xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/KnownBits.h"
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "AMDGPUtti"
30 
31 static cl::opt<unsigned> UnrollThresholdPrivate(
32   "amdgpu-unroll-threshold-private",
33   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
34   cl::init(2700), cl::Hidden);
35 
36 static cl::opt<unsigned> UnrollThresholdLocal(
37   "amdgpu-unroll-threshold-local",
38   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
39   cl::init(1000), cl::Hidden);
40 
41 static cl::opt<unsigned> UnrollThresholdIf(
42   "amdgpu-unroll-threshold-if",
43   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
44   cl::init(200), cl::Hidden);
45 
46 static cl::opt<bool> UnrollRuntimeLocal(
47   "amdgpu-unroll-runtime-local",
48   cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
49   cl::init(true), cl::Hidden);
50 
51 static cl::opt<bool> UseLegacyDA(
52   "amdgpu-use-legacy-divergence-analysis",
53   cl::desc("Enable legacy divergence analysis for AMDGPU"),
54   cl::init(false), cl::Hidden);
55 
56 static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
57     "amdgpu-unroll-max-block-to-analyze",
58     cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
59     cl::init(32), cl::Hidden);
60 
61 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
62                                        cl::Hidden, cl::init(4000),
63                                        cl::desc("Cost of alloca argument"));
64 
65 // If the amount of scratch memory to eliminate exceeds our ability to allocate
66 // it into registers we gain nothing by aggressively inlining functions for that
67 // heuristic.
68 static cl::opt<unsigned>
69     ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
70                     cl::init(256),
71                     cl::desc("Maximum alloca size to use for inline cost"));
72 
73 // Inliner constraint to achieve reasonable compilation time.
74 static cl::opt<size_t> InlineMaxBB(
75     "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
76     cl::desc("Maximum number of BBs allowed in a function after inlining"
77              " (compile time constraint)"));
78 
79 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
80                               unsigned Depth = 0) {
81   const Instruction *I = dyn_cast<Instruction>(Cond);
82   if (!I)
83     return false;
84 
85   for (const Value *V : I->operand_values()) {
86     if (!L->contains(I))
87       continue;
88     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
89       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
90                   return SubLoop->contains(PHI); }))
91         return true;
92     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
93       return true;
94   }
95   return false;
96 }
97 
98 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
99     : BaseT(TM, F.getParent()->getDataLayout()),
100       TargetTriple(TM->getTargetTriple()),
101       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
102       TLI(ST->getTargetLowering()) {}
103 
104 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
105                                             TTI::UnrollingPreferences &UP,
106                                             OptimizationRemarkEmitter *ORE) {
107   const Function &F = *L->getHeader()->getParent();
108   UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
109   UP.MaxCount = std::numeric_limits<unsigned>::max();
110   UP.Partial = true;
111 
112   // Conditional branch in a loop back edge needs 3 additional exec
113   // manipulations in average.
114   UP.BEInsns += 3;
115 
116   // TODO: Do we want runtime unrolling?
117 
118   // Maximum alloca size than can fit registers. Reserve 16 registers.
119   const unsigned MaxAlloca = (256 - 16) * 4;
120   unsigned ThresholdPrivate = UnrollThresholdPrivate;
121   unsigned ThresholdLocal = UnrollThresholdLocal;
122 
123   // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
124   // provided threshold value as the default for Threshold
125   if (MDNode *LoopUnrollThreshold =
126           findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
127     if (LoopUnrollThreshold->getNumOperands() == 2) {
128       ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
129           LoopUnrollThreshold->getOperand(1));
130       if (MetaThresholdValue) {
131         // We will also use the supplied value for PartialThreshold for now.
132         // We may introduce additional metadata if it becomes necessary in the
133         // future.
134         UP.Threshold = MetaThresholdValue->getSExtValue();
135         UP.PartialThreshold = UP.Threshold;
136         ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
137         ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
138       }
139     }
140   }
141 
142   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
143   for (const BasicBlock *BB : L->getBlocks()) {
144     const DataLayout &DL = BB->getModule()->getDataLayout();
145     unsigned LocalGEPsSeen = 0;
146 
147     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
148                return SubLoop->contains(BB); }))
149         continue; // Block belongs to an inner loop.
150 
151     for (const Instruction &I : *BB) {
152       // Unroll a loop which contains an "if" statement whose condition
153       // defined by a PHI belonging to the loop. This may help to eliminate
154       // if region and potentially even PHI itself, saving on both divergence
155       // and registers used for the PHI.
156       // Add a small bonus for each of such "if" statements.
157       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
158         if (UP.Threshold < MaxBoost && Br->isConditional()) {
159           BasicBlock *Succ0 = Br->getSuccessor(0);
160           BasicBlock *Succ1 = Br->getSuccessor(1);
161           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
162               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
163             continue;
164           if (dependsOnLocalPhi(L, Br->getCondition())) {
165             UP.Threshold += UnrollThresholdIf;
166             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
167                               << " for loop:\n"
168                               << *L << " due to " << *Br << '\n');
169             if (UP.Threshold >= MaxBoost)
170               return;
171           }
172         }
173         continue;
174       }
175 
176       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
177       if (!GEP)
178         continue;
179 
180       unsigned AS = GEP->getAddressSpace();
181       unsigned Threshold = 0;
182       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
183         Threshold = ThresholdPrivate;
184       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
185         Threshold = ThresholdLocal;
186       else
187         continue;
188 
189       if (UP.Threshold >= Threshold)
190         continue;
191 
192       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
193         const Value *Ptr = GEP->getPointerOperand();
194         const AllocaInst *Alloca =
195             dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
196         if (!Alloca || !Alloca->isStaticAlloca())
197           continue;
198         Type *Ty = Alloca->getAllocatedType();
199         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
200         if (AllocaSize > MaxAlloca)
201           continue;
202       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
203                  AS == AMDGPUAS::REGION_ADDRESS) {
204         LocalGEPsSeen++;
205         // Inhibit unroll for local memory if we have seen addressing not to
206         // a variable, most likely we will be unable to combine it.
207         // Do not unroll too deep inner loops for local memory to give a chance
208         // to unroll an outer loop for a more important reason.
209         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
210             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
211              !isa<Argument>(GEP->getPointerOperand())))
212           continue;
213         LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
214                           << *L << " due to LDS use.\n");
215         UP.Runtime = UnrollRuntimeLocal;
216       }
217 
218       // Check if GEP depends on a value defined by this loop itself.
219       bool HasLoopDef = false;
220       for (const Value *Op : GEP->operands()) {
221         const Instruction *Inst = dyn_cast<Instruction>(Op);
222         if (!Inst || L->isLoopInvariant(Op))
223           continue;
224 
225         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
226              return SubLoop->contains(Inst); }))
227           continue;
228         HasLoopDef = true;
229         break;
230       }
231       if (!HasLoopDef)
232         continue;
233 
234       // We want to do whatever we can to limit the number of alloca
235       // instructions that make it through to the code generator.  allocas
236       // require us to use indirect addressing, which is slow and prone to
237       // compiler bugs.  If this loop does an address calculation on an
238       // alloca ptr, then we want to use a higher than normal loop unroll
239       // threshold. This will give SROA a better chance to eliminate these
240       // allocas.
241       //
242       // We also want to have more unrolling for local memory to let ds
243       // instructions with different offsets combine.
244       //
245       // Don't use the maximum allowed value here as it will make some
246       // programs way too big.
247       UP.Threshold = Threshold;
248       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
249                         << " for loop:\n"
250                         << *L << " due to " << *GEP << '\n');
251       if (UP.Threshold >= MaxBoost)
252         return;
253     }
254 
255     // If we got a GEP in a small BB from inner loop then increase max trip
256     // count to analyze for better estimation cost in unroll
257     if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
258       UP.MaxIterationsCountToAnalyze = 32;
259   }
260 }
261 
262 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
263                                           TTI::PeelingPreferences &PP) {
264   BaseT::getPeelingPreferences(L, SE, PP);
265 }
266 
267 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
268     // Codegen control options which don't matter.
269     AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
270     AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
271     AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
272     AMDGPU::FeatureUnalignedAccessMode,
273 
274     AMDGPU::FeatureAutoWaitcntBeforeBarrier,
275 
276     // Property of the kernel/environment which can't actually differ.
277     AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
278     AMDGPU::FeatureTrapHandler,
279 
280     // The default assumption needs to be ecc is enabled, but no directly
281     // exposed operations depend on it, so it can be safely inlined.
282     AMDGPU::FeatureSRAMECC,
283 
284     // Perf-tuning features
285     AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
286 
287 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
288     : BaseT(TM, F.getParent()->getDataLayout()),
289       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
290       TLI(ST->getTargetLowering()), CommonTTI(TM, F),
291       IsGraphics(AMDGPU::isGraphics(F.getCallingConv())),
292       MaxVGPRs(ST->getMaxNumVGPRs(
293           std::max(ST->getWavesPerEU(F).first,
294                    ST->getWavesPerEUForWorkGroup(
295                        ST->getFlatWorkGroupSizes(F).second)))) {
296   AMDGPU::SIModeRegisterDefaults Mode(F);
297   HasFP32Denormals = Mode.allFP32Denormals();
298   HasFP64FP16Denormals = Mode.allFP64FP16Denormals();
299 }
300 
301 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
302   // The concept of vector registers doesn't really exist. Some packed vector
303   // operations operate on the normal 32-bit registers.
304   return MaxVGPRs;
305 }
306 
307 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
308   // This is really the number of registers to fill when vectorizing /
309   // interleaving loops, so we lie to avoid trying to use all registers.
310   return getHardwareNumberOfRegisters(Vec) >> 3;
311 }
312 
313 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
314   const SIRegisterInfo *TRI = ST->getRegisterInfo();
315   const TargetRegisterClass *RC = TRI->getRegClass(RCID);
316   unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32;
317   return getHardwareNumberOfRegisters(false) / NumVGPRs;
318 }
319 
320 TypeSize
321 GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
322   switch (K) {
323   case TargetTransformInfo::RGK_Scalar:
324     return TypeSize::getFixed(32);
325   case TargetTransformInfo::RGK_FixedWidthVector:
326     return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
327   case TargetTransformInfo::RGK_ScalableVector:
328     return TypeSize::getScalable(0);
329   }
330   llvm_unreachable("Unsupported register kind");
331 }
332 
333 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
334   return 32;
335 }
336 
337 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
338   if (Opcode == Instruction::Load || Opcode == Instruction::Store)
339     return 32 * 4 / ElemWidth;
340   return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
341        : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
342        : 1;
343 }
344 
345 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
346                                          unsigned ChainSizeInBytes,
347                                          VectorType *VecTy) const {
348   unsigned VecRegBitWidth = VF * LoadSize;
349   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
350     // TODO: Support element-size less than 32bit?
351     return 128 / LoadSize;
352 
353   return VF;
354 }
355 
356 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
357                                              unsigned ChainSizeInBytes,
358                                              VectorType *VecTy) const {
359   unsigned VecRegBitWidth = VF * StoreSize;
360   if (VecRegBitWidth > 128)
361     return 128 / StoreSize;
362 
363   return VF;
364 }
365 
366 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
367   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
368       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
369       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
370       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
371     return 512;
372   }
373 
374   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
375     return 8 * ST->getMaxPrivateElementSize();
376 
377   // Common to flat, global, local and region. Assume for unknown addrspace.
378   return 128;
379 }
380 
381 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
382                                             Align Alignment,
383                                             unsigned AddrSpace) const {
384   // We allow vectorization of flat stores, even though we may need to decompose
385   // them later if they may access private memory. We don't have enough context
386   // here, and legalization can handle it.
387   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
388     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
389       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
390   }
391   return true;
392 }
393 
394 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
395                                              Align Alignment,
396                                              unsigned AddrSpace) const {
397   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
398 }
399 
400 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
401                                               Align Alignment,
402                                               unsigned AddrSpace) const {
403   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
404 }
405 
406 // FIXME: Really we would like to issue multiple 128-bit loads and stores per
407 // iteration. Should we report a larger size and let it legalize?
408 //
409 // FIXME: Should we use narrower types for local/region, or account for when
410 // unaligned access is legal?
411 //
412 // FIXME: This could use fine tuning and microbenchmarks.
413 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
414                                             unsigned SrcAddrSpace,
415                                             unsigned DestAddrSpace,
416                                             unsigned SrcAlign,
417                                             unsigned DestAlign) const {
418   unsigned MinAlign = std::min(SrcAlign, DestAlign);
419 
420   // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
421   // hardware into byte accesses. If you assume all alignments are equally
422   // probable, it's more efficient on average to use short accesses for this
423   // case.
424   if (MinAlign == 2)
425     return Type::getInt16Ty(Context);
426 
427   // Not all subtargets have 128-bit DS instructions, and we currently don't
428   // form them by default.
429   if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
430       SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
431       DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
432       DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
433     return FixedVectorType::get(Type::getInt32Ty(Context), 2);
434   }
435 
436   // Global memory works best with 16-byte accesses. Private memory will also
437   // hit this, although they'll be decomposed.
438   return FixedVectorType::get(Type::getInt32Ty(Context), 4);
439 }
440 
441 void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
442   SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
443   unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
444   unsigned SrcAlign, unsigned DestAlign) const {
445   assert(RemainingBytes < 16);
446 
447   unsigned MinAlign = std::min(SrcAlign, DestAlign);
448 
449   if (MinAlign != 2) {
450     Type *I64Ty = Type::getInt64Ty(Context);
451     while (RemainingBytes >= 8) {
452       OpsOut.push_back(I64Ty);
453       RemainingBytes -= 8;
454     }
455 
456     Type *I32Ty = Type::getInt32Ty(Context);
457     while (RemainingBytes >= 4) {
458       OpsOut.push_back(I32Ty);
459       RemainingBytes -= 4;
460     }
461   }
462 
463   Type *I16Ty = Type::getInt16Ty(Context);
464   while (RemainingBytes >= 2) {
465     OpsOut.push_back(I16Ty);
466     RemainingBytes -= 2;
467   }
468 
469   Type *I8Ty = Type::getInt8Ty(Context);
470   while (RemainingBytes) {
471     OpsOut.push_back(I8Ty);
472     --RemainingBytes;
473   }
474 }
475 
476 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
477   // Disable unrolling if the loop is not vectorized.
478   // TODO: Enable this again.
479   if (VF == 1)
480     return 1;
481 
482   return 8;
483 }
484 
485 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
486                                        MemIntrinsicInfo &Info) const {
487   switch (Inst->getIntrinsicID()) {
488   case Intrinsic::amdgcn_atomic_inc:
489   case Intrinsic::amdgcn_atomic_dec:
490   case Intrinsic::amdgcn_ds_ordered_add:
491   case Intrinsic::amdgcn_ds_ordered_swap:
492   case Intrinsic::amdgcn_ds_fadd:
493   case Intrinsic::amdgcn_ds_fmin:
494   case Intrinsic::amdgcn_ds_fmax: {
495     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
496     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
497     if (!Ordering || !Volatile)
498       return false; // Invalid.
499 
500     unsigned OrderingVal = Ordering->getZExtValue();
501     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
502       return false;
503 
504     Info.PtrVal = Inst->getArgOperand(0);
505     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
506     Info.ReadMem = true;
507     Info.WriteMem = true;
508     Info.IsVolatile = !Volatile->isZero();
509     return true;
510   }
511   default:
512     return false;
513   }
514 }
515 
516 InstructionCost GCNTTIImpl::getArithmeticInstrCost(
517     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
518     TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
519     TTI::OperandValueProperties Opd1PropInfo,
520     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
521     const Instruction *CxtI) {
522   EVT OrigTy = TLI->getValueType(DL, Ty);
523   if (!OrigTy.isSimple()) {
524     // FIXME: We're having to query the throughput cost so that the basic
525     // implementation tries to generate legalize and scalarization costs. Maybe
526     // we could hoist the scalarization code here?
527     if (CostKind != TTI::TCK_CodeSize)
528       return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput,
529                                            Opd1Info, Opd2Info, Opd1PropInfo,
530                                            Opd2PropInfo, Args, CxtI);
531     // Scalarization
532 
533     // Check if any of the operands are vector operands.
534     int ISD = TLI->InstructionOpcodeToISD(Opcode);
535     assert(ISD && "Invalid opcode");
536 
537     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
538 
539     bool IsFloat = Ty->isFPOrFPVectorTy();
540     // Assume that floating point arithmetic operations cost twice as much as
541     // integer operations.
542     unsigned OpCost = (IsFloat ? 2 : 1);
543 
544     if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
545       // The operation is legal. Assume it costs 1.
546       // TODO: Once we have extract/insert subvector cost we need to use them.
547       return LT.first * OpCost;
548     }
549 
550     if (!TLI->isOperationExpand(ISD, LT.second)) {
551       // If the operation is custom lowered, then assume that the code is twice
552       // as expensive.
553       return LT.first * 2 * OpCost;
554     }
555 
556     // Else, assume that we need to scalarize this op.
557     // TODO: If one of the types get legalized by splitting, handle this
558     // similarly to what getCastInstrCost() does.
559     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
560       unsigned Num = cast<FixedVectorType>(VTy)->getNumElements();
561       InstructionCost Cost = getArithmeticInstrCost(
562           Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
563           Opd1PropInfo, Opd2PropInfo, Args, CxtI);
564       // Return the cost of multiple scalar invocation plus the cost of
565       // inserting and extracting the values.
566       SmallVector<Type *> Tys(Args.size(), Ty);
567       return getScalarizationOverhead(VTy, Args, Tys) + Num * Cost;
568     }
569 
570     // We don't know anything about this scalar instruction.
571     return OpCost;
572   }
573 
574   // Legalize the type.
575   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
576   int ISD = TLI->InstructionOpcodeToISD(Opcode);
577 
578   // Because we don't have any legal vector operations, but the legal types, we
579   // need to account for split vectors.
580   unsigned NElts = LT.second.isVector() ?
581     LT.second.getVectorNumElements() : 1;
582 
583   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
584 
585   switch (ISD) {
586   case ISD::SHL:
587   case ISD::SRL:
588   case ISD::SRA:
589     if (SLT == MVT::i64)
590       return get64BitInstrCost(CostKind) * LT.first * NElts;
591 
592     if (ST->has16BitInsts() && SLT == MVT::i16)
593       NElts = (NElts + 1) / 2;
594 
595     // i32
596     return getFullRateInstrCost() * LT.first * NElts;
597   case ISD::ADD:
598   case ISD::SUB:
599   case ISD::AND:
600   case ISD::OR:
601   case ISD::XOR:
602     if (SLT == MVT::i64) {
603       // and, or and xor are typically split into 2 VALU instructions.
604       return 2 * getFullRateInstrCost() * LT.first * NElts;
605     }
606 
607     if (ST->has16BitInsts() && SLT == MVT::i16)
608       NElts = (NElts + 1) / 2;
609 
610     return LT.first * NElts * getFullRateInstrCost();
611   case ISD::MUL: {
612     const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
613     if (SLT == MVT::i64) {
614       const int FullRateCost = getFullRateInstrCost();
615       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
616     }
617 
618     if (ST->has16BitInsts() && SLT == MVT::i16)
619       NElts = (NElts + 1) / 2;
620 
621     // i32
622     return QuarterRateCost * NElts * LT.first;
623   }
624   case ISD::FMUL:
625     // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
626     // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
627     // fused operation.
628     if (CxtI && CxtI->hasOneUse())
629       if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
630         const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
631         if (OPC == ISD::FADD || OPC == ISD::FSUB) {
632           if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
633             return TargetTransformInfo::TCC_Free;
634           if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
635             return TargetTransformInfo::TCC_Free;
636 
637           // Estimate all types may be fused with contract/unsafe flags
638           const TargetOptions &Options = TLI->getTargetMachine().Options;
639           if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
640               Options.UnsafeFPMath ||
641               (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
642             return TargetTransformInfo::TCC_Free;
643         }
644       }
645     LLVM_FALLTHROUGH;
646   case ISD::FADD:
647   case ISD::FSUB:
648     if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
649       NElts = (NElts + 1) / 2;
650     if (SLT == MVT::f64)
651       return LT.first * NElts * get64BitInstrCost(CostKind);
652 
653     if (ST->has16BitInsts() && SLT == MVT::f16)
654       NElts = (NElts + 1) / 2;
655 
656     if (SLT == MVT::f32 || SLT == MVT::f16)
657       return LT.first * NElts * getFullRateInstrCost();
658     break;
659   case ISD::FDIV:
660   case ISD::FREM:
661     // FIXME: frem should be handled separately. The fdiv in it is most of it,
662     // but the current lowering is also not entirely correct.
663     if (SLT == MVT::f64) {
664       int Cost = 7 * get64BitInstrCost(CostKind) +
665                  getQuarterRateInstrCost(CostKind) +
666                  3 * getHalfRateInstrCost(CostKind);
667       // Add cost of workaround.
668       if (!ST->hasUsableDivScaleConditionOutput())
669         Cost += 3 * getFullRateInstrCost();
670 
671       return LT.first * Cost * NElts;
672     }
673 
674     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
675       // TODO: This is more complicated, unsafe flags etc.
676       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
677           (SLT == MVT::f16 && ST->has16BitInsts())) {
678         return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
679       }
680     }
681 
682     if (SLT == MVT::f16 && ST->has16BitInsts()) {
683       // 2 x v_cvt_f32_f16
684       // f32 rcp
685       // f32 fmul
686       // v_cvt_f16_f32
687       // f16 div_fixup
688       int Cost =
689           4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
690       return LT.first * Cost * NElts;
691     }
692 
693     if (SLT == MVT::f32 || SLT == MVT::f16) {
694       // 4 more v_cvt_* insts without f16 insts support
695       int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
696                  1 * getQuarterRateInstrCost(CostKind);
697 
698       if (!HasFP32Denormals) {
699         // FP mode switches.
700         Cost += 2 * getFullRateInstrCost();
701       }
702 
703       return LT.first * NElts * Cost;
704     }
705     break;
706   case ISD::FNEG:
707     // Use the backend' estimation. If fneg is not free each element will cost
708     // one additional instruction.
709     return TLI->isFNegFree(SLT) ? 0 : NElts;
710   default:
711     break;
712   }
713 
714   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
715                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
716 }
717 
718 // Return true if there's a potential benefit from using v2f16/v2i16
719 // instructions for an intrinsic, even if it requires nontrivial legalization.
720 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
721   switch (ID) {
722   case Intrinsic::fma: // TODO: fmuladd
723   // There's a small benefit to using vector ops in the legalized code.
724   case Intrinsic::round:
725   case Intrinsic::uadd_sat:
726   case Intrinsic::usub_sat:
727   case Intrinsic::sadd_sat:
728   case Intrinsic::ssub_sat:
729     return true;
730   default:
731     return false;
732   }
733 }
734 
735 InstructionCost
736 GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
737                                   TTI::TargetCostKind CostKind) {
738   if (ICA.getID() == Intrinsic::fabs)
739     return 0;
740 
741   if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
742     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
743 
744   Type *RetTy = ICA.getReturnType();
745   EVT OrigTy = TLI->getValueType(DL, RetTy);
746   if (!OrigTy.isSimple()) {
747     if (CostKind != TTI::TCK_CodeSize)
748       return BaseT::getIntrinsicInstrCost(ICA, CostKind);
749 
750     // TODO: Combine these two logic paths.
751     if (ICA.isTypeBasedOnly())
752       return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
753 
754     unsigned RetVF =
755         (RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements()
756                              : 1);
757     const IntrinsicInst *I = ICA.getInst();
758     const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
759     FastMathFlags FMF = ICA.getFlags();
760     // Assume that we need to scalarize this intrinsic.
761 
762     // Compute the scalarization overhead based on Args for a vector
763     // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
764     // CostModel will pass a vector RetTy and VF is 1.
765     InstructionCost ScalarizationCost = InstructionCost::getInvalid();
766     if (RetVF > 1) {
767       ScalarizationCost = 0;
768       if (!RetTy->isVoidTy())
769         ScalarizationCost +=
770             getScalarizationOverhead(cast<VectorType>(RetTy), true, false);
771       ScalarizationCost +=
772           getOperandsScalarizationOverhead(Args, ICA.getArgTypes());
773     }
774 
775     IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, ICA.getArgTypes(), FMF, I,
776                                   ScalarizationCost);
777     return getIntrinsicInstrCost(Attrs, CostKind);
778   }
779 
780   // Legalize the type.
781   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
782 
783   unsigned NElts = LT.second.isVector() ?
784     LT.second.getVectorNumElements() : 1;
785 
786   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
787 
788   if (SLT == MVT::f64)
789     return LT.first * NElts * get64BitInstrCost(CostKind);
790 
791   if ((ST->has16BitInsts() && SLT == MVT::f16) ||
792       (ST->hasPackedFP32Ops() && SLT == MVT::f32))
793     NElts = (NElts + 1) / 2;
794 
795   // TODO: Get more refined intrinsic costs?
796   unsigned InstRate = getQuarterRateInstrCost(CostKind);
797 
798   switch (ICA.getID()) {
799   case Intrinsic::fma:
800     InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
801                                    : getQuarterRateInstrCost(CostKind);
802     break;
803   case Intrinsic::uadd_sat:
804   case Intrinsic::usub_sat:
805   case Intrinsic::sadd_sat:
806   case Intrinsic::ssub_sat:
807     static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
808     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
809       NElts = 1;
810     break;
811   }
812 
813   return LT.first * NElts * InstRate;
814 }
815 
816 InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode,
817                                            TTI::TargetCostKind CostKind,
818                                            const Instruction *I) {
819   assert((I == nullptr || I->getOpcode() == Opcode) &&
820          "Opcode should reflect passed instruction.");
821   const bool SCost =
822       (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency);
823   const int CBrCost = SCost ? 5 : 7;
824   switch (Opcode) {
825   case Instruction::Br: {
826     // Branch instruction takes about 4 slots on gfx900.
827     auto BI = dyn_cast_or_null<BranchInst>(I);
828     if (BI && BI->isUnconditional())
829       return SCost ? 1 : 4;
830     // Suppose conditional branch takes additional 3 exec manipulations
831     // instructions in average.
832     return CBrCost;
833   }
834   case Instruction::Switch: {
835     auto SI = dyn_cast_or_null<SwitchInst>(I);
836     // Each case (including default) takes 1 cmp + 1 cbr instructions in
837     // average.
838     return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1);
839   }
840   case Instruction::Ret:
841     return SCost ? 1 : 10;
842   }
843   return BaseT::getCFInstrCost(Opcode, CostKind, I);
844 }
845 
846 InstructionCost
847 GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
848                                        Optional<FastMathFlags> FMF,
849                                        TTI::TargetCostKind CostKind) {
850   if (TTI::requiresOrderedReduction(FMF))
851     return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
852 
853   EVT OrigTy = TLI->getValueType(DL, Ty);
854 
855   // Computes cost on targets that have packed math instructions(which support
856   // 16-bit types only).
857   if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
858     return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
859 
860   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
861   return LT.first * getFullRateInstrCost();
862 }
863 
864 InstructionCost
865 GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
866                                    bool IsUnsigned,
867                                    TTI::TargetCostKind CostKind) {
868   EVT OrigTy = TLI->getValueType(DL, Ty);
869 
870   // Computes cost on targets that have packed math instructions(which support
871   // 16-bit types only).
872   if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
873     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
874 
875   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
876   return LT.first * getHalfRateInstrCost(CostKind);
877 }
878 
879 InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
880                                                unsigned Index) {
881   switch (Opcode) {
882   case Instruction::ExtractElement:
883   case Instruction::InsertElement: {
884     unsigned EltSize
885       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
886     if (EltSize < 32) {
887       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
888         return 0;
889       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
890     }
891 
892     // Extracts are just reads of a subregister, so are free. Inserts are
893     // considered free because we don't want to have any cost for scalarizing
894     // operations, and we don't have to copy into a different register class.
895 
896     // Dynamic indexing isn't free and is best avoided.
897     return Index == ~0u ? 2 : 0;
898   }
899   default:
900     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
901   }
902 }
903 
904 /// Analyze if the results of inline asm are divergent. If \p Indices is empty,
905 /// this is analyzing the collective result of all output registers. Otherwise,
906 /// this is only querying a specific result index if this returns multiple
907 /// registers in a struct.
908 bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
909   const CallInst *CI, ArrayRef<unsigned> Indices) const {
910   // TODO: Handle complex extract indices
911   if (Indices.size() > 1)
912     return true;
913 
914   const DataLayout &DL = CI->getModule()->getDataLayout();
915   const SIRegisterInfo *TRI = ST->getRegisterInfo();
916   TargetLowering::AsmOperandInfoVector TargetConstraints =
917       TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
918 
919   const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
920 
921   int OutputIdx = 0;
922   for (auto &TC : TargetConstraints) {
923     if (TC.Type != InlineAsm::isOutput)
924       continue;
925 
926     // Skip outputs we don't care about.
927     if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
928       continue;
929 
930     TLI->ComputeConstraintToUse(TC, SDValue());
931 
932     Register AssignedReg;
933     const TargetRegisterClass *RC;
934     std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint(
935       TRI, TC.ConstraintCode, TC.ConstraintVT);
936     if (AssignedReg) {
937       // FIXME: This is a workaround for getRegForInlineAsmConstraint
938       // returning VS_32
939       RC = TRI->getPhysRegClass(AssignedReg);
940     }
941 
942     // For AGPR constraints null is returned on subtargets without AGPRs, so
943     // assume divergent for null.
944     if (!RC || !TRI->isSGPRClass(RC))
945       return true;
946   }
947 
948   return false;
949 }
950 
951 /// \returns true if the new GPU divergence analysis is enabled.
952 bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
953   return !UseLegacyDA;
954 }
955 
956 /// \returns true if the result of the value could potentially be
957 /// different across workitems in a wavefront.
958 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
959   if (const Argument *A = dyn_cast<Argument>(V))
960     return !AMDGPU::isArgPassedInSGPR(A);
961 
962   // Loads from the private and flat address spaces are divergent, because
963   // threads can execute the load instruction with the same inputs and get
964   // different results.
965   //
966   // All other loads are not divergent, because if threads issue loads with the
967   // same arguments, they will always get the same result.
968   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
969     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
970            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
971 
972   // Atomics are divergent because they are executed sequentially: when an
973   // atomic operation refers to the same address in each thread, then each
974   // thread after the first sees the value written by the previous thread as
975   // original value.
976   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
977     return true;
978 
979   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
980     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
981 
982   // Assume all function calls are a source of divergence.
983   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
984     if (CI->isInlineAsm())
985       return isInlineAsmSourceOfDivergence(CI);
986     return true;
987   }
988 
989   // Assume all function calls are a source of divergence.
990   if (isa<InvokeInst>(V))
991     return true;
992 
993   return false;
994 }
995 
996 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
997   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
998     switch (Intrinsic->getIntrinsicID()) {
999     default:
1000       return false;
1001     case Intrinsic::amdgcn_readfirstlane:
1002     case Intrinsic::amdgcn_readlane:
1003     case Intrinsic::amdgcn_icmp:
1004     case Intrinsic::amdgcn_fcmp:
1005     case Intrinsic::amdgcn_ballot:
1006     case Intrinsic::amdgcn_if_break:
1007       return true;
1008     }
1009   }
1010 
1011   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
1012     if (CI->isInlineAsm())
1013       return !isInlineAsmSourceOfDivergence(CI);
1014     return false;
1015   }
1016 
1017   const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
1018   if (!ExtValue)
1019     return false;
1020 
1021   const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
1022   if (!CI)
1023     return false;
1024 
1025   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
1026     switch (Intrinsic->getIntrinsicID()) {
1027     default:
1028       return false;
1029     case Intrinsic::amdgcn_if:
1030     case Intrinsic::amdgcn_else: {
1031       ArrayRef<unsigned> Indices = ExtValue->getIndices();
1032       return Indices.size() == 1 && Indices[0] == 1;
1033     }
1034     }
1035   }
1036 
1037   // If we have inline asm returning mixed SGPR and VGPR results, we inferred
1038   // divergent for the overall struct return. We need to override it in the
1039   // case we're extracting an SGPR component here.
1040   if (CI->isInlineAsm())
1041     return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
1042 
1043   return false;
1044 }
1045 
1046 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1047                                             Intrinsic::ID IID) const {
1048   switch (IID) {
1049   case Intrinsic::amdgcn_atomic_inc:
1050   case Intrinsic::amdgcn_atomic_dec:
1051   case Intrinsic::amdgcn_ds_fadd:
1052   case Intrinsic::amdgcn_ds_fmin:
1053   case Intrinsic::amdgcn_ds_fmax:
1054   case Intrinsic::amdgcn_is_shared:
1055   case Intrinsic::amdgcn_is_private:
1056     OpIndexes.push_back(0);
1057     return true;
1058   default:
1059     return false;
1060   }
1061 }
1062 
1063 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1064                                                     Value *OldV,
1065                                                     Value *NewV) const {
1066   auto IntrID = II->getIntrinsicID();
1067   switch (IntrID) {
1068   case Intrinsic::amdgcn_atomic_inc:
1069   case Intrinsic::amdgcn_atomic_dec:
1070   case Intrinsic::amdgcn_ds_fadd:
1071   case Intrinsic::amdgcn_ds_fmin:
1072   case Intrinsic::amdgcn_ds_fmax: {
1073     const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
1074     if (!IsVolatile->isZero())
1075       return nullptr;
1076     Module *M = II->getParent()->getParent()->getParent();
1077     Type *DestTy = II->getType();
1078     Type *SrcTy = NewV->getType();
1079     Function *NewDecl =
1080         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
1081     II->setArgOperand(0, NewV);
1082     II->setCalledFunction(NewDecl);
1083     return II;
1084   }
1085   case Intrinsic::amdgcn_is_shared:
1086   case Intrinsic::amdgcn_is_private: {
1087     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
1088       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
1089     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1090     LLVMContext &Ctx = NewV->getType()->getContext();
1091     ConstantInt *NewVal = (TrueAS == NewAS) ?
1092       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
1093     return NewVal;
1094   }
1095   case Intrinsic::ptrmask: {
1096     unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1097     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1098     Value *MaskOp = II->getArgOperand(1);
1099     Type *MaskTy = MaskOp->getType();
1100 
1101     bool DoTruncate = false;
1102 
1103     const GCNTargetMachine &TM =
1104         static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
1105     if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1106       // All valid 64-bit to 32-bit casts work by chopping off the high
1107       // bits. Any masking only clearing the low bits will also apply in the new
1108       // address space.
1109       if (DL.getPointerSizeInBits(OldAS) != 64 ||
1110           DL.getPointerSizeInBits(NewAS) != 32)
1111         return nullptr;
1112 
1113       // TODO: Do we need to thread more context in here?
1114       KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
1115       if (Known.countMinLeadingOnes() < 32)
1116         return nullptr;
1117 
1118       DoTruncate = true;
1119     }
1120 
1121     IRBuilder<> B(II);
1122     if (DoTruncate) {
1123       MaskTy = B.getInt32Ty();
1124       MaskOp = B.CreateTrunc(MaskOp, MaskTy);
1125     }
1126 
1127     return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
1128                              {NewV, MaskOp});
1129   }
1130   default:
1131     return nullptr;
1132   }
1133 }
1134 
1135 InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1136                                            VectorType *VT, ArrayRef<int> Mask,
1137                                            int Index, VectorType *SubTp) {
1138   Kind = improveShuffleKindFromMask(Kind, Mask);
1139   if (ST->hasVOP3PInsts()) {
1140     if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
1141         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
1142       // With op_sel VOP3P instructions freely can access the low half or high
1143       // half of a register, so any swizzle is free.
1144 
1145       switch (Kind) {
1146       case TTI::SK_Broadcast:
1147       case TTI::SK_Reverse:
1148       case TTI::SK_PermuteSingleSrc:
1149         return 0;
1150       default:
1151         break;
1152       }
1153     }
1154   }
1155 
1156   return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp);
1157 }
1158 
1159 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
1160                                      const Function *Callee) const {
1161   const TargetMachine &TM = getTLI()->getTargetMachine();
1162   const GCNSubtarget *CallerST
1163     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1164   const GCNSubtarget *CalleeST
1165     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1166 
1167   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1168   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1169 
1170   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1171   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1172   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1173     return false;
1174 
1175   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1176   // no way to support merge for backend defined attributes.
1177   AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
1178   AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
1179   if (!CallerMode.isInlineCompatible(CalleeMode))
1180     return false;
1181 
1182   if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1183       Callee->hasFnAttribute(Attribute::InlineHint))
1184     return true;
1185 
1186   // Hack to make compile times reasonable.
1187   if (InlineMaxBB) {
1188     // Single BB does not increase total BB amount.
1189     if (Callee->size() == 1)
1190       return true;
1191     size_t BBSize = Caller->size() + Callee->size() - 1;
1192     return BBSize <= InlineMaxBB;
1193   }
1194 
1195   return true;
1196 }
1197 
1198 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
1199   // If we have a pointer to private array passed into a function
1200   // it will not be optimized out, leaving scratch usage.
1201   // Increase the inline threshold to allow inlining in this case.
1202   uint64_t AllocaSize = 0;
1203   SmallPtrSet<const AllocaInst *, 8> AIVisited;
1204   for (Value *PtrArg : CB->args()) {
1205     PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1206     if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS &&
1207                 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS))
1208       continue;
1209 
1210     PtrArg = getUnderlyingObject(PtrArg);
1211     if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) {
1212       if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1213         continue;
1214       AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1215       // If the amount of stack memory is excessive we will not be able
1216       // to get rid of the scratch anyway, bail out.
1217       if (AllocaSize > ArgAllocaCutoff) {
1218         AllocaSize = 0;
1219         break;
1220       }
1221     }
1222   }
1223   if (AllocaSize)
1224     return ArgAllocaCost;
1225   return 0;
1226 }
1227 
1228 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1229                                          TTI::UnrollingPreferences &UP,
1230                                          OptimizationRemarkEmitter *ORE) {
1231   CommonTTI.getUnrollingPreferences(L, SE, UP, ORE);
1232 }
1233 
1234 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1235                                        TTI::PeelingPreferences &PP) {
1236   CommonTTI.getPeelingPreferences(L, SE, PP);
1237 }
1238 
1239 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1240   return ST->hasFullRate64Ops()
1241              ? getFullRateInstrCost()
1242              : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1243                                       : getQuarterRateInstrCost(CostKind);
1244 }
1245