xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetMachine.cpp (revision fcaf7f8644a9988098ac6be2165bce3ea4786e91)
1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// The AMDGPU target machine contains all of the hardware specific
11 /// information  needed to emit code for SI+ GPUs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUTargetMachine.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUAliasAnalysis.h"
18 #include "AMDGPUExportClustering.h"
19 #include "AMDGPUIGroupLP.h"
20 #include "AMDGPUMacroFusion.h"
21 #include "AMDGPUTargetObjectFile.h"
22 #include "AMDGPUTargetTransformInfo.h"
23 #include "GCNIterativeScheduler.h"
24 #include "GCNSchedStrategy.h"
25 #include "GCNVOPDUtils.h"
26 #include "R600.h"
27 #include "R600TargetMachine.h"
28 #include "SIMachineFunctionInfo.h"
29 #include "SIMachineScheduler.h"
30 #include "TargetInfo/AMDGPUTargetInfo.h"
31 #include "Utils/AMDGPUBaseInfo.h"
32 #include "llvm/Analysis/CGSCCPassManager.h"
33 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
34 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
35 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
36 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
37 #include "llvm/CodeGen/GlobalISel/Localizer.h"
38 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
39 #include "llvm/CodeGen/MIRParser/MIParser.h"
40 #include "llvm/CodeGen/Passes.h"
41 #include "llvm/CodeGen/RegAllocRegistry.h"
42 #include "llvm/CodeGen/TargetPassConfig.h"
43 #include "llvm/IR/IntrinsicsAMDGPU.h"
44 #include "llvm/IR/LegacyPassManager.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/MC/TargetRegistry.h"
49 #include "llvm/Passes/PassBuilder.h"
50 #include "llvm/Transforms/IPO.h"
51 #include "llvm/Transforms/IPO/AlwaysInliner.h"
52 #include "llvm/Transforms/IPO/GlobalDCE.h"
53 #include "llvm/Transforms/IPO/Internalize.h"
54 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Scalar/GVN.h"
57 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
60 #include "llvm/Transforms/Vectorize.h"
61 
62 using namespace llvm;
63 using namespace llvm::PatternMatch;
64 
65 namespace {
66 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> {
67 public:
68   SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
69     : RegisterRegAllocBase(N, D, C) {}
70 };
71 
72 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> {
73 public:
74   VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
75     : RegisterRegAllocBase(N, D, C) {}
76 };
77 
78 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI,
79                               const TargetRegisterClass &RC) {
80   return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
81 }
82 
83 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI,
84                               const TargetRegisterClass &RC) {
85   return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
86 }
87 
88 
89 /// -{sgpr|vgpr}-regalloc=... command line option.
90 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }
91 
92 /// A dummy default pass factory indicates whether the register allocator is
93 /// overridden on the command line.
94 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag;
95 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag;
96 
97 static SGPRRegisterRegAlloc
98 defaultSGPRRegAlloc("default",
99                     "pick SGPR register allocator based on -O option",
100                     useDefaultRegisterAllocator);
101 
102 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false,
103                RegisterPassParser<SGPRRegisterRegAlloc>>
104 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
105              cl::desc("Register allocator to use for SGPRs"));
106 
107 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false,
108                RegisterPassParser<VGPRRegisterRegAlloc>>
109 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
110              cl::desc("Register allocator to use for VGPRs"));
111 
112 
113 static void initializeDefaultSGPRRegisterAllocatorOnce() {
114   RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
115 
116   if (!Ctor) {
117     Ctor = SGPRRegAlloc;
118     SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc);
119   }
120 }
121 
122 static void initializeDefaultVGPRRegisterAllocatorOnce() {
123   RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
124 
125   if (!Ctor) {
126     Ctor = VGPRRegAlloc;
127     VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc);
128   }
129 }
130 
131 static FunctionPass *createBasicSGPRRegisterAllocator() {
132   return createBasicRegisterAllocator(onlyAllocateSGPRs);
133 }
134 
135 static FunctionPass *createGreedySGPRRegisterAllocator() {
136   return createGreedyRegisterAllocator(onlyAllocateSGPRs);
137 }
138 
139 static FunctionPass *createFastSGPRRegisterAllocator() {
140   return createFastRegisterAllocator(onlyAllocateSGPRs, false);
141 }
142 
143 static FunctionPass *createBasicVGPRRegisterAllocator() {
144   return createBasicRegisterAllocator(onlyAllocateVGPRs);
145 }
146 
147 static FunctionPass *createGreedyVGPRRegisterAllocator() {
148   return createGreedyRegisterAllocator(onlyAllocateVGPRs);
149 }
150 
151 static FunctionPass *createFastVGPRRegisterAllocator() {
152   return createFastRegisterAllocator(onlyAllocateVGPRs, true);
153 }
154 
155 static SGPRRegisterRegAlloc basicRegAllocSGPR(
156   "basic", "basic register allocator", createBasicSGPRRegisterAllocator);
157 static SGPRRegisterRegAlloc greedyRegAllocSGPR(
158   "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator);
159 
160 static SGPRRegisterRegAlloc fastRegAllocSGPR(
161   "fast", "fast register allocator", createFastSGPRRegisterAllocator);
162 
163 
164 static VGPRRegisterRegAlloc basicRegAllocVGPR(
165   "basic", "basic register allocator", createBasicVGPRRegisterAllocator);
166 static VGPRRegisterRegAlloc greedyRegAllocVGPR(
167   "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator);
168 
169 static VGPRRegisterRegAlloc fastRegAllocVGPR(
170   "fast", "fast register allocator", createFastVGPRRegisterAllocator);
171 }
172 
173 static cl::opt<bool> EnableSROA(
174   "amdgpu-sroa",
175   cl::desc("Run SROA after promote alloca pass"),
176   cl::ReallyHidden,
177   cl::init(true));
178 
179 static cl::opt<bool>
180 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
181                         cl::desc("Run early if-conversion"),
182                         cl::init(false));
183 
184 static cl::opt<bool>
185 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
186             cl::desc("Run pre-RA exec mask optimizations"),
187             cl::init(true));
188 
189 // Option to disable vectorizer for tests.
190 static cl::opt<bool> EnableLoadStoreVectorizer(
191   "amdgpu-load-store-vectorizer",
192   cl::desc("Enable load store vectorizer"),
193   cl::init(true),
194   cl::Hidden);
195 
196 // Option to control global loads scalarization
197 static cl::opt<bool> ScalarizeGlobal(
198   "amdgpu-scalarize-global-loads",
199   cl::desc("Enable global load scalarization"),
200   cl::init(true),
201   cl::Hidden);
202 
203 // Option to run internalize pass.
204 static cl::opt<bool> InternalizeSymbols(
205   "amdgpu-internalize-symbols",
206   cl::desc("Enable elimination of non-kernel functions and unused globals"),
207   cl::init(false),
208   cl::Hidden);
209 
210 // Option to inline all early.
211 static cl::opt<bool> EarlyInlineAll(
212   "amdgpu-early-inline-all",
213   cl::desc("Inline all functions early"),
214   cl::init(false),
215   cl::Hidden);
216 
217 static cl::opt<bool> EnableSDWAPeephole(
218   "amdgpu-sdwa-peephole",
219   cl::desc("Enable SDWA peepholer"),
220   cl::init(true));
221 
222 static cl::opt<bool> EnableDPPCombine(
223   "amdgpu-dpp-combine",
224   cl::desc("Enable DPP combiner"),
225   cl::init(true));
226 
227 // Enable address space based alias analysis
228 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
229   cl::desc("Enable AMDGPU Alias Analysis"),
230   cl::init(true));
231 
232 // Option to run late CFG structurizer
233 static cl::opt<bool, true> LateCFGStructurize(
234   "amdgpu-late-structurize",
235   cl::desc("Enable late CFG structurization"),
236   cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
237   cl::Hidden);
238 
239 // Enable lib calls simplifications
240 static cl::opt<bool> EnableLibCallSimplify(
241   "amdgpu-simplify-libcall",
242   cl::desc("Enable amdgpu library simplifications"),
243   cl::init(true),
244   cl::Hidden);
245 
246 static cl::opt<bool> EnableLowerKernelArguments(
247   "amdgpu-ir-lower-kernel-arguments",
248   cl::desc("Lower kernel argument loads in IR pass"),
249   cl::init(true),
250   cl::Hidden);
251 
252 static cl::opt<bool> EnableRegReassign(
253   "amdgpu-reassign-regs",
254   cl::desc("Enable register reassign optimizations on gfx10+"),
255   cl::init(true),
256   cl::Hidden);
257 
258 static cl::opt<bool> OptVGPRLiveRange(
259     "amdgpu-opt-vgpr-liverange",
260     cl::desc("Enable VGPR liverange optimizations for if-else structure"),
261     cl::init(true), cl::Hidden);
262 
263 // Enable atomic optimization
264 static cl::opt<bool> EnableAtomicOptimizations(
265   "amdgpu-atomic-optimizations",
266   cl::desc("Enable atomic optimizations"),
267   cl::init(false),
268   cl::Hidden);
269 
270 // Enable Mode register optimization
271 static cl::opt<bool> EnableSIModeRegisterPass(
272   "amdgpu-mode-register",
273   cl::desc("Enable mode register pass"),
274   cl::init(true),
275   cl::Hidden);
276 
277 // Enable GFX11+ s_delay_alu insertion
278 static cl::opt<bool>
279     EnableInsertDelayAlu("amdgpu-enable-delay-alu",
280                          cl::desc("Enable s_delay_alu insertion"),
281                          cl::init(true), cl::Hidden);
282 
283 // Enable GFX11+ VOPD
284 static cl::opt<bool>
285     EnableVOPD("amdgpu-enable-vopd",
286                cl::desc("Enable VOPD, dual issue of VALU in wave32"),
287                cl::init(true), cl::Hidden);
288 
289 // Option is used in lit tests to prevent deadcoding of patterns inspected.
290 static cl::opt<bool>
291 EnableDCEInRA("amdgpu-dce-in-ra",
292     cl::init(true), cl::Hidden,
293     cl::desc("Enable machine DCE inside regalloc"));
294 
295 static cl::opt<bool> EnableSetWavePriority("amdgpu-set-wave-priority",
296                                            cl::desc("Adjust wave priority"),
297                                            cl::init(false), cl::Hidden);
298 
299 static cl::opt<bool> EnableScalarIRPasses(
300   "amdgpu-scalar-ir-passes",
301   cl::desc("Enable scalar IR passes"),
302   cl::init(true),
303   cl::Hidden);
304 
305 static cl::opt<bool> EnableStructurizerWorkarounds(
306     "amdgpu-enable-structurizer-workarounds",
307     cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true),
308     cl::Hidden);
309 
310 static cl::opt<bool> EnableLDSReplaceWithPointer(
311     "amdgpu-enable-lds-replace-with-pointer",
312     cl::desc("Enable LDS replace with pointer pass"), cl::init(false),
313     cl::Hidden);
314 
315 static cl::opt<bool, true> EnableLowerModuleLDS(
316     "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"),
317     cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true),
318     cl::Hidden);
319 
320 static cl::opt<bool> EnablePreRAOptimizations(
321     "amdgpu-enable-pre-ra-optimizations",
322     cl::desc("Enable Pre-RA optimizations pass"), cl::init(true),
323     cl::Hidden);
324 
325 static cl::opt<bool> EnablePromoteKernelArguments(
326     "amdgpu-enable-promote-kernel-arguments",
327     cl::desc("Enable promotion of flat kernel pointer arguments to global"),
328     cl::Hidden, cl::init(true));
329 
330 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
331   // Register the target
332   RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
333   RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
334 
335   PassRegistry *PR = PassRegistry::getPassRegistry();
336   initializeR600ClauseMergePassPass(*PR);
337   initializeR600ControlFlowFinalizerPass(*PR);
338   initializeR600PacketizerPass(*PR);
339   initializeR600ExpandSpecialInstrsPassPass(*PR);
340   initializeR600VectorRegMergerPass(*PR);
341   initializeGlobalISel(*PR);
342   initializeAMDGPUDAGToDAGISelPass(*PR);
343   initializeGCNDPPCombinePass(*PR);
344   initializeSILowerI1CopiesPass(*PR);
345   initializeSILowerSGPRSpillsPass(*PR);
346   initializeSIFixSGPRCopiesPass(*PR);
347   initializeSIFixVGPRCopiesPass(*PR);
348   initializeSIFoldOperandsPass(*PR);
349   initializeSIPeepholeSDWAPass(*PR);
350   initializeSIShrinkInstructionsPass(*PR);
351   initializeSIOptimizeExecMaskingPreRAPass(*PR);
352   initializeSIOptimizeVGPRLiveRangePass(*PR);
353   initializeSILoadStoreOptimizerPass(*PR);
354   initializeAMDGPUCtorDtorLoweringPass(*PR);
355   initializeAMDGPUAlwaysInlinePass(*PR);
356   initializeAMDGPUAttributorPass(*PR);
357   initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
358   initializeAMDGPUAnnotateUniformValuesPass(*PR);
359   initializeAMDGPUArgumentUsageInfoPass(*PR);
360   initializeAMDGPUAtomicOptimizerPass(*PR);
361   initializeAMDGPULowerKernelArgumentsPass(*PR);
362   initializeAMDGPUPromoteKernelArgumentsPass(*PR);
363   initializeAMDGPULowerKernelAttributesPass(*PR);
364   initializeAMDGPULowerIntrinsicsPass(*PR);
365   initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
366   initializeAMDGPUPostLegalizerCombinerPass(*PR);
367   initializeAMDGPUPreLegalizerCombinerPass(*PR);
368   initializeAMDGPURegBankCombinerPass(*PR);
369   initializeAMDGPUPromoteAllocaPass(*PR);
370   initializeAMDGPUPromoteAllocaToVectorPass(*PR);
371   initializeAMDGPUCodeGenPreparePass(*PR);
372   initializeAMDGPULateCodeGenPreparePass(*PR);
373   initializeAMDGPUPropagateAttributesEarlyPass(*PR);
374   initializeAMDGPUPropagateAttributesLatePass(*PR);
375   initializeAMDGPUReplaceLDSUseWithPointerPass(*PR);
376   initializeAMDGPULowerModuleLDSPass(*PR);
377   initializeAMDGPURewriteOutArgumentsPass(*PR);
378   initializeAMDGPUUnifyMetadataPass(*PR);
379   initializeSIAnnotateControlFlowPass(*PR);
380   initializeAMDGPUReleaseVGPRsPass(*PR);
381   initializeAMDGPUInsertDelayAluPass(*PR);
382   initializeSIInsertHardClausesPass(*PR);
383   initializeSIInsertWaitcntsPass(*PR);
384   initializeSIModeRegisterPass(*PR);
385   initializeSIWholeQuadModePass(*PR);
386   initializeSILowerControlFlowPass(*PR);
387   initializeSIPreEmitPeepholePass(*PR);
388   initializeSILateBranchLoweringPass(*PR);
389   initializeSIMemoryLegalizerPass(*PR);
390   initializeSIOptimizeExecMaskingPass(*PR);
391   initializeSIPreAllocateWWMRegsPass(*PR);
392   initializeSIFormMemoryClausesPass(*PR);
393   initializeSIPostRABundlerPass(*PR);
394   initializeGCNCreateVOPDPass(*PR);
395   initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
396   initializeAMDGPUAAWrapperPassPass(*PR);
397   initializeAMDGPUExternalAAWrapperPass(*PR);
398   initializeAMDGPUUseNativeCallsPass(*PR);
399   initializeAMDGPUSimplifyLibCallsPass(*PR);
400   initializeAMDGPUPrintfRuntimeBindingPass(*PR);
401   initializeAMDGPUResourceUsageAnalysisPass(*PR);
402   initializeGCNNSAReassignPass(*PR);
403   initializeGCNPreRAOptimizationsPass(*PR);
404 }
405 
406 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
407   return std::make_unique<AMDGPUTargetObjectFile>();
408 }
409 
410 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
411   return new SIScheduleDAGMI(C);
412 }
413 
414 static ScheduleDAGInstrs *
415 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
416   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
417   ScheduleDAGMILive *DAG =
418     new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
419   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
420   if (ST.shouldClusterStores())
421     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
422   DAG->addMutation(createIGroupLPDAGMutation());
423   DAG->addMutation(createSchedBarrierDAGMutation());
424   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
425   DAG->addMutation(createAMDGPUExportClusteringDAGMutation());
426   return DAG;
427 }
428 
429 static ScheduleDAGInstrs *
430 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
431   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
432   auto DAG = new GCNIterativeScheduler(C,
433     GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
434   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
435   if (ST.shouldClusterStores())
436     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
437   return DAG;
438 }
439 
440 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
441   return new GCNIterativeScheduler(C,
442     GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
443 }
444 
445 static ScheduleDAGInstrs *
446 createIterativeILPMachineScheduler(MachineSchedContext *C) {
447   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
448   auto DAG = new GCNIterativeScheduler(C,
449     GCNIterativeScheduler::SCHEDULE_ILP);
450   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
451   if (ST.shouldClusterStores())
452     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
453   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
454   return DAG;
455 }
456 
457 static MachineSchedRegistry
458 SISchedRegistry("si", "Run SI's custom scheduler",
459                 createSIMachineScheduler);
460 
461 static MachineSchedRegistry
462 GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
463                              "Run GCN scheduler to maximize occupancy",
464                              createGCNMaxOccupancyMachineScheduler);
465 
466 static MachineSchedRegistry
467 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
468   "Run GCN scheduler to maximize occupancy (experimental)",
469   createIterativeGCNMaxOccupancyMachineScheduler);
470 
471 static MachineSchedRegistry
472 GCNMinRegSchedRegistry("gcn-minreg",
473   "Run GCN iterative scheduler for minimal register usage (experimental)",
474   createMinRegScheduler);
475 
476 static MachineSchedRegistry
477 GCNILPSchedRegistry("gcn-ilp",
478   "Run GCN iterative scheduler for ILP scheduling (experimental)",
479   createIterativeILPMachineScheduler);
480 
481 static StringRef computeDataLayout(const Triple &TT) {
482   if (TT.getArch() == Triple::r600) {
483     // 32-bit pointers.
484     return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
485            "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1";
486   }
487 
488   // 32-bit private, local, and region pointers. 64-bit global, constant and
489   // flat, non-integral buffer fat pointers.
490   return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
491          "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
492          "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"
493          "-ni:7";
494 }
495 
496 LLVM_READNONE
497 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
498   if (!GPU.empty())
499     return GPU;
500 
501   // Need to default to a target with flat support for HSA.
502   if (TT.getArch() == Triple::amdgcn)
503     return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
504 
505   return "r600";
506 }
507 
508 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
509   // The AMDGPU toolchain only supports generating shared objects, so we
510   // must always use PIC.
511   return Reloc::PIC_;
512 }
513 
514 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
515                                          StringRef CPU, StringRef FS,
516                                          TargetOptions Options,
517                                          Optional<Reloc::Model> RM,
518                                          Optional<CodeModel::Model> CM,
519                                          CodeGenOpt::Level OptLevel)
520     : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
521                         FS, Options, getEffectiveRelocModel(RM),
522                         getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
523       TLOF(createTLOF(getTargetTriple())) {
524   initAsmInfo();
525   if (TT.getArch() == Triple::amdgcn) {
526     if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64"))
527       MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64));
528     else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32"))
529       MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32));
530   }
531 }
532 
533 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
534 bool AMDGPUTargetMachine::EnableFunctionCalls = false;
535 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true;
536 
537 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
538 
539 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
540   Attribute GPUAttr = F.getFnAttribute("target-cpu");
541   return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU();
542 }
543 
544 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
545   Attribute FSAttr = F.getFnAttribute("target-features");
546 
547   return FSAttr.isValid() ? FSAttr.getValueAsString()
548                           : getTargetFeatureString();
549 }
550 
551 /// Predicate for Internalize pass.
552 static bool mustPreserveGV(const GlobalValue &GV) {
553   if (const Function *F = dyn_cast<Function>(&GV))
554     return F->isDeclaration() || F->getName().startswith("__asan_") ||
555            F->getName().startswith("__sanitizer_") ||
556            AMDGPU::isEntryFunctionCC(F->getCallingConv());
557 
558   GV.removeDeadConstantUsers();
559   return !GV.use_empty();
560 }
561 
562 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
563   Builder.DivergentTarget = true;
564 
565   bool EnableOpt = getOptLevel() > CodeGenOpt::None;
566   bool Internalize = InternalizeSymbols;
567   bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
568   bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
569   bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
570   bool PromoteKernelArguments =
571       EnablePromoteKernelArguments && getOptLevel() > CodeGenOpt::Less;
572 
573   if (EnableFunctionCalls) {
574     delete Builder.Inliner;
575     Builder.Inliner = createFunctionInliningPass();
576   }
577 
578   Builder.addExtension(
579     PassManagerBuilder::EP_ModuleOptimizerEarly,
580     [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
581                                                legacy::PassManagerBase &PM) {
582       if (AMDGPUAA) {
583         PM.add(createAMDGPUAAWrapperPass());
584         PM.add(createAMDGPUExternalAAWrapperPass());
585       }
586       PM.add(createAMDGPUUnifyMetadataPass());
587       PM.add(createAMDGPUPrintfRuntimeBinding());
588       if (Internalize)
589         PM.add(createInternalizePass(mustPreserveGV));
590       PM.add(createAMDGPUPropagateAttributesLatePass(this));
591       if (Internalize)
592         PM.add(createGlobalDCEPass());
593       if (EarlyInline)
594         PM.add(createAMDGPUAlwaysInlinePass(false));
595   });
596 
597   Builder.addExtension(
598     PassManagerBuilder::EP_EarlyAsPossible,
599     [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &,
600                                       legacy::PassManagerBase &PM) {
601       if (AMDGPUAA) {
602         PM.add(createAMDGPUAAWrapperPass());
603         PM.add(createAMDGPUExternalAAWrapperPass());
604       }
605       PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
606       PM.add(llvm::createAMDGPUUseNativeCallsPass());
607       if (LibCallSimplify)
608         PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this));
609   });
610 
611   Builder.addExtension(
612     PassManagerBuilder::EP_CGSCCOptimizerLate,
613     [EnableOpt, PromoteKernelArguments](const PassManagerBuilder &,
614                                         legacy::PassManagerBase &PM) {
615       // Add promote kernel arguments pass to the opt pipeline right before
616       // infer address spaces which is needed to do actual address space
617       // rewriting.
618       if (PromoteKernelArguments)
619         PM.add(createAMDGPUPromoteKernelArgumentsPass());
620 
621       // Add infer address spaces pass to the opt pipeline after inlining
622       // but before SROA to increase SROA opportunities.
623       PM.add(createInferAddressSpacesPass());
624 
625       // This should run after inlining to have any chance of doing anything,
626       // and before other cleanup optimizations.
627       PM.add(createAMDGPULowerKernelAttributesPass());
628 
629       // Promote alloca to vector before SROA and loop unroll. If we manage
630       // to eliminate allocas before unroll we may choose to unroll less.
631       if (EnableOpt)
632         PM.add(createAMDGPUPromoteAllocaToVector());
633   });
634 }
635 
636 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
637   AAM.registerFunctionAnalysis<AMDGPUAA>();
638 }
639 
640 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) {
641   PB.registerPipelineParsingCallback(
642       [this](StringRef PassName, ModulePassManager &PM,
643              ArrayRef<PassBuilder::PipelineElement>) {
644         if (PassName == "amdgpu-propagate-attributes-late") {
645           PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
646           return true;
647         }
648         if (PassName == "amdgpu-unify-metadata") {
649           PM.addPass(AMDGPUUnifyMetadataPass());
650           return true;
651         }
652         if (PassName == "amdgpu-printf-runtime-binding") {
653           PM.addPass(AMDGPUPrintfRuntimeBindingPass());
654           return true;
655         }
656         if (PassName == "amdgpu-always-inline") {
657           PM.addPass(AMDGPUAlwaysInlinePass());
658           return true;
659         }
660         if (PassName == "amdgpu-replace-lds-use-with-pointer") {
661           PM.addPass(AMDGPUReplaceLDSUseWithPointerPass());
662           return true;
663         }
664         if (PassName == "amdgpu-lower-module-lds") {
665           PM.addPass(AMDGPULowerModuleLDSPass());
666           return true;
667         }
668         return false;
669       });
670   PB.registerPipelineParsingCallback(
671       [this](StringRef PassName, FunctionPassManager &PM,
672              ArrayRef<PassBuilder::PipelineElement>) {
673         if (PassName == "amdgpu-simplifylib") {
674           PM.addPass(AMDGPUSimplifyLibCallsPass(*this));
675           return true;
676         }
677         if (PassName == "amdgpu-usenative") {
678           PM.addPass(AMDGPUUseNativeCallsPass());
679           return true;
680         }
681         if (PassName == "amdgpu-promote-alloca") {
682           PM.addPass(AMDGPUPromoteAllocaPass(*this));
683           return true;
684         }
685         if (PassName == "amdgpu-promote-alloca-to-vector") {
686           PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
687           return true;
688         }
689         if (PassName == "amdgpu-lower-kernel-attributes") {
690           PM.addPass(AMDGPULowerKernelAttributesPass());
691           return true;
692         }
693         if (PassName == "amdgpu-propagate-attributes-early") {
694           PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
695           return true;
696         }
697         if (PassName == "amdgpu-promote-kernel-arguments") {
698           PM.addPass(AMDGPUPromoteKernelArgumentsPass());
699           return true;
700         }
701         return false;
702       });
703 
704   PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) {
705     FAM.registerPass([&] { return AMDGPUAA(); });
706   });
707 
708   PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) {
709     if (AAName == "amdgpu-aa") {
710       AAM.registerFunctionAnalysis<AMDGPUAA>();
711       return true;
712     }
713     return false;
714   });
715 
716   PB.registerPipelineStartEPCallback(
717       [this](ModulePassManager &PM, OptimizationLevel Level) {
718         FunctionPassManager FPM;
719         FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
720         FPM.addPass(AMDGPUUseNativeCallsPass());
721         if (EnableLibCallSimplify && Level != OptimizationLevel::O0)
722           FPM.addPass(AMDGPUSimplifyLibCallsPass(*this));
723         PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
724       });
725 
726   PB.registerPipelineEarlySimplificationEPCallback(
727       [this](ModulePassManager &PM, OptimizationLevel Level) {
728         if (Level == OptimizationLevel::O0)
729           return;
730 
731         PM.addPass(AMDGPUUnifyMetadataPass());
732         PM.addPass(AMDGPUPrintfRuntimeBindingPass());
733 
734         if (InternalizeSymbols) {
735           PM.addPass(InternalizePass(mustPreserveGV));
736         }
737         PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
738         if (InternalizeSymbols) {
739           PM.addPass(GlobalDCEPass());
740         }
741         if (EarlyInlineAll && !EnableFunctionCalls)
742           PM.addPass(AMDGPUAlwaysInlinePass());
743       });
744 
745   PB.registerCGSCCOptimizerLateEPCallback(
746       [this](CGSCCPassManager &PM, OptimizationLevel Level) {
747         if (Level == OptimizationLevel::O0)
748           return;
749 
750         FunctionPassManager FPM;
751 
752         // Add promote kernel arguments pass to the opt pipeline right before
753         // infer address spaces which is needed to do actual address space
754         // rewriting.
755         if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() &&
756             EnablePromoteKernelArguments)
757           FPM.addPass(AMDGPUPromoteKernelArgumentsPass());
758 
759         // Add infer address spaces pass to the opt pipeline after inlining
760         // but before SROA to increase SROA opportunities.
761         FPM.addPass(InferAddressSpacesPass());
762 
763         // This should run after inlining to have any chance of doing
764         // anything, and before other cleanup optimizations.
765         FPM.addPass(AMDGPULowerKernelAttributesPass());
766 
767         if (Level != OptimizationLevel::O0) {
768           // Promote alloca to vector before SROA and loop unroll. If we
769           // manage to eliminate allocas before unroll we may choose to unroll
770           // less.
771           FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
772         }
773 
774         PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM)));
775       });
776 }
777 
778 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) {
779   return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
780           AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
781           AddrSpace == AMDGPUAS::REGION_ADDRESS)
782              ? -1
783              : 0;
784 }
785 
786 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
787                                               unsigned DestAS) const {
788   return AMDGPU::isFlatGlobalAddrSpace(SrcAS) &&
789          AMDGPU::isFlatGlobalAddrSpace(DestAS);
790 }
791 
792 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const {
793   const auto *LD = dyn_cast<LoadInst>(V);
794   if (!LD)
795     return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
796 
797   // It must be a generic pointer loaded.
798   assert(V->getType()->isPointerTy() &&
799          V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS);
800 
801   const auto *Ptr = LD->getPointerOperand();
802   if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
803     return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
804   // For a generic pointer loaded from the constant memory, it could be assumed
805   // as a global pointer since the constant memory is only populated on the
806   // host side. As implied by the offload programming model, only global
807   // pointers could be referenced on the host side.
808   return AMDGPUAS::GLOBAL_ADDRESS;
809 }
810 
811 std::pair<const Value *, unsigned>
812 AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const {
813   if (auto *II = dyn_cast<IntrinsicInst>(V)) {
814     switch (II->getIntrinsicID()) {
815     case Intrinsic::amdgcn_is_shared:
816       return std::make_pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS);
817     case Intrinsic::amdgcn_is_private:
818       return std::make_pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS);
819     default:
820       break;
821     }
822     return std::make_pair(nullptr, -1);
823   }
824   // Check the global pointer predication based on
825   // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and
826   // the order of 'is_shared' and 'is_private' is not significant.
827   Value *Ptr;
828   if (match(
829           const_cast<Value *>(V),
830           m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))),
831                   m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>(
832                       m_Deferred(Ptr))))))
833     return std::make_pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS);
834 
835   return std::make_pair(nullptr, -1);
836 }
837 
838 unsigned
839 AMDGPUTargetMachine::getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
840   switch (Kind) {
841   case PseudoSourceValue::Stack:
842   case PseudoSourceValue::FixedStack:
843     return AMDGPUAS::PRIVATE_ADDRESS;
844   case PseudoSourceValue::ConstantPool:
845   case PseudoSourceValue::GOT:
846   case PseudoSourceValue::JumpTable:
847   case PseudoSourceValue::GlobalValueCallEntry:
848   case PseudoSourceValue::ExternalSymbolCallEntry:
849   case PseudoSourceValue::TargetCustom:
850     return AMDGPUAS::CONSTANT_ADDRESS;
851   }
852   return AMDGPUAS::FLAT_ADDRESS;
853 }
854 
855 //===----------------------------------------------------------------------===//
856 // GCN Target Machine (SI+)
857 //===----------------------------------------------------------------------===//
858 
859 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
860                                    StringRef CPU, StringRef FS,
861                                    TargetOptions Options,
862                                    Optional<Reloc::Model> RM,
863                                    Optional<CodeModel::Model> CM,
864                                    CodeGenOpt::Level OL, bool JIT)
865     : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
866 
867 const TargetSubtargetInfo *
868 GCNTargetMachine::getSubtargetImpl(const Function &F) const {
869   StringRef GPU = getGPUName(F);
870   StringRef FS = getFeatureString(F);
871 
872   SmallString<128> SubtargetKey(GPU);
873   SubtargetKey.append(FS);
874 
875   auto &I = SubtargetMap[SubtargetKey];
876   if (!I) {
877     // This needs to be done before we create a new subtarget since any
878     // creation will depend on the TM and the code generation flags on the
879     // function that reside in TargetOptions.
880     resetTargetOptions(F);
881     I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
882   }
883 
884   I->setScalarizeGlobalBehavior(ScalarizeGlobal);
885 
886   return I.get();
887 }
888 
889 TargetTransformInfo
890 GCNTargetMachine::getTargetTransformInfo(const Function &F) const {
891   return TargetTransformInfo(GCNTTIImpl(this, F));
892 }
893 
894 //===----------------------------------------------------------------------===//
895 // AMDGPU Pass Setup
896 //===----------------------------------------------------------------------===//
897 
898 std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const {
899   return getStandardCSEConfigForOpt(TM->getOptLevel());
900 }
901 
902 namespace {
903 
904 class GCNPassConfig final : public AMDGPUPassConfig {
905 public:
906   GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
907     : AMDGPUPassConfig(TM, PM) {
908     // It is necessary to know the register usage of the entire call graph.  We
909     // allow calls without EnableAMDGPUFunctionCalls if they are marked
910     // noinline, so this is always required.
911     setRequiresCodeGenSCCOrder(true);
912     substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
913   }
914 
915   GCNTargetMachine &getGCNTargetMachine() const {
916     return getTM<GCNTargetMachine>();
917   }
918 
919   ScheduleDAGInstrs *
920   createMachineScheduler(MachineSchedContext *C) const override;
921 
922   ScheduleDAGInstrs *
923   createPostMachineScheduler(MachineSchedContext *C) const override {
924     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
925     const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
926     DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
927     if (ST.shouldClusterStores())
928       DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
929     DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII));
930     DAG->addMutation(createIGroupLPDAGMutation());
931     DAG->addMutation(createSchedBarrierDAGMutation());
932     if (isPassEnabled(EnableVOPD, CodeGenOpt::Less))
933       DAG->addMutation(createVOPDPairingMutation());
934     return DAG;
935   }
936 
937   bool addPreISel() override;
938   void addMachineSSAOptimization() override;
939   bool addILPOpts() override;
940   bool addInstSelector() override;
941   bool addIRTranslator() override;
942   void addPreLegalizeMachineIR() override;
943   bool addLegalizeMachineIR() override;
944   void addPreRegBankSelect() override;
945   bool addRegBankSelect() override;
946   void addPreGlobalInstructionSelect() override;
947   bool addGlobalInstructionSelect() override;
948   void addFastRegAlloc() override;
949   void addOptimizedRegAlloc() override;
950 
951   FunctionPass *createSGPRAllocPass(bool Optimized);
952   FunctionPass *createVGPRAllocPass(bool Optimized);
953   FunctionPass *createRegAllocPass(bool Optimized) override;
954 
955   bool addRegAssignAndRewriteFast() override;
956   bool addRegAssignAndRewriteOptimized() override;
957 
958   void addPreRegAlloc() override;
959   bool addPreRewrite() override;
960   void addPostRegAlloc() override;
961   void addPreSched2() override;
962   void addPreEmitPass() override;
963 };
964 
965 } // end anonymous namespace
966 
967 AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
968     : TargetPassConfig(TM, PM) {
969   // Exceptions and StackMaps are not supported, so these passes will never do
970   // anything.
971   disablePass(&StackMapLivenessID);
972   disablePass(&FuncletLayoutID);
973   // Garbage collection is not supported.
974   disablePass(&GCLoweringID);
975   disablePass(&ShadowStackGCLoweringID);
976 }
977 
978 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
979   if (getOptLevel() == CodeGenOpt::Aggressive)
980     addPass(createGVNPass());
981   else
982     addPass(createEarlyCSEPass());
983 }
984 
985 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
986   addPass(createLICMPass());
987   addPass(createSeparateConstOffsetFromGEPPass());
988   addPass(createSpeculativeExecutionPass());
989   // ReassociateGEPs exposes more opportunities for SLSR. See
990   // the example in reassociate-geps-and-slsr.ll.
991   addPass(createStraightLineStrengthReducePass());
992   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
993   // EarlyCSE can reuse.
994   addEarlyCSEOrGVNPass();
995   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
996   addPass(createNaryReassociatePass());
997   // NaryReassociate on GEPs creates redundant common expressions, so run
998   // EarlyCSE after it.
999   addPass(createEarlyCSEPass());
1000 }
1001 
1002 void AMDGPUPassConfig::addIRPasses() {
1003   const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
1004 
1005   // There is no reason to run these.
1006   disablePass(&StackMapLivenessID);
1007   disablePass(&FuncletLayoutID);
1008   disablePass(&PatchableFunctionID);
1009 
1010   addPass(createAMDGPUPrintfRuntimeBinding());
1011   addPass(createAMDGPUCtorDtorLoweringPass());
1012 
1013   // A call to propagate attributes pass in the backend in case opt was not run.
1014   addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));
1015 
1016   addPass(createAMDGPULowerIntrinsicsPass());
1017 
1018   // Function calls are not supported, so make sure we inline everything.
1019   addPass(createAMDGPUAlwaysInlinePass());
1020   addPass(createAlwaysInlinerLegacyPass());
1021   // We need to add the barrier noop pass, otherwise adding the function
1022   // inlining pass will cause all of the PassConfigs passes to be run
1023   // one function at a time, which means if we have a module with two
1024   // functions, then we will generate code for the first function
1025   // without ever running any passes on the second.
1026   addPass(createBarrierNoopPass());
1027 
1028   // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
1029   if (TM.getTargetTriple().getArch() == Triple::r600)
1030     addPass(createR600OpenCLImageTypeLoweringPass());
1031 
1032   // Replace OpenCL enqueued block function pointers with global variables.
1033   addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
1034 
1035   // Can increase LDS used by kernel so runs before PromoteAlloca
1036   if (EnableLowerModuleLDS) {
1037     // The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the
1038     // pass "amdgpu-lower-module-lds", and also it required to be run only if
1039     // "amdgpu-lower-module-lds" pass is enabled.
1040     if (EnableLDSReplaceWithPointer)
1041       addPass(createAMDGPUReplaceLDSUseWithPointerPass());
1042 
1043     addPass(createAMDGPULowerModuleLDSPass());
1044   }
1045 
1046   if (TM.getOptLevel() > CodeGenOpt::None)
1047     addPass(createInferAddressSpacesPass());
1048 
1049   addPass(createAtomicExpandPass());
1050 
1051   if (TM.getOptLevel() > CodeGenOpt::None) {
1052     addPass(createAMDGPUPromoteAlloca());
1053 
1054     if (EnableSROA)
1055       addPass(createSROAPass());
1056     if (isPassEnabled(EnableScalarIRPasses))
1057       addStraightLineScalarOptimizationPasses();
1058 
1059     if (EnableAMDGPUAliasAnalysis) {
1060       addPass(createAMDGPUAAWrapperPass());
1061       addPass(createExternalAAWrapperPass([](Pass &P, Function &,
1062                                              AAResults &AAR) {
1063         if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
1064           AAR.addAAResult(WrapperPass->getResult());
1065         }));
1066     }
1067 
1068     if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
1069       // TODO: May want to move later or split into an early and late one.
1070       addPass(createAMDGPUCodeGenPreparePass());
1071     }
1072   }
1073 
1074   TargetPassConfig::addIRPasses();
1075 
1076   // EarlyCSE is not always strong enough to clean up what LSR produces. For
1077   // example, GVN can combine
1078   //
1079   //   %0 = add %a, %b
1080   //   %1 = add %b, %a
1081   //
1082   // and
1083   //
1084   //   %0 = shl nsw %a, 2
1085   //   %1 = shl %a, 2
1086   //
1087   // but EarlyCSE can do neither of them.
1088   if (isPassEnabled(EnableScalarIRPasses))
1089     addEarlyCSEOrGVNPass();
1090 }
1091 
1092 void AMDGPUPassConfig::addCodeGenPrepare() {
1093   if (TM->getTargetTriple().getArch() == Triple::amdgcn) {
1094     addPass(createAMDGPUAttributorPass());
1095 
1096     // FIXME: This pass adds 2 hacky attributes that can be replaced with an
1097     // analysis, and should be removed.
1098     addPass(createAMDGPUAnnotateKernelFeaturesPass());
1099   }
1100 
1101   if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
1102       EnableLowerKernelArguments)
1103     addPass(createAMDGPULowerKernelArgumentsPass());
1104 
1105   TargetPassConfig::addCodeGenPrepare();
1106 
1107   if (isPassEnabled(EnableLoadStoreVectorizer))
1108     addPass(createLoadStoreVectorizerPass());
1109 
1110   // LowerSwitch pass may introduce unreachable blocks that can
1111   // cause unexpected behavior for subsequent passes. Placing it
1112   // here seems better that these blocks would get cleaned up by
1113   // UnreachableBlockElim inserted next in the pass flow.
1114   addPass(createLowerSwitchPass());
1115 }
1116 
1117 bool AMDGPUPassConfig::addPreISel() {
1118   if (TM->getOptLevel() > CodeGenOpt::None)
1119     addPass(createFlattenCFGPass());
1120   return false;
1121 }
1122 
1123 bool AMDGPUPassConfig::addInstSelector() {
1124   addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
1125   return false;
1126 }
1127 
1128 bool AMDGPUPassConfig::addGCPasses() {
1129   // Do nothing. GC is not supported.
1130   return false;
1131 }
1132 
1133 llvm::ScheduleDAGInstrs *
1134 AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const {
1135   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
1136   ScheduleDAGMILive *DAG = createGenericSchedLive(C);
1137   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1138   if (ST.shouldClusterStores())
1139     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1140   return DAG;
1141 }
1142 
1143 //===----------------------------------------------------------------------===//
1144 // GCN Pass Setup
1145 //===----------------------------------------------------------------------===//
1146 
1147 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
1148   MachineSchedContext *C) const {
1149   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
1150   if (ST.enableSIScheduler())
1151     return createSIMachineScheduler(C);
1152   return createGCNMaxOccupancyMachineScheduler(C);
1153 }
1154 
1155 bool GCNPassConfig::addPreISel() {
1156   AMDGPUPassConfig::addPreISel();
1157 
1158   if (TM->getOptLevel() > CodeGenOpt::None)
1159     addPass(createAMDGPULateCodeGenPreparePass());
1160 
1161   if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) {
1162     addPass(createAMDGPUAtomicOptimizerPass());
1163   }
1164 
1165   if (TM->getOptLevel() > CodeGenOpt::None)
1166     addPass(createSinkingPass());
1167 
1168   // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
1169   // regions formed by them.
1170   addPass(&AMDGPUUnifyDivergentExitNodesID);
1171   if (!LateCFGStructurize) {
1172     if (EnableStructurizerWorkarounds) {
1173       addPass(createFixIrreduciblePass());
1174       addPass(createUnifyLoopExitsPass());
1175     }
1176     addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions
1177   }
1178   addPass(createAMDGPUAnnotateUniformValues());
1179   if (!LateCFGStructurize) {
1180     addPass(createSIAnnotateControlFlowPass());
1181   }
1182   addPass(createLCSSAPass());
1183 
1184   if (TM->getOptLevel() > CodeGenOpt::Less)
1185     addPass(&AMDGPUPerfHintAnalysisID);
1186 
1187   return false;
1188 }
1189 
1190 void GCNPassConfig::addMachineSSAOptimization() {
1191   TargetPassConfig::addMachineSSAOptimization();
1192 
1193   // We want to fold operands after PeepholeOptimizer has run (or as part of
1194   // it), because it will eliminate extra copies making it easier to fold the
1195   // real source operand. We want to eliminate dead instructions after, so that
1196   // we see fewer uses of the copies. We then need to clean up the dead
1197   // instructions leftover after the operands are folded as well.
1198   //
1199   // XXX - Can we get away without running DeadMachineInstructionElim again?
1200   addPass(&SIFoldOperandsID);
1201   if (EnableDPPCombine)
1202     addPass(&GCNDPPCombineID);
1203   addPass(&SILoadStoreOptimizerID);
1204   if (isPassEnabled(EnableSDWAPeephole)) {
1205     addPass(&SIPeepholeSDWAID);
1206     addPass(&EarlyMachineLICMID);
1207     addPass(&MachineCSEID);
1208     addPass(&SIFoldOperandsID);
1209   }
1210   addPass(&DeadMachineInstructionElimID);
1211   addPass(createSIShrinkInstructionsPass());
1212 }
1213 
1214 bool GCNPassConfig::addILPOpts() {
1215   if (EnableEarlyIfConversion)
1216     addPass(&EarlyIfConverterID);
1217 
1218   TargetPassConfig::addILPOpts();
1219   return false;
1220 }
1221 
1222 bool GCNPassConfig::addInstSelector() {
1223   AMDGPUPassConfig::addInstSelector();
1224   addPass(&SIFixSGPRCopiesID);
1225   addPass(createSILowerI1CopiesPass());
1226   return false;
1227 }
1228 
1229 bool GCNPassConfig::addIRTranslator() {
1230   addPass(new IRTranslator(getOptLevel()));
1231   return false;
1232 }
1233 
1234 void GCNPassConfig::addPreLegalizeMachineIR() {
1235   bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1236   addPass(createAMDGPUPreLegalizeCombiner(IsOptNone));
1237   addPass(new Localizer());
1238 }
1239 
1240 bool GCNPassConfig::addLegalizeMachineIR() {
1241   addPass(new Legalizer());
1242   return false;
1243 }
1244 
1245 void GCNPassConfig::addPreRegBankSelect() {
1246   bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1247   addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
1248 }
1249 
1250 bool GCNPassConfig::addRegBankSelect() {
1251   addPass(new RegBankSelect());
1252   return false;
1253 }
1254 
1255 void GCNPassConfig::addPreGlobalInstructionSelect() {
1256   bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1257   addPass(createAMDGPURegBankCombiner(IsOptNone));
1258 }
1259 
1260 bool GCNPassConfig::addGlobalInstructionSelect() {
1261   addPass(new InstructionSelect(getOptLevel()));
1262   return false;
1263 }
1264 
1265 void GCNPassConfig::addPreRegAlloc() {
1266   if (LateCFGStructurize) {
1267     addPass(createAMDGPUMachineCFGStructurizerPass());
1268   }
1269 }
1270 
1271 void GCNPassConfig::addFastRegAlloc() {
1272   // FIXME: We have to disable the verifier here because of PHIElimination +
1273   // TwoAddressInstructions disabling it.
1274 
1275   // This must be run immediately after phi elimination and before
1276   // TwoAddressInstructions, otherwise the processing of the tied operand of
1277   // SI_ELSE will introduce a copy of the tied operand source after the else.
1278   insertPass(&PHIEliminationID, &SILowerControlFlowID);
1279 
1280   insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID);
1281   insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID);
1282 
1283   TargetPassConfig::addFastRegAlloc();
1284 }
1285 
1286 void GCNPassConfig::addOptimizedRegAlloc() {
1287   // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation
1288   // instructions that cause scheduling barriers.
1289   insertPass(&MachineSchedulerID, &SIWholeQuadModeID);
1290   insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID);
1291 
1292   if (OptExecMaskPreRA)
1293     insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
1294 
1295   if (isPassEnabled(EnablePreRAOptimizations))
1296     insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID);
1297 
1298   // This is not an essential optimization and it has a noticeable impact on
1299   // compilation time, so we only enable it from O2.
1300   if (TM->getOptLevel() > CodeGenOpt::Less)
1301     insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
1302 
1303   // FIXME: when an instruction has a Killed operand, and the instruction is
1304   // inside a bundle, seems only the BUNDLE instruction appears as the Kills of
1305   // the register in LiveVariables, this would trigger a failure in verifier,
1306   // we should fix it and enable the verifier.
1307   if (OptVGPRLiveRange)
1308     insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID);
1309   // This must be run immediately after phi elimination and before
1310   // TwoAddressInstructions, otherwise the processing of the tied operand of
1311   // SI_ELSE will introduce a copy of the tied operand source after the else.
1312   insertPass(&PHIEliminationID, &SILowerControlFlowID);
1313 
1314   if (EnableDCEInRA)
1315     insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);
1316 
1317   TargetPassConfig::addOptimizedRegAlloc();
1318 }
1319 
1320 bool GCNPassConfig::addPreRewrite() {
1321   if (EnableRegReassign)
1322     addPass(&GCNNSAReassignID);
1323   return true;
1324 }
1325 
1326 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) {
1327   // Initialize the global default.
1328   llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag,
1329                   initializeDefaultSGPRRegisterAllocatorOnce);
1330 
1331   RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
1332   if (Ctor != useDefaultRegisterAllocator)
1333     return Ctor();
1334 
1335   if (Optimized)
1336     return createGreedyRegisterAllocator(onlyAllocateSGPRs);
1337 
1338   return createFastRegisterAllocator(onlyAllocateSGPRs, false);
1339 }
1340 
1341 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) {
1342   // Initialize the global default.
1343   llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag,
1344                   initializeDefaultVGPRRegisterAllocatorOnce);
1345 
1346   RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
1347   if (Ctor != useDefaultRegisterAllocator)
1348     return Ctor();
1349 
1350   if (Optimized)
1351     return createGreedyVGPRRegisterAllocator();
1352 
1353   return createFastVGPRRegisterAllocator();
1354 }
1355 
1356 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) {
1357   llvm_unreachable("should not be used");
1358 }
1359 
1360 static const char RegAllocOptNotSupportedMessage[] =
1361   "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc";
1362 
1363 bool GCNPassConfig::addRegAssignAndRewriteFast() {
1364   if (!usingDefaultRegAlloc())
1365     report_fatal_error(RegAllocOptNotSupportedMessage);
1366 
1367   addPass(createSGPRAllocPass(false));
1368 
1369   // Equivalent of PEI for SGPRs.
1370   addPass(&SILowerSGPRSpillsID);
1371 
1372   addPass(createVGPRAllocPass(false));
1373   return true;
1374 }
1375 
1376 bool GCNPassConfig::addRegAssignAndRewriteOptimized() {
1377   if (!usingDefaultRegAlloc())
1378     report_fatal_error(RegAllocOptNotSupportedMessage);
1379 
1380   addPass(createSGPRAllocPass(true));
1381 
1382   // Commit allocated register changes. This is mostly necessary because too
1383   // many things rely on the use lists of the physical registers, such as the
1384   // verifier. This is only necessary with allocators which use LiveIntervals,
1385   // since FastRegAlloc does the replacements itself.
1386   addPass(createVirtRegRewriter(false));
1387 
1388   // Equivalent of PEI for SGPRs.
1389   addPass(&SILowerSGPRSpillsID);
1390 
1391   addPass(createVGPRAllocPass(true));
1392 
1393   addPreRewrite();
1394   addPass(&VirtRegRewriterID);
1395 
1396   return true;
1397 }
1398 
1399 void GCNPassConfig::addPostRegAlloc() {
1400   addPass(&SIFixVGPRCopiesID);
1401   if (getOptLevel() > CodeGenOpt::None)
1402     addPass(&SIOptimizeExecMaskingID);
1403   TargetPassConfig::addPostRegAlloc();
1404 }
1405 
1406 void GCNPassConfig::addPreSched2() {
1407   if (TM->getOptLevel() > CodeGenOpt::None)
1408     addPass(createSIShrinkInstructionsPass());
1409   addPass(&SIPostRABundlerID);
1410 }
1411 
1412 void GCNPassConfig::addPreEmitPass() {
1413   if (isPassEnabled(EnableVOPD, CodeGenOpt::Less))
1414     addPass(&GCNCreateVOPDID);
1415   addPass(createSIMemoryLegalizerPass());
1416   addPass(createSIInsertWaitcntsPass());
1417 
1418   addPass(createSIModeRegisterPass());
1419 
1420   if (getOptLevel() > CodeGenOpt::None)
1421     addPass(&SIInsertHardClausesID);
1422 
1423   addPass(&SILateBranchLoweringPassID);
1424   if (isPassEnabled(EnableSetWavePriority, CodeGenOpt::Less))
1425     addPass(createAMDGPUSetWavePriorityPass());
1426   if (getOptLevel() > CodeGenOpt::None)
1427     addPass(&SIPreEmitPeepholeID);
1428   // The hazard recognizer that runs as part of the post-ra scheduler does not
1429   // guarantee to be able handle all hazards correctly. This is because if there
1430   // are multiple scheduling regions in a basic block, the regions are scheduled
1431   // bottom up, so when we begin to schedule a region we don't know what
1432   // instructions were emitted directly before it.
1433   //
1434   // Here we add a stand-alone hazard recognizer pass which can handle all
1435   // cases.
1436   addPass(&PostRAHazardRecognizerID);
1437 
1438   if (getOptLevel() > CodeGenOpt::Less)
1439     addPass(&AMDGPUReleaseVGPRsID);
1440 
1441   if (isPassEnabled(EnableInsertDelayAlu, CodeGenOpt::Less))
1442     addPass(&AMDGPUInsertDelayAluID);
1443 
1444   addPass(&BranchRelaxationPassID);
1445 }
1446 
1447 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
1448   return new GCNPassConfig(*this, PM);
1449 }
1450 
1451 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
1452   return new yaml::SIMachineFunctionInfo();
1453 }
1454 
1455 yaml::MachineFunctionInfo *
1456 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
1457   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1458   return new yaml::SIMachineFunctionInfo(
1459       *MFI, *MF.getSubtarget().getRegisterInfo(), MF);
1460 }
1461 
1462 bool GCNTargetMachine::parseMachineFunctionInfo(
1463     const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
1464     SMDiagnostic &Error, SMRange &SourceRange) const {
1465   const yaml::SIMachineFunctionInfo &YamlMFI =
1466       static_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
1467   MachineFunction &MF = PFS.MF;
1468   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1469 
1470   if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange))
1471     return true;
1472 
1473   if (MFI->Occupancy == 0) {
1474     // Fixup the subtarget dependent default value.
1475     const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1476     MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize());
1477   }
1478 
1479   auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) {
1480     Register TempReg;
1481     if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) {
1482       SourceRange = RegName.SourceRange;
1483       return true;
1484     }
1485     RegVal = TempReg;
1486 
1487     return false;
1488   };
1489 
1490   auto parseOptionalRegister = [&](const yaml::StringValue &RegName,
1491                                    Register &RegVal) {
1492     return !RegName.Value.empty() && parseRegister(RegName, RegVal);
1493   };
1494 
1495   if (parseOptionalRegister(YamlMFI.VGPRForAGPRCopy, MFI->VGPRForAGPRCopy))
1496     return true;
1497 
1498   auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
1499     // Create a diagnostic for a the register string literal.
1500     const MemoryBuffer &Buffer =
1501         *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
1502     Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
1503                          RegName.Value.size(), SourceMgr::DK_Error,
1504                          "incorrect register class for field", RegName.Value,
1505                          None, None);
1506     SourceRange = RegName.SourceRange;
1507     return true;
1508   };
1509 
1510   if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
1511       parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
1512       parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
1513     return true;
1514 
1515   if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
1516       !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
1517     return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
1518   }
1519 
1520   if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
1521       !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
1522     return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
1523   }
1524 
1525   if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
1526       !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
1527     return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
1528   }
1529 
1530   for (const auto &YamlReg : YamlMFI.WWMReservedRegs) {
1531     Register ParsedReg;
1532     if (parseRegister(YamlReg, ParsedReg))
1533       return true;
1534 
1535     MFI->reserveWWMRegister(ParsedReg);
1536   }
1537 
1538   auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
1539                                    const TargetRegisterClass &RC,
1540                                    ArgDescriptor &Arg, unsigned UserSGPRs,
1541                                    unsigned SystemSGPRs) {
1542     // Skip parsing if it's not present.
1543     if (!A)
1544       return false;
1545 
1546     if (A->IsRegister) {
1547       Register Reg;
1548       if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
1549         SourceRange = A->RegisterName.SourceRange;
1550         return true;
1551       }
1552       if (!RC.contains(Reg))
1553         return diagnoseRegisterClass(A->RegisterName);
1554       Arg = ArgDescriptor::createRegister(Reg);
1555     } else
1556       Arg = ArgDescriptor::createStack(A->StackOffset);
1557     // Check and apply the optional mask.
1558     if (A->Mask)
1559       Arg = ArgDescriptor::createArg(Arg, *A->Mask);
1560 
1561     MFI->NumUserSGPRs += UserSGPRs;
1562     MFI->NumSystemSGPRs += SystemSGPRs;
1563     return false;
1564   };
1565 
1566   if (YamlMFI.ArgInfo &&
1567       (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
1568                              AMDGPU::SGPR_128RegClass,
1569                              MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
1570        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
1571                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
1572                              2, 0) ||
1573        parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
1574                              MFI->ArgInfo.QueuePtr, 2, 0) ||
1575        parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
1576                              AMDGPU::SReg_64RegClass,
1577                              MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
1578        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
1579                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
1580                              2, 0) ||
1581        parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
1582                              AMDGPU::SReg_64RegClass,
1583                              MFI->ArgInfo.FlatScratchInit, 2, 0) ||
1584        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
1585                              AMDGPU::SGPR_32RegClass,
1586                              MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
1587        parseAndCheckArgument(YamlMFI.ArgInfo->LDSKernelId,
1588                              AMDGPU::SGPR_32RegClass,
1589                              MFI->ArgInfo.LDSKernelId, 0, 1) ||
1590        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
1591                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
1592                              0, 1) ||
1593        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
1594                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
1595                              0, 1) ||
1596        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
1597                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
1598                              0, 1) ||
1599        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
1600                              AMDGPU::SGPR_32RegClass,
1601                              MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
1602        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
1603                              AMDGPU::SGPR_32RegClass,
1604                              MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
1605        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
1606                              AMDGPU::SReg_64RegClass,
1607                              MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
1608        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
1609                              AMDGPU::SReg_64RegClass,
1610                              MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
1611        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
1612                              AMDGPU::VGPR_32RegClass,
1613                              MFI->ArgInfo.WorkItemIDX, 0, 0) ||
1614        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
1615                              AMDGPU::VGPR_32RegClass,
1616                              MFI->ArgInfo.WorkItemIDY, 0, 0) ||
1617        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
1618                              AMDGPU::VGPR_32RegClass,
1619                              MFI->ArgInfo.WorkItemIDZ, 0, 0)))
1620     return true;
1621 
1622   MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
1623   MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
1624   MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals;
1625   MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals;
1626   MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals;
1627   MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals;
1628 
1629   return false;
1630 }
1631