1 //===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is a variant of the UnifyDivergentExitNodes pass. Rather than ensuring 10 // there is at most one ret and one unreachable instruction, it ensures there is 11 // at most one divergent exiting block. 12 // 13 // StructurizeCFG can't deal with multi-exit regions formed by branches to 14 // multiple return nodes. It is not desirable to structurize regions with 15 // uniform branches, so unifying those to the same return block as divergent 16 // branches inhibits use of scalar branching. It still can't deal with the case 17 // where one branch goes to return, and one unreachable. Replace unreachable in 18 // this case with a return. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "AMDGPU.h" 23 #include "SIDefines.h" 24 #include "llvm/ADT/ArrayRef.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 30 #include "llvm/Analysis/PostDominators.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/IntrinsicsAMDGPU.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes" 53 54 namespace { 55 56 class AMDGPUUnifyDivergentExitNodes : public FunctionPass { 57 public: 58 static char ID; // Pass identification, replacement for typeid 59 60 AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) { 61 initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry()); 62 } 63 64 // We can preserve non-critical-edgeness when we unify function exit nodes 65 void getAnalysisUsage(AnalysisUsage &AU) const override; 66 bool runOnFunction(Function &F) override; 67 }; 68 69 } // end anonymous namespace 70 71 char AMDGPUUnifyDivergentExitNodes::ID = 0; 72 73 char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID; 74 75 INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 76 "Unify divergent function exit nodes", false, false) 77 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 78 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 79 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 80 INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 81 "Unify divergent function exit nodes", false, false) 82 83 void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{ 84 if (RequireAndPreserveDomTree) 85 AU.addRequired<DominatorTreeWrapperPass>(); 86 87 AU.addRequired<PostDominatorTreeWrapperPass>(); 88 89 AU.addRequired<LegacyDivergenceAnalysis>(); 90 91 if (RequireAndPreserveDomTree) { 92 AU.addPreserved<DominatorTreeWrapperPass>(); 93 // FIXME: preserve PostDominatorTreeWrapperPass 94 } 95 96 // No divergent values are changed, only blocks and branch edges. 97 AU.addPreserved<LegacyDivergenceAnalysis>(); 98 99 // We preserve the non-critical-edgeness property 100 AU.addPreservedID(BreakCriticalEdgesID); 101 102 // This is a cluster of orthogonal Transforms 103 AU.addPreservedID(LowerSwitchID); 104 FunctionPass::getAnalysisUsage(AU); 105 106 AU.addRequired<TargetTransformInfoWrapperPass>(); 107 } 108 109 /// \returns true if \p BB is reachable through only uniform branches. 110 /// XXX - Is there a more efficient way to find this? 111 static bool isUniformlyReached(const LegacyDivergenceAnalysis &DA, 112 BasicBlock &BB) { 113 SmallVector<BasicBlock *, 8> Stack; 114 SmallPtrSet<BasicBlock *, 8> Visited; 115 116 for (BasicBlock *Pred : predecessors(&BB)) 117 Stack.push_back(Pred); 118 119 while (!Stack.empty()) { 120 BasicBlock *Top = Stack.pop_back_val(); 121 if (!DA.isUniform(Top->getTerminator())) 122 return false; 123 124 for (BasicBlock *Pred : predecessors(Top)) { 125 if (Visited.insert(Pred).second) 126 Stack.push_back(Pred); 127 } 128 } 129 130 return true; 131 } 132 133 static void removeDoneExport(Function &F) { 134 ConstantInt *BoolFalse = ConstantInt::getFalse(F.getContext()); 135 for (BasicBlock &BB : F) { 136 for (Instruction &I : BB) { 137 if (IntrinsicInst *Intrin = llvm::dyn_cast<IntrinsicInst>(&I)) { 138 if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp) { 139 Intrin->setArgOperand(6, BoolFalse); // done 140 } else if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp_compr) { 141 Intrin->setArgOperand(4, BoolFalse); // done 142 } 143 } 144 } 145 } 146 } 147 148 static BasicBlock *unifyReturnBlockSet(Function &F, DomTreeUpdater &DTU, 149 ArrayRef<BasicBlock *> ReturningBlocks, 150 bool InsertExport, 151 const TargetTransformInfo &TTI, 152 StringRef Name) { 153 // Otherwise, we need to insert a new basic block into the function, add a PHI 154 // nodes (if the function returns values), and convert all of the return 155 // instructions into unconditional branches. 156 BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F); 157 IRBuilder<> B(NewRetBlock); 158 159 if (InsertExport) { 160 // Ensure that there's only one "done" export in the shader by removing the 161 // "done" bit set on the original final export. More than one "done" export 162 // can lead to undefined behavior. 163 removeDoneExport(F); 164 165 Value *Undef = UndefValue::get(B.getFloatTy()); 166 B.CreateIntrinsic(Intrinsic::amdgcn_exp, { B.getFloatTy() }, 167 { 168 B.getInt32(AMDGPU::Exp::ET_NULL), 169 B.getInt32(0), // enabled channels 170 Undef, Undef, Undef, Undef, // values 171 B.getTrue(), // done 172 B.getTrue(), // valid mask 173 }); 174 } 175 176 PHINode *PN = nullptr; 177 if (F.getReturnType()->isVoidTy()) { 178 B.CreateRetVoid(); 179 } else { 180 // If the function doesn't return void... add a PHI node to the block... 181 PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(), 182 "UnifiedRetVal"); 183 assert(!InsertExport); 184 B.CreateRet(PN); 185 } 186 187 // Loop over all of the blocks, replacing the return instruction with an 188 // unconditional branch. 189 std::vector<DominatorTree::UpdateType> Updates; 190 Updates.reserve(ReturningBlocks.size()); 191 for (BasicBlock *BB : ReturningBlocks) { 192 // Add an incoming element to the PHI node for every return instruction that 193 // is merging into this new block... 194 if (PN) 195 PN->addIncoming(BB->getTerminator()->getOperand(0), BB); 196 197 // Remove and delete the return inst. 198 BB->getTerminator()->eraseFromParent(); 199 BranchInst::Create(NewRetBlock, BB); 200 Updates.push_back({DominatorTree::Insert, BB, NewRetBlock}); 201 } 202 203 if (RequireAndPreserveDomTree) 204 DTU.applyUpdates(Updates); 205 Updates.clear(); 206 207 for (BasicBlock *BB : ReturningBlocks) { 208 // Cleanup possible branch to unconditional branch to the return. 209 simplifyCFG(BB, TTI, RequireAndPreserveDomTree ? &DTU : nullptr, 210 SimplifyCFGOptions().bonusInstThreshold(2)); 211 } 212 213 return NewRetBlock; 214 } 215 216 bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) { 217 DominatorTree *DT = nullptr; 218 if (RequireAndPreserveDomTree) 219 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 220 221 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 222 223 // If there's only one exit, we don't need to do anything, unless this is a 224 // pixel shader and that exit is an infinite loop, since we still have to 225 // insert an export in that case. 226 if (PDT.root_size() <= 1 && F.getCallingConv() != CallingConv::AMDGPU_PS) 227 return false; 228 229 LegacyDivergenceAnalysis &DA = getAnalysis<LegacyDivergenceAnalysis>(); 230 231 // Loop over all of the blocks in a function, tracking all of the blocks that 232 // return. 233 SmallVector<BasicBlock *, 4> ReturningBlocks; 234 SmallVector<BasicBlock *, 4> UniformlyReachedRetBlocks; 235 SmallVector<BasicBlock *, 4> UnreachableBlocks; 236 237 // Dummy return block for infinite loop. 238 BasicBlock *DummyReturnBB = nullptr; 239 240 bool InsertExport = false; 241 242 bool Changed = false; 243 std::vector<DominatorTree::UpdateType> Updates; 244 245 for (BasicBlock *BB : PDT.roots()) { 246 if (isa<ReturnInst>(BB->getTerminator())) { 247 if (!isUniformlyReached(DA, *BB)) 248 ReturningBlocks.push_back(BB); 249 else 250 UniformlyReachedRetBlocks.push_back(BB); 251 } else if (isa<UnreachableInst>(BB->getTerminator())) { 252 if (!isUniformlyReached(DA, *BB)) 253 UnreachableBlocks.push_back(BB); 254 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 255 256 ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext()); 257 if (DummyReturnBB == nullptr) { 258 DummyReturnBB = BasicBlock::Create(F.getContext(), 259 "DummyReturnBlock", &F); 260 Type *RetTy = F.getReturnType(); 261 Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy); 262 263 // For pixel shaders, the producer guarantees that an export is 264 // executed before each return instruction. However, if there is an 265 // infinite loop and we insert a return ourselves, we need to uphold 266 // that guarantee by inserting a null export. This can happen e.g. in 267 // an infinite loop with kill instructions, which is supposed to 268 // terminate. However, we don't need to do this if there is a non-void 269 // return value, since then there is an epilog afterwards which will 270 // still export. 271 // 272 // Note: In the case where only some threads enter the infinite loop, 273 // this can result in the null export happening redundantly after the 274 // original exports. However, The last "real" export happens after all 275 // the threads that didn't enter an infinite loop converged, which 276 // means that the only extra threads to execute the null export are 277 // threads that entered the infinite loop, and they only could've 278 // exited through being killed which sets their exec bit to 0. 279 // Therefore, unless there's an actual infinite loop, which can have 280 // invalid results, or there's a kill after the last export, which we 281 // assume the frontend won't do, this export will have the same exec 282 // mask as the last "real" export, and therefore the valid mask will be 283 // overwritten with the same value and will still be correct. Also, 284 // even though this forces an extra unnecessary export wait, we assume 285 // that this happens rare enough in practice to that we don't have to 286 // worry about performance. 287 if (F.getCallingConv() == CallingConv::AMDGPU_PS && 288 RetTy->isVoidTy()) { 289 InsertExport = true; 290 } 291 292 ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB); 293 ReturningBlocks.push_back(DummyReturnBB); 294 } 295 296 if (BI->isUnconditional()) { 297 BasicBlock *LoopHeaderBB = BI->getSuccessor(0); 298 BI->eraseFromParent(); // Delete the unconditional branch. 299 // Add a new conditional branch with a dummy edge to the return block. 300 BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB); 301 Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB}); 302 } else { // Conditional branch. 303 SmallVector<BasicBlock *, 2> Successors(succ_begin(BB), succ_end(BB)); 304 305 // Create a new transition block to hold the conditional branch. 306 BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock"); 307 308 Updates.reserve(Updates.size() + 2 * Successors.size() + 2); 309 310 // 'Successors' become successors of TransitionBB instead of BB, 311 // and TransitionBB becomes a single successor of BB. 312 Updates.push_back({DominatorTree::Insert, BB, TransitionBB}); 313 for (BasicBlock *Successor : Successors) { 314 Updates.push_back({DominatorTree::Insert, TransitionBB, Successor}); 315 Updates.push_back({DominatorTree::Delete, BB, Successor}); 316 } 317 318 // Create a branch that will always branch to the transition block and 319 // references DummyReturnBB. 320 BB->getTerminator()->eraseFromParent(); 321 BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB); 322 Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB}); 323 } 324 Changed = true; 325 } 326 } 327 328 if (!UnreachableBlocks.empty()) { 329 BasicBlock *UnreachableBlock = nullptr; 330 331 if (UnreachableBlocks.size() == 1) { 332 UnreachableBlock = UnreachableBlocks.front(); 333 } else { 334 UnreachableBlock = BasicBlock::Create(F.getContext(), 335 "UnifiedUnreachableBlock", &F); 336 new UnreachableInst(F.getContext(), UnreachableBlock); 337 338 Updates.reserve(Updates.size() + UnreachableBlocks.size()); 339 for (BasicBlock *BB : UnreachableBlocks) { 340 // Remove and delete the unreachable inst. 341 BB->getTerminator()->eraseFromParent(); 342 BranchInst::Create(UnreachableBlock, BB); 343 Updates.push_back({DominatorTree::Insert, BB, UnreachableBlock}); 344 } 345 Changed = true; 346 } 347 348 if (!ReturningBlocks.empty()) { 349 // Don't create a new unreachable inst if we have a return. The 350 // structurizer/annotator can't handle the multiple exits 351 352 Type *RetTy = F.getReturnType(); 353 Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy); 354 // Remove and delete the unreachable inst. 355 UnreachableBlock->getTerminator()->eraseFromParent(); 356 357 Function *UnreachableIntrin = 358 Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable); 359 360 // Insert a call to an intrinsic tracking that this is an unreachable 361 // point, in case we want to kill the active lanes or something later. 362 CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock); 363 364 // Don't create a scalar trap. We would only want to trap if this code was 365 // really reached, but a scalar trap would happen even if no lanes 366 // actually reached here. 367 ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock); 368 ReturningBlocks.push_back(UnreachableBlock); 369 Changed = true; 370 } 371 } 372 373 // FIXME: add PDT here once simplifycfg is ready. 374 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 375 if (RequireAndPreserveDomTree) 376 DTU.applyUpdates(Updates); 377 Updates.clear(); 378 379 // Now handle return blocks. 380 if (ReturningBlocks.empty()) 381 return Changed; // No blocks return 382 383 if (ReturningBlocks.size() == 1 && !InsertExport) 384 return Changed; // Already has a single return block 385 386 const TargetTransformInfo &TTI 387 = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 388 389 // Unify returning blocks. If we are going to insert the export it is also 390 // necessary to include blocks that are uniformly reached, because in addition 391 // to inserting the export the "done" bits on existing exports will be cleared 392 // and we do not want to end up with the normal export in a non-unified, 393 // uniformly reached block with the "done" bit cleared. 394 auto BlocksToUnify = std::move(ReturningBlocks); 395 if (InsertExport) { 396 llvm::append_range(BlocksToUnify, UniformlyReachedRetBlocks); 397 } 398 399 unifyReturnBlockSet(F, DTU, BlocksToUnify, InsertExport, TTI, 400 "UnifiedReturnBlock"); 401 return true; 402 } 403