xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUUnifyDivergentExitNodes.cpp (revision 13138422bc354a1ec35f53a27c4efeccdffc5639)
10b57cec5SDimitry Andric //===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This is a variant of the UnifyDivergentExitNodes pass. Rather than ensuring
100b57cec5SDimitry Andric // there is at most one ret and one unreachable instruction, it ensures there is
110b57cec5SDimitry Andric // at most one divergent exiting block.
120b57cec5SDimitry Andric //
130b57cec5SDimitry Andric // StructurizeCFG can't deal with multi-exit regions formed by branches to
140b57cec5SDimitry Andric // multiple return nodes. It is not desirable to structurize regions with
150b57cec5SDimitry Andric // uniform branches, so unifying those to the same return block as divergent
160b57cec5SDimitry Andric // branches inhibits use of scalar branching. It still can't deal with the case
170b57cec5SDimitry Andric // where one branch goes to return, and one unreachable. Replace unreachable in
180b57cec5SDimitry Andric // this case with a return.
190b57cec5SDimitry Andric //
200b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
210b57cec5SDimitry Andric 
220b57cec5SDimitry Andric #include "AMDGPU.h"
230b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h"
240b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
250b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
260b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h"
270b57cec5SDimitry Andric #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
280b57cec5SDimitry Andric #include "llvm/Analysis/PostDominators.h"
290b57cec5SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
300b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h"
310b57cec5SDimitry Andric #include "llvm/IR/CFG.h"
320b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
330b57cec5SDimitry Andric #include "llvm/IR/Function.h"
340b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h"
350b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
360b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h"
37*13138422SDimitry Andric #include "llvm/IR/IRBuilder.h"
380b57cec5SDimitry Andric #include "llvm/IR/Type.h"
39480093f4SDimitry Andric #include "llvm/InitializePasses.h"
400b57cec5SDimitry Andric #include "llvm/Pass.h"
410b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
420b57cec5SDimitry Andric #include "llvm/Transforms/Scalar.h"
430b57cec5SDimitry Andric #include "llvm/Transforms/Utils.h"
44480093f4SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
450b57cec5SDimitry Andric 
460b57cec5SDimitry Andric using namespace llvm;
470b57cec5SDimitry Andric 
480b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes"
490b57cec5SDimitry Andric 
500b57cec5SDimitry Andric namespace {
510b57cec5SDimitry Andric 
520b57cec5SDimitry Andric class AMDGPUUnifyDivergentExitNodes : public FunctionPass {
530b57cec5SDimitry Andric public:
540b57cec5SDimitry Andric   static char ID; // Pass identification, replacement for typeid
550b57cec5SDimitry Andric 
560b57cec5SDimitry Andric   AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) {
570b57cec5SDimitry Andric     initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry());
580b57cec5SDimitry Andric   }
590b57cec5SDimitry Andric 
600b57cec5SDimitry Andric   // We can preserve non-critical-edgeness when we unify function exit nodes
610b57cec5SDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override;
620b57cec5SDimitry Andric   bool runOnFunction(Function &F) override;
630b57cec5SDimitry Andric };
640b57cec5SDimitry Andric 
650b57cec5SDimitry Andric } // end anonymous namespace
660b57cec5SDimitry Andric 
670b57cec5SDimitry Andric char AMDGPUUnifyDivergentExitNodes::ID = 0;
680b57cec5SDimitry Andric 
690b57cec5SDimitry Andric char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID;
700b57cec5SDimitry Andric 
710b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
720b57cec5SDimitry Andric                      "Unify divergent function exit nodes", false, false)
730b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
740b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
750b57cec5SDimitry Andric INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
760b57cec5SDimitry Andric                     "Unify divergent function exit nodes", false, false)
770b57cec5SDimitry Andric 
780b57cec5SDimitry Andric void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{
790b57cec5SDimitry Andric   // TODO: Preserve dominator tree.
800b57cec5SDimitry Andric   AU.addRequired<PostDominatorTreeWrapperPass>();
810b57cec5SDimitry Andric 
820b57cec5SDimitry Andric   AU.addRequired<LegacyDivergenceAnalysis>();
830b57cec5SDimitry Andric 
840b57cec5SDimitry Andric   // No divergent values are changed, only blocks and branch edges.
850b57cec5SDimitry Andric   AU.addPreserved<LegacyDivergenceAnalysis>();
860b57cec5SDimitry Andric 
870b57cec5SDimitry Andric   // We preserve the non-critical-edgeness property
880b57cec5SDimitry Andric   AU.addPreservedID(BreakCriticalEdgesID);
890b57cec5SDimitry Andric 
900b57cec5SDimitry Andric   // This is a cluster of orthogonal Transforms
910b57cec5SDimitry Andric   AU.addPreservedID(LowerSwitchID);
920b57cec5SDimitry Andric   FunctionPass::getAnalysisUsage(AU);
930b57cec5SDimitry Andric 
940b57cec5SDimitry Andric   AU.addRequired<TargetTransformInfoWrapperPass>();
950b57cec5SDimitry Andric }
960b57cec5SDimitry Andric 
970b57cec5SDimitry Andric /// \returns true if \p BB is reachable through only uniform branches.
980b57cec5SDimitry Andric /// XXX - Is there a more efficient way to find this?
990b57cec5SDimitry Andric static bool isUniformlyReached(const LegacyDivergenceAnalysis &DA,
1000b57cec5SDimitry Andric                                BasicBlock &BB) {
1010b57cec5SDimitry Andric   SmallVector<BasicBlock *, 8> Stack;
1020b57cec5SDimitry Andric   SmallPtrSet<BasicBlock *, 8> Visited;
1030b57cec5SDimitry Andric 
1040b57cec5SDimitry Andric   for (BasicBlock *Pred : predecessors(&BB))
1050b57cec5SDimitry Andric     Stack.push_back(Pred);
1060b57cec5SDimitry Andric 
1070b57cec5SDimitry Andric   while (!Stack.empty()) {
1080b57cec5SDimitry Andric     BasicBlock *Top = Stack.pop_back_val();
1090b57cec5SDimitry Andric     if (!DA.isUniform(Top->getTerminator()))
1100b57cec5SDimitry Andric       return false;
1110b57cec5SDimitry Andric 
1120b57cec5SDimitry Andric     for (BasicBlock *Pred : predecessors(Top)) {
1130b57cec5SDimitry Andric       if (Visited.insert(Pred).second)
1140b57cec5SDimitry Andric         Stack.push_back(Pred);
1150b57cec5SDimitry Andric     }
1160b57cec5SDimitry Andric   }
1170b57cec5SDimitry Andric 
1180b57cec5SDimitry Andric   return true;
1190b57cec5SDimitry Andric }
1200b57cec5SDimitry Andric 
121*13138422SDimitry Andric static void removeDoneExport(Function &F) {
122*13138422SDimitry Andric   ConstantInt *BoolFalse = ConstantInt::getFalse(F.getContext());
123*13138422SDimitry Andric   for (BasicBlock &BB : F) {
124*13138422SDimitry Andric     for (Instruction &I : BB) {
125*13138422SDimitry Andric       if (IntrinsicInst *Intrin = llvm::dyn_cast<IntrinsicInst>(&I)) {
126*13138422SDimitry Andric         if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp) {
127*13138422SDimitry Andric           Intrin->setArgOperand(6, BoolFalse); // done
128*13138422SDimitry Andric         } else if (Intrin->getIntrinsicID() == Intrinsic::amdgcn_exp_compr) {
129*13138422SDimitry Andric           Intrin->setArgOperand(4, BoolFalse); // done
130*13138422SDimitry Andric         }
131*13138422SDimitry Andric       }
132*13138422SDimitry Andric     }
133*13138422SDimitry Andric   }
134*13138422SDimitry Andric }
135*13138422SDimitry Andric 
1360b57cec5SDimitry Andric static BasicBlock *unifyReturnBlockSet(Function &F,
1370b57cec5SDimitry Andric                                        ArrayRef<BasicBlock *> ReturningBlocks,
138*13138422SDimitry Andric                                        bool InsertExport,
1390b57cec5SDimitry Andric                                        const TargetTransformInfo &TTI,
1400b57cec5SDimitry Andric                                        StringRef Name) {
1410b57cec5SDimitry Andric   // Otherwise, we need to insert a new basic block into the function, add a PHI
1420b57cec5SDimitry Andric   // nodes (if the function returns values), and convert all of the return
1430b57cec5SDimitry Andric   // instructions into unconditional branches.
1440b57cec5SDimitry Andric   BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F);
145*13138422SDimitry Andric   IRBuilder<> B(NewRetBlock);
146*13138422SDimitry Andric 
147*13138422SDimitry Andric   if (InsertExport) {
148*13138422SDimitry Andric     // Ensure that there's only one "done" export in the shader by removing the
149*13138422SDimitry Andric     // "done" bit set on the original final export. More than one "done" export
150*13138422SDimitry Andric     // can lead to undefined behavior.
151*13138422SDimitry Andric     removeDoneExport(F);
152*13138422SDimitry Andric 
153*13138422SDimitry Andric     Value *Undef = UndefValue::get(B.getFloatTy());
154*13138422SDimitry Andric     B.CreateIntrinsic(Intrinsic::amdgcn_exp, { B.getFloatTy() },
155*13138422SDimitry Andric                       {
156*13138422SDimitry Andric                         B.getInt32(9), // target, SQ_EXP_NULL
157*13138422SDimitry Andric                         B.getInt32(0), // enabled channels
158*13138422SDimitry Andric                         Undef, Undef, Undef, Undef, // values
159*13138422SDimitry Andric                         B.getTrue(), // done
160*13138422SDimitry Andric                         B.getTrue(), // valid mask
161*13138422SDimitry Andric                       });
162*13138422SDimitry Andric   }
1630b57cec5SDimitry Andric 
1640b57cec5SDimitry Andric   PHINode *PN = nullptr;
1650b57cec5SDimitry Andric   if (F.getReturnType()->isVoidTy()) {
166*13138422SDimitry Andric     B.CreateRetVoid();
1670b57cec5SDimitry Andric   } else {
1680b57cec5SDimitry Andric     // If the function doesn't return void... add a PHI node to the block...
169*13138422SDimitry Andric     PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(),
1700b57cec5SDimitry Andric                      "UnifiedRetVal");
171*13138422SDimitry Andric     assert(!InsertExport);
172*13138422SDimitry Andric     B.CreateRet(PN);
1730b57cec5SDimitry Andric   }
1740b57cec5SDimitry Andric 
1750b57cec5SDimitry Andric   // Loop over all of the blocks, replacing the return instruction with an
1760b57cec5SDimitry Andric   // unconditional branch.
1770b57cec5SDimitry Andric   for (BasicBlock *BB : ReturningBlocks) {
1780b57cec5SDimitry Andric     // Add an incoming element to the PHI node for every return instruction that
1790b57cec5SDimitry Andric     // is merging into this new block...
1800b57cec5SDimitry Andric     if (PN)
1810b57cec5SDimitry Andric       PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
1820b57cec5SDimitry Andric 
1830b57cec5SDimitry Andric     // Remove and delete the return inst.
1840b57cec5SDimitry Andric     BB->getTerminator()->eraseFromParent();
1850b57cec5SDimitry Andric     BranchInst::Create(NewRetBlock, BB);
1860b57cec5SDimitry Andric   }
1870b57cec5SDimitry Andric 
1880b57cec5SDimitry Andric   for (BasicBlock *BB : ReturningBlocks) {
1890b57cec5SDimitry Andric     // Cleanup possible branch to unconditional branch to the return.
1900b57cec5SDimitry Andric     simplifyCFG(BB, TTI, {2});
1910b57cec5SDimitry Andric   }
1920b57cec5SDimitry Andric 
1930b57cec5SDimitry Andric   return NewRetBlock;
1940b57cec5SDimitry Andric }
1950b57cec5SDimitry Andric 
1960b57cec5SDimitry Andric bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) {
1970b57cec5SDimitry Andric   auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1980b57cec5SDimitry Andric   if (PDT.getRoots().size() <= 1)
1990b57cec5SDimitry Andric     return false;
2000b57cec5SDimitry Andric 
2010b57cec5SDimitry Andric   LegacyDivergenceAnalysis &DA = getAnalysis<LegacyDivergenceAnalysis>();
2020b57cec5SDimitry Andric 
2030b57cec5SDimitry Andric   // Loop over all of the blocks in a function, tracking all of the blocks that
2040b57cec5SDimitry Andric   // return.
2050b57cec5SDimitry Andric   SmallVector<BasicBlock *, 4> ReturningBlocks;
2060b57cec5SDimitry Andric   SmallVector<BasicBlock *, 4> UnreachableBlocks;
2070b57cec5SDimitry Andric 
2080b57cec5SDimitry Andric   // Dummy return block for infinite loop.
2090b57cec5SDimitry Andric   BasicBlock *DummyReturnBB = nullptr;
2100b57cec5SDimitry Andric 
211*13138422SDimitry Andric   bool InsertExport = false;
212*13138422SDimitry Andric 
2130b57cec5SDimitry Andric   for (BasicBlock *BB : PDT.getRoots()) {
2140b57cec5SDimitry Andric     if (isa<ReturnInst>(BB->getTerminator())) {
2150b57cec5SDimitry Andric       if (!isUniformlyReached(DA, *BB))
2160b57cec5SDimitry Andric         ReturningBlocks.push_back(BB);
2170b57cec5SDimitry Andric     } else if (isa<UnreachableInst>(BB->getTerminator())) {
2180b57cec5SDimitry Andric       if (!isUniformlyReached(DA, *BB))
2190b57cec5SDimitry Andric         UnreachableBlocks.push_back(BB);
2200b57cec5SDimitry Andric     } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
2210b57cec5SDimitry Andric 
2220b57cec5SDimitry Andric       ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext());
2230b57cec5SDimitry Andric       if (DummyReturnBB == nullptr) {
2240b57cec5SDimitry Andric         DummyReturnBB = BasicBlock::Create(F.getContext(),
2250b57cec5SDimitry Andric                                            "DummyReturnBlock", &F);
2260b57cec5SDimitry Andric         Type *RetTy = F.getReturnType();
2270b57cec5SDimitry Andric         Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
228*13138422SDimitry Andric 
229*13138422SDimitry Andric         // For pixel shaders, the producer guarantees that an export is
230*13138422SDimitry Andric         // executed before each return instruction. However, if there is an
231*13138422SDimitry Andric         // infinite loop and we insert a return ourselves, we need to uphold
232*13138422SDimitry Andric         // that guarantee by inserting a null export. This can happen e.g. in
233*13138422SDimitry Andric         // an infinite loop with kill instructions, which is supposed to
234*13138422SDimitry Andric         // terminate. However, we don't need to do this if there is a non-void
235*13138422SDimitry Andric         // return value, since then there is an epilog afterwards which will
236*13138422SDimitry Andric         // still export.
237*13138422SDimitry Andric         //
238*13138422SDimitry Andric         // Note: In the case where only some threads enter the infinite loop,
239*13138422SDimitry Andric         // this can result in the null export happening redundantly after the
240*13138422SDimitry Andric         // original exports. However, The last "real" export happens after all
241*13138422SDimitry Andric         // the threads that didn't enter an infinite loop converged, which
242*13138422SDimitry Andric         // means that the only extra threads to execute the null export are
243*13138422SDimitry Andric         // threads that entered the infinite loop, and they only could've
244*13138422SDimitry Andric         // exited through being killed which sets their exec bit to 0.
245*13138422SDimitry Andric         // Therefore, unless there's an actual infinite loop, which can have
246*13138422SDimitry Andric         // invalid results, or there's a kill after the last export, which we
247*13138422SDimitry Andric         // assume the frontend won't do, this export will have the same exec
248*13138422SDimitry Andric         // mask as the last "real" export, and therefore the valid mask will be
249*13138422SDimitry Andric         // overwritten with the same value and will still be correct. Also,
250*13138422SDimitry Andric         // even though this forces an extra unnecessary export wait, we assume
251*13138422SDimitry Andric         // that this happens rare enough in practice to that we don't have to
252*13138422SDimitry Andric         // worry about performance.
253*13138422SDimitry Andric         if (F.getCallingConv() == CallingConv::AMDGPU_PS &&
254*13138422SDimitry Andric             RetTy->isVoidTy()) {
255*13138422SDimitry Andric           InsertExport = true;
256*13138422SDimitry Andric         }
257*13138422SDimitry Andric 
2580b57cec5SDimitry Andric         ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB);
2590b57cec5SDimitry Andric         ReturningBlocks.push_back(DummyReturnBB);
2600b57cec5SDimitry Andric       }
2610b57cec5SDimitry Andric 
2620b57cec5SDimitry Andric       if (BI->isUnconditional()) {
2630b57cec5SDimitry Andric         BasicBlock *LoopHeaderBB = BI->getSuccessor(0);
2640b57cec5SDimitry Andric         BI->eraseFromParent(); // Delete the unconditional branch.
2650b57cec5SDimitry Andric         // Add a new conditional branch with a dummy edge to the return block.
2660b57cec5SDimitry Andric         BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB);
2670b57cec5SDimitry Andric       } else { // Conditional branch.
2680b57cec5SDimitry Andric         // Create a new transition block to hold the conditional branch.
2690b57cec5SDimitry Andric         BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock");
2700b57cec5SDimitry Andric 
2710b57cec5SDimitry Andric         // Create a branch that will always branch to the transition block and
2720b57cec5SDimitry Andric         // references DummyReturnBB.
2730b57cec5SDimitry Andric         BB->getTerminator()->eraseFromParent();
2740b57cec5SDimitry Andric         BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB);
2750b57cec5SDimitry Andric       }
2760b57cec5SDimitry Andric     }
2770b57cec5SDimitry Andric   }
2780b57cec5SDimitry Andric 
2790b57cec5SDimitry Andric   if (!UnreachableBlocks.empty()) {
2800b57cec5SDimitry Andric     BasicBlock *UnreachableBlock = nullptr;
2810b57cec5SDimitry Andric 
2820b57cec5SDimitry Andric     if (UnreachableBlocks.size() == 1) {
2830b57cec5SDimitry Andric       UnreachableBlock = UnreachableBlocks.front();
2840b57cec5SDimitry Andric     } else {
2850b57cec5SDimitry Andric       UnreachableBlock = BasicBlock::Create(F.getContext(),
2860b57cec5SDimitry Andric                                             "UnifiedUnreachableBlock", &F);
2870b57cec5SDimitry Andric       new UnreachableInst(F.getContext(), UnreachableBlock);
2880b57cec5SDimitry Andric 
2890b57cec5SDimitry Andric       for (BasicBlock *BB : UnreachableBlocks) {
2900b57cec5SDimitry Andric         // Remove and delete the unreachable inst.
2910b57cec5SDimitry Andric         BB->getTerminator()->eraseFromParent();
2920b57cec5SDimitry Andric         BranchInst::Create(UnreachableBlock, BB);
2930b57cec5SDimitry Andric       }
2940b57cec5SDimitry Andric     }
2950b57cec5SDimitry Andric 
2960b57cec5SDimitry Andric     if (!ReturningBlocks.empty()) {
2970b57cec5SDimitry Andric       // Don't create a new unreachable inst if we have a return. The
2980b57cec5SDimitry Andric       // structurizer/annotator can't handle the multiple exits
2990b57cec5SDimitry Andric 
3000b57cec5SDimitry Andric       Type *RetTy = F.getReturnType();
3010b57cec5SDimitry Andric       Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
3020b57cec5SDimitry Andric       // Remove and delete the unreachable inst.
3030b57cec5SDimitry Andric       UnreachableBlock->getTerminator()->eraseFromParent();
3040b57cec5SDimitry Andric 
3050b57cec5SDimitry Andric       Function *UnreachableIntrin =
3060b57cec5SDimitry Andric         Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable);
3070b57cec5SDimitry Andric 
3080b57cec5SDimitry Andric       // Insert a call to an intrinsic tracking that this is an unreachable
3090b57cec5SDimitry Andric       // point, in case we want to kill the active lanes or something later.
3100b57cec5SDimitry Andric       CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock);
3110b57cec5SDimitry Andric 
3120b57cec5SDimitry Andric       // Don't create a scalar trap. We would only want to trap if this code was
3130b57cec5SDimitry Andric       // really reached, but a scalar trap would happen even if no lanes
3140b57cec5SDimitry Andric       // actually reached here.
3150b57cec5SDimitry Andric       ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock);
3160b57cec5SDimitry Andric       ReturningBlocks.push_back(UnreachableBlock);
3170b57cec5SDimitry Andric     }
3180b57cec5SDimitry Andric   }
3190b57cec5SDimitry Andric 
3200b57cec5SDimitry Andric   // Now handle return blocks.
3210b57cec5SDimitry Andric   if (ReturningBlocks.empty())
3220b57cec5SDimitry Andric     return false; // No blocks return
3230b57cec5SDimitry Andric 
3240b57cec5SDimitry Andric   if (ReturningBlocks.size() == 1)
3250b57cec5SDimitry Andric     return false; // Already has a single return block
3260b57cec5SDimitry Andric 
3270b57cec5SDimitry Andric   const TargetTransformInfo &TTI
3280b57cec5SDimitry Andric     = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3290b57cec5SDimitry Andric 
330*13138422SDimitry Andric   unifyReturnBlockSet(F, ReturningBlocks, InsertExport, TTI, "UnifiedReturnBlock");
3310b57cec5SDimitry Andric   return true;
3320b57cec5SDimitry Andric }
333