10b57cec5SDimitry Andric //===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 9fe6060f1SDimitry Andric // This is a variant of the UnifyFunctionExitNodes pass. Rather than ensuring 100b57cec5SDimitry Andric // there is at most one ret and one unreachable instruction, it ensures there is 110b57cec5SDimitry Andric // at most one divergent exiting block. 120b57cec5SDimitry Andric // 130b57cec5SDimitry Andric // StructurizeCFG can't deal with multi-exit regions formed by branches to 140b57cec5SDimitry Andric // multiple return nodes. It is not desirable to structurize regions with 150b57cec5SDimitry Andric // uniform branches, so unifying those to the same return block as divergent 160b57cec5SDimitry Andric // branches inhibits use of scalar branching. It still can't deal with the case 170b57cec5SDimitry Andric // where one branch goes to return, and one unreachable. Replace unreachable in 180b57cec5SDimitry Andric // this case with a return. 190b57cec5SDimitry Andric // 200b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 210b57cec5SDimitry Andric 22*06c3fb27SDimitry Andric #include "AMDGPUUnifyDivergentExitNodes.h" 230b57cec5SDimitry Andric #include "AMDGPU.h" 24e8d8bef9SDimitry Andric #include "SIDefines.h" 250b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h" 260b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h" 270b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 280b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h" 29e8d8bef9SDimitry Andric #include "llvm/Analysis/DomTreeUpdater.h" 300b57cec5SDimitry Andric #include "llvm/Analysis/PostDominators.h" 310b57cec5SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 32*06c3fb27SDimitry Andric #include "llvm/Analysis/UniformityAnalysis.h" 330b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 340b57cec5SDimitry Andric #include "llvm/IR/CFG.h" 350b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 36e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h" 370b57cec5SDimitry Andric #include "llvm/IR/Function.h" 38e8d8bef9SDimitry Andric #include "llvm/IR/IRBuilder.h" 390b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h" 400b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 410b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 42e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h" 430b57cec5SDimitry Andric #include "llvm/IR/Type.h" 44480093f4SDimitry Andric #include "llvm/InitializePasses.h" 450b57cec5SDimitry Andric #include "llvm/Pass.h" 460b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 470b57cec5SDimitry Andric #include "llvm/Transforms/Scalar.h" 480b57cec5SDimitry Andric #include "llvm/Transforms/Utils.h" 49480093f4SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 500b57cec5SDimitry Andric 510b57cec5SDimitry Andric using namespace llvm; 520b57cec5SDimitry Andric 530b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes" 540b57cec5SDimitry Andric 550b57cec5SDimitry Andric namespace { 560b57cec5SDimitry Andric 57*06c3fb27SDimitry Andric class AMDGPUUnifyDivergentExitNodesImpl { 58fe6060f1SDimitry Andric private: 59fe6060f1SDimitry Andric const TargetTransformInfo *TTI = nullptr; 60fe6060f1SDimitry Andric 610b57cec5SDimitry Andric public: 62*06c3fb27SDimitry Andric AMDGPUUnifyDivergentExitNodesImpl() = delete; 63*06c3fb27SDimitry Andric AMDGPUUnifyDivergentExitNodesImpl(const TargetTransformInfo *TTI) 64*06c3fb27SDimitry Andric : TTI(TTI) {} 650b57cec5SDimitry Andric 660b57cec5SDimitry Andric // We can preserve non-critical-edgeness when we unify function exit nodes 67fe6060f1SDimitry Andric BasicBlock *unifyReturnBlockSet(Function &F, DomTreeUpdater &DTU, 68fe6060f1SDimitry Andric ArrayRef<BasicBlock *> ReturningBlocks, 69fe6060f1SDimitry Andric StringRef Name); 70*06c3fb27SDimitry Andric bool run(Function &F, DominatorTree *DT, const PostDominatorTree &PDT, 71*06c3fb27SDimitry Andric const UniformityInfo &UA); 720b57cec5SDimitry Andric }; 730b57cec5SDimitry Andric 74*06c3fb27SDimitry Andric class AMDGPUUnifyDivergentExitNodes : public FunctionPass { 75*06c3fb27SDimitry Andric public: 76*06c3fb27SDimitry Andric static char ID; 77*06c3fb27SDimitry Andric AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) { 78*06c3fb27SDimitry Andric initializeAMDGPUUnifyDivergentExitNodesPass( 79*06c3fb27SDimitry Andric *PassRegistry::getPassRegistry()); 80*06c3fb27SDimitry Andric } 81*06c3fb27SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override; 82*06c3fb27SDimitry Andric bool runOnFunction(Function &F) override; 83*06c3fb27SDimitry Andric }; 840b57cec5SDimitry Andric } // end anonymous namespace 850b57cec5SDimitry Andric 860b57cec5SDimitry Andric char AMDGPUUnifyDivergentExitNodes::ID = 0; 870b57cec5SDimitry Andric 880b57cec5SDimitry Andric char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID; 890b57cec5SDimitry Andric 900b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 910b57cec5SDimitry Andric "Unify divergent function exit nodes", false, false) 92e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 930b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 94*06c3fb27SDimitry Andric INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) 950b57cec5SDimitry Andric INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE, 960b57cec5SDimitry Andric "Unify divergent function exit nodes", false, false) 970b57cec5SDimitry Andric 980b57cec5SDimitry Andric void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const { 99e8d8bef9SDimitry Andric if (RequireAndPreserveDomTree) 100e8d8bef9SDimitry Andric AU.addRequired<DominatorTreeWrapperPass>(); 101e8d8bef9SDimitry Andric 1020b57cec5SDimitry Andric AU.addRequired<PostDominatorTreeWrapperPass>(); 1030b57cec5SDimitry Andric 104*06c3fb27SDimitry Andric AU.addRequired<UniformityInfoWrapperPass>(); 1050b57cec5SDimitry Andric 106e8d8bef9SDimitry Andric if (RequireAndPreserveDomTree) { 107e8d8bef9SDimitry Andric AU.addPreserved<DominatorTreeWrapperPass>(); 108e8d8bef9SDimitry Andric // FIXME: preserve PostDominatorTreeWrapperPass 109e8d8bef9SDimitry Andric } 110e8d8bef9SDimitry Andric 1110b57cec5SDimitry Andric // No divergent values are changed, only blocks and branch edges. 112*06c3fb27SDimitry Andric AU.addPreserved<UniformityInfoWrapperPass>(); 1130b57cec5SDimitry Andric 1140b57cec5SDimitry Andric // We preserve the non-critical-edgeness property 1150b57cec5SDimitry Andric AU.addPreservedID(BreakCriticalEdgesID); 1160b57cec5SDimitry Andric 1170b57cec5SDimitry Andric // This is a cluster of orthogonal Transforms 1180b57cec5SDimitry Andric AU.addPreservedID(LowerSwitchID); 1190b57cec5SDimitry Andric FunctionPass::getAnalysisUsage(AU); 1200b57cec5SDimitry Andric 1210b57cec5SDimitry Andric AU.addRequired<TargetTransformInfoWrapperPass>(); 1220b57cec5SDimitry Andric } 1230b57cec5SDimitry Andric 1240b57cec5SDimitry Andric /// \returns true if \p BB is reachable through only uniform branches. 1250b57cec5SDimitry Andric /// XXX - Is there a more efficient way to find this? 126*06c3fb27SDimitry Andric static bool isUniformlyReached(const UniformityInfo &UA, BasicBlock &BB) { 127fe6060f1SDimitry Andric SmallVector<BasicBlock *, 8> Stack(predecessors(&BB)); 1280b57cec5SDimitry Andric SmallPtrSet<BasicBlock *, 8> Visited; 1290b57cec5SDimitry Andric 1300b57cec5SDimitry Andric while (!Stack.empty()) { 1310b57cec5SDimitry Andric BasicBlock *Top = Stack.pop_back_val(); 132*06c3fb27SDimitry Andric if (!UA.isUniform(Top->getTerminator())) 1330b57cec5SDimitry Andric return false; 1340b57cec5SDimitry Andric 1350b57cec5SDimitry Andric for (BasicBlock *Pred : predecessors(Top)) { 1360b57cec5SDimitry Andric if (Visited.insert(Pred).second) 1370b57cec5SDimitry Andric Stack.push_back(Pred); 1380b57cec5SDimitry Andric } 1390b57cec5SDimitry Andric } 1400b57cec5SDimitry Andric 1410b57cec5SDimitry Andric return true; 1420b57cec5SDimitry Andric } 1430b57cec5SDimitry Andric 144*06c3fb27SDimitry Andric BasicBlock *AMDGPUUnifyDivergentExitNodesImpl::unifyReturnBlockSet( 145fe6060f1SDimitry Andric Function &F, DomTreeUpdater &DTU, ArrayRef<BasicBlock *> ReturningBlocks, 1460b57cec5SDimitry Andric StringRef Name) { 1470b57cec5SDimitry Andric // Otherwise, we need to insert a new basic block into the function, add a PHI 1480b57cec5SDimitry Andric // nodes (if the function returns values), and convert all of the return 1490b57cec5SDimitry Andric // instructions into unconditional branches. 1500b57cec5SDimitry Andric BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F); 15113138422SDimitry Andric IRBuilder<> B(NewRetBlock); 15213138422SDimitry Andric 1530b57cec5SDimitry Andric PHINode *PN = nullptr; 1540b57cec5SDimitry Andric if (F.getReturnType()->isVoidTy()) { 15513138422SDimitry Andric B.CreateRetVoid(); 1560b57cec5SDimitry Andric } else { 1570b57cec5SDimitry Andric // If the function doesn't return void... add a PHI node to the block... 15813138422SDimitry Andric PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(), 1590b57cec5SDimitry Andric "UnifiedRetVal"); 16013138422SDimitry Andric B.CreateRet(PN); 1610b57cec5SDimitry Andric } 1620b57cec5SDimitry Andric 1630b57cec5SDimitry Andric // Loop over all of the blocks, replacing the return instruction with an 1640b57cec5SDimitry Andric // unconditional branch. 165e8d8bef9SDimitry Andric std::vector<DominatorTree::UpdateType> Updates; 166e8d8bef9SDimitry Andric Updates.reserve(ReturningBlocks.size()); 1670b57cec5SDimitry Andric for (BasicBlock *BB : ReturningBlocks) { 1680b57cec5SDimitry Andric // Add an incoming element to the PHI node for every return instruction that 1690b57cec5SDimitry Andric // is merging into this new block... 1700b57cec5SDimitry Andric if (PN) 1710b57cec5SDimitry Andric PN->addIncoming(BB->getTerminator()->getOperand(0), BB); 1720b57cec5SDimitry Andric 1730b57cec5SDimitry Andric // Remove and delete the return inst. 1740b57cec5SDimitry Andric BB->getTerminator()->eraseFromParent(); 1750b57cec5SDimitry Andric BranchInst::Create(NewRetBlock, BB); 176e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, BB, NewRetBlock}); 1770b57cec5SDimitry Andric } 1780b57cec5SDimitry Andric 179e8d8bef9SDimitry Andric if (RequireAndPreserveDomTree) 180e8d8bef9SDimitry Andric DTU.applyUpdates(Updates); 181e8d8bef9SDimitry Andric Updates.clear(); 182e8d8bef9SDimitry Andric 1830b57cec5SDimitry Andric for (BasicBlock *BB : ReturningBlocks) { 1840b57cec5SDimitry Andric // Cleanup possible branch to unconditional branch to the return. 185fe6060f1SDimitry Andric simplifyCFG(BB, *TTI, RequireAndPreserveDomTree ? &DTU : nullptr, 186e8d8bef9SDimitry Andric SimplifyCFGOptions().bonusInstThreshold(2)); 1870b57cec5SDimitry Andric } 1880b57cec5SDimitry Andric 1890b57cec5SDimitry Andric return NewRetBlock; 1900b57cec5SDimitry Andric } 1910b57cec5SDimitry Andric 192*06c3fb27SDimitry Andric bool AMDGPUUnifyDivergentExitNodesImpl::run(Function &F, DominatorTree *DT, 193*06c3fb27SDimitry Andric const PostDominatorTree &PDT, 194*06c3fb27SDimitry Andric const UniformityInfo &UA) { 195bdd1243dSDimitry Andric if (PDT.root_size() == 0 || 196bdd1243dSDimitry Andric (PDT.root_size() == 1 && 197bdd1243dSDimitry Andric !isa<BranchInst>(PDT.getRoot()->getTerminator()))) 1980b57cec5SDimitry Andric return false; 1990b57cec5SDimitry Andric 2000b57cec5SDimitry Andric // Loop over all of the blocks in a function, tracking all of the blocks that 2010b57cec5SDimitry Andric // return. 2020b57cec5SDimitry Andric SmallVector<BasicBlock *, 4> ReturningBlocks; 2030b57cec5SDimitry Andric SmallVector<BasicBlock *, 4> UnreachableBlocks; 2040b57cec5SDimitry Andric 2050b57cec5SDimitry Andric // Dummy return block for infinite loop. 2060b57cec5SDimitry Andric BasicBlock *DummyReturnBB = nullptr; 2070b57cec5SDimitry Andric 2085ffd83dbSDimitry Andric bool Changed = false; 209e8d8bef9SDimitry Andric std::vector<DominatorTree::UpdateType> Updates; 210e8d8bef9SDimitry Andric 211bdd1243dSDimitry Andric // TODO: For now we unify all exit blocks, even though they are uniformly 212bdd1243dSDimitry Andric // reachable, if there are any exits not uniformly reached. This is to 213bdd1243dSDimitry Andric // workaround the limitation of structurizer, which can not handle multiple 214bdd1243dSDimitry Andric // function exits. After structurizer is able to handle multiple function 215bdd1243dSDimitry Andric // exits, we should only unify UnreachableBlocks that are not uniformly 216bdd1243dSDimitry Andric // reachable. 217bdd1243dSDimitry Andric bool HasDivergentExitBlock = llvm::any_of( 218*06c3fb27SDimitry Andric PDT.roots(), [&](auto BB) { return !isUniformlyReached(UA, *BB); }); 219bdd1243dSDimitry Andric 2205ffd83dbSDimitry Andric for (BasicBlock *BB : PDT.roots()) { 2210b57cec5SDimitry Andric if (isa<ReturnInst>(BB->getTerminator())) { 222bdd1243dSDimitry Andric if (HasDivergentExitBlock) 2230b57cec5SDimitry Andric ReturningBlocks.push_back(BB); 2240b57cec5SDimitry Andric } else if (isa<UnreachableInst>(BB->getTerminator())) { 225bdd1243dSDimitry Andric if (HasDivergentExitBlock) 2260b57cec5SDimitry Andric UnreachableBlocks.push_back(BB); 2270b57cec5SDimitry Andric } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 2280b57cec5SDimitry Andric 2290b57cec5SDimitry Andric ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext()); 2300b57cec5SDimitry Andric if (DummyReturnBB == nullptr) { 2310b57cec5SDimitry Andric DummyReturnBB = BasicBlock::Create(F.getContext(), 2320b57cec5SDimitry Andric "DummyReturnBlock", &F); 2330b57cec5SDimitry Andric Type *RetTy = F.getReturnType(); 234bdd1243dSDimitry Andric Value *RetVal = RetTy->isVoidTy() ? nullptr : PoisonValue::get(RetTy); 2350b57cec5SDimitry Andric ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB); 2360b57cec5SDimitry Andric ReturningBlocks.push_back(DummyReturnBB); 2370b57cec5SDimitry Andric } 2380b57cec5SDimitry Andric 2390b57cec5SDimitry Andric if (BI->isUnconditional()) { 2400b57cec5SDimitry Andric BasicBlock *LoopHeaderBB = BI->getSuccessor(0); 2410b57cec5SDimitry Andric BI->eraseFromParent(); // Delete the unconditional branch. 2420b57cec5SDimitry Andric // Add a new conditional branch with a dummy edge to the return block. 2430b57cec5SDimitry Andric BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB); 244e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB}); 2450b57cec5SDimitry Andric } else { // Conditional branch. 246349cc55cSDimitry Andric SmallVector<BasicBlock *, 2> Successors(successors(BB)); 247e8d8bef9SDimitry Andric 2480b57cec5SDimitry Andric // Create a new transition block to hold the conditional branch. 2490b57cec5SDimitry Andric BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock"); 2500b57cec5SDimitry Andric 251e8d8bef9SDimitry Andric Updates.reserve(Updates.size() + 2 * Successors.size() + 2); 252e8d8bef9SDimitry Andric 253e8d8bef9SDimitry Andric // 'Successors' become successors of TransitionBB instead of BB, 254e8d8bef9SDimitry Andric // and TransitionBB becomes a single successor of BB. 255e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, BB, TransitionBB}); 256e8d8bef9SDimitry Andric for (BasicBlock *Successor : Successors) { 257e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, TransitionBB, Successor}); 258e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Delete, BB, Successor}); 259e8d8bef9SDimitry Andric } 260e8d8bef9SDimitry Andric 2610b57cec5SDimitry Andric // Create a branch that will always branch to the transition block and 2620b57cec5SDimitry Andric // references DummyReturnBB. 2630b57cec5SDimitry Andric BB->getTerminator()->eraseFromParent(); 2640b57cec5SDimitry Andric BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB); 265e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB}); 2660b57cec5SDimitry Andric } 2675ffd83dbSDimitry Andric Changed = true; 2680b57cec5SDimitry Andric } 2690b57cec5SDimitry Andric } 2700b57cec5SDimitry Andric 2710b57cec5SDimitry Andric if (!UnreachableBlocks.empty()) { 2720b57cec5SDimitry Andric BasicBlock *UnreachableBlock = nullptr; 2730b57cec5SDimitry Andric 2740b57cec5SDimitry Andric if (UnreachableBlocks.size() == 1) { 2750b57cec5SDimitry Andric UnreachableBlock = UnreachableBlocks.front(); 2760b57cec5SDimitry Andric } else { 2770b57cec5SDimitry Andric UnreachableBlock = BasicBlock::Create(F.getContext(), 2780b57cec5SDimitry Andric "UnifiedUnreachableBlock", &F); 2790b57cec5SDimitry Andric new UnreachableInst(F.getContext(), UnreachableBlock); 2800b57cec5SDimitry Andric 281e8d8bef9SDimitry Andric Updates.reserve(Updates.size() + UnreachableBlocks.size()); 2820b57cec5SDimitry Andric for (BasicBlock *BB : UnreachableBlocks) { 2830b57cec5SDimitry Andric // Remove and delete the unreachable inst. 2840b57cec5SDimitry Andric BB->getTerminator()->eraseFromParent(); 2850b57cec5SDimitry Andric BranchInst::Create(UnreachableBlock, BB); 286e8d8bef9SDimitry Andric Updates.push_back({DominatorTree::Insert, BB, UnreachableBlock}); 2870b57cec5SDimitry Andric } 2885ffd83dbSDimitry Andric Changed = true; 2890b57cec5SDimitry Andric } 2900b57cec5SDimitry Andric 2910b57cec5SDimitry Andric if (!ReturningBlocks.empty()) { 2920b57cec5SDimitry Andric // Don't create a new unreachable inst if we have a return. The 2930b57cec5SDimitry Andric // structurizer/annotator can't handle the multiple exits 2940b57cec5SDimitry Andric 2950b57cec5SDimitry Andric Type *RetTy = F.getReturnType(); 296bdd1243dSDimitry Andric Value *RetVal = RetTy->isVoidTy() ? nullptr : PoisonValue::get(RetTy); 2970b57cec5SDimitry Andric // Remove and delete the unreachable inst. 2980b57cec5SDimitry Andric UnreachableBlock->getTerminator()->eraseFromParent(); 2990b57cec5SDimitry Andric 3000b57cec5SDimitry Andric Function *UnreachableIntrin = 3010b57cec5SDimitry Andric Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable); 3020b57cec5SDimitry Andric 3030b57cec5SDimitry Andric // Insert a call to an intrinsic tracking that this is an unreachable 3040b57cec5SDimitry Andric // point, in case we want to kill the active lanes or something later. 3050b57cec5SDimitry Andric CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock); 3060b57cec5SDimitry Andric 3070b57cec5SDimitry Andric // Don't create a scalar trap. We would only want to trap if this code was 3080b57cec5SDimitry Andric // really reached, but a scalar trap would happen even if no lanes 3090b57cec5SDimitry Andric // actually reached here. 3100b57cec5SDimitry Andric ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock); 3110b57cec5SDimitry Andric ReturningBlocks.push_back(UnreachableBlock); 3125ffd83dbSDimitry Andric Changed = true; 3130b57cec5SDimitry Andric } 3140b57cec5SDimitry Andric } 3150b57cec5SDimitry Andric 316e8d8bef9SDimitry Andric // FIXME: add PDT here once simplifycfg is ready. 317e8d8bef9SDimitry Andric DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 318e8d8bef9SDimitry Andric if (RequireAndPreserveDomTree) 319e8d8bef9SDimitry Andric DTU.applyUpdates(Updates); 320e8d8bef9SDimitry Andric Updates.clear(); 321e8d8bef9SDimitry Andric 3220b57cec5SDimitry Andric // Now handle return blocks. 3230b57cec5SDimitry Andric if (ReturningBlocks.empty()) 3245ffd83dbSDimitry Andric return Changed; // No blocks return 3250b57cec5SDimitry Andric 326fe6060f1SDimitry Andric if (ReturningBlocks.size() == 1) 3275ffd83dbSDimitry Andric return Changed; // Already has a single return block 3280b57cec5SDimitry Andric 329fe6060f1SDimitry Andric unifyReturnBlockSet(F, DTU, ReturningBlocks, "UnifiedReturnBlock"); 3300b57cec5SDimitry Andric return true; 3310b57cec5SDimitry Andric } 332*06c3fb27SDimitry Andric 333*06c3fb27SDimitry Andric bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) { 334*06c3fb27SDimitry Andric DominatorTree *DT = nullptr; 335*06c3fb27SDimitry Andric if (RequireAndPreserveDomTree) 336*06c3fb27SDimitry Andric DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 337*06c3fb27SDimitry Andric const auto &PDT = 338*06c3fb27SDimitry Andric getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 339*06c3fb27SDimitry Andric const auto &UA = getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); 340*06c3fb27SDimitry Andric const auto *TranformInfo = 341*06c3fb27SDimitry Andric &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 342*06c3fb27SDimitry Andric return AMDGPUUnifyDivergentExitNodesImpl(TranformInfo).run(F, DT, PDT, UA); 343*06c3fb27SDimitry Andric } 344*06c3fb27SDimitry Andric 345*06c3fb27SDimitry Andric PreservedAnalyses 346*06c3fb27SDimitry Andric AMDGPUUnifyDivergentExitNodesPass::run(Function &F, 347*06c3fb27SDimitry Andric FunctionAnalysisManager &AM) { 348*06c3fb27SDimitry Andric DominatorTree *DT = nullptr; 349*06c3fb27SDimitry Andric if (RequireAndPreserveDomTree) 350*06c3fb27SDimitry Andric DT = &AM.getResult<DominatorTreeAnalysis>(F); 351*06c3fb27SDimitry Andric 352*06c3fb27SDimitry Andric const auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 353*06c3fb27SDimitry Andric const auto &UA = AM.getResult<UniformityInfoAnalysis>(F); 354*06c3fb27SDimitry Andric const auto *TransformInfo = &AM.getResult<TargetIRAnalysis>(F); 355*06c3fb27SDimitry Andric return AMDGPUUnifyDivergentExitNodesImpl(TransformInfo).run(F, DT, PDT, UA) 356*06c3fb27SDimitry Andric ? PreservedAnalyses::none() 357*06c3fb27SDimitry Andric : PreservedAnalyses::all(); 358*06c3fb27SDimitry Andric } 359