xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp (revision f3087bef11543b42e0d69b708f367097a4118d24)
1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
20 #include "SIModeRegisterDefaults.h"
21 #include "llvm/Analysis/InlineCost.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/IntrinsicsAMDGPU.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/KnownBits.h"
29 #include <optional>
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "AMDGPUtti"
34 
35 static cl::opt<unsigned> UnrollThresholdPrivate(
36   "amdgpu-unroll-threshold-private",
37   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
38   cl::init(2700), cl::Hidden);
39 
40 static cl::opt<unsigned> UnrollThresholdLocal(
41   "amdgpu-unroll-threshold-local",
42   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
43   cl::init(1000), cl::Hidden);
44 
45 static cl::opt<unsigned> UnrollThresholdIf(
46   "amdgpu-unroll-threshold-if",
47   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
48   cl::init(200), cl::Hidden);
49 
50 static cl::opt<bool> UnrollRuntimeLocal(
51   "amdgpu-unroll-runtime-local",
52   cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
53   cl::init(true), cl::Hidden);
54 
55 static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
56     "amdgpu-unroll-max-block-to-analyze",
57     cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
58     cl::init(32), cl::Hidden);
59 
60 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
61                                        cl::Hidden, cl::init(4000),
62                                        cl::desc("Cost of alloca argument"));
63 
64 // If the amount of scratch memory to eliminate exceeds our ability to allocate
65 // it into registers we gain nothing by aggressively inlining functions for that
66 // heuristic.
67 static cl::opt<unsigned>
68     ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
69                     cl::init(256),
70                     cl::desc("Maximum alloca size to use for inline cost"));
71 
72 // Inliner constraint to achieve reasonable compilation time.
73 static cl::opt<size_t> InlineMaxBB(
74     "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
75     cl::desc("Maximum number of BBs allowed in a function after inlining"
76              " (compile time constraint)"));
77 
78 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
79                               unsigned Depth = 0) {
80   const Instruction *I = dyn_cast<Instruction>(Cond);
81   if (!I)
82     return false;
83 
84   for (const Value *V : I->operand_values()) {
85     if (!L->contains(I))
86       continue;
87     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
88       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
89                   return SubLoop->contains(PHI); }))
90         return true;
91     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
92       return true;
93   }
94   return false;
95 }
96 
97 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
98     : BaseT(TM, F.getDataLayout()),
99       TargetTriple(TM->getTargetTriple()),
100       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
101       TLI(ST->getTargetLowering()) {}
102 
103 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
104                                             TTI::UnrollingPreferences &UP,
105                                             OptimizationRemarkEmitter *ORE) {
106   const Function &F = *L->getHeader()->getParent();
107   UP.Threshold =
108       F.getFnAttributeAsParsedInteger("amdgpu-unroll-threshold", 300);
109   UP.MaxCount = std::numeric_limits<unsigned>::max();
110   UP.Partial = true;
111 
112   // Conditional branch in a loop back edge needs 3 additional exec
113   // manipulations in average.
114   UP.BEInsns += 3;
115 
116   // We want to run unroll even for the loops which have been vectorized.
117   UP.UnrollVectorizedLoop = true;
118 
119   // TODO: Do we want runtime unrolling?
120 
121   // Maximum alloca size than can fit registers. Reserve 16 registers.
122   const unsigned MaxAlloca = (256 - 16) * 4;
123   unsigned ThresholdPrivate = UnrollThresholdPrivate;
124   unsigned ThresholdLocal = UnrollThresholdLocal;
125 
126   // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
127   // provided threshold value as the default for Threshold
128   if (MDNode *LoopUnrollThreshold =
129           findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
130     if (LoopUnrollThreshold->getNumOperands() == 2) {
131       ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
132           LoopUnrollThreshold->getOperand(1));
133       if (MetaThresholdValue) {
134         // We will also use the supplied value for PartialThreshold for now.
135         // We may introduce additional metadata if it becomes necessary in the
136         // future.
137         UP.Threshold = MetaThresholdValue->getSExtValue();
138         UP.PartialThreshold = UP.Threshold;
139         ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
140         ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
141       }
142     }
143   }
144 
145   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
146   for (const BasicBlock *BB : L->getBlocks()) {
147     const DataLayout &DL = BB->getDataLayout();
148     unsigned LocalGEPsSeen = 0;
149 
150     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
151                return SubLoop->contains(BB); }))
152         continue; // Block belongs to an inner loop.
153 
154     for (const Instruction &I : *BB) {
155       // Unroll a loop which contains an "if" statement whose condition
156       // defined by a PHI belonging to the loop. This may help to eliminate
157       // if region and potentially even PHI itself, saving on both divergence
158       // and registers used for the PHI.
159       // Add a small bonus for each of such "if" statements.
160       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
161         if (UP.Threshold < MaxBoost && Br->isConditional()) {
162           BasicBlock *Succ0 = Br->getSuccessor(0);
163           BasicBlock *Succ1 = Br->getSuccessor(1);
164           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
165               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
166             continue;
167           if (dependsOnLocalPhi(L, Br->getCondition())) {
168             UP.Threshold += UnrollThresholdIf;
169             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
170                               << " for loop:\n"
171                               << *L << " due to " << *Br << '\n');
172             if (UP.Threshold >= MaxBoost)
173               return;
174           }
175         }
176         continue;
177       }
178 
179       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
180       if (!GEP)
181         continue;
182 
183       unsigned AS = GEP->getAddressSpace();
184       unsigned Threshold = 0;
185       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
186         Threshold = ThresholdPrivate;
187       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
188         Threshold = ThresholdLocal;
189       else
190         continue;
191 
192       if (UP.Threshold >= Threshold)
193         continue;
194 
195       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
196         const Value *Ptr = GEP->getPointerOperand();
197         const AllocaInst *Alloca =
198             dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
199         if (!Alloca || !Alloca->isStaticAlloca())
200           continue;
201         Type *Ty = Alloca->getAllocatedType();
202         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
203         if (AllocaSize > MaxAlloca)
204           continue;
205       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
206                  AS == AMDGPUAS::REGION_ADDRESS) {
207         LocalGEPsSeen++;
208         // Inhibit unroll for local memory if we have seen addressing not to
209         // a variable, most likely we will be unable to combine it.
210         // Do not unroll too deep inner loops for local memory to give a chance
211         // to unroll an outer loop for a more important reason.
212         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
213             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
214              !isa<Argument>(GEP->getPointerOperand())))
215           continue;
216         LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
217                           << *L << " due to LDS use.\n");
218         UP.Runtime = UnrollRuntimeLocal;
219       }
220 
221       // Check if GEP depends on a value defined by this loop itself.
222       bool HasLoopDef = false;
223       for (const Value *Op : GEP->operands()) {
224         const Instruction *Inst = dyn_cast<Instruction>(Op);
225         if (!Inst || L->isLoopInvariant(Op))
226           continue;
227 
228         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
229              return SubLoop->contains(Inst); }))
230           continue;
231         HasLoopDef = true;
232         break;
233       }
234       if (!HasLoopDef)
235         continue;
236 
237       // We want to do whatever we can to limit the number of alloca
238       // instructions that make it through to the code generator.  allocas
239       // require us to use indirect addressing, which is slow and prone to
240       // compiler bugs.  If this loop does an address calculation on an
241       // alloca ptr, then we want to use a higher than normal loop unroll
242       // threshold. This will give SROA a better chance to eliminate these
243       // allocas.
244       //
245       // We also want to have more unrolling for local memory to let ds
246       // instructions with different offsets combine.
247       //
248       // Don't use the maximum allowed value here as it will make some
249       // programs way too big.
250       UP.Threshold = Threshold;
251       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
252                         << " for loop:\n"
253                         << *L << " due to " << *GEP << '\n');
254       if (UP.Threshold >= MaxBoost)
255         return;
256     }
257 
258     // If we got a GEP in a small BB from inner loop then increase max trip
259     // count to analyze for better estimation cost in unroll
260     if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
261       UP.MaxIterationsCountToAnalyze = 32;
262   }
263 }
264 
265 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
266                                           TTI::PeelingPreferences &PP) {
267   BaseT::getPeelingPreferences(L, SE, PP);
268 }
269 
270 int64_t AMDGPUTTIImpl::getMaxMemIntrinsicInlineSizeThreshold() const {
271   return 1024;
272 }
273 
274 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
275     // Codegen control options which don't matter.
276     AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
277     AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
278     AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
279     AMDGPU::FeatureUnalignedAccessMode,
280 
281     AMDGPU::FeatureAutoWaitcntBeforeBarrier,
282 
283     // Property of the kernel/environment which can't actually differ.
284     AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
285     AMDGPU::FeatureTrapHandler,
286 
287     // The default assumption needs to be ecc is enabled, but no directly
288     // exposed operations depend on it, so it can be safely inlined.
289     AMDGPU::FeatureSRAMECC,
290 
291     // Perf-tuning features
292     AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
293 
294 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
295     : BaseT(TM, F.getDataLayout()),
296       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
297       TLI(ST->getTargetLowering()), CommonTTI(TM, F),
298       IsGraphics(AMDGPU::isGraphics(F.getCallingConv())) {
299   SIModeRegisterDefaults Mode(F, *ST);
300   HasFP32Denormals = Mode.FP32Denormals != DenormalMode::getPreserveSign();
301   HasFP64FP16Denormals =
302       Mode.FP64FP16Denormals != DenormalMode::getPreserveSign();
303 }
304 
305 bool GCNTTIImpl::hasBranchDivergence(const Function *F) const {
306   return !F || !ST->isSingleLaneExecution(*F);
307 }
308 
309 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
310   // NB: RCID is not an RCID. In fact it is 0 or 1 for scalar or vector
311   // registers. See getRegisterClassForType for the implementation.
312   // In this case vector registers are not vector in terms of
313   // VGPRs, but those which can hold multiple values.
314 
315   // This is really the number of registers to fill when vectorizing /
316   // interleaving loops, so we lie to avoid trying to use all registers.
317   return 4;
318 }
319 
320 TypeSize
321 GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
322   switch (K) {
323   case TargetTransformInfo::RGK_Scalar:
324     return TypeSize::getFixed(32);
325   case TargetTransformInfo::RGK_FixedWidthVector:
326     return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
327   case TargetTransformInfo::RGK_ScalableVector:
328     return TypeSize::getScalable(0);
329   }
330   llvm_unreachable("Unsupported register kind");
331 }
332 
333 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
334   return 32;
335 }
336 
337 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
338   if (Opcode == Instruction::Load || Opcode == Instruction::Store)
339     return 32 * 4 / ElemWidth;
340   return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
341        : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
342        : 1;
343 }
344 
345 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
346                                          unsigned ChainSizeInBytes,
347                                          VectorType *VecTy) const {
348   unsigned VecRegBitWidth = VF * LoadSize;
349   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
350     // TODO: Support element-size less than 32bit?
351     return 128 / LoadSize;
352 
353   return VF;
354 }
355 
356 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
357                                              unsigned ChainSizeInBytes,
358                                              VectorType *VecTy) const {
359   unsigned VecRegBitWidth = VF * StoreSize;
360   if (VecRegBitWidth > 128)
361     return 128 / StoreSize;
362 
363   return VF;
364 }
365 
366 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
367   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
368       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
369       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
370       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER ||
371       AddrSpace == AMDGPUAS::BUFFER_RESOURCE ||
372       AddrSpace == AMDGPUAS::BUFFER_STRIDED_POINTER) {
373     return 512;
374   }
375 
376   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
377     return 8 * ST->getMaxPrivateElementSize();
378 
379   // Common to flat, global, local and region. Assume for unknown addrspace.
380   return 128;
381 }
382 
383 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
384                                             Align Alignment,
385                                             unsigned AddrSpace) const {
386   // We allow vectorization of flat stores, even though we may need to decompose
387   // them later if they may access private memory. We don't have enough context
388   // here, and legalization can handle it.
389   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
390     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
391       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
392   }
393   return true;
394 }
395 
396 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
397                                              Align Alignment,
398                                              unsigned AddrSpace) const {
399   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
400 }
401 
402 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
403                                               Align Alignment,
404                                               unsigned AddrSpace) const {
405   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
406 }
407 
408 int64_t GCNTTIImpl::getMaxMemIntrinsicInlineSizeThreshold() const {
409   return 1024;
410 }
411 
412 // FIXME: Really we would like to issue multiple 128-bit loads and stores per
413 // iteration. Should we report a larger size and let it legalize?
414 //
415 // FIXME: Should we use narrower types for local/region, or account for when
416 // unaligned access is legal?
417 //
418 // FIXME: This could use fine tuning and microbenchmarks.
419 Type *GCNTTIImpl::getMemcpyLoopLoweringType(
420     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
421     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
422     std::optional<uint32_t> AtomicElementSize) const {
423 
424   if (AtomicElementSize)
425     return Type::getIntNTy(Context, *AtomicElementSize * 8);
426 
427   unsigned MinAlign = std::min(SrcAlign, DestAlign);
428 
429   // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
430   // hardware into byte accesses. If you assume all alignments are equally
431   // probable, it's more efficient on average to use short accesses for this
432   // case.
433   if (MinAlign == 2)
434     return Type::getInt16Ty(Context);
435 
436   // Not all subtargets have 128-bit DS instructions, and we currently don't
437   // form them by default.
438   if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
439       SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
440       DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
441       DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
442     return FixedVectorType::get(Type::getInt32Ty(Context), 2);
443   }
444 
445   // Global memory works best with 16-byte accesses. Private memory will also
446   // hit this, although they'll be decomposed.
447   return FixedVectorType::get(Type::getInt32Ty(Context), 4);
448 }
449 
450 void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
451     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
452     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
453     unsigned SrcAlign, unsigned DestAlign,
454     std::optional<uint32_t> AtomicCpySize) const {
455   assert(RemainingBytes < 16);
456 
457   if (AtomicCpySize)
458     BaseT::getMemcpyLoopResidualLoweringType(
459         OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
460         DestAlign, AtomicCpySize);
461 
462   unsigned MinAlign = std::min(SrcAlign, DestAlign);
463 
464   if (MinAlign != 2) {
465     Type *I64Ty = Type::getInt64Ty(Context);
466     while (RemainingBytes >= 8) {
467       OpsOut.push_back(I64Ty);
468       RemainingBytes -= 8;
469     }
470 
471     Type *I32Ty = Type::getInt32Ty(Context);
472     while (RemainingBytes >= 4) {
473       OpsOut.push_back(I32Ty);
474       RemainingBytes -= 4;
475     }
476   }
477 
478   Type *I16Ty = Type::getInt16Ty(Context);
479   while (RemainingBytes >= 2) {
480     OpsOut.push_back(I16Ty);
481     RemainingBytes -= 2;
482   }
483 
484   Type *I8Ty = Type::getInt8Ty(Context);
485   while (RemainingBytes) {
486     OpsOut.push_back(I8Ty);
487     --RemainingBytes;
488   }
489 }
490 
491 unsigned GCNTTIImpl::getMaxInterleaveFactor(ElementCount VF) {
492   // Disable unrolling if the loop is not vectorized.
493   // TODO: Enable this again.
494   if (VF.isScalar())
495     return 1;
496 
497   return 8;
498 }
499 
500 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
501                                        MemIntrinsicInfo &Info) const {
502   switch (Inst->getIntrinsicID()) {
503   case Intrinsic::amdgcn_ds_ordered_add:
504   case Intrinsic::amdgcn_ds_ordered_swap: {
505     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
506     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
507     if (!Ordering || !Volatile)
508       return false; // Invalid.
509 
510     unsigned OrderingVal = Ordering->getZExtValue();
511     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
512       return false;
513 
514     Info.PtrVal = Inst->getArgOperand(0);
515     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
516     Info.ReadMem = true;
517     Info.WriteMem = true;
518     Info.IsVolatile = !Volatile->isZero();
519     return true;
520   }
521   default:
522     return false;
523   }
524 }
525 
526 InstructionCost GCNTTIImpl::getArithmeticInstrCost(
527     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
528     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
529     ArrayRef<const Value *> Args,
530     const Instruction *CxtI) {
531 
532   // Legalize the type.
533   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
534   int ISD = TLI->InstructionOpcodeToISD(Opcode);
535 
536   // Because we don't have any legal vector operations, but the legal types, we
537   // need to account for split vectors.
538   unsigned NElts = LT.second.isVector() ?
539     LT.second.getVectorNumElements() : 1;
540 
541   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
542 
543   switch (ISD) {
544   case ISD::SHL:
545   case ISD::SRL:
546   case ISD::SRA:
547     if (SLT == MVT::i64)
548       return get64BitInstrCost(CostKind) * LT.first * NElts;
549 
550     if (ST->has16BitInsts() && SLT == MVT::i16)
551       NElts = (NElts + 1) / 2;
552 
553     // i32
554     return getFullRateInstrCost() * LT.first * NElts;
555   case ISD::ADD:
556   case ISD::SUB:
557   case ISD::AND:
558   case ISD::OR:
559   case ISD::XOR:
560     if (SLT == MVT::i64) {
561       // and, or and xor are typically split into 2 VALU instructions.
562       return 2 * getFullRateInstrCost() * LT.first * NElts;
563     }
564 
565     if (ST->has16BitInsts() && SLT == MVT::i16)
566       NElts = (NElts + 1) / 2;
567 
568     return LT.first * NElts * getFullRateInstrCost();
569   case ISD::MUL: {
570     const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
571     if (SLT == MVT::i64) {
572       const int FullRateCost = getFullRateInstrCost();
573       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
574     }
575 
576     if (ST->has16BitInsts() && SLT == MVT::i16)
577       NElts = (NElts + 1) / 2;
578 
579     // i32
580     return QuarterRateCost * NElts * LT.first;
581   }
582   case ISD::FMUL:
583     // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
584     // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
585     // fused operation.
586     if (CxtI && CxtI->hasOneUse())
587       if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
588         const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
589         if (OPC == ISD::FADD || OPC == ISD::FSUB) {
590           if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
591             return TargetTransformInfo::TCC_Free;
592           if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
593             return TargetTransformInfo::TCC_Free;
594 
595           // Estimate all types may be fused with contract/unsafe flags
596           const TargetOptions &Options = TLI->getTargetMachine().Options;
597           if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
598               Options.UnsafeFPMath ||
599               (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
600             return TargetTransformInfo::TCC_Free;
601         }
602       }
603     [[fallthrough]];
604   case ISD::FADD:
605   case ISD::FSUB:
606     if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
607       NElts = (NElts + 1) / 2;
608     if (SLT == MVT::f64)
609       return LT.first * NElts * get64BitInstrCost(CostKind);
610 
611     if (ST->has16BitInsts() && SLT == MVT::f16)
612       NElts = (NElts + 1) / 2;
613 
614     if (SLT == MVT::f32 || SLT == MVT::f16)
615       return LT.first * NElts * getFullRateInstrCost();
616     break;
617   case ISD::FDIV:
618   case ISD::FREM:
619     // FIXME: frem should be handled separately. The fdiv in it is most of it,
620     // but the current lowering is also not entirely correct.
621     if (SLT == MVT::f64) {
622       int Cost = 7 * get64BitInstrCost(CostKind) +
623                  getQuarterRateInstrCost(CostKind) +
624                  3 * getHalfRateInstrCost(CostKind);
625       // Add cost of workaround.
626       if (!ST->hasUsableDivScaleConditionOutput())
627         Cost += 3 * getFullRateInstrCost();
628 
629       return LT.first * Cost * NElts;
630     }
631 
632     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
633       // TODO: This is more complicated, unsafe flags etc.
634       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
635           (SLT == MVT::f16 && ST->has16BitInsts())) {
636         return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
637       }
638     }
639 
640     if (SLT == MVT::f16 && ST->has16BitInsts()) {
641       // 2 x v_cvt_f32_f16
642       // f32 rcp
643       // f32 fmul
644       // v_cvt_f16_f32
645       // f16 div_fixup
646       int Cost =
647           4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
648       return LT.first * Cost * NElts;
649     }
650 
651     if (SLT == MVT::f32 && ((CxtI && CxtI->hasApproxFunc()) ||
652                             TLI->getTargetMachine().Options.UnsafeFPMath)) {
653       // Fast unsafe fdiv lowering:
654       // f32 rcp
655       // f32 fmul
656       int Cost = getQuarterRateInstrCost(CostKind) + getFullRateInstrCost();
657       return LT.first * Cost * NElts;
658     }
659 
660     if (SLT == MVT::f32 || SLT == MVT::f16) {
661       // 4 more v_cvt_* insts without f16 insts support
662       int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
663                  1 * getQuarterRateInstrCost(CostKind);
664 
665       if (!HasFP32Denormals) {
666         // FP mode switches.
667         Cost += 2 * getFullRateInstrCost();
668       }
669 
670       return LT.first * NElts * Cost;
671     }
672     break;
673   case ISD::FNEG:
674     // Use the backend' estimation. If fneg is not free each element will cost
675     // one additional instruction.
676     return TLI->isFNegFree(SLT) ? 0 : NElts;
677   default:
678     break;
679   }
680 
681   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
682                                        Args, CxtI);
683 }
684 
685 // Return true if there's a potential benefit from using v2f16/v2i16
686 // instructions for an intrinsic, even if it requires nontrivial legalization.
687 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
688   switch (ID) {
689   case Intrinsic::fma: // TODO: fmuladd
690   // There's a small benefit to using vector ops in the legalized code.
691   case Intrinsic::round:
692   case Intrinsic::uadd_sat:
693   case Intrinsic::usub_sat:
694   case Intrinsic::sadd_sat:
695   case Intrinsic::ssub_sat:
696     return true;
697   default:
698     return false;
699   }
700 }
701 
702 InstructionCost
703 GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
704                                   TTI::TargetCostKind CostKind) {
705   if (ICA.getID() == Intrinsic::fabs)
706     return 0;
707 
708   if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
709     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
710 
711   Type *RetTy = ICA.getReturnType();
712 
713   // Legalize the type.
714   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(RetTy);
715 
716   unsigned NElts = LT.second.isVector() ?
717     LT.second.getVectorNumElements() : 1;
718 
719   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
720 
721   if (SLT == MVT::f64)
722     return LT.first * NElts * get64BitInstrCost(CostKind);
723 
724   if ((ST->has16BitInsts() && SLT == MVT::f16) ||
725       (ST->hasPackedFP32Ops() && SLT == MVT::f32))
726     NElts = (NElts + 1) / 2;
727 
728   // TODO: Get more refined intrinsic costs?
729   unsigned InstRate = getQuarterRateInstrCost(CostKind);
730 
731   switch (ICA.getID()) {
732   case Intrinsic::fma:
733     InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
734                                    : getQuarterRateInstrCost(CostKind);
735     break;
736   case Intrinsic::uadd_sat:
737   case Intrinsic::usub_sat:
738   case Intrinsic::sadd_sat:
739   case Intrinsic::ssub_sat:
740     static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
741     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
742       NElts = 1;
743     break;
744   }
745 
746   return LT.first * NElts * InstRate;
747 }
748 
749 InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode,
750                                            TTI::TargetCostKind CostKind,
751                                            const Instruction *I) {
752   assert((I == nullptr || I->getOpcode() == Opcode) &&
753          "Opcode should reflect passed instruction.");
754   const bool SCost =
755       (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency);
756   const int CBrCost = SCost ? 5 : 7;
757   switch (Opcode) {
758   case Instruction::Br: {
759     // Branch instruction takes about 4 slots on gfx900.
760     auto BI = dyn_cast_or_null<BranchInst>(I);
761     if (BI && BI->isUnconditional())
762       return SCost ? 1 : 4;
763     // Suppose conditional branch takes additional 3 exec manipulations
764     // instructions in average.
765     return CBrCost;
766   }
767   case Instruction::Switch: {
768     auto SI = dyn_cast_or_null<SwitchInst>(I);
769     // Each case (including default) takes 1 cmp + 1 cbr instructions in
770     // average.
771     return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1);
772   }
773   case Instruction::Ret:
774     return SCost ? 1 : 10;
775   }
776   return BaseT::getCFInstrCost(Opcode, CostKind, I);
777 }
778 
779 InstructionCost
780 GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
781                                        std::optional<FastMathFlags> FMF,
782                                        TTI::TargetCostKind CostKind) {
783   if (TTI::requiresOrderedReduction(FMF))
784     return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
785 
786   EVT OrigTy = TLI->getValueType(DL, Ty);
787 
788   // Computes cost on targets that have packed math instructions(which support
789   // 16-bit types only).
790   if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
791     return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
792 
793   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
794   return LT.first * getFullRateInstrCost();
795 }
796 
797 InstructionCost
798 GCNTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
799                                    FastMathFlags FMF,
800                                    TTI::TargetCostKind CostKind) {
801   EVT OrigTy = TLI->getValueType(DL, Ty);
802 
803   // Computes cost on targets that have packed math instructions(which support
804   // 16-bit types only).
805   if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
806     return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
807 
808   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
809   return LT.first * getHalfRateInstrCost(CostKind);
810 }
811 
812 InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
813                                                TTI::TargetCostKind CostKind,
814                                                unsigned Index, Value *Op0,
815                                                Value *Op1) {
816   switch (Opcode) {
817   case Instruction::ExtractElement:
818   case Instruction::InsertElement: {
819     unsigned EltSize
820       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
821     if (EltSize < 32) {
822       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
823         return 0;
824       return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0,
825                                        Op1);
826     }
827 
828     // Extracts are just reads of a subregister, so are free. Inserts are
829     // considered free because we don't want to have any cost for scalarizing
830     // operations, and we don't have to copy into a different register class.
831 
832     // Dynamic indexing isn't free and is best avoided.
833     return Index == ~0u ? 2 : 0;
834   }
835   default:
836     return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1);
837   }
838 }
839 
840 /// Analyze if the results of inline asm are divergent. If \p Indices is empty,
841 /// this is analyzing the collective result of all output registers. Otherwise,
842 /// this is only querying a specific result index if this returns multiple
843 /// registers in a struct.
844 bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
845   const CallInst *CI, ArrayRef<unsigned> Indices) const {
846   // TODO: Handle complex extract indices
847   if (Indices.size() > 1)
848     return true;
849 
850   const DataLayout &DL = CI->getDataLayout();
851   const SIRegisterInfo *TRI = ST->getRegisterInfo();
852   TargetLowering::AsmOperandInfoVector TargetConstraints =
853       TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
854 
855   const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
856 
857   int OutputIdx = 0;
858   for (auto &TC : TargetConstraints) {
859     if (TC.Type != InlineAsm::isOutput)
860       continue;
861 
862     // Skip outputs we don't care about.
863     if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
864       continue;
865 
866     TLI->ComputeConstraintToUse(TC, SDValue());
867 
868     const TargetRegisterClass *RC = TLI->getRegForInlineAsmConstraint(
869         TRI, TC.ConstraintCode, TC.ConstraintVT).second;
870 
871     // For AGPR constraints null is returned on subtargets without AGPRs, so
872     // assume divergent for null.
873     if (!RC || !TRI->isSGPRClass(RC))
874       return true;
875   }
876 
877   return false;
878 }
879 
880 bool GCNTTIImpl::isReadRegisterSourceOfDivergence(
881     const IntrinsicInst *ReadReg) const {
882   Metadata *MD =
883       cast<MetadataAsValue>(ReadReg->getArgOperand(0))->getMetadata();
884   StringRef RegName =
885       cast<MDString>(cast<MDNode>(MD)->getOperand(0))->getString();
886 
887   // Special case registers that look like VCC.
888   MVT VT = MVT::getVT(ReadReg->getType());
889   if (VT == MVT::i1)
890     return true;
891 
892   // Special case scalar registers that start with 'v'.
893   if (RegName.starts_with("vcc") || RegName.empty())
894     return false;
895 
896   // VGPR or AGPR is divergent. There aren't any specially named vector
897   // registers.
898   return RegName[0] == 'v' || RegName[0] == 'a';
899 }
900 
901 /// \returns true if the result of the value could potentially be
902 /// different across workitems in a wavefront.
903 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
904   if (const Argument *A = dyn_cast<Argument>(V))
905     return !AMDGPU::isArgPassedInSGPR(A);
906 
907   // Loads from the private and flat address spaces are divergent, because
908   // threads can execute the load instruction with the same inputs and get
909   // different results.
910   //
911   // All other loads are not divergent, because if threads issue loads with the
912   // same arguments, they will always get the same result.
913   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
914     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
915            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
916 
917   // Atomics are divergent because they are executed sequentially: when an
918   // atomic operation refers to the same address in each thread, then each
919   // thread after the first sees the value written by the previous thread as
920   // original value.
921   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
922     return true;
923 
924   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
925     if (Intrinsic->getIntrinsicID() == Intrinsic::read_register)
926       return isReadRegisterSourceOfDivergence(Intrinsic);
927 
928     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
929   }
930 
931   // Assume all function calls are a source of divergence.
932   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
933     if (CI->isInlineAsm())
934       return isInlineAsmSourceOfDivergence(CI);
935     return true;
936   }
937 
938   // Assume all function calls are a source of divergence.
939   if (isa<InvokeInst>(V))
940     return true;
941 
942   return false;
943 }
944 
945 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
946   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
947     return AMDGPU::isIntrinsicAlwaysUniform(Intrinsic->getIntrinsicID());
948 
949   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
950     if (CI->isInlineAsm())
951       return !isInlineAsmSourceOfDivergence(CI);
952     return false;
953   }
954 
955   // In most cases TID / wavefrontsize is uniform.
956   //
957   // However, if a kernel has uneven dimesions we can have a value of
958   // workitem-id-x divided by the wavefrontsize non-uniform. For example
959   // dimensions (65, 2) will have workitems with address (64, 0) and (0, 1)
960   // packed into a same wave which gives 1 and 0 after the division by 64
961   // respectively.
962   //
963   // FIXME: limit it to 1D kernels only, although that shall be possible
964   // to perform this optimization is the size of the X dimension is a power
965   // of 2, we just do not currently have infrastructure to query it.
966   using namespace llvm::PatternMatch;
967   uint64_t C;
968   if (match(V, m_LShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
969                       m_ConstantInt(C))) ||
970       match(V, m_AShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
971                       m_ConstantInt(C)))) {
972     const Function *F = cast<Instruction>(V)->getFunction();
973     return C >= ST->getWavefrontSizeLog2() &&
974            ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0;
975   }
976 
977   Value *Mask;
978   if (match(V, m_c_And(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
979                        m_Value(Mask)))) {
980     const Function *F = cast<Instruction>(V)->getFunction();
981     const DataLayout &DL = F->getDataLayout();
982     return computeKnownBits(Mask, DL).countMinTrailingZeros() >=
983                ST->getWavefrontSizeLog2() &&
984            ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0;
985   }
986 
987   const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
988   if (!ExtValue)
989     return false;
990 
991   const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
992   if (!CI)
993     return false;
994 
995   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
996     switch (Intrinsic->getIntrinsicID()) {
997     default:
998       return false;
999     case Intrinsic::amdgcn_if:
1000     case Intrinsic::amdgcn_else: {
1001       ArrayRef<unsigned> Indices = ExtValue->getIndices();
1002       return Indices.size() == 1 && Indices[0] == 1;
1003     }
1004     }
1005   }
1006 
1007   // If we have inline asm returning mixed SGPR and VGPR results, we inferred
1008   // divergent for the overall struct return. We need to override it in the
1009   // case we're extracting an SGPR component here.
1010   if (CI->isInlineAsm())
1011     return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
1012 
1013   return false;
1014 }
1015 
1016 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1017                                             Intrinsic::ID IID) const {
1018   switch (IID) {
1019   case Intrinsic::amdgcn_is_shared:
1020   case Intrinsic::amdgcn_is_private:
1021   case Intrinsic::amdgcn_flat_atomic_fadd:
1022   case Intrinsic::amdgcn_flat_atomic_fmax:
1023   case Intrinsic::amdgcn_flat_atomic_fmin:
1024   case Intrinsic::amdgcn_flat_atomic_fmax_num:
1025   case Intrinsic::amdgcn_flat_atomic_fmin_num:
1026     OpIndexes.push_back(0);
1027     return true;
1028   default:
1029     return false;
1030   }
1031 }
1032 
1033 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1034                                                     Value *OldV,
1035                                                     Value *NewV) const {
1036   auto IntrID = II->getIntrinsicID();
1037   switch (IntrID) {
1038   case Intrinsic::amdgcn_is_shared:
1039   case Intrinsic::amdgcn_is_private: {
1040     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
1041       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
1042     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1043     LLVMContext &Ctx = NewV->getType()->getContext();
1044     ConstantInt *NewVal = (TrueAS == NewAS) ?
1045       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
1046     return NewVal;
1047   }
1048   case Intrinsic::ptrmask: {
1049     unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1050     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1051     Value *MaskOp = II->getArgOperand(1);
1052     Type *MaskTy = MaskOp->getType();
1053 
1054     bool DoTruncate = false;
1055 
1056     const GCNTargetMachine &TM =
1057         static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
1058     if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1059       // All valid 64-bit to 32-bit casts work by chopping off the high
1060       // bits. Any masking only clearing the low bits will also apply in the new
1061       // address space.
1062       if (DL.getPointerSizeInBits(OldAS) != 64 ||
1063           DL.getPointerSizeInBits(NewAS) != 32)
1064         return nullptr;
1065 
1066       // TODO: Do we need to thread more context in here?
1067       KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
1068       if (Known.countMinLeadingOnes() < 32)
1069         return nullptr;
1070 
1071       DoTruncate = true;
1072     }
1073 
1074     IRBuilder<> B(II);
1075     if (DoTruncate) {
1076       MaskTy = B.getInt32Ty();
1077       MaskOp = B.CreateTrunc(MaskOp, MaskTy);
1078     }
1079 
1080     return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
1081                              {NewV, MaskOp});
1082   }
1083   case Intrinsic::amdgcn_flat_atomic_fadd:
1084   case Intrinsic::amdgcn_flat_atomic_fmax:
1085   case Intrinsic::amdgcn_flat_atomic_fmin:
1086   case Intrinsic::amdgcn_flat_atomic_fmax_num:
1087   case Intrinsic::amdgcn_flat_atomic_fmin_num: {
1088     Type *DestTy = II->getType();
1089     Type *SrcTy = NewV->getType();
1090     unsigned NewAS = SrcTy->getPointerAddressSpace();
1091     if (!AMDGPU::isExtendedGlobalAddrSpace(NewAS))
1092       return nullptr;
1093     Module *M = II->getModule();
1094     Function *NewDecl = Intrinsic::getDeclaration(M, II->getIntrinsicID(),
1095                                                   {DestTy, SrcTy, DestTy});
1096     II->setArgOperand(0, NewV);
1097     II->setCalledFunction(NewDecl);
1098     return II;
1099   }
1100   default:
1101     return nullptr;
1102   }
1103 }
1104 
1105 InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1106                                            VectorType *VT, ArrayRef<int> Mask,
1107                                            TTI::TargetCostKind CostKind,
1108                                            int Index, VectorType *SubTp,
1109                                            ArrayRef<const Value *> Args,
1110                                            const Instruction *CxtI) {
1111   if (!isa<FixedVectorType>(VT))
1112     return BaseT::getShuffleCost(Kind, VT, Mask, CostKind, Index, SubTp);
1113 
1114   Kind = improveShuffleKindFromMask(Kind, Mask, VT, Index, SubTp);
1115 
1116   // Larger vector widths may require additional instructions, but are
1117   // typically cheaper than scalarized versions.
1118   unsigned NumVectorElts = cast<FixedVectorType>(VT)->getNumElements();
1119   if (ST->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
1120       DL.getTypeSizeInBits(VT->getElementType()) == 16) {
1121     bool HasVOP3P = ST->hasVOP3PInsts();
1122     unsigned RequestedElts =
1123         count_if(Mask, [](int MaskElt) { return MaskElt != -1; });
1124     if (RequestedElts == 0)
1125       return 0;
1126     switch (Kind) {
1127     case TTI::SK_Broadcast:
1128     case TTI::SK_Reverse:
1129     case TTI::SK_PermuteSingleSrc: {
1130       // With op_sel VOP3P instructions freely can access the low half or high
1131       // half of a register, so any swizzle of two elements is free.
1132       if (HasVOP3P && NumVectorElts == 2)
1133         return 0;
1134       unsigned NumPerms = alignTo(RequestedElts, 2) / 2;
1135       // SK_Broadcast just reuses the same mask
1136       unsigned NumPermMasks = Kind == TTI::SK_Broadcast ? 1 : NumPerms;
1137       return NumPerms + NumPermMasks;
1138     }
1139     case TTI::SK_ExtractSubvector:
1140     case TTI::SK_InsertSubvector: {
1141       // Even aligned accesses are free
1142       if (!(Index % 2))
1143         return 0;
1144       // Insert/extract subvectors only require shifts / extract code to get the
1145       // relevant bits
1146       return alignTo(RequestedElts, 2) / 2;
1147     }
1148     case TTI::SK_PermuteTwoSrc:
1149     case TTI::SK_Splice:
1150     case TTI::SK_Select: {
1151       unsigned NumPerms = alignTo(RequestedElts, 2) / 2;
1152       // SK_Select just reuses the same mask
1153       unsigned NumPermMasks = Kind == TTI::SK_Select ? 1 : NumPerms;
1154       return NumPerms + NumPermMasks;
1155     }
1156 
1157     default:
1158       break;
1159     }
1160   }
1161 
1162   return BaseT::getShuffleCost(Kind, VT, Mask, CostKind, Index, SubTp);
1163 }
1164 
1165 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
1166                                      const Function *Callee) const {
1167   const TargetMachine &TM = getTLI()->getTargetMachine();
1168   const GCNSubtarget *CallerST
1169     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1170   const GCNSubtarget *CalleeST
1171     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1172 
1173   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1174   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1175 
1176   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1177   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1178   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1179     return false;
1180 
1181   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1182   // no way to support merge for backend defined attributes.
1183   SIModeRegisterDefaults CallerMode(*Caller, *CallerST);
1184   SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST);
1185   if (!CallerMode.isInlineCompatible(CalleeMode))
1186     return false;
1187 
1188   if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1189       Callee->hasFnAttribute(Attribute::InlineHint))
1190     return true;
1191 
1192   // Hack to make compile times reasonable.
1193   if (InlineMaxBB) {
1194     // Single BB does not increase total BB amount.
1195     if (Callee->size() == 1)
1196       return true;
1197     size_t BBSize = Caller->size() + Callee->size() - 1;
1198     return BBSize <= InlineMaxBB;
1199   }
1200 
1201   return true;
1202 }
1203 
1204 static unsigned adjustInliningThresholdUsingCallee(const CallBase *CB,
1205                                                    const SITargetLowering *TLI,
1206                                                    const GCNTTIImpl *TTIImpl) {
1207   const int NrOfSGPRUntilSpill = 26;
1208   const int NrOfVGPRUntilSpill = 32;
1209 
1210   const DataLayout &DL = TTIImpl->getDataLayout();
1211 
1212   unsigned adjustThreshold = 0;
1213   int SGPRsInUse = 0;
1214   int VGPRsInUse = 0;
1215   for (const Use &A : CB->args()) {
1216     SmallVector<EVT, 4> ValueVTs;
1217     ComputeValueVTs(*TLI, DL, A.get()->getType(), ValueVTs);
1218     for (auto ArgVT : ValueVTs) {
1219       unsigned CCRegNum = TLI->getNumRegistersForCallingConv(
1220           CB->getContext(), CB->getCallingConv(), ArgVT);
1221       if (AMDGPU::isArgPassedInSGPR(CB, CB->getArgOperandNo(&A)))
1222         SGPRsInUse += CCRegNum;
1223       else
1224         VGPRsInUse += CCRegNum;
1225     }
1226   }
1227 
1228   // The cost of passing function arguments through the stack:
1229   //  1 instruction to put a function argument on the stack in the caller.
1230   //  1 instruction to take a function argument from the stack in callee.
1231   //  1 instruction is explicitly take care of data dependencies in callee
1232   //  function.
1233   InstructionCost ArgStackCost(1);
1234   ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost(
1235       Instruction::Store, Type::getInt32Ty(CB->getContext()), Align(4),
1236       AMDGPUAS::PRIVATE_ADDRESS, TTI::TCK_SizeAndLatency);
1237   ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost(
1238       Instruction::Load, Type::getInt32Ty(CB->getContext()), Align(4),
1239       AMDGPUAS::PRIVATE_ADDRESS, TTI::TCK_SizeAndLatency);
1240 
1241   // The penalty cost is computed relative to the cost of instructions and does
1242   // not model any storage costs.
1243   adjustThreshold += std::max(0, SGPRsInUse - NrOfSGPRUntilSpill) *
1244                      *ArgStackCost.getValue() * InlineConstants::getInstrCost();
1245   adjustThreshold += std::max(0, VGPRsInUse - NrOfVGPRUntilSpill) *
1246                      *ArgStackCost.getValue() * InlineConstants::getInstrCost();
1247   return adjustThreshold;
1248 }
1249 
1250 static unsigned getCallArgsTotalAllocaSize(const CallBase *CB,
1251                                            const DataLayout &DL) {
1252   // If we have a pointer to a private array passed into a function
1253   // it will not be optimized out, leaving scratch usage.
1254   // This function calculates the total size in bytes of the memory that would
1255   // end in scratch if the call was not inlined.
1256   unsigned AllocaSize = 0;
1257   SmallPtrSet<const AllocaInst *, 8> AIVisited;
1258   for (Value *PtrArg : CB->args()) {
1259     PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1260     if (!Ty)
1261       continue;
1262 
1263     unsigned AddrSpace = Ty->getAddressSpace();
1264     if (AddrSpace != AMDGPUAS::FLAT_ADDRESS &&
1265         AddrSpace != AMDGPUAS::PRIVATE_ADDRESS)
1266       continue;
1267 
1268     const AllocaInst *AI = dyn_cast<AllocaInst>(getUnderlyingObject(PtrArg));
1269     if (!AI || !AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1270       continue;
1271 
1272     AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1273   }
1274   return AllocaSize;
1275 }
1276 
1277 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
1278   unsigned Threshold = adjustInliningThresholdUsingCallee(CB, TLI, this);
1279 
1280   // Private object passed as arguments may end up in scratch usage if the call
1281   // is not inlined. Increase the inline threshold to promote inlining.
1282   unsigned AllocaSize = getCallArgsTotalAllocaSize(CB, DL);
1283   if (AllocaSize > 0)
1284     Threshold += ArgAllocaCost;
1285   return Threshold;
1286 }
1287 
1288 unsigned GCNTTIImpl::getCallerAllocaCost(const CallBase *CB,
1289                                          const AllocaInst *AI) const {
1290 
1291   // Below the cutoff, assume that the private memory objects would be
1292   // optimized
1293   auto AllocaSize = getCallArgsTotalAllocaSize(CB, DL);
1294   if (AllocaSize <= ArgAllocaCutoff)
1295     return 0;
1296 
1297   // Above the cutoff, we give a cost to each private memory object
1298   // depending its size. If the array can be optimized by SROA this cost is not
1299   // added to the total-cost in the inliner cost analysis.
1300   //
1301   // We choose the total cost of the alloca such that their sum cancels the
1302   // bonus given in the threshold (ArgAllocaCost).
1303   //
1304   //   Cost_Alloca_0 + ... + Cost_Alloca_N == ArgAllocaCost
1305   //
1306   // Awkwardly, the ArgAllocaCost bonus is multiplied by threshold-multiplier,
1307   // the single-bb bonus and the vector-bonus.
1308   //
1309   // We compensate the first two multipliers, by repeating logic from the
1310   // inliner-cost in here. The vector-bonus is 0 on AMDGPU.
1311   static_assert(InlinerVectorBonusPercent == 0, "vector bonus assumed to be 0");
1312   unsigned Threshold = ArgAllocaCost * getInliningThresholdMultiplier();
1313 
1314   bool SingleBB = none_of(*CB->getCalledFunction(), [](const BasicBlock &BB) {
1315     return BB.getTerminator()->getNumSuccessors() > 1;
1316   });
1317   if (SingleBB) {
1318     Threshold += Threshold / 2;
1319   }
1320 
1321   auto ArgAllocaSize = DL.getTypeAllocSize(AI->getAllocatedType());
1322 
1323   // Attribute the bonus proportionally to the alloca size
1324   unsigned AllocaThresholdBonus = (Threshold * ArgAllocaSize) / AllocaSize;
1325 
1326   return AllocaThresholdBonus;
1327 }
1328 
1329 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1330                                          TTI::UnrollingPreferences &UP,
1331                                          OptimizationRemarkEmitter *ORE) {
1332   CommonTTI.getUnrollingPreferences(L, SE, UP, ORE);
1333 }
1334 
1335 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1336                                        TTI::PeelingPreferences &PP) {
1337   CommonTTI.getPeelingPreferences(L, SE, PP);
1338 }
1339 
1340 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1341   return ST->hasFullRate64Ops()
1342              ? getFullRateInstrCost()
1343              : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1344                                       : getQuarterRateInstrCost(CostKind);
1345 }
1346 
1347 std::pair<InstructionCost, MVT>
1348 GCNTTIImpl::getTypeLegalizationCost(Type *Ty) const {
1349   std::pair<InstructionCost, MVT> Cost = BaseT::getTypeLegalizationCost(Ty);
1350   auto Size = DL.getTypeSizeInBits(Ty);
1351   // Maximum load or store can handle 8 dwords for scalar and 4 for
1352   // vector ALU. Let's assume anything above 8 dwords is expensive
1353   // even if legal.
1354   if (Size <= 256)
1355     return Cost;
1356 
1357   Cost.first += (Size + 255) / 256;
1358   return Cost;
1359 }
1360 
1361 unsigned GCNTTIImpl::getPrefetchDistance() const {
1362   return ST->hasPrefetch() ? 128 : 0;
1363 }
1364 
1365 bool GCNTTIImpl::shouldPrefetchAddressSpace(unsigned AS) const {
1366   return AMDGPU::isFlatGlobalAddrSpace(AS);
1367 }
1368