1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/KnownBits.h" 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "AMDGPUtti" 30 31 static cl::opt<unsigned> UnrollThresholdPrivate( 32 "amdgpu-unroll-threshold-private", 33 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 34 cl::init(2700), cl::Hidden); 35 36 static cl::opt<unsigned> UnrollThresholdLocal( 37 "amdgpu-unroll-threshold-local", 38 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 39 cl::init(1000), cl::Hidden); 40 41 static cl::opt<unsigned> UnrollThresholdIf( 42 "amdgpu-unroll-threshold-if", 43 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 44 cl::init(200), cl::Hidden); 45 46 static cl::opt<bool> UnrollRuntimeLocal( 47 "amdgpu-unroll-runtime-local", 48 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 49 cl::init(true), cl::Hidden); 50 51 static cl::opt<bool> UseLegacyDA( 52 "amdgpu-use-legacy-divergence-analysis", 53 cl::desc("Enable legacy divergence analysis for AMDGPU"), 54 cl::init(false), cl::Hidden); 55 56 static cl::opt<unsigned> UnrollMaxBlockToAnalyze( 57 "amdgpu-unroll-max-block-to-analyze", 58 cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), 59 cl::init(32), cl::Hidden); 60 61 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost", 62 cl::Hidden, cl::init(4000), 63 cl::desc("Cost of alloca argument")); 64 65 // If the amount of scratch memory to eliminate exceeds our ability to allocate 66 // it into registers we gain nothing by aggressively inlining functions for that 67 // heuristic. 68 static cl::opt<unsigned> 69 ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden, 70 cl::init(256), 71 cl::desc("Maximum alloca size to use for inline cost")); 72 73 // Inliner constraint to achieve reasonable compilation time. 74 static cl::opt<size_t> InlineMaxBB( 75 "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100), 76 cl::desc("Maximum number of BBs allowed in a function after inlining" 77 " (compile time constraint)")); 78 79 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 80 unsigned Depth = 0) { 81 const Instruction *I = dyn_cast<Instruction>(Cond); 82 if (!I) 83 return false; 84 85 for (const Value *V : I->operand_values()) { 86 if (!L->contains(I)) 87 continue; 88 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 89 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 90 return SubLoop->contains(PHI); })) 91 return true; 92 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 93 return true; 94 } 95 return false; 96 } 97 98 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 99 : BaseT(TM, F.getParent()->getDataLayout()), 100 TargetTriple(TM->getTargetTriple()), 101 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 102 TLI(ST->getTargetLowering()) {} 103 104 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 105 TTI::UnrollingPreferences &UP, 106 OptimizationRemarkEmitter *ORE) { 107 const Function &F = *L->getHeader()->getParent(); 108 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 109 UP.MaxCount = std::numeric_limits<unsigned>::max(); 110 UP.Partial = true; 111 112 // Conditional branch in a loop back edge needs 3 additional exec 113 // manipulations in average. 114 UP.BEInsns += 3; 115 116 // TODO: Do we want runtime unrolling? 117 118 // Maximum alloca size than can fit registers. Reserve 16 registers. 119 const unsigned MaxAlloca = (256 - 16) * 4; 120 unsigned ThresholdPrivate = UnrollThresholdPrivate; 121 unsigned ThresholdLocal = UnrollThresholdLocal; 122 123 // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the 124 // provided threshold value as the default for Threshold 125 if (MDNode *LoopUnrollThreshold = 126 findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) { 127 if (LoopUnrollThreshold->getNumOperands() == 2) { 128 ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>( 129 LoopUnrollThreshold->getOperand(1)); 130 if (MetaThresholdValue) { 131 // We will also use the supplied value for PartialThreshold for now. 132 // We may introduce additional metadata if it becomes necessary in the 133 // future. 134 UP.Threshold = MetaThresholdValue->getSExtValue(); 135 UP.PartialThreshold = UP.Threshold; 136 ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold); 137 ThresholdLocal = std::min(ThresholdLocal, UP.Threshold); 138 } 139 } 140 } 141 142 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 143 for (const BasicBlock *BB : L->getBlocks()) { 144 const DataLayout &DL = BB->getModule()->getDataLayout(); 145 unsigned LocalGEPsSeen = 0; 146 147 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 148 return SubLoop->contains(BB); })) 149 continue; // Block belongs to an inner loop. 150 151 for (const Instruction &I : *BB) { 152 // Unroll a loop which contains an "if" statement whose condition 153 // defined by a PHI belonging to the loop. This may help to eliminate 154 // if region and potentially even PHI itself, saving on both divergence 155 // and registers used for the PHI. 156 // Add a small bonus for each of such "if" statements. 157 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 158 if (UP.Threshold < MaxBoost && Br->isConditional()) { 159 BasicBlock *Succ0 = Br->getSuccessor(0); 160 BasicBlock *Succ1 = Br->getSuccessor(1); 161 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 162 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 163 continue; 164 if (dependsOnLocalPhi(L, Br->getCondition())) { 165 UP.Threshold += UnrollThresholdIf; 166 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 167 << " for loop:\n" 168 << *L << " due to " << *Br << '\n'); 169 if (UP.Threshold >= MaxBoost) 170 return; 171 } 172 } 173 continue; 174 } 175 176 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 177 if (!GEP) 178 continue; 179 180 unsigned AS = GEP->getAddressSpace(); 181 unsigned Threshold = 0; 182 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 183 Threshold = ThresholdPrivate; 184 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 185 Threshold = ThresholdLocal; 186 else 187 continue; 188 189 if (UP.Threshold >= Threshold) 190 continue; 191 192 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 193 const Value *Ptr = GEP->getPointerOperand(); 194 const AllocaInst *Alloca = 195 dyn_cast<AllocaInst>(getUnderlyingObject(Ptr)); 196 if (!Alloca || !Alloca->isStaticAlloca()) 197 continue; 198 Type *Ty = Alloca->getAllocatedType(); 199 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 200 if (AllocaSize > MaxAlloca) 201 continue; 202 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 203 AS == AMDGPUAS::REGION_ADDRESS) { 204 LocalGEPsSeen++; 205 // Inhibit unroll for local memory if we have seen addressing not to 206 // a variable, most likely we will be unable to combine it. 207 // Do not unroll too deep inner loops for local memory to give a chance 208 // to unroll an outer loop for a more important reason. 209 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 210 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 211 !isa<Argument>(GEP->getPointerOperand()))) 212 continue; 213 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 214 << *L << " due to LDS use.\n"); 215 UP.Runtime = UnrollRuntimeLocal; 216 } 217 218 // Check if GEP depends on a value defined by this loop itself. 219 bool HasLoopDef = false; 220 for (const Value *Op : GEP->operands()) { 221 const Instruction *Inst = dyn_cast<Instruction>(Op); 222 if (!Inst || L->isLoopInvariant(Op)) 223 continue; 224 225 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 226 return SubLoop->contains(Inst); })) 227 continue; 228 HasLoopDef = true; 229 break; 230 } 231 if (!HasLoopDef) 232 continue; 233 234 // We want to do whatever we can to limit the number of alloca 235 // instructions that make it through to the code generator. allocas 236 // require us to use indirect addressing, which is slow and prone to 237 // compiler bugs. If this loop does an address calculation on an 238 // alloca ptr, then we want to use a higher than normal loop unroll 239 // threshold. This will give SROA a better chance to eliminate these 240 // allocas. 241 // 242 // We also want to have more unrolling for local memory to let ds 243 // instructions with different offsets combine. 244 // 245 // Don't use the maximum allowed value here as it will make some 246 // programs way too big. 247 UP.Threshold = Threshold; 248 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 249 << " for loop:\n" 250 << *L << " due to " << *GEP << '\n'); 251 if (UP.Threshold >= MaxBoost) 252 return; 253 } 254 255 // If we got a GEP in a small BB from inner loop then increase max trip 256 // count to analyze for better estimation cost in unroll 257 if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze) 258 UP.MaxIterationsCountToAnalyze = 32; 259 } 260 } 261 262 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 263 TTI::PeelingPreferences &PP) { 264 BaseT::getPeelingPreferences(L, SE, PP); 265 } 266 267 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = { 268 // Codegen control options which don't matter. 269 AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler, 270 AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal, 271 AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess, 272 AMDGPU::FeatureUnalignedAccessMode, 273 274 AMDGPU::FeatureAutoWaitcntBeforeBarrier, 275 276 // Property of the kernel/environment which can't actually differ. 277 AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK, 278 AMDGPU::FeatureTrapHandler, 279 280 // The default assumption needs to be ecc is enabled, but no directly 281 // exposed operations depend on it, so it can be safely inlined. 282 AMDGPU::FeatureSRAMECC, 283 284 // Perf-tuning features 285 AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops}; 286 287 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 288 : BaseT(TM, F.getParent()->getDataLayout()), 289 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 290 TLI(ST->getTargetLowering()), CommonTTI(TM, F), 291 IsGraphics(AMDGPU::isGraphics(F.getCallingConv())) { 292 AMDGPU::SIModeRegisterDefaults Mode(F); 293 HasFP32Denormals = Mode.allFP32Denormals(); 294 HasFP64FP16Denormals = Mode.allFP64FP16Denormals(); 295 } 296 297 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const { 298 // NB: RCID is not an RCID. In fact it is 0 or 1 for scalar or vector 299 // registers. See getRegisterClassForType for the implementation. 300 // In this case vector registers are not vector in terms of 301 // VGPRs, but those which can hold multiple values. 302 303 // This is really the number of registers to fill when vectorizing / 304 // interleaving loops, so we lie to avoid trying to use all registers. 305 return 4; 306 } 307 308 TypeSize 309 GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 310 switch (K) { 311 case TargetTransformInfo::RGK_Scalar: 312 return TypeSize::getFixed(32); 313 case TargetTransformInfo::RGK_FixedWidthVector: 314 return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32); 315 case TargetTransformInfo::RGK_ScalableVector: 316 return TypeSize::getScalable(0); 317 } 318 llvm_unreachable("Unsupported register kind"); 319 } 320 321 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 322 return 32; 323 } 324 325 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 326 if (Opcode == Instruction::Load || Opcode == Instruction::Store) 327 return 32 * 4 / ElemWidth; 328 return (ElemWidth == 16 && ST->has16BitInsts()) ? 2 329 : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2 330 : 1; 331 } 332 333 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 334 unsigned ChainSizeInBytes, 335 VectorType *VecTy) const { 336 unsigned VecRegBitWidth = VF * LoadSize; 337 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 338 // TODO: Support element-size less than 32bit? 339 return 128 / LoadSize; 340 341 return VF; 342 } 343 344 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 345 unsigned ChainSizeInBytes, 346 VectorType *VecTy) const { 347 unsigned VecRegBitWidth = VF * StoreSize; 348 if (VecRegBitWidth > 128) 349 return 128 / StoreSize; 350 351 return VF; 352 } 353 354 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 355 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 356 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 357 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 358 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 359 return 512; 360 } 361 362 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 363 return 8 * ST->getMaxPrivateElementSize(); 364 365 // Common to flat, global, local and region. Assume for unknown addrspace. 366 return 128; 367 } 368 369 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 370 Align Alignment, 371 unsigned AddrSpace) const { 372 // We allow vectorization of flat stores, even though we may need to decompose 373 // them later if they may access private memory. We don't have enough context 374 // here, and legalization can handle it. 375 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 376 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 377 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 378 } 379 return true; 380 } 381 382 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 383 Align Alignment, 384 unsigned AddrSpace) const { 385 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 386 } 387 388 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 389 Align Alignment, 390 unsigned AddrSpace) const { 391 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 392 } 393 394 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 395 // iteration. Should we report a larger size and let it legalize? 396 // 397 // FIXME: Should we use narrower types for local/region, or account for when 398 // unaligned access is legal? 399 // 400 // FIXME: This could use fine tuning and microbenchmarks. 401 Type *GCNTTIImpl::getMemcpyLoopLoweringType( 402 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 403 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, 404 Optional<uint32_t> AtomicElementSize) const { 405 406 if (AtomicElementSize) 407 return Type::getIntNTy(Context, *AtomicElementSize * 8); 408 409 unsigned MinAlign = std::min(SrcAlign, DestAlign); 410 411 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 412 // hardware into byte accesses. If you assume all alignments are equally 413 // probable, it's more efficient on average to use short accesses for this 414 // case. 415 if (MinAlign == 2) 416 return Type::getInt16Ty(Context); 417 418 // Not all subtargets have 128-bit DS instructions, and we currently don't 419 // form them by default. 420 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 421 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 422 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 423 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 424 return FixedVectorType::get(Type::getInt32Ty(Context), 2); 425 } 426 427 // Global memory works best with 16-byte accesses. Private memory will also 428 // hit this, although they'll be decomposed. 429 return FixedVectorType::get(Type::getInt32Ty(Context), 4); 430 } 431 432 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 433 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 434 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 435 unsigned SrcAlign, unsigned DestAlign, 436 Optional<uint32_t> AtomicCpySize) const { 437 assert(RemainingBytes < 16); 438 439 if (AtomicCpySize) 440 BaseT::getMemcpyLoopResidualLoweringType( 441 OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign, 442 DestAlign, AtomicCpySize); 443 444 unsigned MinAlign = std::min(SrcAlign, DestAlign); 445 446 if (MinAlign != 2) { 447 Type *I64Ty = Type::getInt64Ty(Context); 448 while (RemainingBytes >= 8) { 449 OpsOut.push_back(I64Ty); 450 RemainingBytes -= 8; 451 } 452 453 Type *I32Ty = Type::getInt32Ty(Context); 454 while (RemainingBytes >= 4) { 455 OpsOut.push_back(I32Ty); 456 RemainingBytes -= 4; 457 } 458 } 459 460 Type *I16Ty = Type::getInt16Ty(Context); 461 while (RemainingBytes >= 2) { 462 OpsOut.push_back(I16Ty); 463 RemainingBytes -= 2; 464 } 465 466 Type *I8Ty = Type::getInt8Ty(Context); 467 while (RemainingBytes) { 468 OpsOut.push_back(I8Ty); 469 --RemainingBytes; 470 } 471 } 472 473 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 474 // Disable unrolling if the loop is not vectorized. 475 // TODO: Enable this again. 476 if (VF == 1) 477 return 1; 478 479 return 8; 480 } 481 482 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 483 MemIntrinsicInfo &Info) const { 484 switch (Inst->getIntrinsicID()) { 485 case Intrinsic::amdgcn_atomic_inc: 486 case Intrinsic::amdgcn_atomic_dec: 487 case Intrinsic::amdgcn_ds_ordered_add: 488 case Intrinsic::amdgcn_ds_ordered_swap: 489 case Intrinsic::amdgcn_ds_fadd: 490 case Intrinsic::amdgcn_ds_fmin: 491 case Intrinsic::amdgcn_ds_fmax: { 492 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 493 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 494 if (!Ordering || !Volatile) 495 return false; // Invalid. 496 497 unsigned OrderingVal = Ordering->getZExtValue(); 498 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 499 return false; 500 501 Info.PtrVal = Inst->getArgOperand(0); 502 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 503 Info.ReadMem = true; 504 Info.WriteMem = true; 505 Info.IsVolatile = !Volatile->isZero(); 506 return true; 507 } 508 default: 509 return false; 510 } 511 } 512 513 InstructionCost GCNTTIImpl::getArithmeticInstrCost( 514 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 515 TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, 516 TTI::OperandValueProperties Opd1PropInfo, 517 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 518 const Instruction *CxtI) { 519 520 // Legalize the type. 521 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 522 int ISD = TLI->InstructionOpcodeToISD(Opcode); 523 524 // Because we don't have any legal vector operations, but the legal types, we 525 // need to account for split vectors. 526 unsigned NElts = LT.second.isVector() ? 527 LT.second.getVectorNumElements() : 1; 528 529 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 530 531 switch (ISD) { 532 case ISD::SHL: 533 case ISD::SRL: 534 case ISD::SRA: 535 if (SLT == MVT::i64) 536 return get64BitInstrCost(CostKind) * LT.first * NElts; 537 538 if (ST->has16BitInsts() && SLT == MVT::i16) 539 NElts = (NElts + 1) / 2; 540 541 // i32 542 return getFullRateInstrCost() * LT.first * NElts; 543 case ISD::ADD: 544 case ISD::SUB: 545 case ISD::AND: 546 case ISD::OR: 547 case ISD::XOR: 548 if (SLT == MVT::i64) { 549 // and, or and xor are typically split into 2 VALU instructions. 550 return 2 * getFullRateInstrCost() * LT.first * NElts; 551 } 552 553 if (ST->has16BitInsts() && SLT == MVT::i16) 554 NElts = (NElts + 1) / 2; 555 556 return LT.first * NElts * getFullRateInstrCost(); 557 case ISD::MUL: { 558 const int QuarterRateCost = getQuarterRateInstrCost(CostKind); 559 if (SLT == MVT::i64) { 560 const int FullRateCost = getFullRateInstrCost(); 561 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 562 } 563 564 if (ST->has16BitInsts() && SLT == MVT::i16) 565 NElts = (NElts + 1) / 2; 566 567 // i32 568 return QuarterRateCost * NElts * LT.first; 569 } 570 case ISD::FMUL: 571 // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for 572 // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole 573 // fused operation. 574 if (CxtI && CxtI->hasOneUse()) 575 if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) { 576 const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode()); 577 if (OPC == ISD::FADD || OPC == ISD::FSUB) { 578 if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals) 579 return TargetTransformInfo::TCC_Free; 580 if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals) 581 return TargetTransformInfo::TCC_Free; 582 583 // Estimate all types may be fused with contract/unsafe flags 584 const TargetOptions &Options = TLI->getTargetMachine().Options; 585 if (Options.AllowFPOpFusion == FPOpFusion::Fast || 586 Options.UnsafeFPMath || 587 (FAdd->hasAllowContract() && CxtI->hasAllowContract())) 588 return TargetTransformInfo::TCC_Free; 589 } 590 } 591 LLVM_FALLTHROUGH; 592 case ISD::FADD: 593 case ISD::FSUB: 594 if (ST->hasPackedFP32Ops() && SLT == MVT::f32) 595 NElts = (NElts + 1) / 2; 596 if (SLT == MVT::f64) 597 return LT.first * NElts * get64BitInstrCost(CostKind); 598 599 if (ST->has16BitInsts() && SLT == MVT::f16) 600 NElts = (NElts + 1) / 2; 601 602 if (SLT == MVT::f32 || SLT == MVT::f16) 603 return LT.first * NElts * getFullRateInstrCost(); 604 break; 605 case ISD::FDIV: 606 case ISD::FREM: 607 // FIXME: frem should be handled separately. The fdiv in it is most of it, 608 // but the current lowering is also not entirely correct. 609 if (SLT == MVT::f64) { 610 int Cost = 7 * get64BitInstrCost(CostKind) + 611 getQuarterRateInstrCost(CostKind) + 612 3 * getHalfRateInstrCost(CostKind); 613 // Add cost of workaround. 614 if (!ST->hasUsableDivScaleConditionOutput()) 615 Cost += 3 * getFullRateInstrCost(); 616 617 return LT.first * Cost * NElts; 618 } 619 620 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 621 // TODO: This is more complicated, unsafe flags etc. 622 if ((SLT == MVT::f32 && !HasFP32Denormals) || 623 (SLT == MVT::f16 && ST->has16BitInsts())) { 624 return LT.first * getQuarterRateInstrCost(CostKind) * NElts; 625 } 626 } 627 628 if (SLT == MVT::f16 && ST->has16BitInsts()) { 629 // 2 x v_cvt_f32_f16 630 // f32 rcp 631 // f32 fmul 632 // v_cvt_f16_f32 633 // f16 div_fixup 634 int Cost = 635 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind); 636 return LT.first * Cost * NElts; 637 } 638 639 if (SLT == MVT::f32 || SLT == MVT::f16) { 640 // 4 more v_cvt_* insts without f16 insts support 641 int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() + 642 1 * getQuarterRateInstrCost(CostKind); 643 644 if (!HasFP32Denormals) { 645 // FP mode switches. 646 Cost += 2 * getFullRateInstrCost(); 647 } 648 649 return LT.first * NElts * Cost; 650 } 651 break; 652 case ISD::FNEG: 653 // Use the backend' estimation. If fneg is not free each element will cost 654 // one additional instruction. 655 return TLI->isFNegFree(SLT) ? 0 : NElts; 656 default: 657 break; 658 } 659 660 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, 661 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 662 } 663 664 // Return true if there's a potential benefit from using v2f16/v2i16 665 // instructions for an intrinsic, even if it requires nontrivial legalization. 666 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 667 switch (ID) { 668 case Intrinsic::fma: // TODO: fmuladd 669 // There's a small benefit to using vector ops in the legalized code. 670 case Intrinsic::round: 671 case Intrinsic::uadd_sat: 672 case Intrinsic::usub_sat: 673 case Intrinsic::sadd_sat: 674 case Intrinsic::ssub_sat: 675 return true; 676 default: 677 return false; 678 } 679 } 680 681 InstructionCost 682 GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 683 TTI::TargetCostKind CostKind) { 684 if (ICA.getID() == Intrinsic::fabs) 685 return 0; 686 687 if (!intrinsicHasPackedVectorBenefit(ICA.getID())) 688 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 689 690 Type *RetTy = ICA.getReturnType(); 691 692 // Legalize the type. 693 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 694 695 unsigned NElts = LT.second.isVector() ? 696 LT.second.getVectorNumElements() : 1; 697 698 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 699 700 if (SLT == MVT::f64) 701 return LT.first * NElts * get64BitInstrCost(CostKind); 702 703 if ((ST->has16BitInsts() && SLT == MVT::f16) || 704 (ST->hasPackedFP32Ops() && SLT == MVT::f32)) 705 NElts = (NElts + 1) / 2; 706 707 // TODO: Get more refined intrinsic costs? 708 unsigned InstRate = getQuarterRateInstrCost(CostKind); 709 710 switch (ICA.getID()) { 711 case Intrinsic::fma: 712 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind) 713 : getQuarterRateInstrCost(CostKind); 714 break; 715 case Intrinsic::uadd_sat: 716 case Intrinsic::usub_sat: 717 case Intrinsic::sadd_sat: 718 case Intrinsic::ssub_sat: 719 static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16}; 720 if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) 721 NElts = 1; 722 break; 723 } 724 725 return LT.first * NElts * InstRate; 726 } 727 728 InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode, 729 TTI::TargetCostKind CostKind, 730 const Instruction *I) { 731 assert((I == nullptr || I->getOpcode() == Opcode) && 732 "Opcode should reflect passed instruction."); 733 const bool SCost = 734 (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency); 735 const int CBrCost = SCost ? 5 : 7; 736 switch (Opcode) { 737 case Instruction::Br: { 738 // Branch instruction takes about 4 slots on gfx900. 739 auto BI = dyn_cast_or_null<BranchInst>(I); 740 if (BI && BI->isUnconditional()) 741 return SCost ? 1 : 4; 742 // Suppose conditional branch takes additional 3 exec manipulations 743 // instructions in average. 744 return CBrCost; 745 } 746 case Instruction::Switch: { 747 auto SI = dyn_cast_or_null<SwitchInst>(I); 748 // Each case (including default) takes 1 cmp + 1 cbr instructions in 749 // average. 750 return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1); 751 } 752 case Instruction::Ret: 753 return SCost ? 1 : 10; 754 } 755 return BaseT::getCFInstrCost(Opcode, CostKind, I); 756 } 757 758 InstructionCost 759 GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 760 Optional<FastMathFlags> FMF, 761 TTI::TargetCostKind CostKind) { 762 if (TTI::requiresOrderedReduction(FMF)) 763 return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); 764 765 EVT OrigTy = TLI->getValueType(DL, Ty); 766 767 // Computes cost on targets that have packed math instructions(which support 768 // 16-bit types only). 769 if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16) 770 return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); 771 772 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 773 return LT.first * getFullRateInstrCost(); 774 } 775 776 InstructionCost 777 GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 778 bool IsUnsigned, 779 TTI::TargetCostKind CostKind) { 780 EVT OrigTy = TLI->getValueType(DL, Ty); 781 782 // Computes cost on targets that have packed math instructions(which support 783 // 16-bit types only). 784 if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16) 785 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); 786 787 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 788 return LT.first * getHalfRateInstrCost(CostKind); 789 } 790 791 InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 792 unsigned Index) { 793 switch (Opcode) { 794 case Instruction::ExtractElement: 795 case Instruction::InsertElement: { 796 unsigned EltSize 797 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 798 if (EltSize < 32) { 799 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 800 return 0; 801 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 802 } 803 804 // Extracts are just reads of a subregister, so are free. Inserts are 805 // considered free because we don't want to have any cost for scalarizing 806 // operations, and we don't have to copy into a different register class. 807 808 // Dynamic indexing isn't free and is best avoided. 809 return Index == ~0u ? 2 : 0; 810 } 811 default: 812 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 813 } 814 } 815 816 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 817 /// this is analyzing the collective result of all output registers. Otherwise, 818 /// this is only querying a specific result index if this returns multiple 819 /// registers in a struct. 820 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 821 const CallInst *CI, ArrayRef<unsigned> Indices) const { 822 // TODO: Handle complex extract indices 823 if (Indices.size() > 1) 824 return true; 825 826 const DataLayout &DL = CI->getModule()->getDataLayout(); 827 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 828 TargetLowering::AsmOperandInfoVector TargetConstraints = 829 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 830 831 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 832 833 int OutputIdx = 0; 834 for (auto &TC : TargetConstraints) { 835 if (TC.Type != InlineAsm::isOutput) 836 continue; 837 838 // Skip outputs we don't care about. 839 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 840 continue; 841 842 TLI->ComputeConstraintToUse(TC, SDValue()); 843 844 const TargetRegisterClass *RC = TLI->getRegForInlineAsmConstraint( 845 TRI, TC.ConstraintCode, TC.ConstraintVT).second; 846 847 // For AGPR constraints null is returned on subtargets without AGPRs, so 848 // assume divergent for null. 849 if (!RC || !TRI->isSGPRClass(RC)) 850 return true; 851 } 852 853 return false; 854 } 855 856 /// \returns true if the new GPU divergence analysis is enabled. 857 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 858 return !UseLegacyDA; 859 } 860 861 /// \returns true if the result of the value could potentially be 862 /// different across workitems in a wavefront. 863 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 864 if (const Argument *A = dyn_cast<Argument>(V)) 865 return !AMDGPU::isArgPassedInSGPR(A); 866 867 // Loads from the private and flat address spaces are divergent, because 868 // threads can execute the load instruction with the same inputs and get 869 // different results. 870 // 871 // All other loads are not divergent, because if threads issue loads with the 872 // same arguments, they will always get the same result. 873 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 874 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 875 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 876 877 // Atomics are divergent because they are executed sequentially: when an 878 // atomic operation refers to the same address in each thread, then each 879 // thread after the first sees the value written by the previous thread as 880 // original value. 881 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 882 return true; 883 884 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 885 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 886 887 // Assume all function calls are a source of divergence. 888 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 889 if (CI->isInlineAsm()) 890 return isInlineAsmSourceOfDivergence(CI); 891 return true; 892 } 893 894 // Assume all function calls are a source of divergence. 895 if (isa<InvokeInst>(V)) 896 return true; 897 898 return false; 899 } 900 901 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 902 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 903 switch (Intrinsic->getIntrinsicID()) { 904 default: 905 return false; 906 case Intrinsic::amdgcn_readfirstlane: 907 case Intrinsic::amdgcn_readlane: 908 case Intrinsic::amdgcn_icmp: 909 case Intrinsic::amdgcn_fcmp: 910 case Intrinsic::amdgcn_ballot: 911 case Intrinsic::amdgcn_if_break: 912 return true; 913 } 914 } 915 916 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 917 if (CI->isInlineAsm()) 918 return !isInlineAsmSourceOfDivergence(CI); 919 return false; 920 } 921 922 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 923 if (!ExtValue) 924 return false; 925 926 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 927 if (!CI) 928 return false; 929 930 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 931 switch (Intrinsic->getIntrinsicID()) { 932 default: 933 return false; 934 case Intrinsic::amdgcn_if: 935 case Intrinsic::amdgcn_else: { 936 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 937 return Indices.size() == 1 && Indices[0] == 1; 938 } 939 } 940 } 941 942 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 943 // divergent for the overall struct return. We need to override it in the 944 // case we're extracting an SGPR component here. 945 if (CI->isInlineAsm()) 946 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 947 948 return false; 949 } 950 951 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 952 Intrinsic::ID IID) const { 953 switch (IID) { 954 case Intrinsic::amdgcn_atomic_inc: 955 case Intrinsic::amdgcn_atomic_dec: 956 case Intrinsic::amdgcn_ds_fadd: 957 case Intrinsic::amdgcn_ds_fmin: 958 case Intrinsic::amdgcn_ds_fmax: 959 case Intrinsic::amdgcn_is_shared: 960 case Intrinsic::amdgcn_is_private: 961 OpIndexes.push_back(0); 962 return true; 963 default: 964 return false; 965 } 966 } 967 968 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 969 Value *OldV, 970 Value *NewV) const { 971 auto IntrID = II->getIntrinsicID(); 972 switch (IntrID) { 973 case Intrinsic::amdgcn_atomic_inc: 974 case Intrinsic::amdgcn_atomic_dec: 975 case Intrinsic::amdgcn_ds_fadd: 976 case Intrinsic::amdgcn_ds_fmin: 977 case Intrinsic::amdgcn_ds_fmax: { 978 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 979 if (!IsVolatile->isZero()) 980 return nullptr; 981 Module *M = II->getParent()->getParent()->getParent(); 982 Type *DestTy = II->getType(); 983 Type *SrcTy = NewV->getType(); 984 Function *NewDecl = 985 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 986 II->setArgOperand(0, NewV); 987 II->setCalledFunction(NewDecl); 988 return II; 989 } 990 case Intrinsic::amdgcn_is_shared: 991 case Intrinsic::amdgcn_is_private: { 992 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 993 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 994 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 995 LLVMContext &Ctx = NewV->getType()->getContext(); 996 ConstantInt *NewVal = (TrueAS == NewAS) ? 997 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 998 return NewVal; 999 } 1000 case Intrinsic::ptrmask: { 1001 unsigned OldAS = OldV->getType()->getPointerAddressSpace(); 1002 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1003 Value *MaskOp = II->getArgOperand(1); 1004 Type *MaskTy = MaskOp->getType(); 1005 1006 bool DoTruncate = false; 1007 1008 const GCNTargetMachine &TM = 1009 static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine()); 1010 if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) { 1011 // All valid 64-bit to 32-bit casts work by chopping off the high 1012 // bits. Any masking only clearing the low bits will also apply in the new 1013 // address space. 1014 if (DL.getPointerSizeInBits(OldAS) != 64 || 1015 DL.getPointerSizeInBits(NewAS) != 32) 1016 return nullptr; 1017 1018 // TODO: Do we need to thread more context in here? 1019 KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II); 1020 if (Known.countMinLeadingOnes() < 32) 1021 return nullptr; 1022 1023 DoTruncate = true; 1024 } 1025 1026 IRBuilder<> B(II); 1027 if (DoTruncate) { 1028 MaskTy = B.getInt32Ty(); 1029 MaskOp = B.CreateTrunc(MaskOp, MaskTy); 1030 } 1031 1032 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy}, 1033 {NewV, MaskOp}); 1034 } 1035 default: 1036 return nullptr; 1037 } 1038 } 1039 1040 InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1041 VectorType *VT, ArrayRef<int> Mask, 1042 int Index, VectorType *SubTp, 1043 ArrayRef<const Value *> Args) { 1044 Kind = improveShuffleKindFromMask(Kind, Mask); 1045 if (ST->hasVOP3PInsts()) { 1046 if (cast<FixedVectorType>(VT)->getNumElements() == 2 && 1047 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 1048 // With op_sel VOP3P instructions freely can access the low half or high 1049 // half of a register, so any swizzle is free. 1050 1051 switch (Kind) { 1052 case TTI::SK_Broadcast: 1053 case TTI::SK_Reverse: 1054 case TTI::SK_PermuteSingleSrc: 1055 return 0; 1056 default: 1057 break; 1058 } 1059 } 1060 } 1061 1062 return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp); 1063 } 1064 1065 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 1066 const Function *Callee) const { 1067 const TargetMachine &TM = getTLI()->getTargetMachine(); 1068 const GCNSubtarget *CallerST 1069 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 1070 const GCNSubtarget *CalleeST 1071 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 1072 1073 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 1074 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 1075 1076 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 1077 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 1078 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 1079 return false; 1080 1081 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 1082 // no way to support merge for backend defined attributes. 1083 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 1084 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 1085 if (!CallerMode.isInlineCompatible(CalleeMode)) 1086 return false; 1087 1088 if (Callee->hasFnAttribute(Attribute::AlwaysInline) || 1089 Callee->hasFnAttribute(Attribute::InlineHint)) 1090 return true; 1091 1092 // Hack to make compile times reasonable. 1093 if (InlineMaxBB) { 1094 // Single BB does not increase total BB amount. 1095 if (Callee->size() == 1) 1096 return true; 1097 size_t BBSize = Caller->size() + Callee->size() - 1; 1098 return BBSize <= InlineMaxBB; 1099 } 1100 1101 return true; 1102 } 1103 1104 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const { 1105 // If we have a pointer to private array passed into a function 1106 // it will not be optimized out, leaving scratch usage. 1107 // Increase the inline threshold to allow inlining in this case. 1108 uint64_t AllocaSize = 0; 1109 SmallPtrSet<const AllocaInst *, 8> AIVisited; 1110 for (Value *PtrArg : CB->args()) { 1111 PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType()); 1112 if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS && 1113 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS)) 1114 continue; 1115 1116 PtrArg = getUnderlyingObject(PtrArg); 1117 if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) { 1118 if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second) 1119 continue; 1120 AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType()); 1121 // If the amount of stack memory is excessive we will not be able 1122 // to get rid of the scratch anyway, bail out. 1123 if (AllocaSize > ArgAllocaCutoff) { 1124 AllocaSize = 0; 1125 break; 1126 } 1127 } 1128 } 1129 if (AllocaSize) 1130 return ArgAllocaCost; 1131 return 0; 1132 } 1133 1134 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1135 TTI::UnrollingPreferences &UP, 1136 OptimizationRemarkEmitter *ORE) { 1137 CommonTTI.getUnrollingPreferences(L, SE, UP, ORE); 1138 } 1139 1140 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1141 TTI::PeelingPreferences &PP) { 1142 CommonTTI.getPeelingPreferences(L, SE, PP); 1143 } 1144 1145 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const { 1146 return ST->hasFullRate64Ops() 1147 ? getFullRateInstrCost() 1148 : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind) 1149 : getQuarterRateInstrCost(CostKind); 1150 } 1151