xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUUnifyDivergentExitNodes.cpp (revision aa1a8ff2d6dbc51ef058f46f3db5a8bb77967145)
1 //===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is a variant of the UnifyFunctionExitNodes pass. Rather than ensuring
10 // there is at most one ret and one unreachable instruction, it ensures there is
11 // at most one divergent exiting block.
12 //
13 // StructurizeCFG can't deal with multi-exit regions formed by branches to
14 // multiple return nodes. It is not desirable to structurize regions with
15 // uniform branches, so unifying those to the same return block as divergent
16 // branches inhibits use of scalar branching. It still can't deal with the case
17 // where one branch goes to return, and one unreachable. Replace unreachable in
18 // this case with a return.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "AMDGPUUnifyDivergentExitNodes.h"
23 #include "AMDGPU.h"
24 #include "SIDefines.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/PostDominators.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/UniformityAnalysis.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/IntrinsicsAMDGPU.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Transforms/Scalar.h"
48 #include "llvm/Transforms/Utils.h"
49 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes"
55 
56 namespace {
57 
58 class AMDGPUUnifyDivergentExitNodesImpl {
59 private:
60   const TargetTransformInfo *TTI = nullptr;
61 
62 public:
63   AMDGPUUnifyDivergentExitNodesImpl() = delete;
64   AMDGPUUnifyDivergentExitNodesImpl(const TargetTransformInfo *TTI)
65       : TTI(TTI) {}
66 
67   // We can preserve non-critical-edgeness when we unify function exit nodes
68   BasicBlock *unifyReturnBlockSet(Function &F, DomTreeUpdater &DTU,
69                                   ArrayRef<BasicBlock *> ReturningBlocks,
70                                   StringRef Name);
71   bool run(Function &F, DominatorTree *DT, const PostDominatorTree &PDT,
72            const UniformityInfo &UA);
73 };
74 
75 class AMDGPUUnifyDivergentExitNodes : public FunctionPass {
76 public:
77   static char ID;
78   AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) {
79     initializeAMDGPUUnifyDivergentExitNodesPass(
80         *PassRegistry::getPassRegistry());
81   }
82   void getAnalysisUsage(AnalysisUsage &AU) const override;
83   bool runOnFunction(Function &F) override;
84 };
85 } // end anonymous namespace
86 
87 char AMDGPUUnifyDivergentExitNodes::ID = 0;
88 
89 char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID;
90 
91 INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
92                       "Unify divergent function exit nodes", false, false)
93 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
94 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
95 INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
96 INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
97                     "Unify divergent function exit nodes", false, false)
98 
99 void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const {
100   if (RequireAndPreserveDomTree)
101     AU.addRequired<DominatorTreeWrapperPass>();
102 
103   AU.addRequired<PostDominatorTreeWrapperPass>();
104 
105   AU.addRequired<UniformityInfoWrapperPass>();
106 
107   if (RequireAndPreserveDomTree) {
108     AU.addPreserved<DominatorTreeWrapperPass>();
109     // FIXME: preserve PostDominatorTreeWrapperPass
110   }
111 
112   // We preserve the non-critical-edgeness property
113   AU.addPreservedID(BreakCriticalEdgesID);
114 
115   FunctionPass::getAnalysisUsage(AU);
116 
117   AU.addRequired<TargetTransformInfoWrapperPass>();
118 }
119 
120 /// \returns true if \p BB is reachable through only uniform branches.
121 /// XXX - Is there a more efficient way to find this?
122 static bool isUniformlyReached(const UniformityInfo &UA, BasicBlock &BB) {
123   SmallVector<BasicBlock *, 8> Stack(predecessors(&BB));
124   SmallPtrSet<BasicBlock *, 8> Visited;
125 
126   while (!Stack.empty()) {
127     BasicBlock *Top = Stack.pop_back_val();
128     if (!UA.isUniform(Top->getTerminator()))
129       return false;
130 
131     for (BasicBlock *Pred : predecessors(Top)) {
132       if (Visited.insert(Pred).second)
133         Stack.push_back(Pred);
134     }
135   }
136 
137   return true;
138 }
139 
140 BasicBlock *AMDGPUUnifyDivergentExitNodesImpl::unifyReturnBlockSet(
141     Function &F, DomTreeUpdater &DTU, ArrayRef<BasicBlock *> ReturningBlocks,
142     StringRef Name) {
143   // Otherwise, we need to insert a new basic block into the function, add a PHI
144   // nodes (if the function returns values), and convert all of the return
145   // instructions into unconditional branches.
146   BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F);
147   IRBuilder<> B(NewRetBlock);
148 
149   PHINode *PN = nullptr;
150   if (F.getReturnType()->isVoidTy()) {
151     B.CreateRetVoid();
152   } else {
153     // If the function doesn't return void... add a PHI node to the block...
154     PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(),
155                      "UnifiedRetVal");
156     B.CreateRet(PN);
157   }
158 
159   // Loop over all of the blocks, replacing the return instruction with an
160   // unconditional branch.
161   std::vector<DominatorTree::UpdateType> Updates;
162   Updates.reserve(ReturningBlocks.size());
163   for (BasicBlock *BB : ReturningBlocks) {
164     // Add an incoming element to the PHI node for every return instruction that
165     // is merging into this new block...
166     if (PN)
167       PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
168 
169     // Remove and delete the return inst.
170     BB->getTerminator()->eraseFromParent();
171     BranchInst::Create(NewRetBlock, BB);
172     Updates.push_back({DominatorTree::Insert, BB, NewRetBlock});
173   }
174 
175   if (RequireAndPreserveDomTree)
176     DTU.applyUpdates(Updates);
177   Updates.clear();
178 
179   for (BasicBlock *BB : ReturningBlocks) {
180     // Cleanup possible branch to unconditional branch to the return.
181     simplifyCFG(BB, *TTI, RequireAndPreserveDomTree ? &DTU : nullptr,
182                 SimplifyCFGOptions().bonusInstThreshold(2));
183   }
184 
185   return NewRetBlock;
186 }
187 
188 bool AMDGPUUnifyDivergentExitNodesImpl::run(Function &F, DominatorTree *DT,
189                                             const PostDominatorTree &PDT,
190                                             const UniformityInfo &UA) {
191   assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator.");
192 
193   if (PDT.root_size() == 0 ||
194       (PDT.root_size() == 1 &&
195        !isa<BranchInst>(PDT.getRoot()->getTerminator())))
196     return false;
197 
198   // Loop over all of the blocks in a function, tracking all of the blocks that
199   // return.
200   SmallVector<BasicBlock *, 4> ReturningBlocks;
201   SmallVector<BasicBlock *, 4> UnreachableBlocks;
202 
203   // Dummy return block for infinite loop.
204   BasicBlock *DummyReturnBB = nullptr;
205 
206   bool Changed = false;
207   std::vector<DominatorTree::UpdateType> Updates;
208 
209   // TODO: For now we unify all exit blocks, even though they are uniformly
210   // reachable, if there are any exits not uniformly reached. This is to
211   // workaround the limitation of structurizer, which can not handle multiple
212   // function exits. After structurizer is able to handle multiple function
213   // exits, we should only unify UnreachableBlocks that are not uniformly
214   // reachable.
215   bool HasDivergentExitBlock = llvm::any_of(
216       PDT.roots(), [&](auto BB) { return !isUniformlyReached(UA, *BB); });
217 
218   for (BasicBlock *BB : PDT.roots()) {
219     if (isa<ReturnInst>(BB->getTerminator())) {
220       if (HasDivergentExitBlock)
221         ReturningBlocks.push_back(BB);
222     } else if (isa<UnreachableInst>(BB->getTerminator())) {
223       if (HasDivergentExitBlock)
224         UnreachableBlocks.push_back(BB);
225     } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
226 
227       ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext());
228       if (DummyReturnBB == nullptr) {
229         DummyReturnBB = BasicBlock::Create(F.getContext(),
230                                            "DummyReturnBlock", &F);
231         Type *RetTy = F.getReturnType();
232         Value *RetVal = RetTy->isVoidTy() ? nullptr : PoisonValue::get(RetTy);
233         ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB);
234         ReturningBlocks.push_back(DummyReturnBB);
235       }
236 
237       if (BI->isUnconditional()) {
238         BasicBlock *LoopHeaderBB = BI->getSuccessor(0);
239         BI->eraseFromParent(); // Delete the unconditional branch.
240         // Add a new conditional branch with a dummy edge to the return block.
241         BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB);
242         Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB});
243       } else { // Conditional branch.
244         SmallVector<BasicBlock *, 2> Successors(successors(BB));
245 
246         // Create a new transition block to hold the conditional branch.
247         BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock");
248 
249         Updates.reserve(Updates.size() + 2 * Successors.size() + 2);
250 
251         // 'Successors' become successors of TransitionBB instead of BB,
252         // and TransitionBB becomes a single successor of BB.
253         Updates.push_back({DominatorTree::Insert, BB, TransitionBB});
254         for (BasicBlock *Successor : Successors) {
255           Updates.push_back({DominatorTree::Insert, TransitionBB, Successor});
256           Updates.push_back({DominatorTree::Delete, BB, Successor});
257         }
258 
259         // Create a branch that will always branch to the transition block and
260         // references DummyReturnBB.
261         BB->getTerminator()->eraseFromParent();
262         BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB);
263         Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB});
264       }
265       Changed = true;
266     }
267   }
268 
269   if (!UnreachableBlocks.empty()) {
270     BasicBlock *UnreachableBlock = nullptr;
271 
272     if (UnreachableBlocks.size() == 1) {
273       UnreachableBlock = UnreachableBlocks.front();
274     } else {
275       UnreachableBlock = BasicBlock::Create(F.getContext(),
276                                             "UnifiedUnreachableBlock", &F);
277       new UnreachableInst(F.getContext(), UnreachableBlock);
278 
279       Updates.reserve(Updates.size() + UnreachableBlocks.size());
280       for (BasicBlock *BB : UnreachableBlocks) {
281         // Remove and delete the unreachable inst.
282         BB->getTerminator()->eraseFromParent();
283         BranchInst::Create(UnreachableBlock, BB);
284         Updates.push_back({DominatorTree::Insert, BB, UnreachableBlock});
285       }
286       Changed = true;
287     }
288 
289     if (!ReturningBlocks.empty()) {
290       // Don't create a new unreachable inst if we have a return. The
291       // structurizer/annotator can't handle the multiple exits
292 
293       Type *RetTy = F.getReturnType();
294       Value *RetVal = RetTy->isVoidTy() ? nullptr : PoisonValue::get(RetTy);
295       // Remove and delete the unreachable inst.
296       UnreachableBlock->getTerminator()->eraseFromParent();
297 
298       Function *UnreachableIntrin =
299         Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable);
300 
301       // Insert a call to an intrinsic tracking that this is an unreachable
302       // point, in case we want to kill the active lanes or something later.
303       CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock);
304 
305       // Don't create a scalar trap. We would only want to trap if this code was
306       // really reached, but a scalar trap would happen even if no lanes
307       // actually reached here.
308       ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock);
309       ReturningBlocks.push_back(UnreachableBlock);
310       Changed = true;
311     }
312   }
313 
314   // FIXME: add PDT here once simplifycfg is ready.
315   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
316   if (RequireAndPreserveDomTree)
317     DTU.applyUpdates(Updates);
318   Updates.clear();
319 
320   // Now handle return blocks.
321   if (ReturningBlocks.empty())
322     return Changed; // No blocks return
323 
324   if (ReturningBlocks.size() == 1)
325     return Changed; // Already has a single return block
326 
327   unifyReturnBlockSet(F, DTU, ReturningBlocks, "UnifiedReturnBlock");
328   return true;
329 }
330 
331 bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) {
332   DominatorTree *DT = nullptr;
333   if (RequireAndPreserveDomTree)
334     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
335   const auto &PDT =
336       getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
337   const auto &UA = getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
338   const auto *TranformInfo =
339       &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
340   return AMDGPUUnifyDivergentExitNodesImpl(TranformInfo).run(F, DT, PDT, UA);
341 }
342 
343 PreservedAnalyses
344 AMDGPUUnifyDivergentExitNodesPass::run(Function &F,
345                                        FunctionAnalysisManager &AM) {
346   DominatorTree *DT = nullptr;
347   if (RequireAndPreserveDomTree)
348     DT = &AM.getResult<DominatorTreeAnalysis>(F);
349 
350   const auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
351   const auto &UA = AM.getResult<UniformityInfoAnalysis>(F);
352   const auto *TransformInfo = &AM.getResult<TargetIRAnalysis>(F);
353   return AMDGPUUnifyDivergentExitNodesImpl(TransformInfo).run(F, DT, PDT, UA)
354              ? PreservedAnalyses::none()
355              : PreservedAnalyses::all();
356 }
357