10b57cec5SDimitry Andric //===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 9fe6060f1SDimitry Andric // This is a variant of the UnifyFunctionExitNodes pass. Rather than ensuring 100b57cec5SDimitry Andric // there is at most one ret and one unreachable instruction, it ensures there is 110b57cec5SDimitry Andric // at most one divergent exiting block. 120b57cec5SDimitry Andric // 130b57cec5SDimitry Andric // StructurizeCFG can't deal with multi-exit regions formed by branches to 140b57cec5SDimitry Andric // multiple return nodes. It is not desirable to structurize regions with 150b57cec5SDimitry Andric // uniform branches, so unifying those to the same return block as divergent 160b57cec5SDimitry Andric // branches inhibits use of scalar branching. It still can't deal with the case 170b57cec5SDimitry Andric // where one branch goes to return, and one unreachable. Replace unreachable in 180b57cec5SDimitry Andric // this case with a return. 190b57cec5SDimitry Andric // 200b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 210b57cec5SDimitry Andric 2206c3fb27SDimitry Andric #include "AMDGPUUnifyDivergentExitNodes.h" 230b57cec5SDimitry Andric #include "AMDGPU.h" 24e8d8bef9SDimitry Andric #include "SIDefines.h" 250b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h" 260b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h" 270b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 280b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h" 29e8d8bef9SDimitry Andric #include "llvm/Analysis/DomTreeUpdater.h" 300b57cec5SDimitry Andric #include "llvm/Analysis/PostDominators.h" 310b57cec5SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 3206c3fb27SDimitry Andric #include "llvm/Analysis/UniformityAnalysis.h" 330b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 340b57cec5SDimitry Andric #include "llvm/IR/CFG.h" 350b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 36e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h" 370b57cec5SDimitry Andric #include "llvm/IR/Function.h" 38e8d8bef9SDimitry Andric #include "llvm/IR/IRBuilder.h" 390b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h" 400b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 410b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 42e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h" 430b57cec5SDimitry Andric #include "llvm/IR/Type.h" 44480093f4SDimitry Andric #include "llvm/InitializePasses.h" 450b57cec5SDimitry Andric #include "llvm/Pass.h" 460b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 470b57cec5SDimitry Andric #include "llvm/Transforms/Scalar.h" 480b57cec5SDimitry Andric #include "llvm/Transforms/Utils.h" 49*5f757f3fSDimitry Andric #include "llvm/Transforms/Utils/BasicBlockUtils.h" 50480093f4SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 510b57cec5SDimitry Andric 520b57cec5SDimitry Andric using namespace llvm; 530b57cec5SDimitry Andric 540b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes" 550b57cec5SDimitry Andric 560b57cec5SDimitry Andric namespace { 570b57cec5SDimitry Andric 5806c3fb27SDimitry Andric class AMDGPUUnifyDivergentExitNodesImpl { 59fe6060f1SDimitry Andric private: 60fe6060f1SDimitry Andric const TargetTransformInfo *TTI = nullptr; 61fe6060f1SDimitry Andric 620b57cec5SDimitry Andric public: 6306c3fb27SDimitry Andric AMDGPUUnifyDivergentExitNodesImpl() = delete; 6406c3fb27SDimitry Andric AMDGPUUnifyDivergentExitNodesImpl(const TargetTransformInfo *TTI) 6506c3fb27SDimitry Andric : TTI(TTI) {} 660b57cec5SDimitry Andric 670b57cec5SDimitry Andric // We can preserve non-critical-edgeness when we unify function exit nodes 68fe6060f1SDimitry Andric BasicBlock *unifyReturnBlockSet(Function &F, DomTreeUpdater &DTU, 69fe6060f1SDimitry Andric ArrayRef<BasicBlock *> ReturningBlocks, 70fe6060f1SDimitry Andric StringRef Name); 7106c3fb27SDimitry Andric bool run(Function &F, DominatorTree *DT, const PostDominatorTree &PDT, 7206c3fb27SDimitry Andric const UniformityInfo &UA); 730b57cec5SDimitry Andric }; 740b57cec5SDimitry Andric 7506c3fb27SDimitry Andric class AMDGPUUnifyDivergentExitNodes : public FunctionPass { 7606c3fb27SDimitry Andric public: 7706c3fb27SDimitry Andric static char ID; 7806c3fb27SDimitry Andric AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) { 7906c3fb27SDimitry Andric initializeAMDGPUUnifyDivergentExitNodesPass( 8006c3fb27SDimitry Andric *PassRegistry::getPassRegistry()); 8106c3fb27SDimitry Andric } 8206c3fb27SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override; 8306c3fb27SDimitry Andric bool runOnFunction(Function &F) override; 8406c3fb27SDimitry Andric }; 850b57cec5SDimitry Andric } // end anonymous namespace 860b57cec5SDimitry Andric 870b57cec5SDimitry Andric char AMDGPUUnifyDivergentExitNodes::ID = 0; 880b57cec5SDimitry Andric 890b57cec5SDimitry Andric char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID; 900b57cec5SDimitry Andric 910b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 920b57cec5SDimitry Andric "Unify divergent function exit nodes", false, false) 93e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 940b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 9506c3fb27SDimitry Andric INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 960b57cec5SDimitry Andric INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 970b57cec5SDimitry Andric "Unify divergent function exit nodes", false, false) 980b57cec5SDimitry Andric 990b57cec5SDimitry Andric void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const { 100e8d8bef9SDimitry Andric if (RequireAndPreserveDomTree) 101e8d8bef9SDimitry Andric AU.addRequired<DominatorTreeWrapperPass>(); 102e8d8bef9SDimitry Andric 1030b57cec5SDimitry Andric AU.addRequired<PostDominatorTreeWrapperPass>(); 1040b57cec5SDimitry Andric 10506c3fb27SDimitry Andric AU.addRequired<UniformityInfoWrapperPass>(); 1060b57cec5SDimitry Andric 107e8d8bef9SDimitry Andric if (RequireAndPreserveDomTree) { 108e8d8bef9SDimitry Andric AU.addPreserved<DominatorTreeWrapperPass>(); 109e8d8bef9SDimitry Andric // FIXME: preserve PostDominatorTreeWrapperPass 110e8d8bef9SDimitry Andric } 111e8d8bef9SDimitry Andric 1120b57cec5SDimitry Andric // No divergent values are changed, only blocks and branch edges. 11306c3fb27SDimitry Andric AU.addPreserved<UniformityInfoWrapperPass>(); 1140b57cec5SDimitry Andric 1150b57cec5SDimitry Andric // We preserve the non-critical-edgeness property 1160b57cec5SDimitry Andric AU.addPreservedID(BreakCriticalEdgesID); 1170b57cec5SDimitry Andric 1180b57cec5SDimitry Andric FunctionPass::getAnalysisUsage(AU); 1190b57cec5SDimitry Andric 1200b57cec5SDimitry Andric AU.addRequired<TargetTransformInfoWrapperPass>(); 1210b57cec5SDimitry Andric } 1220b57cec5SDimitry Andric 1230b57cec5SDimitry Andric /// \returns true if \p BB is reachable through only uniform branches. 1240b57cec5SDimitry Andric /// XXX - Is there a more efficient way to find this? 12506c3fb27SDimitry Andric static bool isUniformlyReached(const UniformityInfo &UA, BasicBlock &BB) { 126fe6060f1SDimitry Andric SmallVector<BasicBlock *, 8> Stack(predecessors(&BB)); 1270b57cec5SDimitry Andric SmallPtrSet<BasicBlock *, 8> Visited; 1280b57cec5SDimitry Andric 1290b57cec5SDimitry Andric while (!Stack.empty()) { 1300b57cec5SDimitry Andric BasicBlock *Top = Stack.pop_back_val(); 13106c3fb27SDimitry Andric if (!UA.isUniform(Top->getTerminator())) 1320b57cec5SDimitry Andric return false; 1330b57cec5SDimitry Andric 1340b57cec5SDimitry Andric for (BasicBlock *Pred : predecessors(Top)) { 1350b57cec5SDimitry Andric if (Visited.insert(Pred).second) 1360b57cec5SDimitry Andric Stack.push_back(Pred); 1370b57cec5SDimitry Andric } 1380b57cec5SDimitry Andric } 1390b57cec5SDimitry Andric 1400b57cec5SDimitry Andric return true; 1410b57cec5SDimitry Andric } 1420b57cec5SDimitry Andric 14306c3fb27SDimitry Andric BasicBlock *AMDGPUUnifyDivergentExitNodesImpl::unifyReturnBlockSet( 144fe6060f1SDimitry Andric Function &F, DomTreeUpdater &DTU, ArrayRef<BasicBlock *> ReturningBlocks, 1450b57cec5SDimitry Andric StringRef Name) { 1460b57cec5SDimitry Andric // Otherwise, we need to insert a new basic block into the function, add a PHI 1470b57cec5SDimitry Andric // nodes (if the function returns values), and convert all of the return 1480b57cec5SDimitry Andric // instructions into unconditional branches. 1490b57cec5SDimitry Andric BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F); 15013138422SDimitry Andric IRBuilder<> B(NewRetBlock); 15113138422SDimitry Andric 1520b57cec5SDimitry Andric PHINode *PN = nullptr; 1530b57cec5SDimitry Andric if (F.getReturnType()->isVoidTy()) { 15413138422SDimitry Andric B.CreateRetVoid(); 1550b57cec5SDimitry Andric } else { 1560b57cec5SDimitry Andric // If the function doesn't return void... add a PHI node to the block... 15713138422SDimitry Andric PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(), 1580b57cec5SDimitry Andric "UnifiedRetVal"); 15913138422SDimitry Andric B.CreateRet(PN); 1600b57cec5SDimitry Andric } 1610b57cec5SDimitry Andric 1620b57cec5SDimitry Andric // Loop over all of the blocks, replacing the return instruction with an 1630b57cec5SDimitry Andric // unconditional branch. 164e8d8bef9SDimitry Andric std::vector<DominatorTree::UpdateType> Updates; 165e8d8bef9SDimitry Andric Updates.reserve(ReturningBlocks.size()); 1660b57cec5SDimitry Andric for (BasicBlock *BB : ReturningBlocks) { 1670b57cec5SDimitry Andric // Add an incoming element to the PHI node for every return instruction that 1680b57cec5SDimitry Andric // is merging into this new block... 1690b57cec5SDimitry Andric if (PN) 1700b57cec5SDimitry Andric PN->addIncoming(BB->getTerminator()->getOperand(0), BB); 1710b57cec5SDimitry Andric 1720b57cec5SDimitry Andric // Remove and delete the return inst. 1730b57cec5SDimitry Andric BB->getTerminator()->eraseFromParent(); 1740b57cec5SDimitry Andric BranchInst::Create(NewRetBlock, BB); 175e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, BB, NewRetBlock}); 1760b57cec5SDimitry Andric } 1770b57cec5SDimitry Andric 178e8d8bef9SDimitry Andric if (RequireAndPreserveDomTree) 179e8d8bef9SDimitry Andric DTU.applyUpdates(Updates); 180e8d8bef9SDimitry Andric Updates.clear(); 181e8d8bef9SDimitry Andric 1820b57cec5SDimitry Andric for (BasicBlock *BB : ReturningBlocks) { 1830b57cec5SDimitry Andric // Cleanup possible branch to unconditional branch to the return. 184fe6060f1SDimitry Andric simplifyCFG(BB, *TTI, RequireAndPreserveDomTree ? &DTU : nullptr, 185e8d8bef9SDimitry Andric SimplifyCFGOptions().bonusInstThreshold(2)); 1860b57cec5SDimitry Andric } 1870b57cec5SDimitry Andric 1880b57cec5SDimitry Andric return NewRetBlock; 1890b57cec5SDimitry Andric } 1900b57cec5SDimitry Andric 19106c3fb27SDimitry Andric bool AMDGPUUnifyDivergentExitNodesImpl::run(Function &F, DominatorTree *DT, 19206c3fb27SDimitry Andric const PostDominatorTree &PDT, 19306c3fb27SDimitry Andric const UniformityInfo &UA) { 194*5f757f3fSDimitry Andric assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator."); 195*5f757f3fSDimitry Andric 196bdd1243dSDimitry Andric if (PDT.root_size() == 0 || 197bdd1243dSDimitry Andric (PDT.root_size() == 1 && 198bdd1243dSDimitry Andric !isa<BranchInst>(PDT.getRoot()->getTerminator()))) 1990b57cec5SDimitry Andric return false; 2000b57cec5SDimitry Andric 2010b57cec5SDimitry Andric // Loop over all of the blocks in a function, tracking all of the blocks that 2020b57cec5SDimitry Andric // return. 2030b57cec5SDimitry Andric SmallVector<BasicBlock *, 4> ReturningBlocks; 2040b57cec5SDimitry Andric SmallVector<BasicBlock *, 4> UnreachableBlocks; 2050b57cec5SDimitry Andric 2060b57cec5SDimitry Andric // Dummy return block for infinite loop. 2070b57cec5SDimitry Andric BasicBlock *DummyReturnBB = nullptr; 2080b57cec5SDimitry Andric 2095ffd83dbSDimitry Andric bool Changed = false; 210e8d8bef9SDimitry Andric std::vector<DominatorTree::UpdateType> Updates; 211e8d8bef9SDimitry Andric 212bdd1243dSDimitry Andric // TODO: For now we unify all exit blocks, even though they are uniformly 213bdd1243dSDimitry Andric // reachable, if there are any exits not uniformly reached. This is to 214bdd1243dSDimitry Andric // workaround the limitation of structurizer, which can not handle multiple 215bdd1243dSDimitry Andric // function exits. After structurizer is able to handle multiple function 216bdd1243dSDimitry Andric // exits, we should only unify UnreachableBlocks that are not uniformly 217bdd1243dSDimitry Andric // reachable. 218bdd1243dSDimitry Andric bool HasDivergentExitBlock = llvm::any_of( 21906c3fb27SDimitry Andric PDT.roots(), [&](auto BB) { return !isUniformlyReached(UA, *BB); }); 220bdd1243dSDimitry Andric 2215ffd83dbSDimitry Andric for (BasicBlock *BB : PDT.roots()) { 2220b57cec5SDimitry Andric if (isa<ReturnInst>(BB->getTerminator())) { 223bdd1243dSDimitry Andric if (HasDivergentExitBlock) 2240b57cec5SDimitry Andric ReturningBlocks.push_back(BB); 2250b57cec5SDimitry Andric } else if (isa<UnreachableInst>(BB->getTerminator())) { 226bdd1243dSDimitry Andric if (HasDivergentExitBlock) 2270b57cec5SDimitry Andric UnreachableBlocks.push_back(BB); 2280b57cec5SDimitry Andric } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 2290b57cec5SDimitry Andric 2300b57cec5SDimitry Andric ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext()); 2310b57cec5SDimitry Andric if (DummyReturnBB == nullptr) { 2320b57cec5SDimitry Andric DummyReturnBB = BasicBlock::Create(F.getContext(), 2330b57cec5SDimitry Andric "DummyReturnBlock", &F); 2340b57cec5SDimitry Andric Type *RetTy = F.getReturnType(); 235bdd1243dSDimitry Andric Value *RetVal = RetTy->isVoidTy() ? nullptr : PoisonValue::get(RetTy); 2360b57cec5SDimitry Andric ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB); 2370b57cec5SDimitry Andric ReturningBlocks.push_back(DummyReturnBB); 2380b57cec5SDimitry Andric } 2390b57cec5SDimitry Andric 2400b57cec5SDimitry Andric if (BI->isUnconditional()) { 2410b57cec5SDimitry Andric BasicBlock *LoopHeaderBB = BI->getSuccessor(0); 2420b57cec5SDimitry Andric BI->eraseFromParent(); // Delete the unconditional branch. 2430b57cec5SDimitry Andric // Add a new conditional branch with a dummy edge to the return block. 2440b57cec5SDimitry Andric BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB); 245e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB}); 2460b57cec5SDimitry Andric } else { // Conditional branch. 247349cc55cSDimitry Andric SmallVector<BasicBlock *, 2> Successors(successors(BB)); 248e8d8bef9SDimitry Andric 2490b57cec5SDimitry Andric // Create a new transition block to hold the conditional branch. 2500b57cec5SDimitry Andric BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock"); 2510b57cec5SDimitry Andric 252e8d8bef9SDimitry Andric Updates.reserve(Updates.size() + 2 * Successors.size() + 2); 253e8d8bef9SDimitry Andric 254e8d8bef9SDimitry Andric // 'Successors' become successors of TransitionBB instead of BB, 255e8d8bef9SDimitry Andric // and TransitionBB becomes a single successor of BB. 256e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, BB, TransitionBB}); 257e8d8bef9SDimitry Andric for (BasicBlock *Successor : Successors) { 258e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, TransitionBB, Successor}); 259e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Delete, BB, Successor}); 260e8d8bef9SDimitry Andric } 261e8d8bef9SDimitry Andric 2620b57cec5SDimitry Andric // Create a branch that will always branch to the transition block and 2630b57cec5SDimitry Andric // references DummyReturnBB. 2640b57cec5SDimitry Andric BB->getTerminator()->eraseFromParent(); 2650b57cec5SDimitry Andric BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB); 266e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB}); 2670b57cec5SDimitry Andric } 2685ffd83dbSDimitry Andric Changed = true; 2690b57cec5SDimitry Andric } 2700b57cec5SDimitry Andric } 2710b57cec5SDimitry Andric 2720b57cec5SDimitry Andric if (!UnreachableBlocks.empty()) { 2730b57cec5SDimitry Andric BasicBlock *UnreachableBlock = nullptr; 2740b57cec5SDimitry Andric 2750b57cec5SDimitry Andric if (UnreachableBlocks.size() == 1) { 2760b57cec5SDimitry Andric UnreachableBlock = UnreachableBlocks.front(); 2770b57cec5SDimitry Andric } else { 2780b57cec5SDimitry Andric UnreachableBlock = BasicBlock::Create(F.getContext(), 2790b57cec5SDimitry Andric "UnifiedUnreachableBlock", &F); 2800b57cec5SDimitry Andric new UnreachableInst(F.getContext(), UnreachableBlock); 2810b57cec5SDimitry Andric 282e8d8bef9SDimitry Andric Updates.reserve(Updates.size() + UnreachableBlocks.size()); 2830b57cec5SDimitry Andric for (BasicBlock *BB : UnreachableBlocks) { 2840b57cec5SDimitry Andric // Remove and delete the unreachable inst. 2850b57cec5SDimitry Andric BB->getTerminator()->eraseFromParent(); 2860b57cec5SDimitry Andric BranchInst::Create(UnreachableBlock, BB); 287e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, BB, UnreachableBlock}); 2880b57cec5SDimitry Andric } 2895ffd83dbSDimitry Andric Changed = true; 2900b57cec5SDimitry Andric } 2910b57cec5SDimitry Andric 2920b57cec5SDimitry Andric if (!ReturningBlocks.empty()) { 2930b57cec5SDimitry Andric // Don't create a new unreachable inst if we have a return. The 2940b57cec5SDimitry Andric // structurizer/annotator can't handle the multiple exits 2950b57cec5SDimitry Andric 2960b57cec5SDimitry Andric Type *RetTy = F.getReturnType(); 297bdd1243dSDimitry Andric Value *RetVal = RetTy->isVoidTy() ? nullptr : PoisonValue::get(RetTy); 2980b57cec5SDimitry Andric // Remove and delete the unreachable inst. 2990b57cec5SDimitry Andric UnreachableBlock->getTerminator()->eraseFromParent(); 3000b57cec5SDimitry Andric 3010b57cec5SDimitry Andric Function *UnreachableIntrin = 3020b57cec5SDimitry Andric Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable); 3030b57cec5SDimitry Andric 3040b57cec5SDimitry Andric // Insert a call to an intrinsic tracking that this is an unreachable 3050b57cec5SDimitry Andric // point, in case we want to kill the active lanes or something later. 3060b57cec5SDimitry Andric CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock); 3070b57cec5SDimitry Andric 3080b57cec5SDimitry Andric // Don't create a scalar trap. We would only want to trap if this code was 3090b57cec5SDimitry Andric // really reached, but a scalar trap would happen even if no lanes 3100b57cec5SDimitry Andric // actually reached here. 3110b57cec5SDimitry Andric ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock); 3120b57cec5SDimitry Andric ReturningBlocks.push_back(UnreachableBlock); 3135ffd83dbSDimitry Andric Changed = true; 3140b57cec5SDimitry Andric } 3150b57cec5SDimitry Andric } 3160b57cec5SDimitry Andric 317e8d8bef9SDimitry Andric // FIXME: add PDT here once simplifycfg is ready. 318e8d8bef9SDimitry Andric DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 319e8d8bef9SDimitry Andric if (RequireAndPreserveDomTree) 320e8d8bef9SDimitry Andric DTU.applyUpdates(Updates); 321e8d8bef9SDimitry Andric Updates.clear(); 322e8d8bef9SDimitry Andric 3230b57cec5SDimitry Andric // Now handle return blocks. 3240b57cec5SDimitry Andric if (ReturningBlocks.empty()) 3255ffd83dbSDimitry Andric return Changed; // No blocks return 3260b57cec5SDimitry Andric 327fe6060f1SDimitry Andric if (ReturningBlocks.size() == 1) 3285ffd83dbSDimitry Andric return Changed; // Already has a single return block 3290b57cec5SDimitry Andric 330fe6060f1SDimitry Andric unifyReturnBlockSet(F, DTU, ReturningBlocks, "UnifiedReturnBlock"); 3310b57cec5SDimitry Andric return true; 3320b57cec5SDimitry Andric } 33306c3fb27SDimitry Andric 33406c3fb27SDimitry Andric bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) { 33506c3fb27SDimitry Andric DominatorTree *DT = nullptr; 33606c3fb27SDimitry Andric if (RequireAndPreserveDomTree) 33706c3fb27SDimitry Andric DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 33806c3fb27SDimitry Andric const auto &PDT = 33906c3fb27SDimitry Andric getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 34006c3fb27SDimitry Andric const auto &UA = getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 34106c3fb27SDimitry Andric const auto *TranformInfo = 34206c3fb27SDimitry Andric &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 34306c3fb27SDimitry Andric return AMDGPUUnifyDivergentExitNodesImpl(TranformInfo).run(F, DT, PDT, UA); 34406c3fb27SDimitry Andric } 34506c3fb27SDimitry Andric 34606c3fb27SDimitry Andric PreservedAnalyses 34706c3fb27SDimitry Andric AMDGPUUnifyDivergentExitNodesPass::run(Function &F, 34806c3fb27SDimitry Andric FunctionAnalysisManager &AM) { 34906c3fb27SDimitry Andric DominatorTree *DT = nullptr; 35006c3fb27SDimitry Andric if (RequireAndPreserveDomTree) 35106c3fb27SDimitry Andric DT = &AM.getResult<DominatorTreeAnalysis>(F); 35206c3fb27SDimitry Andric 35306c3fb27SDimitry Andric const auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 35406c3fb27SDimitry Andric const auto &UA = AM.getResult<UniformityInfoAnalysis>(F); 35506c3fb27SDimitry Andric const auto *TransformInfo = &AM.getResult<TargetIRAnalysis>(F); 35606c3fb27SDimitry Andric return AMDGPUUnifyDivergentExitNodesImpl(TransformInfo).run(F, DT, PDT, UA) 35706c3fb27SDimitry Andric ? PreservedAnalyses::none() 35806c3fb27SDimitry Andric : PreservedAnalyses::all(); 35906c3fb27SDimitry Andric } 360