xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/KnownBits.h"
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "AMDGPUtti"
30 
31 static cl::opt<unsigned> UnrollThresholdPrivate(
32   "amdgpu-unroll-threshold-private",
33   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
34   cl::init(2700), cl::Hidden);
35 
36 static cl::opt<unsigned> UnrollThresholdLocal(
37   "amdgpu-unroll-threshold-local",
38   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
39   cl::init(1000), cl::Hidden);
40 
41 static cl::opt<unsigned> UnrollThresholdIf(
42   "amdgpu-unroll-threshold-if",
43   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
44   cl::init(200), cl::Hidden);
45 
46 static cl::opt<bool> UnrollRuntimeLocal(
47   "amdgpu-unroll-runtime-local",
48   cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
49   cl::init(true), cl::Hidden);
50 
51 static cl::opt<bool> UseLegacyDA(
52   "amdgpu-use-legacy-divergence-analysis",
53   cl::desc("Enable legacy divergence analysis for AMDGPU"),
54   cl::init(false), cl::Hidden);
55 
56 static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
57     "amdgpu-unroll-max-block-to-analyze",
58     cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
59     cl::init(32), cl::Hidden);
60 
61 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
62                                        cl::Hidden, cl::init(4000),
63                                        cl::desc("Cost of alloca argument"));
64 
65 // If the amount of scratch memory to eliminate exceeds our ability to allocate
66 // it into registers we gain nothing by aggressively inlining functions for that
67 // heuristic.
68 static cl::opt<unsigned>
69     ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
70                     cl::init(256),
71                     cl::desc("Maximum alloca size to use for inline cost"));
72 
73 // Inliner constraint to achieve reasonable compilation time.
74 static cl::opt<size_t> InlineMaxBB(
75     "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
76     cl::desc("Maximum number of BBs allowed in a function after inlining"
77              " (compile time constraint)"));
78 
79 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
80                               unsigned Depth = 0) {
81   const Instruction *I = dyn_cast<Instruction>(Cond);
82   if (!I)
83     return false;
84 
85   for (const Value *V : I->operand_values()) {
86     if (!L->contains(I))
87       continue;
88     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
89       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
90                   return SubLoop->contains(PHI); }))
91         return true;
92     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
93       return true;
94   }
95   return false;
96 }
97 
98 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
99     : BaseT(TM, F.getParent()->getDataLayout()),
100       TargetTriple(TM->getTargetTriple()),
101       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
102       TLI(ST->getTargetLowering()) {}
103 
104 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
105                                             TTI::UnrollingPreferences &UP,
106                                             OptimizationRemarkEmitter *ORE) {
107   const Function &F = *L->getHeader()->getParent();
108   UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
109   UP.MaxCount = std::numeric_limits<unsigned>::max();
110   UP.Partial = true;
111 
112   // Conditional branch in a loop back edge needs 3 additional exec
113   // manipulations in average.
114   UP.BEInsns += 3;
115 
116   // TODO: Do we want runtime unrolling?
117 
118   // Maximum alloca size than can fit registers. Reserve 16 registers.
119   const unsigned MaxAlloca = (256 - 16) * 4;
120   unsigned ThresholdPrivate = UnrollThresholdPrivate;
121   unsigned ThresholdLocal = UnrollThresholdLocal;
122 
123   // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
124   // provided threshold value as the default for Threshold
125   if (MDNode *LoopUnrollThreshold =
126           findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
127     if (LoopUnrollThreshold->getNumOperands() == 2) {
128       ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
129           LoopUnrollThreshold->getOperand(1));
130       if (MetaThresholdValue) {
131         // We will also use the supplied value for PartialThreshold for now.
132         // We may introduce additional metadata if it becomes necessary in the
133         // future.
134         UP.Threshold = MetaThresholdValue->getSExtValue();
135         UP.PartialThreshold = UP.Threshold;
136         ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
137         ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
138       }
139     }
140   }
141 
142   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
143   for (const BasicBlock *BB : L->getBlocks()) {
144     const DataLayout &DL = BB->getModule()->getDataLayout();
145     unsigned LocalGEPsSeen = 0;
146 
147     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
148                return SubLoop->contains(BB); }))
149         continue; // Block belongs to an inner loop.
150 
151     for (const Instruction &I : *BB) {
152       // Unroll a loop which contains an "if" statement whose condition
153       // defined by a PHI belonging to the loop. This may help to eliminate
154       // if region and potentially even PHI itself, saving on both divergence
155       // and registers used for the PHI.
156       // Add a small bonus for each of such "if" statements.
157       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
158         if (UP.Threshold < MaxBoost && Br->isConditional()) {
159           BasicBlock *Succ0 = Br->getSuccessor(0);
160           BasicBlock *Succ1 = Br->getSuccessor(1);
161           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
162               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
163             continue;
164           if (dependsOnLocalPhi(L, Br->getCondition())) {
165             UP.Threshold += UnrollThresholdIf;
166             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
167                               << " for loop:\n"
168                               << *L << " due to " << *Br << '\n');
169             if (UP.Threshold >= MaxBoost)
170               return;
171           }
172         }
173         continue;
174       }
175 
176       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
177       if (!GEP)
178         continue;
179 
180       unsigned AS = GEP->getAddressSpace();
181       unsigned Threshold = 0;
182       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
183         Threshold = ThresholdPrivate;
184       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
185         Threshold = ThresholdLocal;
186       else
187         continue;
188 
189       if (UP.Threshold >= Threshold)
190         continue;
191 
192       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
193         const Value *Ptr = GEP->getPointerOperand();
194         const AllocaInst *Alloca =
195             dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
196         if (!Alloca || !Alloca->isStaticAlloca())
197           continue;
198         Type *Ty = Alloca->getAllocatedType();
199         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
200         if (AllocaSize > MaxAlloca)
201           continue;
202       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
203                  AS == AMDGPUAS::REGION_ADDRESS) {
204         LocalGEPsSeen++;
205         // Inhibit unroll for local memory if we have seen addressing not to
206         // a variable, most likely we will be unable to combine it.
207         // Do not unroll too deep inner loops for local memory to give a chance
208         // to unroll an outer loop for a more important reason.
209         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
210             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
211              !isa<Argument>(GEP->getPointerOperand())))
212           continue;
213         LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
214                           << *L << " due to LDS use.\n");
215         UP.Runtime = UnrollRuntimeLocal;
216       }
217 
218       // Check if GEP depends on a value defined by this loop itself.
219       bool HasLoopDef = false;
220       for (const Value *Op : GEP->operands()) {
221         const Instruction *Inst = dyn_cast<Instruction>(Op);
222         if (!Inst || L->isLoopInvariant(Op))
223           continue;
224 
225         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
226              return SubLoop->contains(Inst); }))
227           continue;
228         HasLoopDef = true;
229         break;
230       }
231       if (!HasLoopDef)
232         continue;
233 
234       // We want to do whatever we can to limit the number of alloca
235       // instructions that make it through to the code generator.  allocas
236       // require us to use indirect addressing, which is slow and prone to
237       // compiler bugs.  If this loop does an address calculation on an
238       // alloca ptr, then we want to use a higher than normal loop unroll
239       // threshold. This will give SROA a better chance to eliminate these
240       // allocas.
241       //
242       // We also want to have more unrolling for local memory to let ds
243       // instructions with different offsets combine.
244       //
245       // Don't use the maximum allowed value here as it will make some
246       // programs way too big.
247       UP.Threshold = Threshold;
248       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
249                         << " for loop:\n"
250                         << *L << " due to " << *GEP << '\n');
251       if (UP.Threshold >= MaxBoost)
252         return;
253     }
254 
255     // If we got a GEP in a small BB from inner loop then increase max trip
256     // count to analyze for better estimation cost in unroll
257     if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
258       UP.MaxIterationsCountToAnalyze = 32;
259   }
260 }
261 
262 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
263                                           TTI::PeelingPreferences &PP) {
264   BaseT::getPeelingPreferences(L, SE, PP);
265 }
266 
267 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
268     // Codegen control options which don't matter.
269     AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
270     AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
271     AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
272     AMDGPU::FeatureUnalignedAccessMode,
273 
274     AMDGPU::FeatureAutoWaitcntBeforeBarrier,
275 
276     // Property of the kernel/environment which can't actually differ.
277     AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
278     AMDGPU::FeatureTrapHandler,
279 
280     // The default assumption needs to be ecc is enabled, but no directly
281     // exposed operations depend on it, so it can be safely inlined.
282     AMDGPU::FeatureSRAMECC,
283 
284     // Perf-tuning features
285     AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
286 
287 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
288     : BaseT(TM, F.getParent()->getDataLayout()),
289       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
290       TLI(ST->getTargetLowering()), CommonTTI(TM, F),
291       IsGraphics(AMDGPU::isGraphics(F.getCallingConv())) {
292   AMDGPU::SIModeRegisterDefaults Mode(F);
293   HasFP32Denormals = Mode.allFP32Denormals();
294   HasFP64FP16Denormals = Mode.allFP64FP16Denormals();
295 }
296 
297 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
298   // NB: RCID is not an RCID. In fact it is 0 or 1 for scalar or vector
299   // registers. See getRegisterClassForType for the implementation.
300   // In this case vector registers are not vector in terms of
301   // VGPRs, but those which can hold multiple values.
302 
303   // This is really the number of registers to fill when vectorizing /
304   // interleaving loops, so we lie to avoid trying to use all registers.
305   return 4;
306 }
307 
308 TypeSize
309 GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
310   switch (K) {
311   case TargetTransformInfo::RGK_Scalar:
312     return TypeSize::getFixed(32);
313   case TargetTransformInfo::RGK_FixedWidthVector:
314     return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
315   case TargetTransformInfo::RGK_ScalableVector:
316     return TypeSize::getScalable(0);
317   }
318   llvm_unreachable("Unsupported register kind");
319 }
320 
321 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
322   return 32;
323 }
324 
325 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
326   if (Opcode == Instruction::Load || Opcode == Instruction::Store)
327     return 32 * 4 / ElemWidth;
328   return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
329        : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
330        : 1;
331 }
332 
333 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
334                                          unsigned ChainSizeInBytes,
335                                          VectorType *VecTy) const {
336   unsigned VecRegBitWidth = VF * LoadSize;
337   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
338     // TODO: Support element-size less than 32bit?
339     return 128 / LoadSize;
340 
341   return VF;
342 }
343 
344 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
345                                              unsigned ChainSizeInBytes,
346                                              VectorType *VecTy) const {
347   unsigned VecRegBitWidth = VF * StoreSize;
348   if (VecRegBitWidth > 128)
349     return 128 / StoreSize;
350 
351   return VF;
352 }
353 
354 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
355   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
356       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
357       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
358       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
359     return 512;
360   }
361 
362   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
363     return 8 * ST->getMaxPrivateElementSize();
364 
365   // Common to flat, global, local and region. Assume for unknown addrspace.
366   return 128;
367 }
368 
369 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
370                                             Align Alignment,
371                                             unsigned AddrSpace) const {
372   // We allow vectorization of flat stores, even though we may need to decompose
373   // them later if they may access private memory. We don't have enough context
374   // here, and legalization can handle it.
375   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
376     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
377       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
378   }
379   return true;
380 }
381 
382 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
383                                              Align Alignment,
384                                              unsigned AddrSpace) const {
385   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
386 }
387 
388 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
389                                               Align Alignment,
390                                               unsigned AddrSpace) const {
391   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
392 }
393 
394 // FIXME: Really we would like to issue multiple 128-bit loads and stores per
395 // iteration. Should we report a larger size and let it legalize?
396 //
397 // FIXME: Should we use narrower types for local/region, or account for when
398 // unaligned access is legal?
399 //
400 // FIXME: This could use fine tuning and microbenchmarks.
401 Type *GCNTTIImpl::getMemcpyLoopLoweringType(
402     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
403     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
404     Optional<uint32_t> AtomicElementSize) const {
405 
406   if (AtomicElementSize)
407     return Type::getIntNTy(Context, *AtomicElementSize * 8);
408 
409   unsigned MinAlign = std::min(SrcAlign, DestAlign);
410 
411   // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
412   // hardware into byte accesses. If you assume all alignments are equally
413   // probable, it's more efficient on average to use short accesses for this
414   // case.
415   if (MinAlign == 2)
416     return Type::getInt16Ty(Context);
417 
418   // Not all subtargets have 128-bit DS instructions, and we currently don't
419   // form them by default.
420   if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
421       SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
422       DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
423       DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
424     return FixedVectorType::get(Type::getInt32Ty(Context), 2);
425   }
426 
427   // Global memory works best with 16-byte accesses. Private memory will also
428   // hit this, although they'll be decomposed.
429   return FixedVectorType::get(Type::getInt32Ty(Context), 4);
430 }
431 
432 void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
433     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
434     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
435     unsigned SrcAlign, unsigned DestAlign,
436     Optional<uint32_t> AtomicCpySize) const {
437   assert(RemainingBytes < 16);
438 
439   if (AtomicCpySize)
440     BaseT::getMemcpyLoopResidualLoweringType(
441         OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
442         DestAlign, AtomicCpySize);
443 
444   unsigned MinAlign = std::min(SrcAlign, DestAlign);
445 
446   if (MinAlign != 2) {
447     Type *I64Ty = Type::getInt64Ty(Context);
448     while (RemainingBytes >= 8) {
449       OpsOut.push_back(I64Ty);
450       RemainingBytes -= 8;
451     }
452 
453     Type *I32Ty = Type::getInt32Ty(Context);
454     while (RemainingBytes >= 4) {
455       OpsOut.push_back(I32Ty);
456       RemainingBytes -= 4;
457     }
458   }
459 
460   Type *I16Ty = Type::getInt16Ty(Context);
461   while (RemainingBytes >= 2) {
462     OpsOut.push_back(I16Ty);
463     RemainingBytes -= 2;
464   }
465 
466   Type *I8Ty = Type::getInt8Ty(Context);
467   while (RemainingBytes) {
468     OpsOut.push_back(I8Ty);
469     --RemainingBytes;
470   }
471 }
472 
473 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
474   // Disable unrolling if the loop is not vectorized.
475   // TODO: Enable this again.
476   if (VF == 1)
477     return 1;
478 
479   return 8;
480 }
481 
482 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
483                                        MemIntrinsicInfo &Info) const {
484   switch (Inst->getIntrinsicID()) {
485   case Intrinsic::amdgcn_atomic_inc:
486   case Intrinsic::amdgcn_atomic_dec:
487   case Intrinsic::amdgcn_ds_ordered_add:
488   case Intrinsic::amdgcn_ds_ordered_swap:
489   case Intrinsic::amdgcn_ds_fadd:
490   case Intrinsic::amdgcn_ds_fmin:
491   case Intrinsic::amdgcn_ds_fmax: {
492     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
493     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
494     if (!Ordering || !Volatile)
495       return false; // Invalid.
496 
497     unsigned OrderingVal = Ordering->getZExtValue();
498     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
499       return false;
500 
501     Info.PtrVal = Inst->getArgOperand(0);
502     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
503     Info.ReadMem = true;
504     Info.WriteMem = true;
505     Info.IsVolatile = !Volatile->isZero();
506     return true;
507   }
508   default:
509     return false;
510   }
511 }
512 
513 InstructionCost GCNTTIImpl::getArithmeticInstrCost(
514     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
515     TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
516     TTI::OperandValueProperties Opd1PropInfo,
517     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
518     const Instruction *CxtI) {
519 
520   // Legalize the type.
521   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
522   int ISD = TLI->InstructionOpcodeToISD(Opcode);
523 
524   // Because we don't have any legal vector operations, but the legal types, we
525   // need to account for split vectors.
526   unsigned NElts = LT.second.isVector() ?
527     LT.second.getVectorNumElements() : 1;
528 
529   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
530 
531   switch (ISD) {
532   case ISD::SHL:
533   case ISD::SRL:
534   case ISD::SRA:
535     if (SLT == MVT::i64)
536       return get64BitInstrCost(CostKind) * LT.first * NElts;
537 
538     if (ST->has16BitInsts() && SLT == MVT::i16)
539       NElts = (NElts + 1) / 2;
540 
541     // i32
542     return getFullRateInstrCost() * LT.first * NElts;
543   case ISD::ADD:
544   case ISD::SUB:
545   case ISD::AND:
546   case ISD::OR:
547   case ISD::XOR:
548     if (SLT == MVT::i64) {
549       // and, or and xor are typically split into 2 VALU instructions.
550       return 2 * getFullRateInstrCost() * LT.first * NElts;
551     }
552 
553     if (ST->has16BitInsts() && SLT == MVT::i16)
554       NElts = (NElts + 1) / 2;
555 
556     return LT.first * NElts * getFullRateInstrCost();
557   case ISD::MUL: {
558     const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
559     if (SLT == MVT::i64) {
560       const int FullRateCost = getFullRateInstrCost();
561       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
562     }
563 
564     if (ST->has16BitInsts() && SLT == MVT::i16)
565       NElts = (NElts + 1) / 2;
566 
567     // i32
568     return QuarterRateCost * NElts * LT.first;
569   }
570   case ISD::FMUL:
571     // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
572     // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
573     // fused operation.
574     if (CxtI && CxtI->hasOneUse())
575       if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
576         const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
577         if (OPC == ISD::FADD || OPC == ISD::FSUB) {
578           if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
579             return TargetTransformInfo::TCC_Free;
580           if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
581             return TargetTransformInfo::TCC_Free;
582 
583           // Estimate all types may be fused with contract/unsafe flags
584           const TargetOptions &Options = TLI->getTargetMachine().Options;
585           if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
586               Options.UnsafeFPMath ||
587               (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
588             return TargetTransformInfo::TCC_Free;
589         }
590       }
591     LLVM_FALLTHROUGH;
592   case ISD::FADD:
593   case ISD::FSUB:
594     if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
595       NElts = (NElts + 1) / 2;
596     if (SLT == MVT::f64)
597       return LT.first * NElts * get64BitInstrCost(CostKind);
598 
599     if (ST->has16BitInsts() && SLT == MVT::f16)
600       NElts = (NElts + 1) / 2;
601 
602     if (SLT == MVT::f32 || SLT == MVT::f16)
603       return LT.first * NElts * getFullRateInstrCost();
604     break;
605   case ISD::FDIV:
606   case ISD::FREM:
607     // FIXME: frem should be handled separately. The fdiv in it is most of it,
608     // but the current lowering is also not entirely correct.
609     if (SLT == MVT::f64) {
610       int Cost = 7 * get64BitInstrCost(CostKind) +
611                  getQuarterRateInstrCost(CostKind) +
612                  3 * getHalfRateInstrCost(CostKind);
613       // Add cost of workaround.
614       if (!ST->hasUsableDivScaleConditionOutput())
615         Cost += 3 * getFullRateInstrCost();
616 
617       return LT.first * Cost * NElts;
618     }
619 
620     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
621       // TODO: This is more complicated, unsafe flags etc.
622       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
623           (SLT == MVT::f16 && ST->has16BitInsts())) {
624         return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
625       }
626     }
627 
628     if (SLT == MVT::f16 && ST->has16BitInsts()) {
629       // 2 x v_cvt_f32_f16
630       // f32 rcp
631       // f32 fmul
632       // v_cvt_f16_f32
633       // f16 div_fixup
634       int Cost =
635           4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
636       return LT.first * Cost * NElts;
637     }
638 
639     if (SLT == MVT::f32 || SLT == MVT::f16) {
640       // 4 more v_cvt_* insts without f16 insts support
641       int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
642                  1 * getQuarterRateInstrCost(CostKind);
643 
644       if (!HasFP32Denormals) {
645         // FP mode switches.
646         Cost += 2 * getFullRateInstrCost();
647       }
648 
649       return LT.first * NElts * Cost;
650     }
651     break;
652   case ISD::FNEG:
653     // Use the backend' estimation. If fneg is not free each element will cost
654     // one additional instruction.
655     return TLI->isFNegFree(SLT) ? 0 : NElts;
656   default:
657     break;
658   }
659 
660   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
661                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
662 }
663 
664 // Return true if there's a potential benefit from using v2f16/v2i16
665 // instructions for an intrinsic, even if it requires nontrivial legalization.
666 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
667   switch (ID) {
668   case Intrinsic::fma: // TODO: fmuladd
669   // There's a small benefit to using vector ops in the legalized code.
670   case Intrinsic::round:
671   case Intrinsic::uadd_sat:
672   case Intrinsic::usub_sat:
673   case Intrinsic::sadd_sat:
674   case Intrinsic::ssub_sat:
675     return true;
676   default:
677     return false;
678   }
679 }
680 
681 InstructionCost
682 GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
683                                   TTI::TargetCostKind CostKind) {
684   if (ICA.getID() == Intrinsic::fabs)
685     return 0;
686 
687   if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
688     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
689 
690   Type *RetTy = ICA.getReturnType();
691 
692   // Legalize the type.
693   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
694 
695   unsigned NElts = LT.second.isVector() ?
696     LT.second.getVectorNumElements() : 1;
697 
698   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
699 
700   if (SLT == MVT::f64)
701     return LT.first * NElts * get64BitInstrCost(CostKind);
702 
703   if ((ST->has16BitInsts() && SLT == MVT::f16) ||
704       (ST->hasPackedFP32Ops() && SLT == MVT::f32))
705     NElts = (NElts + 1) / 2;
706 
707   // TODO: Get more refined intrinsic costs?
708   unsigned InstRate = getQuarterRateInstrCost(CostKind);
709 
710   switch (ICA.getID()) {
711   case Intrinsic::fma:
712     InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
713                                    : getQuarterRateInstrCost(CostKind);
714     break;
715   case Intrinsic::uadd_sat:
716   case Intrinsic::usub_sat:
717   case Intrinsic::sadd_sat:
718   case Intrinsic::ssub_sat:
719     static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
720     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
721       NElts = 1;
722     break;
723   }
724 
725   return LT.first * NElts * InstRate;
726 }
727 
728 InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode,
729                                            TTI::TargetCostKind CostKind,
730                                            const Instruction *I) {
731   assert((I == nullptr || I->getOpcode() == Opcode) &&
732          "Opcode should reflect passed instruction.");
733   const bool SCost =
734       (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency);
735   const int CBrCost = SCost ? 5 : 7;
736   switch (Opcode) {
737   case Instruction::Br: {
738     // Branch instruction takes about 4 slots on gfx900.
739     auto BI = dyn_cast_or_null<BranchInst>(I);
740     if (BI && BI->isUnconditional())
741       return SCost ? 1 : 4;
742     // Suppose conditional branch takes additional 3 exec manipulations
743     // instructions in average.
744     return CBrCost;
745   }
746   case Instruction::Switch: {
747     auto SI = dyn_cast_or_null<SwitchInst>(I);
748     // Each case (including default) takes 1 cmp + 1 cbr instructions in
749     // average.
750     return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1);
751   }
752   case Instruction::Ret:
753     return SCost ? 1 : 10;
754   }
755   return BaseT::getCFInstrCost(Opcode, CostKind, I);
756 }
757 
758 InstructionCost
759 GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
760                                        Optional<FastMathFlags> FMF,
761                                        TTI::TargetCostKind CostKind) {
762   if (TTI::requiresOrderedReduction(FMF))
763     return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
764 
765   EVT OrigTy = TLI->getValueType(DL, Ty);
766 
767   // Computes cost on targets that have packed math instructions(which support
768   // 16-bit types only).
769   if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
770     return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
771 
772   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
773   return LT.first * getFullRateInstrCost();
774 }
775 
776 InstructionCost
777 GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
778                                    bool IsUnsigned,
779                                    TTI::TargetCostKind CostKind) {
780   EVT OrigTy = TLI->getValueType(DL, Ty);
781 
782   // Computes cost on targets that have packed math instructions(which support
783   // 16-bit types only).
784   if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
785     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
786 
787   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
788   return LT.first * getHalfRateInstrCost(CostKind);
789 }
790 
791 InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
792                                                unsigned Index) {
793   switch (Opcode) {
794   case Instruction::ExtractElement:
795   case Instruction::InsertElement: {
796     unsigned EltSize
797       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
798     if (EltSize < 32) {
799       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
800         return 0;
801       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
802     }
803 
804     // Extracts are just reads of a subregister, so are free. Inserts are
805     // considered free because we don't want to have any cost for scalarizing
806     // operations, and we don't have to copy into a different register class.
807 
808     // Dynamic indexing isn't free and is best avoided.
809     return Index == ~0u ? 2 : 0;
810   }
811   default:
812     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
813   }
814 }
815 
816 /// Analyze if the results of inline asm are divergent. If \p Indices is empty,
817 /// this is analyzing the collective result of all output registers. Otherwise,
818 /// this is only querying a specific result index if this returns multiple
819 /// registers in a struct.
820 bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
821   const CallInst *CI, ArrayRef<unsigned> Indices) const {
822   // TODO: Handle complex extract indices
823   if (Indices.size() > 1)
824     return true;
825 
826   const DataLayout &DL = CI->getModule()->getDataLayout();
827   const SIRegisterInfo *TRI = ST->getRegisterInfo();
828   TargetLowering::AsmOperandInfoVector TargetConstraints =
829       TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
830 
831   const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
832 
833   int OutputIdx = 0;
834   for (auto &TC : TargetConstraints) {
835     if (TC.Type != InlineAsm::isOutput)
836       continue;
837 
838     // Skip outputs we don't care about.
839     if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
840       continue;
841 
842     TLI->ComputeConstraintToUse(TC, SDValue());
843 
844     const TargetRegisterClass *RC = TLI->getRegForInlineAsmConstraint(
845         TRI, TC.ConstraintCode, TC.ConstraintVT).second;
846 
847     // For AGPR constraints null is returned on subtargets without AGPRs, so
848     // assume divergent for null.
849     if (!RC || !TRI->isSGPRClass(RC))
850       return true;
851   }
852 
853   return false;
854 }
855 
856 /// \returns true if the new GPU divergence analysis is enabled.
857 bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
858   return !UseLegacyDA;
859 }
860 
861 /// \returns true if the result of the value could potentially be
862 /// different across workitems in a wavefront.
863 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
864   if (const Argument *A = dyn_cast<Argument>(V))
865     return !AMDGPU::isArgPassedInSGPR(A);
866 
867   // Loads from the private and flat address spaces are divergent, because
868   // threads can execute the load instruction with the same inputs and get
869   // different results.
870   //
871   // All other loads are not divergent, because if threads issue loads with the
872   // same arguments, they will always get the same result.
873   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
874     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
875            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
876 
877   // Atomics are divergent because they are executed sequentially: when an
878   // atomic operation refers to the same address in each thread, then each
879   // thread after the first sees the value written by the previous thread as
880   // original value.
881   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
882     return true;
883 
884   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
885     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
886 
887   // Assume all function calls are a source of divergence.
888   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
889     if (CI->isInlineAsm())
890       return isInlineAsmSourceOfDivergence(CI);
891     return true;
892   }
893 
894   // Assume all function calls are a source of divergence.
895   if (isa<InvokeInst>(V))
896     return true;
897 
898   return false;
899 }
900 
901 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
902   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
903     switch (Intrinsic->getIntrinsicID()) {
904     default:
905       return false;
906     case Intrinsic::amdgcn_readfirstlane:
907     case Intrinsic::amdgcn_readlane:
908     case Intrinsic::amdgcn_icmp:
909     case Intrinsic::amdgcn_fcmp:
910     case Intrinsic::amdgcn_ballot:
911     case Intrinsic::amdgcn_if_break:
912       return true;
913     }
914   }
915 
916   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
917     if (CI->isInlineAsm())
918       return !isInlineAsmSourceOfDivergence(CI);
919     return false;
920   }
921 
922   const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
923   if (!ExtValue)
924     return false;
925 
926   const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
927   if (!CI)
928     return false;
929 
930   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
931     switch (Intrinsic->getIntrinsicID()) {
932     default:
933       return false;
934     case Intrinsic::amdgcn_if:
935     case Intrinsic::amdgcn_else: {
936       ArrayRef<unsigned> Indices = ExtValue->getIndices();
937       return Indices.size() == 1 && Indices[0] == 1;
938     }
939     }
940   }
941 
942   // If we have inline asm returning mixed SGPR and VGPR results, we inferred
943   // divergent for the overall struct return. We need to override it in the
944   // case we're extracting an SGPR component here.
945   if (CI->isInlineAsm())
946     return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
947 
948   return false;
949 }
950 
951 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
952                                             Intrinsic::ID IID) const {
953   switch (IID) {
954   case Intrinsic::amdgcn_atomic_inc:
955   case Intrinsic::amdgcn_atomic_dec:
956   case Intrinsic::amdgcn_ds_fadd:
957   case Intrinsic::amdgcn_ds_fmin:
958   case Intrinsic::amdgcn_ds_fmax:
959   case Intrinsic::amdgcn_is_shared:
960   case Intrinsic::amdgcn_is_private:
961     OpIndexes.push_back(0);
962     return true;
963   default:
964     return false;
965   }
966 }
967 
968 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
969                                                     Value *OldV,
970                                                     Value *NewV) const {
971   auto IntrID = II->getIntrinsicID();
972   switch (IntrID) {
973   case Intrinsic::amdgcn_atomic_inc:
974   case Intrinsic::amdgcn_atomic_dec:
975   case Intrinsic::amdgcn_ds_fadd:
976   case Intrinsic::amdgcn_ds_fmin:
977   case Intrinsic::amdgcn_ds_fmax: {
978     const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
979     if (!IsVolatile->isZero())
980       return nullptr;
981     Module *M = II->getParent()->getParent()->getParent();
982     Type *DestTy = II->getType();
983     Type *SrcTy = NewV->getType();
984     Function *NewDecl =
985         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
986     II->setArgOperand(0, NewV);
987     II->setCalledFunction(NewDecl);
988     return II;
989   }
990   case Intrinsic::amdgcn_is_shared:
991   case Intrinsic::amdgcn_is_private: {
992     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
993       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
994     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
995     LLVMContext &Ctx = NewV->getType()->getContext();
996     ConstantInt *NewVal = (TrueAS == NewAS) ?
997       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
998     return NewVal;
999   }
1000   case Intrinsic::ptrmask: {
1001     unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1002     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1003     Value *MaskOp = II->getArgOperand(1);
1004     Type *MaskTy = MaskOp->getType();
1005 
1006     bool DoTruncate = false;
1007 
1008     const GCNTargetMachine &TM =
1009         static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
1010     if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1011       // All valid 64-bit to 32-bit casts work by chopping off the high
1012       // bits. Any masking only clearing the low bits will also apply in the new
1013       // address space.
1014       if (DL.getPointerSizeInBits(OldAS) != 64 ||
1015           DL.getPointerSizeInBits(NewAS) != 32)
1016         return nullptr;
1017 
1018       // TODO: Do we need to thread more context in here?
1019       KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
1020       if (Known.countMinLeadingOnes() < 32)
1021         return nullptr;
1022 
1023       DoTruncate = true;
1024     }
1025 
1026     IRBuilder<> B(II);
1027     if (DoTruncate) {
1028       MaskTy = B.getInt32Ty();
1029       MaskOp = B.CreateTrunc(MaskOp, MaskTy);
1030     }
1031 
1032     return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
1033                              {NewV, MaskOp});
1034   }
1035   default:
1036     return nullptr;
1037   }
1038 }
1039 
1040 InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1041                                            VectorType *VT, ArrayRef<int> Mask,
1042                                            int Index, VectorType *SubTp,
1043                                            ArrayRef<const Value *> Args) {
1044   Kind = improveShuffleKindFromMask(Kind, Mask);
1045   if (ST->hasVOP3PInsts()) {
1046     if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
1047         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
1048       // With op_sel VOP3P instructions freely can access the low half or high
1049       // half of a register, so any swizzle is free.
1050 
1051       switch (Kind) {
1052       case TTI::SK_Broadcast:
1053       case TTI::SK_Reverse:
1054       case TTI::SK_PermuteSingleSrc:
1055         return 0;
1056       default:
1057         break;
1058       }
1059     }
1060   }
1061 
1062   return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp);
1063 }
1064 
1065 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
1066                                      const Function *Callee) const {
1067   const TargetMachine &TM = getTLI()->getTargetMachine();
1068   const GCNSubtarget *CallerST
1069     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1070   const GCNSubtarget *CalleeST
1071     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1072 
1073   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1074   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1075 
1076   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1077   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1078   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1079     return false;
1080 
1081   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1082   // no way to support merge for backend defined attributes.
1083   AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
1084   AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
1085   if (!CallerMode.isInlineCompatible(CalleeMode))
1086     return false;
1087 
1088   if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1089       Callee->hasFnAttribute(Attribute::InlineHint))
1090     return true;
1091 
1092   // Hack to make compile times reasonable.
1093   if (InlineMaxBB) {
1094     // Single BB does not increase total BB amount.
1095     if (Callee->size() == 1)
1096       return true;
1097     size_t BBSize = Caller->size() + Callee->size() - 1;
1098     return BBSize <= InlineMaxBB;
1099   }
1100 
1101   return true;
1102 }
1103 
1104 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
1105   // If we have a pointer to private array passed into a function
1106   // it will not be optimized out, leaving scratch usage.
1107   // Increase the inline threshold to allow inlining in this case.
1108   uint64_t AllocaSize = 0;
1109   SmallPtrSet<const AllocaInst *, 8> AIVisited;
1110   for (Value *PtrArg : CB->args()) {
1111     PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1112     if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS &&
1113                 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS))
1114       continue;
1115 
1116     PtrArg = getUnderlyingObject(PtrArg);
1117     if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) {
1118       if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1119         continue;
1120       AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1121       // If the amount of stack memory is excessive we will not be able
1122       // to get rid of the scratch anyway, bail out.
1123       if (AllocaSize > ArgAllocaCutoff) {
1124         AllocaSize = 0;
1125         break;
1126       }
1127     }
1128   }
1129   if (AllocaSize)
1130     return ArgAllocaCost;
1131   return 0;
1132 }
1133 
1134 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1135                                          TTI::UnrollingPreferences &UP,
1136                                          OptimizationRemarkEmitter *ORE) {
1137   CommonTTI.getUnrollingPreferences(L, SE, UP, ORE);
1138 }
1139 
1140 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1141                                        TTI::PeelingPreferences &PP) {
1142   CommonTTI.getPeelingPreferences(L, SE, PP);
1143 }
1144 
1145 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1146   return ST->hasFullRate64Ops()
1147              ? getFullRateInstrCost()
1148              : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1149                                       : getQuarterRateInstrCost(CostKind);
1150 }
1151