1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // This file implements a TargetTransformInfo analysis pass specific to the 11 // AMDGPU target machine. It uses the target's detailed information to provide 12 // more precise answers to certain TTI queries, while letting the target 13 // independent and default TTI implementations handle the rest. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPUTargetTransformInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/IRBuilder.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Support/KnownBits.h" 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "AMDGPUtti" 30 31 static cl::opt<unsigned> UnrollThresholdPrivate( 32 "amdgpu-unroll-threshold-private", 33 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 34 cl::init(2700), cl::Hidden); 35 36 static cl::opt<unsigned> UnrollThresholdLocal( 37 "amdgpu-unroll-threshold-local", 38 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 39 cl::init(1000), cl::Hidden); 40 41 static cl::opt<unsigned> UnrollThresholdIf( 42 "amdgpu-unroll-threshold-if", 43 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 44 cl::init(200), cl::Hidden); 45 46 static cl::opt<bool> UnrollRuntimeLocal( 47 "amdgpu-unroll-runtime-local", 48 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 49 cl::init(true), cl::Hidden); 50 51 static cl::opt<bool> UseLegacyDA( 52 "amdgpu-use-legacy-divergence-analysis", 53 cl::desc("Enable legacy divergence analysis for AMDGPU"), 54 cl::init(false), cl::Hidden); 55 56 static cl::opt<unsigned> UnrollMaxBlockToAnalyze( 57 "amdgpu-unroll-max-block-to-analyze", 58 cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), 59 cl::init(32), cl::Hidden); 60 61 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost", 62 cl::Hidden, cl::init(4000), 63 cl::desc("Cost of alloca argument")); 64 65 // If the amount of scratch memory to eliminate exceeds our ability to allocate 66 // it into registers we gain nothing by aggressively inlining functions for that 67 // heuristic. 68 static cl::opt<unsigned> 69 ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden, 70 cl::init(256), 71 cl::desc("Maximum alloca size to use for inline cost")); 72 73 // Inliner constraint to achieve reasonable compilation time. 74 static cl::opt<size_t> InlineMaxBB( 75 "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100), 76 cl::desc("Maximum number of BBs allowed in a function after inlining" 77 " (compile time constraint)")); 78 79 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 80 unsigned Depth = 0) { 81 const Instruction *I = dyn_cast<Instruction>(Cond); 82 if (!I) 83 return false; 84 85 for (const Value *V : I->operand_values()) { 86 if (!L->contains(I)) 87 continue; 88 if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 89 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 90 return SubLoop->contains(PHI); })) 91 return true; 92 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 93 return true; 94 } 95 return false; 96 } 97 98 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 99 : BaseT(TM, F.getParent()->getDataLayout()), 100 TargetTriple(TM->getTargetTriple()), 101 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 102 TLI(ST->getTargetLowering()) {} 103 104 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 105 TTI::UnrollingPreferences &UP, 106 OptimizationRemarkEmitter *ORE) { 107 const Function &F = *L->getHeader()->getParent(); 108 UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300); 109 UP.MaxCount = std::numeric_limits<unsigned>::max(); 110 UP.Partial = true; 111 112 // Conditional branch in a loop back edge needs 3 additional exec 113 // manipulations in average. 114 UP.BEInsns += 3; 115 116 // TODO: Do we want runtime unrolling? 117 118 // Maximum alloca size than can fit registers. Reserve 16 registers. 119 const unsigned MaxAlloca = (256 - 16) * 4; 120 unsigned ThresholdPrivate = UnrollThresholdPrivate; 121 unsigned ThresholdLocal = UnrollThresholdLocal; 122 123 // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the 124 // provided threshold value as the default for Threshold 125 if (MDNode *LoopUnrollThreshold = 126 findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) { 127 if (LoopUnrollThreshold->getNumOperands() == 2) { 128 ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>( 129 LoopUnrollThreshold->getOperand(1)); 130 if (MetaThresholdValue) { 131 // We will also use the supplied value for PartialThreshold for now. 132 // We may introduce additional metadata if it becomes necessary in the 133 // future. 134 UP.Threshold = MetaThresholdValue->getSExtValue(); 135 UP.PartialThreshold = UP.Threshold; 136 ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold); 137 ThresholdLocal = std::min(ThresholdLocal, UP.Threshold); 138 } 139 } 140 } 141 142 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 143 for (const BasicBlock *BB : L->getBlocks()) { 144 const DataLayout &DL = BB->getModule()->getDataLayout(); 145 unsigned LocalGEPsSeen = 0; 146 147 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 148 return SubLoop->contains(BB); })) 149 continue; // Block belongs to an inner loop. 150 151 for (const Instruction &I : *BB) { 152 // Unroll a loop which contains an "if" statement whose condition 153 // defined by a PHI belonging to the loop. This may help to eliminate 154 // if region and potentially even PHI itself, saving on both divergence 155 // and registers used for the PHI. 156 // Add a small bonus for each of such "if" statements. 157 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 158 if (UP.Threshold < MaxBoost && Br->isConditional()) { 159 BasicBlock *Succ0 = Br->getSuccessor(0); 160 BasicBlock *Succ1 = Br->getSuccessor(1); 161 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 162 (L->contains(Succ1) && L->isLoopExiting(Succ1))) 163 continue; 164 if (dependsOnLocalPhi(L, Br->getCondition())) { 165 UP.Threshold += UnrollThresholdIf; 166 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 167 << " for loop:\n" 168 << *L << " due to " << *Br << '\n'); 169 if (UP.Threshold >= MaxBoost) 170 return; 171 } 172 } 173 continue; 174 } 175 176 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 177 if (!GEP) 178 continue; 179 180 unsigned AS = GEP->getAddressSpace(); 181 unsigned Threshold = 0; 182 if (AS == AMDGPUAS::PRIVATE_ADDRESS) 183 Threshold = ThresholdPrivate; 184 else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 185 Threshold = ThresholdLocal; 186 else 187 continue; 188 189 if (UP.Threshold >= Threshold) 190 continue; 191 192 if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 193 const Value *Ptr = GEP->getPointerOperand(); 194 const AllocaInst *Alloca = 195 dyn_cast<AllocaInst>(getUnderlyingObject(Ptr)); 196 if (!Alloca || !Alloca->isStaticAlloca()) 197 continue; 198 Type *Ty = Alloca->getAllocatedType(); 199 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 200 if (AllocaSize > MaxAlloca) 201 continue; 202 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 203 AS == AMDGPUAS::REGION_ADDRESS) { 204 LocalGEPsSeen++; 205 // Inhibit unroll for local memory if we have seen addressing not to 206 // a variable, most likely we will be unable to combine it. 207 // Do not unroll too deep inner loops for local memory to give a chance 208 // to unroll an outer loop for a more important reason. 209 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 210 (!isa<GlobalVariable>(GEP->getPointerOperand()) && 211 !isa<Argument>(GEP->getPointerOperand()))) 212 continue; 213 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 214 << *L << " due to LDS use.\n"); 215 UP.Runtime = UnrollRuntimeLocal; 216 } 217 218 // Check if GEP depends on a value defined by this loop itself. 219 bool HasLoopDef = false; 220 for (const Value *Op : GEP->operands()) { 221 const Instruction *Inst = dyn_cast<Instruction>(Op); 222 if (!Inst || L->isLoopInvariant(Op)) 223 continue; 224 225 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 226 return SubLoop->contains(Inst); })) 227 continue; 228 HasLoopDef = true; 229 break; 230 } 231 if (!HasLoopDef) 232 continue; 233 234 // We want to do whatever we can to limit the number of alloca 235 // instructions that make it through to the code generator. allocas 236 // require us to use indirect addressing, which is slow and prone to 237 // compiler bugs. If this loop does an address calculation on an 238 // alloca ptr, then we want to use a higher than normal loop unroll 239 // threshold. This will give SROA a better chance to eliminate these 240 // allocas. 241 // 242 // We also want to have more unrolling for local memory to let ds 243 // instructions with different offsets combine. 244 // 245 // Don't use the maximum allowed value here as it will make some 246 // programs way too big. 247 UP.Threshold = Threshold; 248 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 249 << " for loop:\n" 250 << *L << " due to " << *GEP << '\n'); 251 if (UP.Threshold >= MaxBoost) 252 return; 253 } 254 255 // If we got a GEP in a small BB from inner loop then increase max trip 256 // count to analyze for better estimation cost in unroll 257 if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze) 258 UP.MaxIterationsCountToAnalyze = 32; 259 } 260 } 261 262 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 263 TTI::PeelingPreferences &PP) { 264 BaseT::getPeelingPreferences(L, SE, PP); 265 } 266 267 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = { 268 // Codegen control options which don't matter. 269 AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler, 270 AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal, 271 AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess, 272 AMDGPU::FeatureUnalignedAccessMode, 273 274 AMDGPU::FeatureAutoWaitcntBeforeBarrier, 275 276 // Property of the kernel/environment which can't actually differ. 277 AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK, 278 AMDGPU::FeatureTrapHandler, 279 280 // The default assumption needs to be ecc is enabled, but no directly 281 // exposed operations depend on it, so it can be safely inlined. 282 AMDGPU::FeatureSRAMECC, 283 284 // Perf-tuning features 285 AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops}; 286 287 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 288 : BaseT(TM, F.getParent()->getDataLayout()), 289 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 290 TLI(ST->getTargetLowering()), CommonTTI(TM, F), 291 IsGraphics(AMDGPU::isGraphics(F.getCallingConv())), 292 MaxVGPRs(ST->getMaxNumVGPRs( 293 std::max(ST->getWavesPerEU(F).first, 294 ST->getWavesPerEUForWorkGroup( 295 ST->getFlatWorkGroupSizes(F).second)))) { 296 AMDGPU::SIModeRegisterDefaults Mode(F); 297 HasFP32Denormals = Mode.allFP32Denormals(); 298 HasFP64FP16Denormals = Mode.allFP64FP16Denormals(); 299 } 300 301 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const { 302 // The concept of vector registers doesn't really exist. Some packed vector 303 // operations operate on the normal 32-bit registers. 304 return MaxVGPRs; 305 } 306 307 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const { 308 // This is really the number of registers to fill when vectorizing / 309 // interleaving loops, so we lie to avoid trying to use all registers. 310 return getHardwareNumberOfRegisters(Vec) >> 3; 311 } 312 313 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const { 314 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 315 const TargetRegisterClass *RC = TRI->getRegClass(RCID); 316 unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32; 317 return getHardwareNumberOfRegisters(false) / NumVGPRs; 318 } 319 320 TypeSize 321 GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 322 switch (K) { 323 case TargetTransformInfo::RGK_Scalar: 324 return TypeSize::getFixed(32); 325 case TargetTransformInfo::RGK_FixedWidthVector: 326 return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32); 327 case TargetTransformInfo::RGK_ScalableVector: 328 return TypeSize::getScalable(0); 329 } 330 llvm_unreachable("Unsupported register kind"); 331 } 332 333 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 334 return 32; 335 } 336 337 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 338 if (Opcode == Instruction::Load || Opcode == Instruction::Store) 339 return 32 * 4 / ElemWidth; 340 return (ElemWidth == 16 && ST->has16BitInsts()) ? 2 341 : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2 342 : 1; 343 } 344 345 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 346 unsigned ChainSizeInBytes, 347 VectorType *VecTy) const { 348 unsigned VecRegBitWidth = VF * LoadSize; 349 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 350 // TODO: Support element-size less than 32bit? 351 return 128 / LoadSize; 352 353 return VF; 354 } 355 356 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 357 unsigned ChainSizeInBytes, 358 VectorType *VecTy) const { 359 unsigned VecRegBitWidth = VF * StoreSize; 360 if (VecRegBitWidth > 128) 361 return 128 / StoreSize; 362 363 return VF; 364 } 365 366 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 367 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 368 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 369 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 370 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) { 371 return 512; 372 } 373 374 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 375 return 8 * ST->getMaxPrivateElementSize(); 376 377 // Common to flat, global, local and region. Assume for unknown addrspace. 378 return 128; 379 } 380 381 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 382 Align Alignment, 383 unsigned AddrSpace) const { 384 // We allow vectorization of flat stores, even though we may need to decompose 385 // them later if they may access private memory. We don't have enough context 386 // here, and legalization can handle it. 387 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 388 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 389 ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 390 } 391 return true; 392 } 393 394 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 395 Align Alignment, 396 unsigned AddrSpace) const { 397 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 398 } 399 400 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 401 Align Alignment, 402 unsigned AddrSpace) const { 403 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 404 } 405 406 // FIXME: Really we would like to issue multiple 128-bit loads and stores per 407 // iteration. Should we report a larger size and let it legalize? 408 // 409 // FIXME: Should we use narrower types for local/region, or account for when 410 // unaligned access is legal? 411 // 412 // FIXME: This could use fine tuning and microbenchmarks. 413 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, 414 unsigned SrcAddrSpace, 415 unsigned DestAddrSpace, 416 unsigned SrcAlign, 417 unsigned DestAlign) const { 418 unsigned MinAlign = std::min(SrcAlign, DestAlign); 419 420 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 421 // hardware into byte accesses. If you assume all alignments are equally 422 // probable, it's more efficient on average to use short accesses for this 423 // case. 424 if (MinAlign == 2) 425 return Type::getInt16Ty(Context); 426 427 // Not all subtargets have 128-bit DS instructions, and we currently don't 428 // form them by default. 429 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 430 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 431 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 432 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 433 return FixedVectorType::get(Type::getInt32Ty(Context), 2); 434 } 435 436 // Global memory works best with 16-byte accesses. Private memory will also 437 // hit this, although they'll be decomposed. 438 return FixedVectorType::get(Type::getInt32Ty(Context), 4); 439 } 440 441 void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 442 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 443 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 444 unsigned SrcAlign, unsigned DestAlign) const { 445 assert(RemainingBytes < 16); 446 447 unsigned MinAlign = std::min(SrcAlign, DestAlign); 448 449 if (MinAlign != 2) { 450 Type *I64Ty = Type::getInt64Ty(Context); 451 while (RemainingBytes >= 8) { 452 OpsOut.push_back(I64Ty); 453 RemainingBytes -= 8; 454 } 455 456 Type *I32Ty = Type::getInt32Ty(Context); 457 while (RemainingBytes >= 4) { 458 OpsOut.push_back(I32Ty); 459 RemainingBytes -= 4; 460 } 461 } 462 463 Type *I16Ty = Type::getInt16Ty(Context); 464 while (RemainingBytes >= 2) { 465 OpsOut.push_back(I16Ty); 466 RemainingBytes -= 2; 467 } 468 469 Type *I8Ty = Type::getInt8Ty(Context); 470 while (RemainingBytes) { 471 OpsOut.push_back(I8Ty); 472 --RemainingBytes; 473 } 474 } 475 476 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) { 477 // Disable unrolling if the loop is not vectorized. 478 // TODO: Enable this again. 479 if (VF == 1) 480 return 1; 481 482 return 8; 483 } 484 485 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 486 MemIntrinsicInfo &Info) const { 487 switch (Inst->getIntrinsicID()) { 488 case Intrinsic::amdgcn_atomic_inc: 489 case Intrinsic::amdgcn_atomic_dec: 490 case Intrinsic::amdgcn_ds_ordered_add: 491 case Intrinsic::amdgcn_ds_ordered_swap: 492 case Intrinsic::amdgcn_ds_fadd: 493 case Intrinsic::amdgcn_ds_fmin: 494 case Intrinsic::amdgcn_ds_fmax: { 495 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 496 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 497 if (!Ordering || !Volatile) 498 return false; // Invalid. 499 500 unsigned OrderingVal = Ordering->getZExtValue(); 501 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 502 return false; 503 504 Info.PtrVal = Inst->getArgOperand(0); 505 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 506 Info.ReadMem = true; 507 Info.WriteMem = true; 508 Info.IsVolatile = !Volatile->isZero(); 509 return true; 510 } 511 default: 512 return false; 513 } 514 } 515 516 InstructionCost GCNTTIImpl::getArithmeticInstrCost( 517 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 518 TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, 519 TTI::OperandValueProperties Opd1PropInfo, 520 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 521 const Instruction *CxtI) { 522 EVT OrigTy = TLI->getValueType(DL, Ty); 523 if (!OrigTy.isSimple()) { 524 // FIXME: We're having to query the throughput cost so that the basic 525 // implementation tries to generate legalize and scalarization costs. Maybe 526 // we could hoist the scalarization code here? 527 if (CostKind != TTI::TCK_CodeSize) 528 return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput, 529 Opd1Info, Opd2Info, Opd1PropInfo, 530 Opd2PropInfo, Args, CxtI); 531 // Scalarization 532 533 // Check if any of the operands are vector operands. 534 int ISD = TLI->InstructionOpcodeToISD(Opcode); 535 assert(ISD && "Invalid opcode"); 536 537 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 538 539 bool IsFloat = Ty->isFPOrFPVectorTy(); 540 // Assume that floating point arithmetic operations cost twice as much as 541 // integer operations. 542 unsigned OpCost = (IsFloat ? 2 : 1); 543 544 if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { 545 // The operation is legal. Assume it costs 1. 546 // TODO: Once we have extract/insert subvector cost we need to use them. 547 return LT.first * OpCost; 548 } 549 550 if (!TLI->isOperationExpand(ISD, LT.second)) { 551 // If the operation is custom lowered, then assume that the code is twice 552 // as expensive. 553 return LT.first * 2 * OpCost; 554 } 555 556 // Else, assume that we need to scalarize this op. 557 // TODO: If one of the types get legalized by splitting, handle this 558 // similarly to what getCastInstrCost() does. 559 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 560 unsigned Num = cast<FixedVectorType>(VTy)->getNumElements(); 561 InstructionCost Cost = getArithmeticInstrCost( 562 Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info, 563 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 564 // Return the cost of multiple scalar invocation plus the cost of 565 // inserting and extracting the values. 566 SmallVector<Type *> Tys(Args.size(), Ty); 567 return getScalarizationOverhead(VTy, Args, Tys) + Num * Cost; 568 } 569 570 // We don't know anything about this scalar instruction. 571 return OpCost; 572 } 573 574 // Legalize the type. 575 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 576 int ISD = TLI->InstructionOpcodeToISD(Opcode); 577 578 // Because we don't have any legal vector operations, but the legal types, we 579 // need to account for split vectors. 580 unsigned NElts = LT.second.isVector() ? 581 LT.second.getVectorNumElements() : 1; 582 583 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 584 585 switch (ISD) { 586 case ISD::SHL: 587 case ISD::SRL: 588 case ISD::SRA: 589 if (SLT == MVT::i64) 590 return get64BitInstrCost(CostKind) * LT.first * NElts; 591 592 if (ST->has16BitInsts() && SLT == MVT::i16) 593 NElts = (NElts + 1) / 2; 594 595 // i32 596 return getFullRateInstrCost() * LT.first * NElts; 597 case ISD::ADD: 598 case ISD::SUB: 599 case ISD::AND: 600 case ISD::OR: 601 case ISD::XOR: 602 if (SLT == MVT::i64) { 603 // and, or and xor are typically split into 2 VALU instructions. 604 return 2 * getFullRateInstrCost() * LT.first * NElts; 605 } 606 607 if (ST->has16BitInsts() && SLT == MVT::i16) 608 NElts = (NElts + 1) / 2; 609 610 return LT.first * NElts * getFullRateInstrCost(); 611 case ISD::MUL: { 612 const int QuarterRateCost = getQuarterRateInstrCost(CostKind); 613 if (SLT == MVT::i64) { 614 const int FullRateCost = getFullRateInstrCost(); 615 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 616 } 617 618 if (ST->has16BitInsts() && SLT == MVT::i16) 619 NElts = (NElts + 1) / 2; 620 621 // i32 622 return QuarterRateCost * NElts * LT.first; 623 } 624 case ISD::FMUL: 625 // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for 626 // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole 627 // fused operation. 628 if (CxtI && CxtI->hasOneUse()) 629 if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) { 630 const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode()); 631 if (OPC == ISD::FADD || OPC == ISD::FSUB) { 632 if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals) 633 return TargetTransformInfo::TCC_Free; 634 if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals) 635 return TargetTransformInfo::TCC_Free; 636 637 // Estimate all types may be fused with contract/unsafe flags 638 const TargetOptions &Options = TLI->getTargetMachine().Options; 639 if (Options.AllowFPOpFusion == FPOpFusion::Fast || 640 Options.UnsafeFPMath || 641 (FAdd->hasAllowContract() && CxtI->hasAllowContract())) 642 return TargetTransformInfo::TCC_Free; 643 } 644 } 645 LLVM_FALLTHROUGH; 646 case ISD::FADD: 647 case ISD::FSUB: 648 if (ST->hasPackedFP32Ops() && SLT == MVT::f32) 649 NElts = (NElts + 1) / 2; 650 if (SLT == MVT::f64) 651 return LT.first * NElts * get64BitInstrCost(CostKind); 652 653 if (ST->has16BitInsts() && SLT == MVT::f16) 654 NElts = (NElts + 1) / 2; 655 656 if (SLT == MVT::f32 || SLT == MVT::f16) 657 return LT.first * NElts * getFullRateInstrCost(); 658 break; 659 case ISD::FDIV: 660 case ISD::FREM: 661 // FIXME: frem should be handled separately. The fdiv in it is most of it, 662 // but the current lowering is also not entirely correct. 663 if (SLT == MVT::f64) { 664 int Cost = 7 * get64BitInstrCost(CostKind) + 665 getQuarterRateInstrCost(CostKind) + 666 3 * getHalfRateInstrCost(CostKind); 667 // Add cost of workaround. 668 if (!ST->hasUsableDivScaleConditionOutput()) 669 Cost += 3 * getFullRateInstrCost(); 670 671 return LT.first * Cost * NElts; 672 } 673 674 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 675 // TODO: This is more complicated, unsafe flags etc. 676 if ((SLT == MVT::f32 && !HasFP32Denormals) || 677 (SLT == MVT::f16 && ST->has16BitInsts())) { 678 return LT.first * getQuarterRateInstrCost(CostKind) * NElts; 679 } 680 } 681 682 if (SLT == MVT::f16 && ST->has16BitInsts()) { 683 // 2 x v_cvt_f32_f16 684 // f32 rcp 685 // f32 fmul 686 // v_cvt_f16_f32 687 // f16 div_fixup 688 int Cost = 689 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind); 690 return LT.first * Cost * NElts; 691 } 692 693 if (SLT == MVT::f32 || SLT == MVT::f16) { 694 // 4 more v_cvt_* insts without f16 insts support 695 int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() + 696 1 * getQuarterRateInstrCost(CostKind); 697 698 if (!HasFP32Denormals) { 699 // FP mode switches. 700 Cost += 2 * getFullRateInstrCost(); 701 } 702 703 return LT.first * NElts * Cost; 704 } 705 break; 706 case ISD::FNEG: 707 // Use the backend' estimation. If fneg is not free each element will cost 708 // one additional instruction. 709 return TLI->isFNegFree(SLT) ? 0 : NElts; 710 default: 711 break; 712 } 713 714 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, 715 Opd1PropInfo, Opd2PropInfo, Args, CxtI); 716 } 717 718 // Return true if there's a potential benefit from using v2f16/v2i16 719 // instructions for an intrinsic, even if it requires nontrivial legalization. 720 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 721 switch (ID) { 722 case Intrinsic::fma: // TODO: fmuladd 723 // There's a small benefit to using vector ops in the legalized code. 724 case Intrinsic::round: 725 case Intrinsic::uadd_sat: 726 case Intrinsic::usub_sat: 727 case Intrinsic::sadd_sat: 728 case Intrinsic::ssub_sat: 729 return true; 730 default: 731 return false; 732 } 733 } 734 735 InstructionCost 736 GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 737 TTI::TargetCostKind CostKind) { 738 if (ICA.getID() == Intrinsic::fabs) 739 return 0; 740 741 if (!intrinsicHasPackedVectorBenefit(ICA.getID())) 742 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 743 744 Type *RetTy = ICA.getReturnType(); 745 EVT OrigTy = TLI->getValueType(DL, RetTy); 746 if (!OrigTy.isSimple()) { 747 if (CostKind != TTI::TCK_CodeSize) 748 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 749 750 // TODO: Combine these two logic paths. 751 if (ICA.isTypeBasedOnly()) 752 return getTypeBasedIntrinsicInstrCost(ICA, CostKind); 753 754 unsigned RetVF = 755 (RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements() 756 : 1); 757 const IntrinsicInst *I = ICA.getInst(); 758 const SmallVectorImpl<const Value *> &Args = ICA.getArgs(); 759 FastMathFlags FMF = ICA.getFlags(); 760 // Assume that we need to scalarize this intrinsic. 761 762 // Compute the scalarization overhead based on Args for a vector 763 // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while 764 // CostModel will pass a vector RetTy and VF is 1. 765 InstructionCost ScalarizationCost = InstructionCost::getInvalid(); 766 if (RetVF > 1) { 767 ScalarizationCost = 0; 768 if (!RetTy->isVoidTy()) 769 ScalarizationCost += 770 getScalarizationOverhead(cast<VectorType>(RetTy), true, false); 771 ScalarizationCost += 772 getOperandsScalarizationOverhead(Args, ICA.getArgTypes()); 773 } 774 775 IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, ICA.getArgTypes(), FMF, I, 776 ScalarizationCost); 777 return getIntrinsicInstrCost(Attrs, CostKind); 778 } 779 780 // Legalize the type. 781 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); 782 783 unsigned NElts = LT.second.isVector() ? 784 LT.second.getVectorNumElements() : 1; 785 786 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 787 788 if (SLT == MVT::f64) 789 return LT.first * NElts * get64BitInstrCost(CostKind); 790 791 if ((ST->has16BitInsts() && SLT == MVT::f16) || 792 (ST->hasPackedFP32Ops() && SLT == MVT::f32)) 793 NElts = (NElts + 1) / 2; 794 795 // TODO: Get more refined intrinsic costs? 796 unsigned InstRate = getQuarterRateInstrCost(CostKind); 797 798 switch (ICA.getID()) { 799 case Intrinsic::fma: 800 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind) 801 : getQuarterRateInstrCost(CostKind); 802 break; 803 case Intrinsic::uadd_sat: 804 case Intrinsic::usub_sat: 805 case Intrinsic::sadd_sat: 806 case Intrinsic::ssub_sat: 807 static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16}; 808 if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) 809 NElts = 1; 810 break; 811 } 812 813 return LT.first * NElts * InstRate; 814 } 815 816 InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode, 817 TTI::TargetCostKind CostKind, 818 const Instruction *I) { 819 assert((I == nullptr || I->getOpcode() == Opcode) && 820 "Opcode should reflect passed instruction."); 821 const bool SCost = 822 (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency); 823 const int CBrCost = SCost ? 5 : 7; 824 switch (Opcode) { 825 case Instruction::Br: { 826 // Branch instruction takes about 4 slots on gfx900. 827 auto BI = dyn_cast_or_null<BranchInst>(I); 828 if (BI && BI->isUnconditional()) 829 return SCost ? 1 : 4; 830 // Suppose conditional branch takes additional 3 exec manipulations 831 // instructions in average. 832 return CBrCost; 833 } 834 case Instruction::Switch: { 835 auto SI = dyn_cast_or_null<SwitchInst>(I); 836 // Each case (including default) takes 1 cmp + 1 cbr instructions in 837 // average. 838 return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1); 839 } 840 case Instruction::Ret: 841 return SCost ? 1 : 10; 842 } 843 return BaseT::getCFInstrCost(Opcode, CostKind, I); 844 } 845 846 InstructionCost 847 GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 848 Optional<FastMathFlags> FMF, 849 TTI::TargetCostKind CostKind) { 850 if (TTI::requiresOrderedReduction(FMF)) 851 return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); 852 853 EVT OrigTy = TLI->getValueType(DL, Ty); 854 855 // Computes cost on targets that have packed math instructions(which support 856 // 16-bit types only). 857 if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16) 858 return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); 859 860 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 861 return LT.first * getFullRateInstrCost(); 862 } 863 864 InstructionCost 865 GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 866 bool IsUnsigned, 867 TTI::TargetCostKind CostKind) { 868 EVT OrigTy = TLI->getValueType(DL, Ty); 869 870 // Computes cost on targets that have packed math instructions(which support 871 // 16-bit types only). 872 if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16) 873 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); 874 875 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 876 return LT.first * getHalfRateInstrCost(CostKind); 877 } 878 879 InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 880 unsigned Index) { 881 switch (Opcode) { 882 case Instruction::ExtractElement: 883 case Instruction::InsertElement: { 884 unsigned EltSize 885 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 886 if (EltSize < 32) { 887 if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 888 return 0; 889 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 890 } 891 892 // Extracts are just reads of a subregister, so are free. Inserts are 893 // considered free because we don't want to have any cost for scalarizing 894 // operations, and we don't have to copy into a different register class. 895 896 // Dynamic indexing isn't free and is best avoided. 897 return Index == ~0u ? 2 : 0; 898 } 899 default: 900 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 901 } 902 } 903 904 /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 905 /// this is analyzing the collective result of all output registers. Otherwise, 906 /// this is only querying a specific result index if this returns multiple 907 /// registers in a struct. 908 bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 909 const CallInst *CI, ArrayRef<unsigned> Indices) const { 910 // TODO: Handle complex extract indices 911 if (Indices.size() > 1) 912 return true; 913 914 const DataLayout &DL = CI->getModule()->getDataLayout(); 915 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 916 TargetLowering::AsmOperandInfoVector TargetConstraints = 917 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 918 919 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 920 921 int OutputIdx = 0; 922 for (auto &TC : TargetConstraints) { 923 if (TC.Type != InlineAsm::isOutput) 924 continue; 925 926 // Skip outputs we don't care about. 927 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 928 continue; 929 930 TLI->ComputeConstraintToUse(TC, SDValue()); 931 932 Register AssignedReg; 933 const TargetRegisterClass *RC; 934 std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint( 935 TRI, TC.ConstraintCode, TC.ConstraintVT); 936 if (AssignedReg) { 937 // FIXME: This is a workaround for getRegForInlineAsmConstraint 938 // returning VS_32 939 RC = TRI->getPhysRegClass(AssignedReg); 940 } 941 942 // For AGPR constraints null is returned on subtargets without AGPRs, so 943 // assume divergent for null. 944 if (!RC || !TRI->isSGPRClass(RC)) 945 return true; 946 } 947 948 return false; 949 } 950 951 /// \returns true if the new GPU divergence analysis is enabled. 952 bool GCNTTIImpl::useGPUDivergenceAnalysis() const { 953 return !UseLegacyDA; 954 } 955 956 /// \returns true if the result of the value could potentially be 957 /// different across workitems in a wavefront. 958 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 959 if (const Argument *A = dyn_cast<Argument>(V)) 960 return !AMDGPU::isArgPassedInSGPR(A); 961 962 // Loads from the private and flat address spaces are divergent, because 963 // threads can execute the load instruction with the same inputs and get 964 // different results. 965 // 966 // All other loads are not divergent, because if threads issue loads with the 967 // same arguments, they will always get the same result. 968 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 969 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 970 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 971 972 // Atomics are divergent because they are executed sequentially: when an 973 // atomic operation refers to the same address in each thread, then each 974 // thread after the first sees the value written by the previous thread as 975 // original value. 976 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 977 return true; 978 979 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 980 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 981 982 // Assume all function calls are a source of divergence. 983 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 984 if (CI->isInlineAsm()) 985 return isInlineAsmSourceOfDivergence(CI); 986 return true; 987 } 988 989 // Assume all function calls are a source of divergence. 990 if (isa<InvokeInst>(V)) 991 return true; 992 993 return false; 994 } 995 996 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 997 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 998 switch (Intrinsic->getIntrinsicID()) { 999 default: 1000 return false; 1001 case Intrinsic::amdgcn_readfirstlane: 1002 case Intrinsic::amdgcn_readlane: 1003 case Intrinsic::amdgcn_icmp: 1004 case Intrinsic::amdgcn_fcmp: 1005 case Intrinsic::amdgcn_ballot: 1006 case Intrinsic::amdgcn_if_break: 1007 return true; 1008 } 1009 } 1010 1011 if (const CallInst *CI = dyn_cast<CallInst>(V)) { 1012 if (CI->isInlineAsm()) 1013 return !isInlineAsmSourceOfDivergence(CI); 1014 return false; 1015 } 1016 1017 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 1018 if (!ExtValue) 1019 return false; 1020 1021 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 1022 if (!CI) 1023 return false; 1024 1025 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 1026 switch (Intrinsic->getIntrinsicID()) { 1027 default: 1028 return false; 1029 case Intrinsic::amdgcn_if: 1030 case Intrinsic::amdgcn_else: { 1031 ArrayRef<unsigned> Indices = ExtValue->getIndices(); 1032 return Indices.size() == 1 && Indices[0] == 1; 1033 } 1034 } 1035 } 1036 1037 // If we have inline asm returning mixed SGPR and VGPR results, we inferred 1038 // divergent for the overall struct return. We need to override it in the 1039 // case we're extracting an SGPR component here. 1040 if (CI->isInlineAsm()) 1041 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 1042 1043 return false; 1044 } 1045 1046 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 1047 Intrinsic::ID IID) const { 1048 switch (IID) { 1049 case Intrinsic::amdgcn_atomic_inc: 1050 case Intrinsic::amdgcn_atomic_dec: 1051 case Intrinsic::amdgcn_ds_fadd: 1052 case Intrinsic::amdgcn_ds_fmin: 1053 case Intrinsic::amdgcn_ds_fmax: 1054 case Intrinsic::amdgcn_is_shared: 1055 case Intrinsic::amdgcn_is_private: 1056 OpIndexes.push_back(0); 1057 return true; 1058 default: 1059 return false; 1060 } 1061 } 1062 1063 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 1064 Value *OldV, 1065 Value *NewV) const { 1066 auto IntrID = II->getIntrinsicID(); 1067 switch (IntrID) { 1068 case Intrinsic::amdgcn_atomic_inc: 1069 case Intrinsic::amdgcn_atomic_dec: 1070 case Intrinsic::amdgcn_ds_fadd: 1071 case Intrinsic::amdgcn_ds_fmin: 1072 case Intrinsic::amdgcn_ds_fmax: { 1073 const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4)); 1074 if (!IsVolatile->isZero()) 1075 return nullptr; 1076 Module *M = II->getParent()->getParent()->getParent(); 1077 Type *DestTy = II->getType(); 1078 Type *SrcTy = NewV->getType(); 1079 Function *NewDecl = 1080 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 1081 II->setArgOperand(0, NewV); 1082 II->setCalledFunction(NewDecl); 1083 return II; 1084 } 1085 case Intrinsic::amdgcn_is_shared: 1086 case Intrinsic::amdgcn_is_private: { 1087 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 1088 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 1089 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1090 LLVMContext &Ctx = NewV->getType()->getContext(); 1091 ConstantInt *NewVal = (TrueAS == NewAS) ? 1092 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 1093 return NewVal; 1094 } 1095 case Intrinsic::ptrmask: { 1096 unsigned OldAS = OldV->getType()->getPointerAddressSpace(); 1097 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1098 Value *MaskOp = II->getArgOperand(1); 1099 Type *MaskTy = MaskOp->getType(); 1100 1101 bool DoTruncate = false; 1102 1103 const GCNTargetMachine &TM = 1104 static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine()); 1105 if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) { 1106 // All valid 64-bit to 32-bit casts work by chopping off the high 1107 // bits. Any masking only clearing the low bits will also apply in the new 1108 // address space. 1109 if (DL.getPointerSizeInBits(OldAS) != 64 || 1110 DL.getPointerSizeInBits(NewAS) != 32) 1111 return nullptr; 1112 1113 // TODO: Do we need to thread more context in here? 1114 KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II); 1115 if (Known.countMinLeadingOnes() < 32) 1116 return nullptr; 1117 1118 DoTruncate = true; 1119 } 1120 1121 IRBuilder<> B(II); 1122 if (DoTruncate) { 1123 MaskTy = B.getInt32Ty(); 1124 MaskOp = B.CreateTrunc(MaskOp, MaskTy); 1125 } 1126 1127 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy}, 1128 {NewV, MaskOp}); 1129 } 1130 default: 1131 return nullptr; 1132 } 1133 } 1134 1135 InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1136 VectorType *VT, ArrayRef<int> Mask, 1137 int Index, VectorType *SubTp) { 1138 Kind = improveShuffleKindFromMask(Kind, Mask); 1139 if (ST->hasVOP3PInsts()) { 1140 if (cast<FixedVectorType>(VT)->getNumElements() == 2 && 1141 DL.getTypeSizeInBits(VT->getElementType()) == 16) { 1142 // With op_sel VOP3P instructions freely can access the low half or high 1143 // half of a register, so any swizzle is free. 1144 1145 switch (Kind) { 1146 case TTI::SK_Broadcast: 1147 case TTI::SK_Reverse: 1148 case TTI::SK_PermuteSingleSrc: 1149 return 0; 1150 default: 1151 break; 1152 } 1153 } 1154 } 1155 1156 return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp); 1157 } 1158 1159 bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 1160 const Function *Callee) const { 1161 const TargetMachine &TM = getTLI()->getTargetMachine(); 1162 const GCNSubtarget *CallerST 1163 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 1164 const GCNSubtarget *CalleeST 1165 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 1166 1167 const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 1168 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 1169 1170 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 1171 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 1172 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 1173 return false; 1174 1175 // FIXME: dx10_clamp can just take the caller setting, but there seems to be 1176 // no way to support merge for backend defined attributes. 1177 AMDGPU::SIModeRegisterDefaults CallerMode(*Caller); 1178 AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee); 1179 if (!CallerMode.isInlineCompatible(CalleeMode)) 1180 return false; 1181 1182 if (Callee->hasFnAttribute(Attribute::AlwaysInline) || 1183 Callee->hasFnAttribute(Attribute::InlineHint)) 1184 return true; 1185 1186 // Hack to make compile times reasonable. 1187 if (InlineMaxBB) { 1188 // Single BB does not increase total BB amount. 1189 if (Callee->size() == 1) 1190 return true; 1191 size_t BBSize = Caller->size() + Callee->size() - 1; 1192 return BBSize <= InlineMaxBB; 1193 } 1194 1195 return true; 1196 } 1197 1198 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const { 1199 // If we have a pointer to private array passed into a function 1200 // it will not be optimized out, leaving scratch usage. 1201 // Increase the inline threshold to allow inlining in this case. 1202 uint64_t AllocaSize = 0; 1203 SmallPtrSet<const AllocaInst *, 8> AIVisited; 1204 for (Value *PtrArg : CB->args()) { 1205 PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType()); 1206 if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS && 1207 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS)) 1208 continue; 1209 1210 PtrArg = getUnderlyingObject(PtrArg); 1211 if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) { 1212 if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second) 1213 continue; 1214 AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType()); 1215 // If the amount of stack memory is excessive we will not be able 1216 // to get rid of the scratch anyway, bail out. 1217 if (AllocaSize > ArgAllocaCutoff) { 1218 AllocaSize = 0; 1219 break; 1220 } 1221 } 1222 } 1223 if (AllocaSize) 1224 return ArgAllocaCost; 1225 return 0; 1226 } 1227 1228 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1229 TTI::UnrollingPreferences &UP, 1230 OptimizationRemarkEmitter *ORE) { 1231 CommonTTI.getUnrollingPreferences(L, SE, UP, ORE); 1232 } 1233 1234 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1235 TTI::PeelingPreferences &PP) { 1236 CommonTTI.getPeelingPreferences(L, SE, PP); 1237 } 1238 1239 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const { 1240 return ST->hasFullRate64Ops() 1241 ? getFullRateInstrCost() 1242 : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind) 1243 : getQuarterRateInstrCost(CostKind); 1244 } 1245