xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
20 #include "SIModeRegisterDefaults.h"
21 #include "llvm/Analysis/InlineCost.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/IntrinsicsAMDGPU.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/KnownBits.h"
29 #include <optional>
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "AMDGPUtti"
34 
35 static cl::opt<unsigned> UnrollThresholdPrivate(
36   "amdgpu-unroll-threshold-private",
37   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
38   cl::init(2700), cl::Hidden);
39 
40 static cl::opt<unsigned> UnrollThresholdLocal(
41   "amdgpu-unroll-threshold-local",
42   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
43   cl::init(1000), cl::Hidden);
44 
45 static cl::opt<unsigned> UnrollThresholdIf(
46   "amdgpu-unroll-threshold-if",
47   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
48   cl::init(200), cl::Hidden);
49 
50 static cl::opt<bool> UnrollRuntimeLocal(
51   "amdgpu-unroll-runtime-local",
52   cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
53   cl::init(true), cl::Hidden);
54 
55 static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
56     "amdgpu-unroll-max-block-to-analyze",
57     cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
58     cl::init(32), cl::Hidden);
59 
60 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
61                                        cl::Hidden, cl::init(4000),
62                                        cl::desc("Cost of alloca argument"));
63 
64 // If the amount of scratch memory to eliminate exceeds our ability to allocate
65 // it into registers we gain nothing by aggressively inlining functions for that
66 // heuristic.
67 static cl::opt<unsigned>
68     ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
69                     cl::init(256),
70                     cl::desc("Maximum alloca size to use for inline cost"));
71 
72 // Inliner constraint to achieve reasonable compilation time.
73 static cl::opt<size_t> InlineMaxBB(
74     "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
75     cl::desc("Maximum number of BBs allowed in a function after inlining"
76              " (compile time constraint)"));
77 
78 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
79                               unsigned Depth = 0) {
80   const Instruction *I = dyn_cast<Instruction>(Cond);
81   if (!I)
82     return false;
83 
84   for (const Value *V : I->operand_values()) {
85     if (!L->contains(I))
86       continue;
87     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
88       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
89                   return SubLoop->contains(PHI); }))
90         return true;
91     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
92       return true;
93   }
94   return false;
95 }
96 
97 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
98     : BaseT(TM, F.getParent()->getDataLayout()),
99       TargetTriple(TM->getTargetTriple()),
100       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
101       TLI(ST->getTargetLowering()) {}
102 
103 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
104                                             TTI::UnrollingPreferences &UP,
105                                             OptimizationRemarkEmitter *ORE) {
106   const Function &F = *L->getHeader()->getParent();
107   UP.Threshold =
108       F.getFnAttributeAsParsedInteger("amdgpu-unroll-threshold", 300);
109   UP.MaxCount = std::numeric_limits<unsigned>::max();
110   UP.Partial = true;
111 
112   // Conditional branch in a loop back edge needs 3 additional exec
113   // manipulations in average.
114   UP.BEInsns += 3;
115 
116   // We want to run unroll even for the loops which have been vectorized.
117   UP.UnrollVectorizedLoop = true;
118 
119   // TODO: Do we want runtime unrolling?
120 
121   // Maximum alloca size than can fit registers. Reserve 16 registers.
122   const unsigned MaxAlloca = (256 - 16) * 4;
123   unsigned ThresholdPrivate = UnrollThresholdPrivate;
124   unsigned ThresholdLocal = UnrollThresholdLocal;
125 
126   // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
127   // provided threshold value as the default for Threshold
128   if (MDNode *LoopUnrollThreshold =
129           findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
130     if (LoopUnrollThreshold->getNumOperands() == 2) {
131       ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
132           LoopUnrollThreshold->getOperand(1));
133       if (MetaThresholdValue) {
134         // We will also use the supplied value for PartialThreshold for now.
135         // We may introduce additional metadata if it becomes necessary in the
136         // future.
137         UP.Threshold = MetaThresholdValue->getSExtValue();
138         UP.PartialThreshold = UP.Threshold;
139         ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
140         ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
141       }
142     }
143   }
144 
145   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
146   for (const BasicBlock *BB : L->getBlocks()) {
147     const DataLayout &DL = BB->getModule()->getDataLayout();
148     unsigned LocalGEPsSeen = 0;
149 
150     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
151                return SubLoop->contains(BB); }))
152         continue; // Block belongs to an inner loop.
153 
154     for (const Instruction &I : *BB) {
155       // Unroll a loop which contains an "if" statement whose condition
156       // defined by a PHI belonging to the loop. This may help to eliminate
157       // if region and potentially even PHI itself, saving on both divergence
158       // and registers used for the PHI.
159       // Add a small bonus for each of such "if" statements.
160       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
161         if (UP.Threshold < MaxBoost && Br->isConditional()) {
162           BasicBlock *Succ0 = Br->getSuccessor(0);
163           BasicBlock *Succ1 = Br->getSuccessor(1);
164           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
165               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
166             continue;
167           if (dependsOnLocalPhi(L, Br->getCondition())) {
168             UP.Threshold += UnrollThresholdIf;
169             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
170                               << " for loop:\n"
171                               << *L << " due to " << *Br << '\n');
172             if (UP.Threshold >= MaxBoost)
173               return;
174           }
175         }
176         continue;
177       }
178 
179       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
180       if (!GEP)
181         continue;
182 
183       unsigned AS = GEP->getAddressSpace();
184       unsigned Threshold = 0;
185       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
186         Threshold = ThresholdPrivate;
187       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
188         Threshold = ThresholdLocal;
189       else
190         continue;
191 
192       if (UP.Threshold >= Threshold)
193         continue;
194 
195       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
196         const Value *Ptr = GEP->getPointerOperand();
197         const AllocaInst *Alloca =
198             dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
199         if (!Alloca || !Alloca->isStaticAlloca())
200           continue;
201         Type *Ty = Alloca->getAllocatedType();
202         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
203         if (AllocaSize > MaxAlloca)
204           continue;
205       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
206                  AS == AMDGPUAS::REGION_ADDRESS) {
207         LocalGEPsSeen++;
208         // Inhibit unroll for local memory if we have seen addressing not to
209         // a variable, most likely we will be unable to combine it.
210         // Do not unroll too deep inner loops for local memory to give a chance
211         // to unroll an outer loop for a more important reason.
212         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
213             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
214              !isa<Argument>(GEP->getPointerOperand())))
215           continue;
216         LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
217                           << *L << " due to LDS use.\n");
218         UP.Runtime = UnrollRuntimeLocal;
219       }
220 
221       // Check if GEP depends on a value defined by this loop itself.
222       bool HasLoopDef = false;
223       for (const Value *Op : GEP->operands()) {
224         const Instruction *Inst = dyn_cast<Instruction>(Op);
225         if (!Inst || L->isLoopInvariant(Op))
226           continue;
227 
228         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
229              return SubLoop->contains(Inst); }))
230           continue;
231         HasLoopDef = true;
232         break;
233       }
234       if (!HasLoopDef)
235         continue;
236 
237       // We want to do whatever we can to limit the number of alloca
238       // instructions that make it through to the code generator.  allocas
239       // require us to use indirect addressing, which is slow and prone to
240       // compiler bugs.  If this loop does an address calculation on an
241       // alloca ptr, then we want to use a higher than normal loop unroll
242       // threshold. This will give SROA a better chance to eliminate these
243       // allocas.
244       //
245       // We also want to have more unrolling for local memory to let ds
246       // instructions with different offsets combine.
247       //
248       // Don't use the maximum allowed value here as it will make some
249       // programs way too big.
250       UP.Threshold = Threshold;
251       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
252                         << " for loop:\n"
253                         << *L << " due to " << *GEP << '\n');
254       if (UP.Threshold >= MaxBoost)
255         return;
256     }
257 
258     // If we got a GEP in a small BB from inner loop then increase max trip
259     // count to analyze for better estimation cost in unroll
260     if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
261       UP.MaxIterationsCountToAnalyze = 32;
262   }
263 }
264 
265 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
266                                           TTI::PeelingPreferences &PP) {
267   BaseT::getPeelingPreferences(L, SE, PP);
268 }
269 
270 int64_t AMDGPUTTIImpl::getMaxMemIntrinsicInlineSizeThreshold() const {
271   return 1024;
272 }
273 
274 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
275     // Codegen control options which don't matter.
276     AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
277     AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
278     AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
279     AMDGPU::FeatureUnalignedAccessMode,
280 
281     AMDGPU::FeatureAutoWaitcntBeforeBarrier,
282 
283     // Property of the kernel/environment which can't actually differ.
284     AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
285     AMDGPU::FeatureTrapHandler,
286 
287     // The default assumption needs to be ecc is enabled, but no directly
288     // exposed operations depend on it, so it can be safely inlined.
289     AMDGPU::FeatureSRAMECC,
290 
291     // Perf-tuning features
292     AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
293 
294 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
295     : BaseT(TM, F.getParent()->getDataLayout()),
296       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
297       TLI(ST->getTargetLowering()), CommonTTI(TM, F),
298       IsGraphics(AMDGPU::isGraphics(F.getCallingConv())) {
299   SIModeRegisterDefaults Mode(F, *ST);
300   HasFP32Denormals = Mode.FP32Denormals != DenormalMode::getPreserveSign();
301   HasFP64FP16Denormals =
302       Mode.FP64FP16Denormals != DenormalMode::getPreserveSign();
303 }
304 
305 bool GCNTTIImpl::hasBranchDivergence(const Function *F) const {
306   return !F || !ST->isSingleLaneExecution(*F);
307 }
308 
309 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
310   // NB: RCID is not an RCID. In fact it is 0 or 1 for scalar or vector
311   // registers. See getRegisterClassForType for the implementation.
312   // In this case vector registers are not vector in terms of
313   // VGPRs, but those which can hold multiple values.
314 
315   // This is really the number of registers to fill when vectorizing /
316   // interleaving loops, so we lie to avoid trying to use all registers.
317   return 4;
318 }
319 
320 TypeSize
321 GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
322   switch (K) {
323   case TargetTransformInfo::RGK_Scalar:
324     return TypeSize::getFixed(32);
325   case TargetTransformInfo::RGK_FixedWidthVector:
326     return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
327   case TargetTransformInfo::RGK_ScalableVector:
328     return TypeSize::getScalable(0);
329   }
330   llvm_unreachable("Unsupported register kind");
331 }
332 
333 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
334   return 32;
335 }
336 
337 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
338   if (Opcode == Instruction::Load || Opcode == Instruction::Store)
339     return 32 * 4 / ElemWidth;
340   return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
341        : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
342        : 1;
343 }
344 
345 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
346                                          unsigned ChainSizeInBytes,
347                                          VectorType *VecTy) const {
348   unsigned VecRegBitWidth = VF * LoadSize;
349   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
350     // TODO: Support element-size less than 32bit?
351     return 128 / LoadSize;
352 
353   return VF;
354 }
355 
356 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
357                                              unsigned ChainSizeInBytes,
358                                              VectorType *VecTy) const {
359   unsigned VecRegBitWidth = VF * StoreSize;
360   if (VecRegBitWidth > 128)
361     return 128 / StoreSize;
362 
363   return VF;
364 }
365 
366 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
367   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
368       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
369       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
370       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER ||
371       AddrSpace == AMDGPUAS::BUFFER_RESOURCE ||
372       AddrSpace == AMDGPUAS::BUFFER_STRIDED_POINTER) {
373     return 512;
374   }
375 
376   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
377     return 8 * ST->getMaxPrivateElementSize();
378 
379   // Common to flat, global, local and region. Assume for unknown addrspace.
380   return 128;
381 }
382 
383 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
384                                             Align Alignment,
385                                             unsigned AddrSpace) const {
386   // We allow vectorization of flat stores, even though we may need to decompose
387   // them later if they may access private memory. We don't have enough context
388   // here, and legalization can handle it.
389   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
390     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
391       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
392   }
393   return true;
394 }
395 
396 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
397                                              Align Alignment,
398                                              unsigned AddrSpace) const {
399   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
400 }
401 
402 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
403                                               Align Alignment,
404                                               unsigned AddrSpace) const {
405   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
406 }
407 
408 int64_t GCNTTIImpl::getMaxMemIntrinsicInlineSizeThreshold() const {
409   return 1024;
410 }
411 
412 // FIXME: Really we would like to issue multiple 128-bit loads and stores per
413 // iteration. Should we report a larger size and let it legalize?
414 //
415 // FIXME: Should we use narrower types for local/region, or account for when
416 // unaligned access is legal?
417 //
418 // FIXME: This could use fine tuning and microbenchmarks.
419 Type *GCNTTIImpl::getMemcpyLoopLoweringType(
420     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
421     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
422     std::optional<uint32_t> AtomicElementSize) const {
423 
424   if (AtomicElementSize)
425     return Type::getIntNTy(Context, *AtomicElementSize * 8);
426 
427   unsigned MinAlign = std::min(SrcAlign, DestAlign);
428 
429   // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
430   // hardware into byte accesses. If you assume all alignments are equally
431   // probable, it's more efficient on average to use short accesses for this
432   // case.
433   if (MinAlign == 2)
434     return Type::getInt16Ty(Context);
435 
436   // Not all subtargets have 128-bit DS instructions, and we currently don't
437   // form them by default.
438   if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
439       SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
440       DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
441       DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
442     return FixedVectorType::get(Type::getInt32Ty(Context), 2);
443   }
444 
445   // Global memory works best with 16-byte accesses. Private memory will also
446   // hit this, although they'll be decomposed.
447   return FixedVectorType::get(Type::getInt32Ty(Context), 4);
448 }
449 
450 void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
451     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
452     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
453     unsigned SrcAlign, unsigned DestAlign,
454     std::optional<uint32_t> AtomicCpySize) const {
455   assert(RemainingBytes < 16);
456 
457   if (AtomicCpySize)
458     BaseT::getMemcpyLoopResidualLoweringType(
459         OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
460         DestAlign, AtomicCpySize);
461 
462   unsigned MinAlign = std::min(SrcAlign, DestAlign);
463 
464   if (MinAlign != 2) {
465     Type *I64Ty = Type::getInt64Ty(Context);
466     while (RemainingBytes >= 8) {
467       OpsOut.push_back(I64Ty);
468       RemainingBytes -= 8;
469     }
470 
471     Type *I32Ty = Type::getInt32Ty(Context);
472     while (RemainingBytes >= 4) {
473       OpsOut.push_back(I32Ty);
474       RemainingBytes -= 4;
475     }
476   }
477 
478   Type *I16Ty = Type::getInt16Ty(Context);
479   while (RemainingBytes >= 2) {
480     OpsOut.push_back(I16Ty);
481     RemainingBytes -= 2;
482   }
483 
484   Type *I8Ty = Type::getInt8Ty(Context);
485   while (RemainingBytes) {
486     OpsOut.push_back(I8Ty);
487     --RemainingBytes;
488   }
489 }
490 
491 unsigned GCNTTIImpl::getMaxInterleaveFactor(ElementCount VF) {
492   // Disable unrolling if the loop is not vectorized.
493   // TODO: Enable this again.
494   if (VF.isScalar())
495     return 1;
496 
497   return 8;
498 }
499 
500 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
501                                        MemIntrinsicInfo &Info) const {
502   switch (Inst->getIntrinsicID()) {
503   case Intrinsic::amdgcn_ds_ordered_add:
504   case Intrinsic::amdgcn_ds_ordered_swap:
505   case Intrinsic::amdgcn_ds_fadd:
506   case Intrinsic::amdgcn_ds_fmin:
507   case Intrinsic::amdgcn_ds_fmax: {
508     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
509     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
510     if (!Ordering || !Volatile)
511       return false; // Invalid.
512 
513     unsigned OrderingVal = Ordering->getZExtValue();
514     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
515       return false;
516 
517     Info.PtrVal = Inst->getArgOperand(0);
518     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
519     Info.ReadMem = true;
520     Info.WriteMem = true;
521     Info.IsVolatile = !Volatile->isZero();
522     return true;
523   }
524   default:
525     return false;
526   }
527 }
528 
529 InstructionCost GCNTTIImpl::getArithmeticInstrCost(
530     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
531     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
532     ArrayRef<const Value *> Args,
533     const Instruction *CxtI) {
534 
535   // Legalize the type.
536   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
537   int ISD = TLI->InstructionOpcodeToISD(Opcode);
538 
539   // Because we don't have any legal vector operations, but the legal types, we
540   // need to account for split vectors.
541   unsigned NElts = LT.second.isVector() ?
542     LT.second.getVectorNumElements() : 1;
543 
544   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
545 
546   switch (ISD) {
547   case ISD::SHL:
548   case ISD::SRL:
549   case ISD::SRA:
550     if (SLT == MVT::i64)
551       return get64BitInstrCost(CostKind) * LT.first * NElts;
552 
553     if (ST->has16BitInsts() && SLT == MVT::i16)
554       NElts = (NElts + 1) / 2;
555 
556     // i32
557     return getFullRateInstrCost() * LT.first * NElts;
558   case ISD::ADD:
559   case ISD::SUB:
560   case ISD::AND:
561   case ISD::OR:
562   case ISD::XOR:
563     if (SLT == MVT::i64) {
564       // and, or and xor are typically split into 2 VALU instructions.
565       return 2 * getFullRateInstrCost() * LT.first * NElts;
566     }
567 
568     if (ST->has16BitInsts() && SLT == MVT::i16)
569       NElts = (NElts + 1) / 2;
570 
571     return LT.first * NElts * getFullRateInstrCost();
572   case ISD::MUL: {
573     const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
574     if (SLT == MVT::i64) {
575       const int FullRateCost = getFullRateInstrCost();
576       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
577     }
578 
579     if (ST->has16BitInsts() && SLT == MVT::i16)
580       NElts = (NElts + 1) / 2;
581 
582     // i32
583     return QuarterRateCost * NElts * LT.first;
584   }
585   case ISD::FMUL:
586     // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
587     // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
588     // fused operation.
589     if (CxtI && CxtI->hasOneUse())
590       if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
591         const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
592         if (OPC == ISD::FADD || OPC == ISD::FSUB) {
593           if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
594             return TargetTransformInfo::TCC_Free;
595           if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
596             return TargetTransformInfo::TCC_Free;
597 
598           // Estimate all types may be fused with contract/unsafe flags
599           const TargetOptions &Options = TLI->getTargetMachine().Options;
600           if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
601               Options.UnsafeFPMath ||
602               (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
603             return TargetTransformInfo::TCC_Free;
604         }
605       }
606     [[fallthrough]];
607   case ISD::FADD:
608   case ISD::FSUB:
609     if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
610       NElts = (NElts + 1) / 2;
611     if (SLT == MVT::f64)
612       return LT.first * NElts * get64BitInstrCost(CostKind);
613 
614     if (ST->has16BitInsts() && SLT == MVT::f16)
615       NElts = (NElts + 1) / 2;
616 
617     if (SLT == MVT::f32 || SLT == MVT::f16)
618       return LT.first * NElts * getFullRateInstrCost();
619     break;
620   case ISD::FDIV:
621   case ISD::FREM:
622     // FIXME: frem should be handled separately. The fdiv in it is most of it,
623     // but the current lowering is also not entirely correct.
624     if (SLT == MVT::f64) {
625       int Cost = 7 * get64BitInstrCost(CostKind) +
626                  getQuarterRateInstrCost(CostKind) +
627                  3 * getHalfRateInstrCost(CostKind);
628       // Add cost of workaround.
629       if (!ST->hasUsableDivScaleConditionOutput())
630         Cost += 3 * getFullRateInstrCost();
631 
632       return LT.first * Cost * NElts;
633     }
634 
635     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
636       // TODO: This is more complicated, unsafe flags etc.
637       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
638           (SLT == MVT::f16 && ST->has16BitInsts())) {
639         return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
640       }
641     }
642 
643     if (SLT == MVT::f16 && ST->has16BitInsts()) {
644       // 2 x v_cvt_f32_f16
645       // f32 rcp
646       // f32 fmul
647       // v_cvt_f16_f32
648       // f16 div_fixup
649       int Cost =
650           4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
651       return LT.first * Cost * NElts;
652     }
653 
654     if (SLT == MVT::f32 && ((CxtI && CxtI->hasApproxFunc()) ||
655                             TLI->getTargetMachine().Options.UnsafeFPMath)) {
656       // Fast unsafe fdiv lowering:
657       // f32 rcp
658       // f32 fmul
659       int Cost = getQuarterRateInstrCost(CostKind) + getFullRateInstrCost();
660       return LT.first * Cost * NElts;
661     }
662 
663     if (SLT == MVT::f32 || SLT == MVT::f16) {
664       // 4 more v_cvt_* insts without f16 insts support
665       int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
666                  1 * getQuarterRateInstrCost(CostKind);
667 
668       if (!HasFP32Denormals) {
669         // FP mode switches.
670         Cost += 2 * getFullRateInstrCost();
671       }
672 
673       return LT.first * NElts * Cost;
674     }
675     break;
676   case ISD::FNEG:
677     // Use the backend' estimation. If fneg is not free each element will cost
678     // one additional instruction.
679     return TLI->isFNegFree(SLT) ? 0 : NElts;
680   default:
681     break;
682   }
683 
684   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
685                                        Args, CxtI);
686 }
687 
688 // Return true if there's a potential benefit from using v2f16/v2i16
689 // instructions for an intrinsic, even if it requires nontrivial legalization.
690 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
691   switch (ID) {
692   case Intrinsic::fma: // TODO: fmuladd
693   // There's a small benefit to using vector ops in the legalized code.
694   case Intrinsic::round:
695   case Intrinsic::uadd_sat:
696   case Intrinsic::usub_sat:
697   case Intrinsic::sadd_sat:
698   case Intrinsic::ssub_sat:
699     return true;
700   default:
701     return false;
702   }
703 }
704 
705 InstructionCost
706 GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
707                                   TTI::TargetCostKind CostKind) {
708   if (ICA.getID() == Intrinsic::fabs)
709     return 0;
710 
711   if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
712     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
713 
714   Type *RetTy = ICA.getReturnType();
715 
716   // Legalize the type.
717   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(RetTy);
718 
719   unsigned NElts = LT.second.isVector() ?
720     LT.second.getVectorNumElements() : 1;
721 
722   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
723 
724   if (SLT == MVT::f64)
725     return LT.first * NElts * get64BitInstrCost(CostKind);
726 
727   if ((ST->has16BitInsts() && SLT == MVT::f16) ||
728       (ST->hasPackedFP32Ops() && SLT == MVT::f32))
729     NElts = (NElts + 1) / 2;
730 
731   // TODO: Get more refined intrinsic costs?
732   unsigned InstRate = getQuarterRateInstrCost(CostKind);
733 
734   switch (ICA.getID()) {
735   case Intrinsic::fma:
736     InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
737                                    : getQuarterRateInstrCost(CostKind);
738     break;
739   case Intrinsic::uadd_sat:
740   case Intrinsic::usub_sat:
741   case Intrinsic::sadd_sat:
742   case Intrinsic::ssub_sat:
743     static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
744     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
745       NElts = 1;
746     break;
747   }
748 
749   return LT.first * NElts * InstRate;
750 }
751 
752 InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode,
753                                            TTI::TargetCostKind CostKind,
754                                            const Instruction *I) {
755   assert((I == nullptr || I->getOpcode() == Opcode) &&
756          "Opcode should reflect passed instruction.");
757   const bool SCost =
758       (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency);
759   const int CBrCost = SCost ? 5 : 7;
760   switch (Opcode) {
761   case Instruction::Br: {
762     // Branch instruction takes about 4 slots on gfx900.
763     auto BI = dyn_cast_or_null<BranchInst>(I);
764     if (BI && BI->isUnconditional())
765       return SCost ? 1 : 4;
766     // Suppose conditional branch takes additional 3 exec manipulations
767     // instructions in average.
768     return CBrCost;
769   }
770   case Instruction::Switch: {
771     auto SI = dyn_cast_or_null<SwitchInst>(I);
772     // Each case (including default) takes 1 cmp + 1 cbr instructions in
773     // average.
774     return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1);
775   }
776   case Instruction::Ret:
777     return SCost ? 1 : 10;
778   }
779   return BaseT::getCFInstrCost(Opcode, CostKind, I);
780 }
781 
782 InstructionCost
783 GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
784                                        std::optional<FastMathFlags> FMF,
785                                        TTI::TargetCostKind CostKind) {
786   if (TTI::requiresOrderedReduction(FMF))
787     return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
788 
789   EVT OrigTy = TLI->getValueType(DL, Ty);
790 
791   // Computes cost on targets that have packed math instructions(which support
792   // 16-bit types only).
793   if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
794     return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
795 
796   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
797   return LT.first * getFullRateInstrCost();
798 }
799 
800 InstructionCost
801 GCNTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
802                                    FastMathFlags FMF,
803                                    TTI::TargetCostKind CostKind) {
804   EVT OrigTy = TLI->getValueType(DL, Ty);
805 
806   // Computes cost on targets that have packed math instructions(which support
807   // 16-bit types only).
808   if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
809     return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
810 
811   std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
812   return LT.first * getHalfRateInstrCost(CostKind);
813 }
814 
815 InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
816                                                TTI::TargetCostKind CostKind,
817                                                unsigned Index, Value *Op0,
818                                                Value *Op1) {
819   switch (Opcode) {
820   case Instruction::ExtractElement:
821   case Instruction::InsertElement: {
822     unsigned EltSize
823       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
824     if (EltSize < 32) {
825       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
826         return 0;
827       return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0,
828                                        Op1);
829     }
830 
831     // Extracts are just reads of a subregister, so are free. Inserts are
832     // considered free because we don't want to have any cost for scalarizing
833     // operations, and we don't have to copy into a different register class.
834 
835     // Dynamic indexing isn't free and is best avoided.
836     return Index == ~0u ? 2 : 0;
837   }
838   default:
839     return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1);
840   }
841 }
842 
843 /// Analyze if the results of inline asm are divergent. If \p Indices is empty,
844 /// this is analyzing the collective result of all output registers. Otherwise,
845 /// this is only querying a specific result index if this returns multiple
846 /// registers in a struct.
847 bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
848   const CallInst *CI, ArrayRef<unsigned> Indices) const {
849   // TODO: Handle complex extract indices
850   if (Indices.size() > 1)
851     return true;
852 
853   const DataLayout &DL = CI->getModule()->getDataLayout();
854   const SIRegisterInfo *TRI = ST->getRegisterInfo();
855   TargetLowering::AsmOperandInfoVector TargetConstraints =
856       TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
857 
858   const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
859 
860   int OutputIdx = 0;
861   for (auto &TC : TargetConstraints) {
862     if (TC.Type != InlineAsm::isOutput)
863       continue;
864 
865     // Skip outputs we don't care about.
866     if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
867       continue;
868 
869     TLI->ComputeConstraintToUse(TC, SDValue());
870 
871     const TargetRegisterClass *RC = TLI->getRegForInlineAsmConstraint(
872         TRI, TC.ConstraintCode, TC.ConstraintVT).second;
873 
874     // For AGPR constraints null is returned on subtargets without AGPRs, so
875     // assume divergent for null.
876     if (!RC || !TRI->isSGPRClass(RC))
877       return true;
878   }
879 
880   return false;
881 }
882 
883 bool GCNTTIImpl::isReadRegisterSourceOfDivergence(
884     const IntrinsicInst *ReadReg) const {
885   Metadata *MD =
886       cast<MetadataAsValue>(ReadReg->getArgOperand(0))->getMetadata();
887   StringRef RegName =
888       cast<MDString>(cast<MDNode>(MD)->getOperand(0))->getString();
889 
890   // Special case registers that look like VCC.
891   MVT VT = MVT::getVT(ReadReg->getType());
892   if (VT == MVT::i1)
893     return true;
894 
895   // Special case scalar registers that start with 'v'.
896   if (RegName.starts_with("vcc") || RegName.empty())
897     return false;
898 
899   // VGPR or AGPR is divergent. There aren't any specially named vector
900   // registers.
901   return RegName[0] == 'v' || RegName[0] == 'a';
902 }
903 
904 /// \returns true if the result of the value could potentially be
905 /// different across workitems in a wavefront.
906 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
907   if (const Argument *A = dyn_cast<Argument>(V))
908     return !AMDGPU::isArgPassedInSGPR(A);
909 
910   // Loads from the private and flat address spaces are divergent, because
911   // threads can execute the load instruction with the same inputs and get
912   // different results.
913   //
914   // All other loads are not divergent, because if threads issue loads with the
915   // same arguments, they will always get the same result.
916   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
917     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
918            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
919 
920   // Atomics are divergent because they are executed sequentially: when an
921   // atomic operation refers to the same address in each thread, then each
922   // thread after the first sees the value written by the previous thread as
923   // original value.
924   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
925     return true;
926 
927   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
928     if (Intrinsic->getIntrinsicID() == Intrinsic::read_register)
929       return isReadRegisterSourceOfDivergence(Intrinsic);
930 
931     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
932   }
933 
934   // Assume all function calls are a source of divergence.
935   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
936     if (CI->isInlineAsm())
937       return isInlineAsmSourceOfDivergence(CI);
938     return true;
939   }
940 
941   // Assume all function calls are a source of divergence.
942   if (isa<InvokeInst>(V))
943     return true;
944 
945   return false;
946 }
947 
948 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
949   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
950     return AMDGPU::isIntrinsicAlwaysUniform(Intrinsic->getIntrinsicID());
951 
952   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
953     if (CI->isInlineAsm())
954       return !isInlineAsmSourceOfDivergence(CI);
955     return false;
956   }
957 
958   // In most cases TID / wavefrontsize is uniform.
959   //
960   // However, if a kernel has uneven dimesions we can have a value of
961   // workitem-id-x divided by the wavefrontsize non-uniform. For example
962   // dimensions (65, 2) will have workitems with address (64, 0) and (0, 1)
963   // packed into a same wave which gives 1 and 0 after the division by 64
964   // respectively.
965   //
966   // FIXME: limit it to 1D kernels only, although that shall be possible
967   // to perform this optimization is the size of the X dimension is a power
968   // of 2, we just do not currently have infrastructure to query it.
969   using namespace llvm::PatternMatch;
970   uint64_t C;
971   if (match(V, m_LShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
972                       m_ConstantInt(C))) ||
973       match(V, m_AShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
974                       m_ConstantInt(C)))) {
975     const Function *F = cast<Instruction>(V)->getFunction();
976     return C >= ST->getWavefrontSizeLog2() &&
977            ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0;
978   }
979 
980   Value *Mask;
981   if (match(V, m_c_And(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
982                        m_Value(Mask)))) {
983     const Function *F = cast<Instruction>(V)->getFunction();
984     const DataLayout &DL = F->getParent()->getDataLayout();
985     return computeKnownBits(Mask, DL).countMinTrailingZeros() >=
986                ST->getWavefrontSizeLog2() &&
987            ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0;
988   }
989 
990   const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
991   if (!ExtValue)
992     return false;
993 
994   const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
995   if (!CI)
996     return false;
997 
998   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
999     switch (Intrinsic->getIntrinsicID()) {
1000     default:
1001       return false;
1002     case Intrinsic::amdgcn_if:
1003     case Intrinsic::amdgcn_else: {
1004       ArrayRef<unsigned> Indices = ExtValue->getIndices();
1005       return Indices.size() == 1 && Indices[0] == 1;
1006     }
1007     }
1008   }
1009 
1010   // If we have inline asm returning mixed SGPR and VGPR results, we inferred
1011   // divergent for the overall struct return. We need to override it in the
1012   // case we're extracting an SGPR component here.
1013   if (CI->isInlineAsm())
1014     return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
1015 
1016   return false;
1017 }
1018 
1019 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1020                                             Intrinsic::ID IID) const {
1021   switch (IID) {
1022   case Intrinsic::amdgcn_ds_fadd:
1023   case Intrinsic::amdgcn_ds_fmin:
1024   case Intrinsic::amdgcn_ds_fmax:
1025   case Intrinsic::amdgcn_is_shared:
1026   case Intrinsic::amdgcn_is_private:
1027   case Intrinsic::amdgcn_flat_atomic_fadd:
1028   case Intrinsic::amdgcn_flat_atomic_fmax:
1029   case Intrinsic::amdgcn_flat_atomic_fmin:
1030   case Intrinsic::amdgcn_flat_atomic_fmax_num:
1031   case Intrinsic::amdgcn_flat_atomic_fmin_num:
1032     OpIndexes.push_back(0);
1033     return true;
1034   default:
1035     return false;
1036   }
1037 }
1038 
1039 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1040                                                     Value *OldV,
1041                                                     Value *NewV) const {
1042   auto IntrID = II->getIntrinsicID();
1043   switch (IntrID) {
1044   case Intrinsic::amdgcn_ds_fadd:
1045   case Intrinsic::amdgcn_ds_fmin:
1046   case Intrinsic::amdgcn_ds_fmax: {
1047     const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
1048     if (!IsVolatile->isZero())
1049       return nullptr;
1050     Module *M = II->getParent()->getParent()->getParent();
1051     Type *DestTy = II->getType();
1052     Type *SrcTy = NewV->getType();
1053     Function *NewDecl =
1054         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
1055     II->setArgOperand(0, NewV);
1056     II->setCalledFunction(NewDecl);
1057     return II;
1058   }
1059   case Intrinsic::amdgcn_is_shared:
1060   case Intrinsic::amdgcn_is_private: {
1061     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
1062       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
1063     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1064     LLVMContext &Ctx = NewV->getType()->getContext();
1065     ConstantInt *NewVal = (TrueAS == NewAS) ?
1066       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
1067     return NewVal;
1068   }
1069   case Intrinsic::ptrmask: {
1070     unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1071     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1072     Value *MaskOp = II->getArgOperand(1);
1073     Type *MaskTy = MaskOp->getType();
1074 
1075     bool DoTruncate = false;
1076 
1077     const GCNTargetMachine &TM =
1078         static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
1079     if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1080       // All valid 64-bit to 32-bit casts work by chopping off the high
1081       // bits. Any masking only clearing the low bits will also apply in the new
1082       // address space.
1083       if (DL.getPointerSizeInBits(OldAS) != 64 ||
1084           DL.getPointerSizeInBits(NewAS) != 32)
1085         return nullptr;
1086 
1087       // TODO: Do we need to thread more context in here?
1088       KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
1089       if (Known.countMinLeadingOnes() < 32)
1090         return nullptr;
1091 
1092       DoTruncate = true;
1093     }
1094 
1095     IRBuilder<> B(II);
1096     if (DoTruncate) {
1097       MaskTy = B.getInt32Ty();
1098       MaskOp = B.CreateTrunc(MaskOp, MaskTy);
1099     }
1100 
1101     return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
1102                              {NewV, MaskOp});
1103   }
1104   case Intrinsic::amdgcn_flat_atomic_fadd:
1105   case Intrinsic::amdgcn_flat_atomic_fmax:
1106   case Intrinsic::amdgcn_flat_atomic_fmin:
1107   case Intrinsic::amdgcn_flat_atomic_fmax_num:
1108   case Intrinsic::amdgcn_flat_atomic_fmin_num: {
1109     Type *DestTy = II->getType();
1110     Type *SrcTy = NewV->getType();
1111     unsigned NewAS = SrcTy->getPointerAddressSpace();
1112     if (!AMDGPU::isExtendedGlobalAddrSpace(NewAS))
1113       return nullptr;
1114     Module *M = II->getModule();
1115     Function *NewDecl = Intrinsic::getDeclaration(M, II->getIntrinsicID(),
1116                                                   {DestTy, SrcTy, DestTy});
1117     II->setArgOperand(0, NewV);
1118     II->setCalledFunction(NewDecl);
1119     return II;
1120   }
1121   default:
1122     return nullptr;
1123   }
1124 }
1125 
1126 InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1127                                            VectorType *VT, ArrayRef<int> Mask,
1128                                            TTI::TargetCostKind CostKind,
1129                                            int Index, VectorType *SubTp,
1130                                            ArrayRef<const Value *> Args) {
1131   Kind = improveShuffleKindFromMask(Kind, Mask, VT, Index, SubTp);
1132 
1133   if (ST->hasVOP3PInsts()) {
1134     if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
1135         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
1136       // With op_sel VOP3P instructions freely can access the low half or high
1137       // half of a register, so any swizzle is free.
1138 
1139       switch (Kind) {
1140       case TTI::SK_Broadcast:
1141       case TTI::SK_Reverse:
1142       case TTI::SK_PermuteSingleSrc:
1143         return 0;
1144       default:
1145         break;
1146       }
1147     }
1148   }
1149 
1150   return BaseT::getShuffleCost(Kind, VT, Mask, CostKind, Index, SubTp);
1151 }
1152 
1153 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
1154                                      const Function *Callee) const {
1155   const TargetMachine &TM = getTLI()->getTargetMachine();
1156   const GCNSubtarget *CallerST
1157     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1158   const GCNSubtarget *CalleeST
1159     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1160 
1161   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1162   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1163 
1164   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1165   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1166   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1167     return false;
1168 
1169   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1170   // no way to support merge for backend defined attributes.
1171   SIModeRegisterDefaults CallerMode(*Caller, *CallerST);
1172   SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST);
1173   if (!CallerMode.isInlineCompatible(CalleeMode))
1174     return false;
1175 
1176   if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1177       Callee->hasFnAttribute(Attribute::InlineHint))
1178     return true;
1179 
1180   // Hack to make compile times reasonable.
1181   if (InlineMaxBB) {
1182     // Single BB does not increase total BB amount.
1183     if (Callee->size() == 1)
1184       return true;
1185     size_t BBSize = Caller->size() + Callee->size() - 1;
1186     return BBSize <= InlineMaxBB;
1187   }
1188 
1189   return true;
1190 }
1191 
1192 static unsigned adjustInliningThresholdUsingCallee(const CallBase *CB,
1193                                                    const SITargetLowering *TLI,
1194                                                    const GCNTTIImpl *TTIImpl) {
1195   const int NrOfSGPRUntilSpill = 26;
1196   const int NrOfVGPRUntilSpill = 32;
1197 
1198   const DataLayout &DL = TTIImpl->getDataLayout();
1199 
1200   unsigned adjustThreshold = 0;
1201   int SGPRsInUse = 0;
1202   int VGPRsInUse = 0;
1203   for (const Use &A : CB->args()) {
1204     SmallVector<EVT, 4> ValueVTs;
1205     ComputeValueVTs(*TLI, DL, A.get()->getType(), ValueVTs);
1206     for (auto ArgVT : ValueVTs) {
1207       unsigned CCRegNum = TLI->getNumRegistersForCallingConv(
1208           CB->getContext(), CB->getCallingConv(), ArgVT);
1209       if (AMDGPU::isArgPassedInSGPR(CB, CB->getArgOperandNo(&A)))
1210         SGPRsInUse += CCRegNum;
1211       else
1212         VGPRsInUse += CCRegNum;
1213     }
1214   }
1215 
1216   // The cost of passing function arguments through the stack:
1217   //  1 instruction to put a function argument on the stack in the caller.
1218   //  1 instruction to take a function argument from the stack in callee.
1219   //  1 instruction is explicitly take care of data dependencies in callee
1220   //  function.
1221   InstructionCost ArgStackCost(1);
1222   ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost(
1223       Instruction::Store, Type::getInt32Ty(CB->getContext()), Align(4),
1224       AMDGPUAS::PRIVATE_ADDRESS, TTI::TCK_SizeAndLatency);
1225   ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost(
1226       Instruction::Load, Type::getInt32Ty(CB->getContext()), Align(4),
1227       AMDGPUAS::PRIVATE_ADDRESS, TTI::TCK_SizeAndLatency);
1228 
1229   // The penalty cost is computed relative to the cost of instructions and does
1230   // not model any storage costs.
1231   adjustThreshold += std::max(0, SGPRsInUse - NrOfSGPRUntilSpill) *
1232                      *ArgStackCost.getValue() * InlineConstants::getInstrCost();
1233   adjustThreshold += std::max(0, VGPRsInUse - NrOfVGPRUntilSpill) *
1234                      *ArgStackCost.getValue() * InlineConstants::getInstrCost();
1235   return adjustThreshold;
1236 }
1237 
1238 static unsigned getCallArgsTotalAllocaSize(const CallBase *CB,
1239                                            const DataLayout &DL) {
1240   // If we have a pointer to a private array passed into a function
1241   // it will not be optimized out, leaving scratch usage.
1242   // This function calculates the total size in bytes of the memory that would
1243   // end in scratch if the call was not inlined.
1244   unsigned AllocaSize = 0;
1245   SmallPtrSet<const AllocaInst *, 8> AIVisited;
1246   for (Value *PtrArg : CB->args()) {
1247     PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1248     if (!Ty)
1249       continue;
1250 
1251     unsigned AddrSpace = Ty->getAddressSpace();
1252     if (AddrSpace != AMDGPUAS::FLAT_ADDRESS &&
1253         AddrSpace != AMDGPUAS::PRIVATE_ADDRESS)
1254       continue;
1255 
1256     const AllocaInst *AI = dyn_cast<AllocaInst>(getUnderlyingObject(PtrArg));
1257     if (!AI || !AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1258       continue;
1259 
1260     AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1261   }
1262   return AllocaSize;
1263 }
1264 
1265 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
1266   unsigned Threshold = adjustInliningThresholdUsingCallee(CB, TLI, this);
1267 
1268   // Private object passed as arguments may end up in scratch usage if the call
1269   // is not inlined. Increase the inline threshold to promote inlining.
1270   unsigned AllocaSize = getCallArgsTotalAllocaSize(CB, DL);
1271   if (AllocaSize > 0)
1272     Threshold += ArgAllocaCost;
1273   return Threshold;
1274 }
1275 
1276 unsigned GCNTTIImpl::getCallerAllocaCost(const CallBase *CB,
1277                                          const AllocaInst *AI) const {
1278 
1279   // Below the cutoff, assume that the private memory objects would be
1280   // optimized
1281   auto AllocaSize = getCallArgsTotalAllocaSize(CB, DL);
1282   if (AllocaSize <= ArgAllocaCutoff)
1283     return 0;
1284 
1285   // Above the cutoff, we give a cost to each private memory object
1286   // depending its size. If the array can be optimized by SROA this cost is not
1287   // added to the total-cost in the inliner cost analysis.
1288   //
1289   // We choose the total cost of the alloca such that their sum cancels the
1290   // bonus given in the threshold (ArgAllocaCost).
1291   //
1292   //   Cost_Alloca_0 + ... + Cost_Alloca_N == ArgAllocaCost
1293   //
1294   // Awkwardly, the ArgAllocaCost bonus is multiplied by threshold-multiplier,
1295   // the single-bb bonus and the vector-bonus.
1296   //
1297   // We compensate the first two multipliers, by repeating logic from the
1298   // inliner-cost in here. The vector-bonus is 0 on AMDGPU.
1299   static_assert(InlinerVectorBonusPercent == 0, "vector bonus assumed to be 0");
1300   unsigned Threshold = ArgAllocaCost * getInliningThresholdMultiplier();
1301 
1302   bool SingleBB = none_of(*CB->getCalledFunction(), [](const BasicBlock &BB) {
1303     return BB.getTerminator()->getNumSuccessors() > 1;
1304   });
1305   if (SingleBB) {
1306     Threshold += Threshold / 2;
1307   }
1308 
1309   auto ArgAllocaSize = DL.getTypeAllocSize(AI->getAllocatedType());
1310 
1311   // Attribute the bonus proportionally to the alloca size
1312   unsigned AllocaThresholdBonus = (Threshold * ArgAllocaSize) / AllocaSize;
1313 
1314   return AllocaThresholdBonus;
1315 }
1316 
1317 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1318                                          TTI::UnrollingPreferences &UP,
1319                                          OptimizationRemarkEmitter *ORE) {
1320   CommonTTI.getUnrollingPreferences(L, SE, UP, ORE);
1321 }
1322 
1323 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1324                                        TTI::PeelingPreferences &PP) {
1325   CommonTTI.getPeelingPreferences(L, SE, PP);
1326 }
1327 
1328 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1329   return ST->hasFullRate64Ops()
1330              ? getFullRateInstrCost()
1331              : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1332                                       : getQuarterRateInstrCost(CostKind);
1333 }
1334 
1335 std::pair<InstructionCost, MVT>
1336 GCNTTIImpl::getTypeLegalizationCost(Type *Ty) const {
1337   std::pair<InstructionCost, MVT> Cost = BaseT::getTypeLegalizationCost(Ty);
1338   auto Size = DL.getTypeSizeInBits(Ty);
1339   // Maximum load or store can handle 8 dwords for scalar and 4 for
1340   // vector ALU. Let's assume anything above 8 dwords is expensive
1341   // even if legal.
1342   if (Size <= 256)
1343     return Cost;
1344 
1345   Cost.first += (Size + 255) / 256;
1346   return Cost;
1347 }
1348 
1349 unsigned GCNTTIImpl::getPrefetchDistance() const {
1350   return ST->hasPrefetch() ? 128 : 0;
1351 }
1352 
1353 bool GCNTTIImpl::shouldPrefetchAddressSpace(unsigned AS) const {
1354   return AMDGPU::isFlatGlobalAddrSpace(AS);
1355 }
1356