1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/IntrinsicsAMDGPU.h" 22 #include "llvm/IR/PatternMatch.h" 23 #include "llvm/Support/KnownBits.h" 24 25 using namespace llvm; 26 27 #define DEBUG_TYPE "AMDGPUtti" 28 29 static cl::opt<unsigned> UnrollThresholdPrivate( 30 "amdgpu-unroll-threshold-private", 31 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 32 cl::init(2700), cl::Hidden); 33 34 static cl::opt<unsigned> UnrollThresholdLocal( 35 "amdgpu-unroll-threshold-local", 36 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 37 cl::init(1000), cl::Hidden); 38 39 static cl::opt<unsigned> UnrollThresholdIf( 40 "amdgpu-unroll-threshold-if", 41 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 42 cl::init(150), cl::Hidden); 43 44 static cl::opt<bool> UnrollRuntimeLocal( 45 "amdgpu-unroll-runtime-local", 46 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 47 cl::init(true), cl::Hidden); 48 49 static cl::opt<bool> UseLegacyDA( 50 "amdgpu-use-legacy-divergence-analysis", 51 cl::desc("Enable legacy divergence analysis for AMDGPU"), 52 cl::init(false), cl::Hidden); 53 54 static cl::opt<unsigned> UnrollMaxBlockToAnalyze( 55 "amdgpu-unroll-max-block-to-analyze", 56 cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), 57 cl::init(32), cl::Hidden); 58 59 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost", 60 cl::Hidden, cl::init(4000), 61 cl::desc("Cost of alloca argument")); 62 63 // If the amount of scratch memory to eliminate exceeds our ability to allocate 64 // it into registers we gain nothing by aggressively inlining functions for that 65 // heuristic. 66 static cl::opt<unsigned> 67 ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden, 68 cl::init(256), 69 cl::desc("Maximum alloca size to use for inline cost")); 70 71 // Inliner constraint to achieve reasonable compilation time. 72 static cl::opt<size_t> InlineMaxBB( 73 "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100), 74 cl::desc("Maximum number of BBs allowed in a function after inlining" 75 " (compile time constraint)")); 76 77 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 78 unsigned Depth = 0) { 79 const Instruction *I = dyn_cast<Instruction>(Cond); 80 if (!I) 81 return false; 82 83 for (const Value *V : I->operand_values()) { 84 if (!L->contains(I)) 85 continue; 86 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 87 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 88 return SubLoop->contains(PHI); })) 89 return true; 90 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 91 return true; 92 } 93 return false; 94 } 95 96 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 97 : BaseT(TM, F.getParent()->getDataLayout()), 98 TargetTriple(TM->getTargetTriple()), 99 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 100 TLI(ST->getTargetLowering()) {} 101 102 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 103 TTI::UnrollingPreferences &UP) { 104 const Function &F = *L->getHeader()->getParent(); 105 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 106 UP.MaxCount = std::numeric_limits<unsigned>::max(); 107 UP.Partial = true; 108 109 // TODO: Do we want runtime unrolling? 110 111 // Maximum alloca size than can fit registers. Reserve 16 registers. 112 const unsigned MaxAlloca = (256 - 16) * 4; 113 unsigned ThresholdPrivate = UnrollThresholdPrivate; 114 unsigned ThresholdLocal = UnrollThresholdLocal; 115 116 // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the 117 // provided threshold value as the default for Threshold 118 if (MDNode *LoopUnrollThreshold = 119 findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) { 120 if (LoopUnrollThreshold->getNumOperands() == 2) { 121 ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>( 122 LoopUnrollThreshold->getOperand(1)); 123 if (MetaThresholdValue) { 124 // We will also use the supplied value for PartialThreshold for now. 125 // We may introduce additional metadata if it becomes necessary in the 126 // future. 127 UP.Threshold = MetaThresholdValue->getSExtValue(); 128 UP.PartialThreshold = UP.Threshold; 129 ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold); 130 ThresholdLocal = std::min(ThresholdLocal, UP.Threshold); 131 } 132 } 133 } 134 135 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 136 for (const BasicBlock *BB : L->getBlocks()) { 137 const DataLayout &DL = BB->getModule()->getDataLayout(); 138 unsigned LocalGEPsSeen = 0; 139 140 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 141 return SubLoop->contains(BB); })) 142 continue; // Block belongs to an inner loop. 143 144 for (const Instruction &I : *BB) { 145 // Unroll a loop which contains an "if" statement whose condition 146 // defined by a PHI belonging to the loop. This may help to eliminate 147 // if region and potentially even PHI itself, saving on both divergence 148 // and registers used for the PHI. 149 // Add a small bonus for each of such "if" statements. 150 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 151 if (UP.Threshold < MaxBoost && Br->isConditional()) { 152 BasicBlock *Succ0 = Br->getSuccessor(0); 153 BasicBlock *Succ1 = Br->getSuccessor(1); 154 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 155 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 156 continue; 157 if (dependsOnLocalPhi(L, Br->getCondition())) { 158 UP.Threshold += UnrollThresholdIf; 159 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 160 << " for loop:\n" 161 << *L << " due to " << *Br << '\n'); 162 if (UP.Threshold >= MaxBoost) 163 return; 164 } 165 } 166 continue; 167 } 168 169 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 170 if (!GEP) 171 continue; 172 173 unsigned AS = GEP->getAddressSpace(); 174 unsigned Threshold = 0; 175 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 176 Threshold = ThresholdPrivate; 177 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 178 Threshold = ThresholdLocal; 179 else 180 continue; 181 182 if (UP.Threshold >= Threshold) 183 continue; 184 185 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 186 const Value *Ptr = GEP->getPointerOperand(); 187 const AllocaInst *Alloca = 188 dyn_cast<AllocaInst>(getUnderlyingObject(Ptr)); 189 if (!Alloca || !Alloca->isStaticAlloca()) 190 continue; 191 Type *Ty = Alloca->getAllocatedType(); 192 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 193 if (AllocaSize > MaxAlloca) 194 continue; 195 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 196 AS == AMDGPUAS::REGION_ADDRESS) { 197 LocalGEPsSeen++; 198 // Inhibit unroll for local memory if we have seen addressing not to 199 // a variable, most likely we will be unable to combine it. 200 // Do not unroll too deep inner loops for local memory to give a chance 201 // to unroll an outer loop for a more important reason. 202 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 203 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 204 !isa<Argument>(GEP->getPointerOperand()))) 205 continue; 206 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 207 << *L << " due to LDS use.\n"); 208 UP.Runtime = UnrollRuntimeLocal; 209 } 210 211 // Check if GEP depends on a value defined by this loop itself. 212 bool HasLoopDef = false; 213 for (const Value *Op : GEP->operands()) { 214 const Instruction *Inst = dyn_cast<Instruction>(Op); 215 if (!Inst || L->isLoopInvariant(Op)) 216 continue; 217 218 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 219 return SubLoop->contains(Inst); })) 220 continue; 221 HasLoopDef = true; 222 break; 223 } 224 if (!HasLoopDef) 225 continue; 226 227 // We want to do whatever we can to limit the number of alloca 228 // instructions that make it through to the code generator. allocas 229 // require us to use indirect addressing, which is slow and prone to 230 // compiler bugs. If this loop does an address calculation on an 231 // alloca ptr, then we want to use a higher than normal loop unroll 232 // threshold. This will give SROA a better chance to eliminate these 233 // allocas. 234 // 235 // We also want to have more unrolling for local memory to let ds 236 // instructions with different offsets combine. 237 // 238 // Don't use the maximum allowed value here as it will make some 239 // programs way too big. 240 UP.Threshold = Threshold; 241 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 242 << " for loop:\n" 243 << *L << " due to " << *GEP << '\n'); 244 if (UP.Threshold >= MaxBoost) 245 return; 246 } 247 248 // If we got a GEP in a small BB from inner loop then increase max trip 249 // count to analyze for better estimation cost in unroll 250 if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze) 251 UP.MaxIterationsCountToAnalyze = 32; 252 } 253 } 254 255 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 256 TTI::PeelingPreferences &PP) { 257 BaseT::getPeelingPreferences(L, SE, PP); 258 } 259 260 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = { 261 // Codegen control options which don't matter. 262 AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler, 263 AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal, 264 AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess, 265 AMDGPU::FeatureUnalignedAccessMode, 266 267 AMDGPU::FeatureAutoWaitcntBeforeBarrier, 268 269 // Property of the kernel/environment which can't actually differ. 270 AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK, 271 AMDGPU::FeatureTrapHandler, 272 273 // The default assumption needs to be ecc is enabled, but no directly 274 // exposed operations depend on it, so it can be safely inlined. 275 AMDGPU::FeatureSRAMECC, 276 277 // Perf-tuning features 278 AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops}; 279 280 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 281 : BaseT(TM, F.getParent()->getDataLayout()), 282 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 283 TLI(ST->getTargetLowering()), CommonTTI(TM, F), 284 IsGraphics(AMDGPU::isGraphics(F.getCallingConv())), 285 MaxVGPRs(ST->getMaxNumVGPRs( 286 std::max(ST->getWavesPerEU(F).first, 287 ST->getWavesPerEUForWorkGroup( 288 ST->getFlatWorkGroupSizes(F).second)))) { 289 AMDGPU::SIModeRegisterDefaults Mode(F); 290 HasFP32Denormals = Mode.allFP32Denormals(); 291 HasFP64FP16Denormals = Mode.allFP64FP16Denormals(); 292 } 293 294 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 295 // The concept of vector registers doesn't really exist. Some packed vector 296 // operations operate on the normal 32-bit registers. 297 return MaxVGPRs; 298 } 299 300 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 301 // This is really the number of registers to fill when vectorizing / 302 // interleaving loops, so we lie to avoid trying to use all registers. 303 return getHardwareNumberOfRegisters(Vec) >> 3; 304 } 305 306 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const { 307 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 308 const TargetRegisterClass *RC = TRI->getRegClass(RCID); 309 unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32; 310 return getHardwareNumberOfRegisters(false) / NumVGPRs; 311 } 312 313 unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const { 314 return 32; 315 } 316 317 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 318 return 32; 319 } 320 321 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 322 if (Opcode == Instruction::Load || Opcode == Instruction::Store) 323 return 32 * 4 / ElemWidth; 324 return (ElemWidth == 16 && ST->has16BitInsts()) ? 2 : 1; 325 } 326 327 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 328 unsigned ChainSizeInBytes, 329 VectorType *VecTy) const { 330 unsigned VecRegBitWidth = VF * LoadSize; 331 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 332 // TODO: Support element-size less than 32bit? 333 return 128 / LoadSize; 334 335 return VF; 336 } 337 338 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 339 unsigned ChainSizeInBytes, 340 VectorType *VecTy) const { 341 unsigned VecRegBitWidth = VF * StoreSize; 342 if (VecRegBitWidth > 128) 343 return 128 / StoreSize; 344 345 return VF; 346 } 347 348 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 349 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 350 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 351 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 352 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 353 return 512; 354 } 355 356 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 357 return 8 * ST->getMaxPrivateElementSize(); 358 359 // Common to flat, global, local and region. Assume for unknown addrspace. 360 return 128; 361 } 362 363 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 364 Align Alignment, 365 unsigned AddrSpace) const { 366 // We allow vectorization of flat stores, even though we may need to decompose 367 // them later if they may access private memory. We don't have enough context 368 // here, and legalization can handle it. 369 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 370 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 371 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 372 } 373 return true; 374 } 375 376 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 377 Align Alignment, 378 unsigned AddrSpace) const { 379 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 380 } 381 382 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 383 Align Alignment, 384 unsigned AddrSpace) const { 385 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 386 } 387 388 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 389 // iteration. Should we report a larger size and let it legalize? 390 // 391 // FIXME: Should we use narrower types for local/region, or account for when 392 // unaligned access is legal? 393 // 394 // FIXME: This could use fine tuning and microbenchmarks. 395 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, 396 unsigned SrcAddrSpace, 397 unsigned DestAddrSpace, 398 unsigned SrcAlign, 399 unsigned DestAlign) const { 400 unsigned MinAlign = std::min(SrcAlign, DestAlign); 401 402 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 403 // hardware into byte accesses. If you assume all alignments are equally 404 // probable, it's more efficient on average to use short accesses for this 405 // case. 406 if (MinAlign == 2) 407 return Type::getInt16Ty(Context); 408 409 // Not all subtargets have 128-bit DS instructions, and we currently don't 410 // form them by default. 411 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 412 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 413 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 414 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 415 return FixedVectorType::get(Type::getInt32Ty(Context), 2); 416 } 417 418 // Global memory works best with 16-byte accesses. Private memory will also 419 // hit this, although they'll be decomposed. 420 return FixedVectorType::get(Type::getInt32Ty(Context), 4); 421 } 422 423 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 424 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 425 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 426 unsigned SrcAlign, unsigned DestAlign) const { 427 assert(RemainingBytes < 16); 428 429 unsigned MinAlign = std::min(SrcAlign, DestAlign); 430 431 if (MinAlign != 2) { 432 Type *I64Ty = Type::getInt64Ty(Context); 433 while (RemainingBytes >= 8) { 434 OpsOut.push_back(I64Ty); 435 RemainingBytes -= 8; 436 } 437 438 Type *I32Ty = Type::getInt32Ty(Context); 439 while (RemainingBytes >= 4) { 440 OpsOut.push_back(I32Ty); 441 RemainingBytes -= 4; 442 } 443 } 444 445 Type *I16Ty = Type::getInt16Ty(Context); 446 while (RemainingBytes >= 2) { 447 OpsOut.push_back(I16Ty); 448 RemainingBytes -= 2; 449 } 450 451 Type *I8Ty = Type::getInt8Ty(Context); 452 while (RemainingBytes) { 453 OpsOut.push_back(I8Ty); 454 --RemainingBytes; 455 } 456 } 457 458 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 459 // Disable unrolling if the loop is not vectorized. 460 // TODO: Enable this again. 461 if (VF == 1) 462 return 1; 463 464 return 8; 465 } 466 467 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 468 MemIntrinsicInfo &Info) const { 469 switch (Inst->getIntrinsicID()) { 470 case Intrinsic::amdgcn_atomic_inc: 471 case Intrinsic::amdgcn_atomic_dec: 472 case Intrinsic::amdgcn_ds_ordered_add: 473 case Intrinsic::amdgcn_ds_ordered_swap: 474 case Intrinsic::amdgcn_ds_fadd: 475 case Intrinsic::amdgcn_ds_fmin: 476 case Intrinsic::amdgcn_ds_fmax: { 477 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 478 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 479 if (!Ordering || !Volatile) 480 return false; // Invalid. 481 482 unsigned OrderingVal = Ordering->getZExtValue(); 483 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 484 return false; 485 486 Info.PtrVal = Inst->getArgOperand(0); 487 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 488 Info.ReadMem = true; 489 Info.WriteMem = true; 490 Info.IsVolatile = !Volatile->isNullValue(); 491 return true; 492 } 493 default: 494 return false; 495 } 496 } 497 498 int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty, 499 TTI::TargetCostKind CostKind, 500 TTI::OperandValueKind Opd1Info, 501 TTI::OperandValueKind Opd2Info, 502 TTI::OperandValueProperties Opd1PropInfo, 503 TTI::OperandValueProperties Opd2PropInfo, 504 ArrayRef<const Value *> Args, 505 const Instruction *CxtI) { 506 EVT OrigTy = TLI->getValueType(DL, Ty); 507 if (!OrigTy.isSimple()) { 508 // FIXME: We're having to query the throughput cost so that the basic 509 // implementation tries to generate legalize and scalarization costs. Maybe 510 // we could hoist the scalarization code here? 511 if (CostKind != TTI::TCK_CodeSize) 512 return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput, 513 Opd1Info, Opd2Info, Opd1PropInfo, 514 Opd2PropInfo, Args, CxtI); 515 // Scalarization 516 517 // Check if any of the operands are vector operands. 518 int ISD = TLI->InstructionOpcodeToISD(Opcode); 519 assert(ISD && "Invalid opcode"); 520 521 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 522 523 bool IsFloat = Ty->isFPOrFPVectorTy(); 524 // Assume that floating point arithmetic operations cost twice as much as 525 // integer operations. 526 unsigned OpCost = (IsFloat ? 2 : 1); 527 528 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 529 // The operation is legal. Assume it costs 1. 530 // TODO: Once we have extract/insert subvector cost we need to use them. 531 return LT.first * OpCost; 532 } 533 534 if (!TLI->isOperationExpand(ISD, LT.second)) { 535 // If the operation is custom lowered, then assume that the code is twice 536 // as expensive. 537 return LT.first * 2 * OpCost; 538 } 539 540 // Else, assume that we need to scalarize this op. 541 // TODO: If one of the types get legalized by splitting, handle this 542 // similarly to what getCastInstrCost() does. 543 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 544 unsigned Num = cast<FixedVectorType>(VTy)->getNumElements(); 545 unsigned Cost = getArithmeticInstrCost( 546 Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info, 547 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 548 // Return the cost of multiple scalar invocation plus the cost of 549 // inserting and extracting the values. 550 return getScalarizationOverhead(VTy, Args) + Num * Cost; 551 } 552 553 // We don't know anything about this scalar instruction. 554 return OpCost; 555 } 556 557 // Legalize the type. 558 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 559 int ISD = TLI->InstructionOpcodeToISD(Opcode); 560 561 // Because we don't have any legal vector operations, but the legal types, we 562 // need to account for split vectors. 563 unsigned NElts = LT.second.isVector() ? 564 LT.second.getVectorNumElements() : 1; 565 566 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 567 568 switch (ISD) { 569 case ISD::SHL: 570 case ISD::SRL: 571 case ISD::SRA: 572 if (SLT == MVT::i64) 573 return get64BitInstrCost(CostKind) * LT.first * NElts; 574 575 if (ST->has16BitInsts() && SLT == MVT::i16) 576 NElts = (NElts + 1) / 2; 577 578 // i32 579 return getFullRateInstrCost() * LT.first * NElts; 580 case ISD::ADD: 581 case ISD::SUB: 582 case ISD::AND: 583 case ISD::OR: 584 case ISD::XOR: 585 if (SLT == MVT::i64) { 586 // and, or and xor are typically split into 2 VALU instructions. 587 return 2 * getFullRateInstrCost() * LT.first * NElts; 588 } 589 590 if (ST->has16BitInsts() && SLT == MVT::i16) 591 NElts = (NElts + 1) / 2; 592 593 return LT.first * NElts * getFullRateInstrCost(); 594 case ISD::MUL: { 595 const int QuarterRateCost = getQuarterRateInstrCost(CostKind); 596 if (SLT == MVT::i64) { 597 const int FullRateCost = getFullRateInstrCost(); 598 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 599 } 600 601 if (ST->has16BitInsts() && SLT == MVT::i16) 602 NElts = (NElts + 1) / 2; 603 604 // i32 605 return QuarterRateCost * NElts * LT.first; 606 } 607 case ISD::FMUL: 608 // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for 609 // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole 610 // fused operation. 611 if (CxtI && CxtI->hasOneUse()) 612 if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) { 613 const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode()); 614 if (OPC == ISD::FADD || OPC == ISD::FSUB) { 615 if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals) 616 return TargetTransformInfo::TCC_Free; 617 if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals) 618 return TargetTransformInfo::TCC_Free; 619 620 // Estimate all types may be fused with contract/unsafe flags 621 const TargetOptions &Options = TLI->getTargetMachine().Options; 622 if (Options.AllowFPOpFusion == FPOpFusion::Fast || 623 Options.UnsafeFPMath || 624 (FAdd->hasAllowContract() && CxtI->hasAllowContract())) 625 return TargetTransformInfo::TCC_Free; 626 } 627 } 628 LLVM_FALLTHROUGH; 629 case ISD::FADD: 630 case ISD::FSUB: 631 if (SLT == MVT::f64) 632 return LT.first * NElts * get64BitInstrCost(CostKind); 633 634 if (ST->has16BitInsts() && SLT == MVT::f16) 635 NElts = (NElts + 1) / 2; 636 637 if (SLT == MVT::f32 || SLT == MVT::f16) 638 return LT.first * NElts * getFullRateInstrCost(); 639 break; 640 case ISD::FDIV: 641 case ISD::FREM: 642 // FIXME: frem should be handled separately. The fdiv in it is most of it, 643 // but the current lowering is also not entirely correct. 644 if (SLT == MVT::f64) { 645 int Cost = 7 * get64BitInstrCost(CostKind) + 646 getQuarterRateInstrCost(CostKind) + 647 3 * getHalfRateInstrCost(CostKind); 648 // Add cost of workaround. 649 if (!ST->hasUsableDivScaleConditionOutput()) 650 Cost += 3 * getFullRateInstrCost(); 651 652 return LT.first * Cost * NElts; 653 } 654 655 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 656 // TODO: This is more complicated, unsafe flags etc. 657 if ((SLT == MVT::f32 && !HasFP32Denormals) || 658 (SLT == MVT::f16 && ST->has16BitInsts())) { 659 return LT.first * getQuarterRateInstrCost(CostKind) * NElts; 660 } 661 } 662 663 if (SLT == MVT::f16 && ST->has16BitInsts()) { 664 // 2 x v_cvt_f32_f16 665 // f32 rcp 666 // f32 fmul 667 // v_cvt_f16_f32 668 // f16 div_fixup 669 int Cost = 670 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind); 671 return LT.first * Cost * NElts; 672 } 673 674 if (SLT == MVT::f32 || SLT == MVT::f16) { 675 // 4 more v_cvt_* insts without f16 insts support 676 int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() + 677 1 * getQuarterRateInstrCost(CostKind); 678 679 if (!HasFP32Denormals) { 680 // FP mode switches. 681 Cost += 2 * getFullRateInstrCost(); 682 } 683 684 return LT.first * NElts * Cost; 685 } 686 break; 687 case ISD::FNEG: 688 // Use the backend' estimation. If fneg is not free each element will cost 689 // one additional instruction. 690 return TLI->isFNegFree(SLT) ? 0 : NElts; 691 default: 692 break; 693 } 694 695 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, 696 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 697 } 698 699 // Return true if there's a potential benefit from using v2f16/v2i16 700 // instructions for an intrinsic, even if it requires nontrivial legalization. 701 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 702 switch (ID) { 703 case Intrinsic::fma: // TODO: fmuladd 704 // There's a small benefit to using vector ops in the legalized code. 705 case Intrinsic::round: 706 case Intrinsic::uadd_sat: 707 case Intrinsic::usub_sat: 708 case Intrinsic::sadd_sat: 709 case Intrinsic::ssub_sat: 710 return true; 711 default: 712 return false; 713 } 714 } 715 716 int GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 717 TTI::TargetCostKind CostKind) { 718 if (ICA.getID() == Intrinsic::fabs) 719 return 0; 720 721 if (!intrinsicHasPackedVectorBenefit(ICA.getID())) 722 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 723 724 Type *RetTy = ICA.getReturnType(); 725 EVT OrigTy = TLI->getValueType(DL, RetTy); 726 if (!OrigTy.isSimple()) { 727 if (CostKind != TTI::TCK_CodeSize) 728 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 729 730 // TODO: Combine these two logic paths. 731 if (ICA.isTypeBasedOnly()) 732 return getTypeBasedIntrinsicInstrCost(ICA, CostKind); 733 734 Type *RetTy = ICA.getReturnType(); 735 unsigned VF = ICA.getVectorFactor().getFixedValue(); 736 unsigned RetVF = 737 (RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements() 738 : 1); 739 assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type"); 740 const IntrinsicInst *I = ICA.getInst(); 741 const SmallVectorImpl<const Value *> &Args = ICA.getArgs(); 742 FastMathFlags FMF = ICA.getFlags(); 743 // Assume that we need to scalarize this intrinsic. 744 SmallVector<Type *, 4> Types; 745 for (const Value *Op : Args) { 746 Type *OpTy = Op->getType(); 747 assert(VF == 1 || !OpTy->isVectorTy()); 748 Types.push_back(VF == 1 ? OpTy : FixedVectorType::get(OpTy, VF)); 749 } 750 751 if (VF > 1 && !RetTy->isVoidTy()) 752 RetTy = FixedVectorType::get(RetTy, VF); 753 754 // Compute the scalarization overhead based on Args for a vector 755 // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while 756 // CostModel will pass a vector RetTy and VF is 1. 757 unsigned ScalarizationCost = std::numeric_limits<unsigned>::max(); 758 if (RetVF > 1 || VF > 1) { 759 ScalarizationCost = 0; 760 if (!RetTy->isVoidTy()) 761 ScalarizationCost += 762 getScalarizationOverhead(cast<VectorType>(RetTy), true, false); 763 ScalarizationCost += getOperandsScalarizationOverhead(Args, VF); 764 } 765 766 IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, Types, FMF, 767 ScalarizationCost, I); 768 return getIntrinsicInstrCost(Attrs, CostKind); 769 } 770 771 // Legalize the type. 772 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 773 774 unsigned NElts = LT.second.isVector() ? 775 LT.second.getVectorNumElements() : 1; 776 777 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 778 779 if (SLT == MVT::f64) 780 return LT.first * NElts * get64BitInstrCost(CostKind); 781 782 if (ST->has16BitInsts() && SLT == MVT::f16) 783 NElts = (NElts + 1) / 2; 784 785 // TODO: Get more refined intrinsic costs? 786 unsigned InstRate = getQuarterRateInstrCost(CostKind); 787 if (ICA.getID() == Intrinsic::fma) { 788 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind) 789 : getQuarterRateInstrCost(CostKind); 790 } 791 792 return LT.first * NElts * InstRate; 793 } 794 795 unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode, 796 TTI::TargetCostKind CostKind) { 797 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 798 return Opcode == Instruction::PHI ? 0 : 1; 799 800 // XXX - For some reason this isn't called for switch. 801 switch (Opcode) { 802 case Instruction::Br: 803 case Instruction::Ret: 804 return 10; 805 default: 806 return BaseT::getCFInstrCost(Opcode, CostKind); 807 } 808 } 809 810 int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 811 bool IsPairwise, 812 TTI::TargetCostKind CostKind) { 813 EVT OrigTy = TLI->getValueType(DL, Ty); 814 815 // Computes cost on targets that have packed math instructions(which support 816 // 16-bit types only). 817 if (IsPairwise || 818 !ST->hasVOP3PInsts() || 819 OrigTy.getScalarSizeInBits() != 16) 820 return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind); 821 822 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 823 return LT.first * getFullRateInstrCost(); 824 } 825 826 int GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 827 bool IsPairwise, bool IsUnsigned, 828 TTI::TargetCostKind CostKind) { 829 EVT OrigTy = TLI->getValueType(DL, Ty); 830 831 // Computes cost on targets that have packed math instructions(which support 832 // 16-bit types only). 833 if (IsPairwise || 834 !ST->hasVOP3PInsts() || 835 OrigTy.getScalarSizeInBits() != 16) 836 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned, 837 CostKind); 838 839 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 840 return LT.first * getHalfRateInstrCost(CostKind); 841 } 842 843 int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 844 unsigned Index) { 845 switch (Opcode) { 846 case Instruction::ExtractElement: 847 case Instruction::InsertElement: { 848 unsigned EltSize 849 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 850 if (EltSize < 32) { 851 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 852 return 0; 853 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 854 } 855 856 // Extracts are just reads of a subregister, so are free. Inserts are 857 // considered free because we don't want to have any cost for scalarizing 858 // operations, and we don't have to copy into a different register class. 859 860 // Dynamic indexing isn't free and is best avoided. 861 return Index == ~0u ? 2 : 0; 862 } 863 default: 864 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 865 } 866 } 867 868 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 869 /// this is analyzing the collective result of all output registers. Otherwise, 870 /// this is only querying a specific result index if this returns multiple 871 /// registers in a struct. 872 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 873 const CallInst *CI, ArrayRef<unsigned> Indices) const { 874 // TODO: Handle complex extract indices 875 if (Indices.size() > 1) 876 return true; 877 878 const DataLayout &DL = CI->getModule()->getDataLayout(); 879 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 880 TargetLowering::AsmOperandInfoVector TargetConstraints = 881 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 882 883 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 884 885 int OutputIdx = 0; 886 for (auto &TC : TargetConstraints) { 887 if (TC.Type != InlineAsm::isOutput) 888 continue; 889 890 // Skip outputs we don't care about. 891 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 892 continue; 893 894 TLI->ComputeConstraintToUse(TC, SDValue()); 895 896 Register AssignedReg; 897 const TargetRegisterClass *RC; 898 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 899 TRI, TC.ConstraintCode, TC.ConstraintVT); 900 if (AssignedReg) { 901 // FIXME: This is a workaround for getRegForInlineAsmConstraint 902 // returning VS_32 903 RC = TRI->getPhysRegClass(AssignedReg); 904 } 905 906 // For AGPR constraints null is returned on subtargets without AGPRs, so 907 // assume divergent for null. 908 if (!RC || !TRI->isSGPRClass(RC)) 909 return true; 910 } 911 912 return false; 913 } 914 915 /// \returns true if the new GPU divergence analysis is enabled. 916 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 917 return !UseLegacyDA; 918 } 919 920 /// \returns true if the result of the value could potentially be 921 /// different across workitems in a wavefront. 922 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 923 if (const Argument *A = dyn_cast<Argument>(V)) 924 return !AMDGPU::isArgPassedInSGPR(A); 925 926 // Loads from the private and flat address spaces are divergent, because 927 // threads can execute the load instruction with the same inputs and get 928 // different results. 929 // 930 // All other loads are not divergent, because if threads issue loads with the 931 // same arguments, they will always get the same result. 932 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 933 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 934 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 935 936 // Atomics are divergent because they are executed sequentially: when an 937 // atomic operation refers to the same address in each thread, then each 938 // thread after the first sees the value written by the previous thread as 939 // original value. 940 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 941 return true; 942 943 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 944 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 945 946 // Assume all function calls are a source of divergence. 947 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 948 if (CI->isInlineAsm()) 949 return isInlineAsmSourceOfDivergence(CI); 950 return true; 951 } 952 953 // Assume all function calls are a source of divergence. 954 if (isa<InvokeInst>(V)) 955 return true; 956 957 return false; 958 } 959 960 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 961 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 962 switch (Intrinsic->getIntrinsicID()) { 963 default: 964 return false; 965 case Intrinsic::amdgcn_readfirstlane: 966 case Intrinsic::amdgcn_readlane: 967 case Intrinsic::amdgcn_icmp: 968 case Intrinsic::amdgcn_fcmp: 969 case Intrinsic::amdgcn_ballot: 970 case Intrinsic::amdgcn_if_break: 971 return true; 972 } 973 } 974 975 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 976 if (CI->isInlineAsm()) 977 return !isInlineAsmSourceOfDivergence(CI); 978 return false; 979 } 980 981 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 982 if (!ExtValue) 983 return false; 984 985 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 986 if (!CI) 987 return false; 988 989 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 990 switch (Intrinsic->getIntrinsicID()) { 991 default: 992 return false; 993 case Intrinsic::amdgcn_if: 994 case Intrinsic::amdgcn_else: { 995 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 996 return Indices.size() == 1 && Indices[0] == 1; 997 } 998 } 999 } 1000 1001 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 1002 // divergent for the overall struct return. We need to override it in the 1003 // case we're extracting an SGPR component here. 1004 if (CI->isInlineAsm()) 1005 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 1006 1007 return false; 1008 } 1009 1010 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 1011 Intrinsic::ID IID) const { 1012 switch (IID) { 1013 case Intrinsic::amdgcn_atomic_inc: 1014 case Intrinsic::amdgcn_atomic_dec: 1015 case Intrinsic::amdgcn_ds_fadd: 1016 case Intrinsic::amdgcn_ds_fmin: 1017 case Intrinsic::amdgcn_ds_fmax: 1018 case Intrinsic::amdgcn_is_shared: 1019 case Intrinsic::amdgcn_is_private: 1020 OpIndexes.push_back(0); 1021 return true; 1022 default: 1023 return false; 1024 } 1025 } 1026 1027 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 1028 Value *OldV, 1029 Value *NewV) const { 1030 auto IntrID = II->getIntrinsicID(); 1031 switch (IntrID) { 1032 case Intrinsic::amdgcn_atomic_inc: 1033 case Intrinsic::amdgcn_atomic_dec: 1034 case Intrinsic::amdgcn_ds_fadd: 1035 case Intrinsic::amdgcn_ds_fmin: 1036 case Intrinsic::amdgcn_ds_fmax: { 1037 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 1038 if (!IsVolatile->isZero()) 1039 return nullptr; 1040 Module *M = II->getParent()->getParent()->getParent(); 1041 Type *DestTy = II->getType(); 1042 Type *SrcTy = NewV->getType(); 1043 Function *NewDecl = 1044 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 1045 II->setArgOperand(0, NewV); 1046 II->setCalledFunction(NewDecl); 1047 return II; 1048 } 1049 case Intrinsic::amdgcn_is_shared: 1050 case Intrinsic::amdgcn_is_private: { 1051 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 1052 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 1053 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1054 LLVMContext &Ctx = NewV->getType()->getContext(); 1055 ConstantInt *NewVal = (TrueAS == NewAS) ? 1056 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 1057 return NewVal; 1058 } 1059 case Intrinsic::ptrmask: { 1060 unsigned OldAS = OldV->getType()->getPointerAddressSpace(); 1061 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1062 Value *MaskOp = II->getArgOperand(1); 1063 Type *MaskTy = MaskOp->getType(); 1064 1065 bool DoTruncate = false; 1066 1067 const GCNTargetMachine &TM = 1068 static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine()); 1069 if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) { 1070 // All valid 64-bit to 32-bit casts work by chopping off the high 1071 // bits. Any masking only clearing the low bits will also apply in the new 1072 // address space. 1073 if (DL.getPointerSizeInBits(OldAS) != 64 || 1074 DL.getPointerSizeInBits(NewAS) != 32) 1075 return nullptr; 1076 1077 // TODO: Do we need to thread more context in here? 1078 KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II); 1079 if (Known.countMinLeadingOnes() < 32) 1080 return nullptr; 1081 1082 DoTruncate = true; 1083 } 1084 1085 IRBuilder<> B(II); 1086 if (DoTruncate) { 1087 MaskTy = B.getInt32Ty(); 1088 MaskOp = B.CreateTrunc(MaskOp, MaskTy); 1089 } 1090 1091 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy}, 1092 {NewV, MaskOp}); 1093 } 1094 default: 1095 return nullptr; 1096 } 1097 } 1098 1099 unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *VT, 1100 int Index, VectorType *SubTp) { 1101 if (ST->hasVOP3PInsts()) { 1102 if (cast<FixedVectorType>(VT)->getNumElements() == 2 && 1103 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 1104 // With op_sel VOP3P instructions freely can access the low half or high 1105 // half of a register, so any swizzle is free. 1106 1107 switch (Kind) { 1108 case TTI::SK_Broadcast: 1109 case TTI::SK_Reverse: 1110 case TTI::SK_PermuteSingleSrc: 1111 return 0; 1112 default: 1113 break; 1114 } 1115 } 1116 } 1117 1118 return BaseT::getShuffleCost(Kind, VT, Index, SubTp); 1119 } 1120 1121 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 1122 const Function *Callee) const { 1123 const TargetMachine &TM = getTLI()->getTargetMachine(); 1124 const GCNSubtarget *CallerST 1125 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 1126 const GCNSubtarget *CalleeST 1127 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 1128 1129 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 1130 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 1131 1132 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 1133 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 1134 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 1135 return false; 1136 1137 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 1138 // no way to support merge for backend defined attributes. 1139 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 1140 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 1141 if (!CallerMode.isInlineCompatible(CalleeMode)) 1142 return false; 1143 1144 // Hack to make compile times reasonable. 1145 if (InlineMaxBB && !Callee->hasFnAttribute(Attribute::InlineHint)) { 1146 // Single BB does not increase total BB amount, thus subtract 1. 1147 size_t BBSize = Caller->size() + Callee->size() - 1; 1148 return BBSize <= InlineMaxBB; 1149 } 1150 1151 return true; 1152 } 1153 1154 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const { 1155 // If we have a pointer to private array passed into a function 1156 // it will not be optimized out, leaving scratch usage. 1157 // Increase the inline threshold to allow inlining in this case. 1158 uint64_t AllocaSize = 0; 1159 SmallPtrSet<const AllocaInst *, 8> AIVisited; 1160 for (Value *PtrArg : CB->args()) { 1161 PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType()); 1162 if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS && 1163 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS)) 1164 continue; 1165 1166 PtrArg = getUnderlyingObject(PtrArg); 1167 if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) { 1168 if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second) 1169 continue; 1170 AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType()); 1171 // If the amount of stack memory is excessive we will not be able 1172 // to get rid of the scratch anyway, bail out. 1173 if (AllocaSize > ArgAllocaCutoff) { 1174 AllocaSize = 0; 1175 break; 1176 } 1177 } 1178 } 1179 if (AllocaSize) 1180 return ArgAllocaCost; 1181 return 0; 1182 } 1183 1184 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1185 TTI::UnrollingPreferences &UP) { 1186 CommonTTI.getUnrollingPreferences(L, SE, UP); 1187 } 1188 1189 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1190 TTI::PeelingPreferences &PP) { 1191 CommonTTI.getPeelingPreferences(L, SE, PP); 1192 } 1193 1194 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const { 1195 return ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind) 1196 : getQuarterRateInstrCost(CostKind); 1197 } 1198 1199 R600TTIImpl::R600TTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 1200 : BaseT(TM, F.getParent()->getDataLayout()), 1201 ST(static_cast<const R600Subtarget *>(TM->getSubtargetImpl(F))), 1202 TLI(ST->getTargetLowering()), CommonTTI(TM, F) {} 1203 1204 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 1205 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 1206 } 1207 1208 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const { 1209 return getHardwareNumberOfRegisters(Vec); 1210 } 1211 1212 unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const { 1213 return 32; 1214 } 1215 1216 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const { 1217 return 32; 1218 } 1219 1220 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 1221 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 1222 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) 1223 return 128; 1224 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 1225 AddrSpace == AMDGPUAS::REGION_ADDRESS) 1226 return 64; 1227 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 1228 return 32; 1229 1230 if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS || 1231 AddrSpace == AMDGPUAS::PARAM_I_ADDRESS || 1232 (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 && 1233 AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15))) 1234 return 128; 1235 llvm_unreachable("unhandled address space"); 1236 } 1237 1238 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 1239 Align Alignment, 1240 unsigned AddrSpace) const { 1241 // We allow vectorization of flat stores, even though we may need to decompose 1242 // them later if they may access private memory. We don't have enough context 1243 // here, and legalization can handle it. 1244 return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS); 1245 } 1246 1247 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 1248 Align Alignment, 1249 unsigned AddrSpace) const { 1250 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1251 } 1252 1253 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 1254 Align Alignment, 1255 unsigned AddrSpace) const { 1256 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 1257 } 1258 1259 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1260 // Disable unrolling if the loop is not vectorized. 1261 // TODO: Enable this again. 1262 if (VF == 1) 1263 return 1; 1264 1265 return 8; 1266 } 1267 1268 unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode, 1269 TTI::TargetCostKind CostKind) { 1270 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 1271 return Opcode == Instruction::PHI ? 0 : 1; 1272 1273 // XXX - For some reason this isn't called for switch. 1274 switch (Opcode) { 1275 case Instruction::Br: 1276 case Instruction::Ret: 1277 return 10; 1278 default: 1279 return BaseT::getCFInstrCost(Opcode, CostKind); 1280 } 1281 } 1282 1283 int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 1284 unsigned Index) { 1285 switch (Opcode) { 1286 case Instruction::ExtractElement: 1287 case Instruction::InsertElement: { 1288 unsigned EltSize 1289 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 1290 if (EltSize < 32) { 1291 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1292 } 1293 1294 // Extracts are just reads of a subregister, so are free. Inserts are 1295 // considered free because we don't want to have any cost for scalarizing 1296 // operations, and we don't have to copy into a different register class. 1297 1298 // Dynamic indexing isn't free and is best avoided. 1299 return Index == ~0u ? 2 : 0; 1300 } 1301 default: 1302 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 1303 } 1304 } 1305 1306 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1307 TTI::UnrollingPreferences &UP) { 1308 CommonTTI.getUnrollingPreferences(L, SE, UP); 1309 } 1310 1311 void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1312 TTI::PeelingPreferences &PP) { 1313 CommonTTI.getPeelingPreferences(L, SE, PP); 1314 } 1315