte Size rounded up by CP to a multiple of DWORD.
413 ///
414 ///   \todo [Does CP need to round this to >4 byte alignment?]
415 ///
416 ///   Having CP load it once avoids loading it at the beginning of every
417 ///   wavefront.
418 ///
419 ///   \todo [This will not be used for CI/VI since it is the same value as
420 ///   the second SGPR of Flat Scratch Init. However, it is need for PI which
421 ///   changes meaning of Flat Scratchg Init..]
422 ///
423 /// Grid Work-Group Count X (enable_sgpr_grid_workgroup_count_x):
424 ///   Number of User SGPR registers: 1. 32 bit count of the number of
425 ///   work-groups in the X dimension for the grid being executed. Computed from
426 ///   the fields in the HsaDispatchPacket as
427 ///   ((gridSize.x+workgroupSize.x-1)/workgroupSize.x).
428 ///
429 /// Grid Work-Group Count Y (enable_sgpr_grid_workgroup_count_y):
430 ///   Number of User SGPR registers: 1. 32 bit count of the number of
431 ///   work-groups in the Y dimension for the grid being executed. Computed from
432 ///   the fields in the HsaDispatchPacket as
433 ///   ((gridSize.y+workgroupSize.y-1)/workgroupSize.y).
434 ///
435 ///   Only initialized if <16 previous SGPRs initialized.
436 ///
437 /// Grid Work-Group Count Z (enable_sgpr_grid_workgroup_count_z):
438 ///   Number of User SGPR registers: 1. 32 bit count of the number of
439 ///   work-groups in the Z dimension for the grid being executed. Computed
440 ///   from the fields in the HsaDispatchPacket as
441 ///   ((gridSize.z+workgroupSize.z-1)/workgroupSize.z).
442 ///
443 ///   Only initialized if <16 previous SGPRs initialized.
444 ///
445 /// Work-Group Id X (enable_sgpr_workgroup_id_x):
446 ///   Number of System SGPR registers: 1. 32 bit work group id in X dimension
447 ///   of grid for wavefront. Always present.
448 ///
449 /// Work-Group Id Y (enable_sgpr_workgroup_id_y):
450 ///   Number of System SGPR registers: 1. 32 bit work group id in Y dimension
451 ///   of grid for wavefront.
452 ///
453 /// Work-Group Id Z (enable_sgpr_workgroup_id_z):
454 ///   Number of System SGPR registers: 1. 32 bit work group id in Z dimension
455 ///   of grid for wavefront. If present then Work-group Id Y will also be
456 ///   present
457 ///
458 /// Work-Group Info (enable_sgpr_workgroup_info):
459 ///   Number of System SGPR registers: 1. {first_wave, 14'b0000,
460 ///   ordered_append_term[10:0], threadgroup_size_in_waves[5:0]}
461 ///
462 /// Private Segment Wave Byte Offset
463 /// (enable_sgpr_private_segment_wave_byte_offset):
464 ///   Number of System SGPR registers: 1. 32 bit byte offset from base of
465 ///   dispatch scratch base. Must be used as an offset with Private/Spill/Arg
466 ///   segment address when using Scratch Segment Buffer. It must be added to
467 ///   Flat Scratch Offset if setting up FLAT SCRATCH for flat addressing.
468 ///
469 ///
470 /// The order of the VGPR registers is defined, but the Finalizer can specify
471 /// which ones are actually setup in the amd_kernel_code_t object using the
472 /// enableVgpr*  bit fields. The register numbers used for enabled registers
473 /// are dense starting at VGPR0: the first enabled register is VGPR0, the next
474 /// enabled register is VGPR1 etc.; disabled registers do not have an VGPR
475 /// number.
476 ///
477 /// VGPR register initial state is defined as follows:
478 ///
479 /// Work-Item Id X (always initialized):
480 ///   Number of registers: 1. 32 bit work item id in X dimension of work-group
481 ///   for wavefront lane.
482 ///
483 /// Work-Item Id X (enable_vgpr_workitem_id > 0):
484 ///   Number of registers: 1. 32 bit work item id in Y dimension of work-group
485 ///   for wavefront lane.
486 ///
487 /// Work-Item Id X (enable_vgpr_workitem_id > 0):
488 ///   Number of registers: 1. 32 bit work item id in Z dimension of work-group
489 ///   for wavefront lane.
490 ///
491 ///
492 /// The setting of registers is being done by existing GPU hardware as follows:
493 ///   1) SGPRs before the Work-Group Ids are set by CP using the 16 User Data
494 ///      registers.
495 ///   2) Work-group Id registers X, Y, Z are set by SPI which supports any
496 ///      combination including none.
497 ///   3) Scratch Wave Offset is also set by SPI which is why its value cannot
498 ///      be added into the value Flat Scratch Offset which would avoid the
499 ///      Finalizer generated prolog having to do the add.
500 ///   4) The VGPRs are set by SPI which only supports specifying either (X),
501 ///      (X, Y) or (X, Y, Z).
502 ///
503 /// Flat Scratch Dispatch Offset and Flat Scratch Size are adjacent SGRRs so
504 /// they can be moved as a 64 bit value to the hardware required SGPRn-3 and
505 /// SGPRn-4 respectively using the Finalizer ?FLAT_SCRATCH? Register.
506 ///
507 /// The global segment can be accessed either using flat operations or buffer
508 /// operations. If buffer operations are used then the Global Buffer used to
509 /// access HSAIL Global/Readonly/Kernarg (which are combine) segments using a
510 /// segment address is not passed into the kernel code by CP since its base
511 /// address is always 0. Instead the Finalizer generates prolog code to
512 /// initialize 4 SGPRs with a V# that has the following properties, and then
513 /// uses that in the buffer instructions:
514 ///   - base address of 0
515 ///   - no swizzle
516 ///   - ATC=1
517 ///   - MTYPE set to support memory coherence specified in
518 ///     amd_kernel_code_t.globalMemoryCoherence
519 ///
520 /// When the Global Buffer is used to access the Kernarg segment, must add the
521 /// dispatch packet kernArgPtr to a kernarg segment address before using this V#.
522 /// Alternatively scalar loads can be used if the kernarg offset is uniform, as
523 /// the kernarg segment is constant for the duration of the kernel execution.
524 ///
525 
526 struct amd_kernel_code_t {
527   uint32_t amd_kernel_code_version_major;
528   uint32_t amd_kernel_code_version_minor;
529   uint16_t amd_machine_kind;
530   uint16_t amd_machine_version_major;
531   uint16_t amd_machine_version_minor;
532   uint16_t amd_machine_version_stepping;
533 
534   /// Byte offset (possibly negative) from start of amd_kernel_code_t
535   /// object to kernel's entry point instruction. The actual code for
536   /// the kernel is required to be 256 byte aligned to match hardware
537   /// requirements (SQ cache line is 16). The code must be position
538   /// independent code (PIC) for AMD devices to give runtime the
539   /// option of copying code to discrete GPU memory or APU L2
540   /// cache. The Finalizer should endeavour to allocate all kernel
541   /// machine code in contiguous memory pages so that a device
542   /// pre-fetcher will tend to only pre-fetch Kernel Code objects,
543   /// improving cache performance.
544   int64_t kernel_code_entry_byte_offset;
545 
546   /// Range of bytes to consider prefetching expressed as an offset
547   /// and size. The offset is from the start (possibly negative) of
548   /// amd_kernel_code_t object. Set both to 0 if no prefetch
549   /// information is available.
550   int64_t kernel_code_prefetch_byte_offset;
551   uint64_t kernel_code_prefetch_byte_size;
552 
553   /// Reserved. Must be 0.
554   uint64_t reserved0;
555 
556   /// Shader program settings for CS. Contains COMPUTE_PGM_RSRC1 and
557   /// COMPUTE_PGM_RSRC2 registers.
558   uint64_t compute_pgm_resource_registers;
559 
560   /// Code properties. See amd_code_property_mask_t for a full list of
561   /// properties.
562   uint32_t code_properties;
563 
564   /// The amount of memory required for the combined private, spill
565   /// and arg segments for a work-item in bytes. If
566   /// is_dynamic_callstack is 1 then additional space must be added to
567   /// this value for the call stack.
568   uint32_t workitem_private_segment_byte_size;
569 
570   /// The amount of group segment memory required by a work-group in
571   /// bytes. This does not include any dynamically allocated group
572   /// segment memory that may be added when the kernel is
573   /// dispatched.
574   uint32_t workgroup_group_segment_byte_size;
575 
576   /// Number of byte of GDS required by kernel dispatch. Must be 0 if
577   /// not using GDS.
578   uint32_t gds_segment_byte_size;
579 
580   /// The size in bytes of the kernarg segment that holds the values
581   /// of the arguments to the kernel. This could be used by CP to
582   /// prefetch the kernarg segment pointed to by the dispatch packet.
583   uint64_t kernarg_segment_byte_size;
584 
585   /// Number of fbarrier's used in the kernel and all functions it
586   /// calls. If the implementation uses group memory to allocate the
587   /// fbarriers then that amount must already be included in the
588   /// workgroup_group_segment_byte_size total.
589   uint32_t workgroup_fbarrier_count;
590 
591   /// Number of scalar registers used by a wavefront. This includes
592   /// the special SGPRs for VCC, Flat Scratch Base, Flat Scratch Size
593   /// and XNACK (for GFX8 (VI)). It does not include the 16 SGPR added if a
594   /// trap handler is enabled. Used to set COMPUTE_PGM_RSRC1.SGPRS.
595   uint16_t wavefront_sgpr_count;
596 
597   /// Number of vector registers used by each work-item. Used to set
598   /// COMPUTE_PGM_RSRC1.VGPRS.
599   uint16_t workitem_vgpr_count;
600 
601   /// If reserved_vgpr_count is 0 then must be 0. Otherwise, this is the
602   /// first fixed VGPR number reserved.
603   uint16_t reserved_vgpr_first;
604 
605   /// The number of consecutive VGPRs reserved by the client. If
606   /// is_debug_supported then this count includes VGPRs reserved
607   /// for debugger use.
608   uint16_t reserved_vgpr_count;
609 
610   /// If reserved_sgpr_count is 0 then must be 0. Otherwise, this is the
611   /// first fixed SGPR number reserved.
612   uint16_t reserved_sgpr_first;
613 
614   /// The number of consecutive SGPRs reserved by the client. If
615   /// is_debug_supported then this count includes SGPRs reserved
616   /// for debugger use.
617   uint16_t reserved_sgpr_count;
618 
619   /// If is_debug_supported is 0 then must be 0. Otherwise, this is the
620   /// fixed SGPR number used to hold the wave scratch offset for the
621   /// entire kernel execution, or uint16_t(-1) if the register is not
622   /// used or not known.
623   uint16_t debug_wavefront_private_segment_offset_sgpr;
624 
625   /// If is_debug_supported is 0 then must be 0. Otherwise, this is the
626   /// fixed SGPR number of the first of 4 SGPRs used to hold the
627   /// scratch V# used for the entire kernel execution, or uint16_t(-1)
628   /// if the registers are not used or not known.
629   uint16_t debug_private_segment_buffer_sgpr;
630 
631   /// The maximum byte alignment of variables used by the kernel in
632   /// the specified memory segment. Expressed as a power of two. Must
633   /// be at least HSA_POWERTWO_16.
634   uint8_t kernarg_segment_alignment;
635   uint8_t group_segment_alignment;
636   uint8_t private_segment_alignment;
637 
638   /// Wavefront size expressed as a power of two. Must be a power of 2
639   /// in range 1..64 inclusive. Used to support runtime query that
640   /// obtains wavefront size, which may be used by application to
641   /// allocated dynamic group memory and set the dispatch work-group
642   /// size.
643   uint8_t wavefront_size;
644 
645   int32_t call_convention;
646   uint8_t reserved3[12];
647   uint64_t runtime_loader_kernel_symbol;
648   uint64_t control_directives[16];
649 };
650 
651 #endif // AMDKERNELCODET_H
652