1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for SI+ GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCtorDtorLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUIGroupLP.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPURegBankSelect.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "AMDGPUUnifyDivergentExitNodes.h" 26 #include "GCNIterativeScheduler.h" 27 #include "GCNSchedStrategy.h" 28 #include "GCNVOPDUtils.h" 29 #include "R600.h" 30 #include "R600MachineFunctionInfo.h" 31 #include "R600TargetMachine.h" 32 #include "SIMachineFunctionInfo.h" 33 #include "SIMachineScheduler.h" 34 #include "TargetInfo/AMDGPUTargetInfo.h" 35 #include "Utils/AMDGPUBaseInfo.h" 36 #include "llvm/Analysis/CGSCCPassManager.h" 37 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 38 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 39 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 40 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 41 #include "llvm/CodeGen/GlobalISel/Localizer.h" 42 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 43 #include "llvm/CodeGen/MIRParser/MIParser.h" 44 #include "llvm/CodeGen/Passes.h" 45 #include "llvm/CodeGen/RegAllocRegistry.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/IR/IntrinsicsAMDGPU.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/PatternMatch.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/MC/TargetRegistry.h" 52 #include "llvm/Passes/PassBuilder.h" 53 #include "llvm/Transforms/IPO.h" 54 #include "llvm/Transforms/IPO/AlwaysInliner.h" 55 #include "llvm/Transforms/IPO/GlobalDCE.h" 56 #include "llvm/Transforms/IPO/Internalize.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Scalar/GVN.h" 59 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 60 #include "llvm/Transforms/Utils.h" 61 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 62 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" 63 #include <optional> 64 65 using namespace llvm; 66 using namespace llvm::PatternMatch; 67 68 namespace { 69 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> { 70 public: 71 SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 72 : RegisterRegAllocBase(N, D, C) {} 73 }; 74 75 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> { 76 public: 77 VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 78 : RegisterRegAllocBase(N, D, C) {} 79 }; 80 81 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI, 82 const TargetRegisterClass &RC) { 83 return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 84 } 85 86 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI, 87 const TargetRegisterClass &RC) { 88 return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 89 } 90 91 92 /// -{sgpr|vgpr}-regalloc=... command line option. 93 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } 94 95 /// A dummy default pass factory indicates whether the register allocator is 96 /// overridden on the command line. 97 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag; 98 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag; 99 100 static SGPRRegisterRegAlloc 101 defaultSGPRRegAlloc("default", 102 "pick SGPR register allocator based on -O option", 103 useDefaultRegisterAllocator); 104 105 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false, 106 RegisterPassParser<SGPRRegisterRegAlloc>> 107 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 108 cl::desc("Register allocator to use for SGPRs")); 109 110 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false, 111 RegisterPassParser<VGPRRegisterRegAlloc>> 112 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 113 cl::desc("Register allocator to use for VGPRs")); 114 115 116 static void initializeDefaultSGPRRegisterAllocatorOnce() { 117 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 118 119 if (!Ctor) { 120 Ctor = SGPRRegAlloc; 121 SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc); 122 } 123 } 124 125 static void initializeDefaultVGPRRegisterAllocatorOnce() { 126 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 127 128 if (!Ctor) { 129 Ctor = VGPRRegAlloc; 130 VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc); 131 } 132 } 133 134 static FunctionPass *createBasicSGPRRegisterAllocator() { 135 return createBasicRegisterAllocator(onlyAllocateSGPRs); 136 } 137 138 static FunctionPass *createGreedySGPRRegisterAllocator() { 139 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 140 } 141 142 static FunctionPass *createFastSGPRRegisterAllocator() { 143 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 144 } 145 146 static FunctionPass *createBasicVGPRRegisterAllocator() { 147 return createBasicRegisterAllocator(onlyAllocateVGPRs); 148 } 149 150 static FunctionPass *createGreedyVGPRRegisterAllocator() { 151 return createGreedyRegisterAllocator(onlyAllocateVGPRs); 152 } 153 154 static FunctionPass *createFastVGPRRegisterAllocator() { 155 return createFastRegisterAllocator(onlyAllocateVGPRs, true); 156 } 157 158 static SGPRRegisterRegAlloc basicRegAllocSGPR( 159 "basic", "basic register allocator", createBasicSGPRRegisterAllocator); 160 static SGPRRegisterRegAlloc greedyRegAllocSGPR( 161 "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator); 162 163 static SGPRRegisterRegAlloc fastRegAllocSGPR( 164 "fast", "fast register allocator", createFastSGPRRegisterAllocator); 165 166 167 static VGPRRegisterRegAlloc basicRegAllocVGPR( 168 "basic", "basic register allocator", createBasicVGPRRegisterAllocator); 169 static VGPRRegisterRegAlloc greedyRegAllocVGPR( 170 "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator); 171 172 static VGPRRegisterRegAlloc fastRegAllocVGPR( 173 "fast", "fast register allocator", createFastVGPRRegisterAllocator); 174 } 175 176 static cl::opt<bool> EnableSROA( 177 "amdgpu-sroa", 178 cl::desc("Run SROA after promote alloca pass"), 179 cl::ReallyHidden, 180 cl::init(true)); 181 182 static cl::opt<bool> 183 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 184 cl::desc("Run early if-conversion"), 185 cl::init(false)); 186 187 static cl::opt<bool> 188 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 189 cl::desc("Run pre-RA exec mask optimizations"), 190 cl::init(true)); 191 192 static cl::opt<bool> 193 LowerCtorDtor("amdgpu-lower-global-ctor-dtor", 194 cl::desc("Lower GPU ctor / dtors to globals on the device."), 195 cl::init(true), cl::Hidden); 196 197 // Option to disable vectorizer for tests. 198 static cl::opt<bool> EnableLoadStoreVectorizer( 199 "amdgpu-load-store-vectorizer", 200 cl::desc("Enable load store vectorizer"), 201 cl::init(true), 202 cl::Hidden); 203 204 // Option to control global loads scalarization 205 static cl::opt<bool> ScalarizeGlobal( 206 "amdgpu-scalarize-global-loads", 207 cl::desc("Enable global load scalarization"), 208 cl::init(true), 209 cl::Hidden); 210 211 // Option to run internalize pass. 212 static cl::opt<bool> InternalizeSymbols( 213 "amdgpu-internalize-symbols", 214 cl::desc("Enable elimination of non-kernel functions and unused globals"), 215 cl::init(false), 216 cl::Hidden); 217 218 // Option to inline all early. 219 static cl::opt<bool> EarlyInlineAll( 220 "amdgpu-early-inline-all", 221 cl::desc("Inline all functions early"), 222 cl::init(false), 223 cl::Hidden); 224 225 static cl::opt<bool> RemoveIncompatibleFunctions( 226 "amdgpu-enable-remove-incompatible-functions", cl::Hidden, 227 cl::desc("Enable removal of functions when they" 228 "use features not supported by the target GPU"), 229 cl::init(true)); 230 231 static cl::opt<bool> EnableSDWAPeephole( 232 "amdgpu-sdwa-peephole", 233 cl::desc("Enable SDWA peepholer"), 234 cl::init(true)); 235 236 static cl::opt<bool> EnableDPPCombine( 237 "amdgpu-dpp-combine", 238 cl::desc("Enable DPP combiner"), 239 cl::init(true)); 240 241 // Enable address space based alias analysis 242 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 243 cl::desc("Enable AMDGPU Alias Analysis"), 244 cl::init(true)); 245 246 // Option to run late CFG structurizer 247 static cl::opt<bool, true> LateCFGStructurize( 248 "amdgpu-late-structurize", 249 cl::desc("Enable late CFG structurization"), 250 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 251 cl::Hidden); 252 253 // Enable lib calls simplifications 254 static cl::opt<bool> EnableLibCallSimplify( 255 "amdgpu-simplify-libcall", 256 cl::desc("Enable amdgpu library simplifications"), 257 cl::init(true), 258 cl::Hidden); 259 260 static cl::opt<bool> EnableLowerKernelArguments( 261 "amdgpu-ir-lower-kernel-arguments", 262 cl::desc("Lower kernel argument loads in IR pass"), 263 cl::init(true), 264 cl::Hidden); 265 266 static cl::opt<bool> EnableRegReassign( 267 "amdgpu-reassign-regs", 268 cl::desc("Enable register reassign optimizations on gfx10+"), 269 cl::init(true), 270 cl::Hidden); 271 272 static cl::opt<bool> OptVGPRLiveRange( 273 "amdgpu-opt-vgpr-liverange", 274 cl::desc("Enable VGPR liverange optimizations for if-else structure"), 275 cl::init(true), cl::Hidden); 276 277 static cl::opt<ScanOptions> AMDGPUAtomicOptimizerStrategy( 278 "amdgpu-atomic-optimizer-strategy", 279 cl::desc("Select DPP or Iterative strategy for scan"), 280 cl::init(ScanOptions::Iterative), 281 cl::values( 282 clEnumValN(ScanOptions::DPP, "DPP", "Use DPP operations for scan"), 283 clEnumValN(ScanOptions::Iterative, "Iterative", 284 "Use Iterative approach for scan"), 285 clEnumValN(ScanOptions::None, "None", "Disable atomic optimizer"))); 286 287 // Enable Mode register optimization 288 static cl::opt<bool> EnableSIModeRegisterPass( 289 "amdgpu-mode-register", 290 cl::desc("Enable mode register pass"), 291 cl::init(true), 292 cl::Hidden); 293 294 // Enable GFX11+ s_delay_alu insertion 295 static cl::opt<bool> 296 EnableInsertDelayAlu("amdgpu-enable-delay-alu", 297 cl::desc("Enable s_delay_alu insertion"), 298 cl::init(true), cl::Hidden); 299 300 // Enable GFX11+ VOPD 301 static cl::opt<bool> 302 EnableVOPD("amdgpu-enable-vopd", 303 cl::desc("Enable VOPD, dual issue of VALU in wave32"), 304 cl::init(true), cl::Hidden); 305 306 // Option is used in lit tests to prevent deadcoding of patterns inspected. 307 static cl::opt<bool> 308 EnableDCEInRA("amdgpu-dce-in-ra", 309 cl::init(true), cl::Hidden, 310 cl::desc("Enable machine DCE inside regalloc")); 311 312 static cl::opt<bool> EnableSetWavePriority("amdgpu-set-wave-priority", 313 cl::desc("Adjust wave priority"), 314 cl::init(false), cl::Hidden); 315 316 static cl::opt<bool> EnableScalarIRPasses( 317 "amdgpu-scalar-ir-passes", 318 cl::desc("Enable scalar IR passes"), 319 cl::init(true), 320 cl::Hidden); 321 322 static cl::opt<bool> EnableStructurizerWorkarounds( 323 "amdgpu-enable-structurizer-workarounds", 324 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 325 cl::Hidden); 326 327 static cl::opt<bool, true> EnableLowerModuleLDS( 328 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 329 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 330 cl::Hidden); 331 332 static cl::opt<bool> EnablePreRAOptimizations( 333 "amdgpu-enable-pre-ra-optimizations", 334 cl::desc("Enable Pre-RA optimizations pass"), cl::init(true), 335 cl::Hidden); 336 337 static cl::opt<bool> EnablePromoteKernelArguments( 338 "amdgpu-enable-promote-kernel-arguments", 339 cl::desc("Enable promotion of flat kernel pointer arguments to global"), 340 cl::Hidden, cl::init(true)); 341 342 static cl::opt<bool> EnableMaxIlpSchedStrategy( 343 "amdgpu-enable-max-ilp-scheduling-strategy", 344 cl::desc("Enable scheduling strategy to maximize ILP for a single wave."), 345 cl::Hidden, cl::init(false)); 346 347 static cl::opt<bool> EnableRewritePartialRegUses( 348 "amdgpu-enable-rewrite-partial-reg-uses", 349 cl::desc("Enable rewrite partial reg uses pass"), cl::init(false), 350 cl::Hidden); 351 352 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 353 // Register the target 354 RegisterTargetMachine<R600TargetMachine> X(getTheR600Target()); 355 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 356 357 PassRegistry *PR = PassRegistry::getPassRegistry(); 358 initializeR600ClauseMergePassPass(*PR); 359 initializeR600ControlFlowFinalizerPass(*PR); 360 initializeR600PacketizerPass(*PR); 361 initializeR600ExpandSpecialInstrsPassPass(*PR); 362 initializeR600VectorRegMergerPass(*PR); 363 initializeGlobalISel(*PR); 364 initializeAMDGPUDAGToDAGISelPass(*PR); 365 initializeGCNDPPCombinePass(*PR); 366 initializeSILowerI1CopiesPass(*PR); 367 initializeSILowerSGPRSpillsPass(*PR); 368 initializeSIFixSGPRCopiesPass(*PR); 369 initializeSIFixVGPRCopiesPass(*PR); 370 initializeSIFoldOperandsPass(*PR); 371 initializeSIPeepholeSDWAPass(*PR); 372 initializeSIShrinkInstructionsPass(*PR); 373 initializeSIOptimizeExecMaskingPreRAPass(*PR); 374 initializeSIOptimizeVGPRLiveRangePass(*PR); 375 initializeSILoadStoreOptimizerPass(*PR); 376 initializeAMDGPUCtorDtorLoweringLegacyPass(*PR); 377 initializeAMDGPUAlwaysInlinePass(*PR); 378 initializeAMDGPUAttributorPass(*PR); 379 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 380 initializeAMDGPUAnnotateUniformValuesPass(*PR); 381 initializeAMDGPUArgumentUsageInfoPass(*PR); 382 initializeAMDGPUAtomicOptimizerPass(*PR); 383 initializeAMDGPULowerKernelArgumentsPass(*PR); 384 initializeAMDGPUPromoteKernelArgumentsPass(*PR); 385 initializeAMDGPULowerKernelAttributesPass(*PR); 386 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 387 initializeAMDGPUPostLegalizerCombinerPass(*PR); 388 initializeAMDGPUPreLegalizerCombinerPass(*PR); 389 initializeAMDGPURegBankCombinerPass(*PR); 390 initializeAMDGPURegBankSelectPass(*PR); 391 initializeAMDGPUPromoteAllocaPass(*PR); 392 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 393 initializeAMDGPUCodeGenPreparePass(*PR); 394 initializeAMDGPULateCodeGenPreparePass(*PR); 395 initializeAMDGPURemoveIncompatibleFunctionsPass(*PR); 396 initializeAMDGPULowerModuleLDSPass(*PR); 397 initializeAMDGPURewriteOutArgumentsPass(*PR); 398 initializeAMDGPURewriteUndefForPHIPass(*PR); 399 initializeAMDGPUUnifyMetadataPass(*PR); 400 initializeSIAnnotateControlFlowPass(*PR); 401 initializeAMDGPUInsertDelayAluPass(*PR); 402 initializeSIInsertHardClausesPass(*PR); 403 initializeSIInsertWaitcntsPass(*PR); 404 initializeSIModeRegisterPass(*PR); 405 initializeSIWholeQuadModePass(*PR); 406 initializeSILowerControlFlowPass(*PR); 407 initializeSIPreEmitPeepholePass(*PR); 408 initializeSILateBranchLoweringPass(*PR); 409 initializeSIMemoryLegalizerPass(*PR); 410 initializeSIOptimizeExecMaskingPass(*PR); 411 initializeSIPreAllocateWWMRegsPass(*PR); 412 initializeSIFormMemoryClausesPass(*PR); 413 initializeSIPostRABundlerPass(*PR); 414 initializeGCNCreateVOPDPass(*PR); 415 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 416 initializeAMDGPUAAWrapperPassPass(*PR); 417 initializeAMDGPUExternalAAWrapperPass(*PR); 418 initializeAMDGPUUseNativeCallsPass(*PR); 419 initializeAMDGPUSimplifyLibCallsPass(*PR); 420 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 421 initializeAMDGPUResourceUsageAnalysisPass(*PR); 422 initializeGCNNSAReassignPass(*PR); 423 initializeGCNPreRAOptimizationsPass(*PR); 424 initializeGCNPreRALongBranchRegPass(*PR); 425 initializeGCNRewritePartialRegUsesPass(*PR); 426 } 427 428 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 429 return std::make_unique<AMDGPUTargetObjectFile>(); 430 } 431 432 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 433 return new SIScheduleDAGMI(C); 434 } 435 436 static ScheduleDAGInstrs * 437 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 438 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 439 ScheduleDAGMILive *DAG = 440 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 441 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 442 if (ST.shouldClusterStores()) 443 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 444 DAG->addMutation(createIGroupLPDAGMutation()); 445 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 446 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 447 return DAG; 448 } 449 450 static ScheduleDAGInstrs * 451 createGCNMaxILPMachineScheduler(MachineSchedContext *C) { 452 ScheduleDAGMILive *DAG = 453 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxILPSchedStrategy>(C)); 454 DAG->addMutation(createIGroupLPDAGMutation()); 455 return DAG; 456 } 457 458 static ScheduleDAGInstrs * 459 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 460 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 461 auto DAG = new GCNIterativeScheduler(C, 462 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 463 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 464 if (ST.shouldClusterStores()) 465 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 466 return DAG; 467 } 468 469 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 470 return new GCNIterativeScheduler(C, 471 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 472 } 473 474 static ScheduleDAGInstrs * 475 createIterativeILPMachineScheduler(MachineSchedContext *C) { 476 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 477 auto DAG = new GCNIterativeScheduler(C, 478 GCNIterativeScheduler::SCHEDULE_ILP); 479 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 480 if (ST.shouldClusterStores()) 481 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 482 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 483 return DAG; 484 } 485 486 static MachineSchedRegistry 487 SISchedRegistry("si", "Run SI's custom scheduler", 488 createSIMachineScheduler); 489 490 static MachineSchedRegistry 491 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 492 "Run GCN scheduler to maximize occupancy", 493 createGCNMaxOccupancyMachineScheduler); 494 495 static MachineSchedRegistry 496 GCNMaxILPSchedRegistry("gcn-max-ilp", "Run GCN scheduler to maximize ilp", 497 createGCNMaxILPMachineScheduler); 498 499 static MachineSchedRegistry IterativeGCNMaxOccupancySchedRegistry( 500 "gcn-iterative-max-occupancy-experimental", 501 "Run GCN scheduler to maximize occupancy (experimental)", 502 createIterativeGCNMaxOccupancyMachineScheduler); 503 504 static MachineSchedRegistry GCNMinRegSchedRegistry( 505 "gcn-iterative-minreg", 506 "Run GCN iterative scheduler for minimal register usage (experimental)", 507 createMinRegScheduler); 508 509 static MachineSchedRegistry GCNILPSchedRegistry( 510 "gcn-iterative-ilp", 511 "Run GCN iterative scheduler for ILP scheduling (experimental)", 512 createIterativeILPMachineScheduler); 513 514 static StringRef computeDataLayout(const Triple &TT) { 515 if (TT.getArch() == Triple::r600) { 516 // 32-bit pointers. 517 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 518 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 519 } 520 521 // 32-bit private, local, and region pointers. 64-bit global, constant and 522 // flat. 160-bit non-integral fat buffer pointers that include a 128-bit 523 // buffer descriptor and a 32-bit offset, which are indexed by 32-bit values 524 // (address space 7), and 128-bit non-integral buffer resourcees (address 525 // space 8) which cannot be non-trivilally accessed by LLVM memory operations 526 // like getelementptr. 527 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 528 "-p7:160:256:256:32-p8:128:128-i64:64-v16:16-v24:32-v32:32-v48:64-v96:" 529 "128-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-" 530 "G1-ni:7:8"; 531 } 532 533 LLVM_READNONE 534 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 535 if (!GPU.empty()) 536 return GPU; 537 538 // Need to default to a target with flat support for HSA. 539 if (TT.getArch() == Triple::amdgcn) 540 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 541 542 return "r600"; 543 } 544 545 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) { 546 // The AMDGPU toolchain only supports generating shared objects, so we 547 // must always use PIC. 548 return Reloc::PIC_; 549 } 550 551 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 552 StringRef CPU, StringRef FS, 553 TargetOptions Options, 554 std::optional<Reloc::Model> RM, 555 std::optional<CodeModel::Model> CM, 556 CodeGenOpt::Level OptLevel) 557 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 558 FS, Options, getEffectiveRelocModel(RM), 559 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 560 TLOF(createTLOF(getTargetTriple())) { 561 initAsmInfo(); 562 if (TT.getArch() == Triple::amdgcn) { 563 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 564 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 565 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 566 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 567 } 568 } 569 570 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 571 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 572 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 573 574 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 575 576 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 577 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 578 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 579 } 580 581 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 582 Attribute FSAttr = F.getFnAttribute("target-features"); 583 584 return FSAttr.isValid() ? FSAttr.getValueAsString() 585 : getTargetFeatureString(); 586 } 587 588 /// Predicate for Internalize pass. 589 static bool mustPreserveGV(const GlobalValue &GV) { 590 if (const Function *F = dyn_cast<Function>(&GV)) 591 return F->isDeclaration() || F->getName().startswith("__asan_") || 592 F->getName().startswith("__sanitizer_") || 593 AMDGPU::isEntryFunctionCC(F->getCallingConv()); 594 595 GV.removeDeadConstantUsers(); 596 return !GV.use_empty(); 597 } 598 599 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 600 AAM.registerFunctionAnalysis<AMDGPUAA>(); 601 } 602 603 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { 604 PB.registerPipelineParsingCallback( 605 [](StringRef PassName, ModulePassManager &PM, 606 ArrayRef<PassBuilder::PipelineElement>) { 607 if (PassName == "amdgpu-unify-metadata") { 608 PM.addPass(AMDGPUUnifyMetadataPass()); 609 return true; 610 } 611 if (PassName == "amdgpu-printf-runtime-binding") { 612 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 613 return true; 614 } 615 if (PassName == "amdgpu-always-inline") { 616 PM.addPass(AMDGPUAlwaysInlinePass()); 617 return true; 618 } 619 if (PassName == "amdgpu-lower-module-lds") { 620 PM.addPass(AMDGPULowerModuleLDSPass()); 621 return true; 622 } 623 if (PassName == "amdgpu-lower-ctor-dtor") { 624 PM.addPass(AMDGPUCtorDtorLoweringPass()); 625 return true; 626 } 627 return false; 628 }); 629 PB.registerPipelineParsingCallback( 630 [this](StringRef PassName, FunctionPassManager &PM, 631 ArrayRef<PassBuilder::PipelineElement>) { 632 if (PassName == "amdgpu-simplifylib") { 633 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 634 return true; 635 } 636 if (PassName == "amdgpu-usenative") { 637 PM.addPass(AMDGPUUseNativeCallsPass()); 638 return true; 639 } 640 if (PassName == "amdgpu-promote-alloca") { 641 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 642 return true; 643 } 644 if (PassName == "amdgpu-promote-alloca-to-vector") { 645 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 646 return true; 647 } 648 if (PassName == "amdgpu-lower-kernel-attributes") { 649 PM.addPass(AMDGPULowerKernelAttributesPass()); 650 return true; 651 } 652 if (PassName == "amdgpu-promote-kernel-arguments") { 653 PM.addPass(AMDGPUPromoteKernelArgumentsPass()); 654 return true; 655 } 656 if (PassName == "amdgpu-unify-divergent-exit-nodes") { 657 PM.addPass(AMDGPUUnifyDivergentExitNodesPass()); 658 return true; 659 } 660 if (PassName == "amdgpu-atomic-optimizer") { 661 PM.addPass( 662 AMDGPUAtomicOptimizerPass(*this, AMDGPUAtomicOptimizerStrategy)); 663 return true; 664 } 665 if (PassName == "amdgpu-codegenprepare") { 666 PM.addPass(AMDGPUCodeGenPreparePass(*this)); 667 return true; 668 } 669 return false; 670 }); 671 672 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 673 FAM.registerPass([&] { return AMDGPUAA(); }); 674 }); 675 676 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 677 if (AAName == "amdgpu-aa") { 678 AAM.registerFunctionAnalysis<AMDGPUAA>(); 679 return true; 680 } 681 return false; 682 }); 683 684 PB.registerPipelineStartEPCallback( 685 [this](ModulePassManager &PM, OptimizationLevel Level) { 686 FunctionPassManager FPM; 687 FPM.addPass(AMDGPUUseNativeCallsPass()); 688 if (EnableLibCallSimplify && Level != OptimizationLevel::O0) 689 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 690 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 691 }); 692 693 PB.registerPipelineEarlySimplificationEPCallback( 694 [](ModulePassManager &PM, OptimizationLevel Level) { 695 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 696 697 if (Level == OptimizationLevel::O0) 698 return; 699 700 PM.addPass(AMDGPUUnifyMetadataPass()); 701 702 if (InternalizeSymbols) { 703 PM.addPass(InternalizePass(mustPreserveGV)); 704 PM.addPass(GlobalDCEPass()); 705 } 706 707 if (EarlyInlineAll && !EnableFunctionCalls) 708 PM.addPass(AMDGPUAlwaysInlinePass()); 709 }); 710 711 PB.registerCGSCCOptimizerLateEPCallback( 712 [this](CGSCCPassManager &PM, OptimizationLevel Level) { 713 if (Level == OptimizationLevel::O0) 714 return; 715 716 FunctionPassManager FPM; 717 718 // Add promote kernel arguments pass to the opt pipeline right before 719 // infer address spaces which is needed to do actual address space 720 // rewriting. 721 if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() && 722 EnablePromoteKernelArguments) 723 FPM.addPass(AMDGPUPromoteKernelArgumentsPass()); 724 725 // Add infer address spaces pass to the opt pipeline after inlining 726 // but before SROA to increase SROA opportunities. 727 FPM.addPass(InferAddressSpacesPass()); 728 729 // This should run after inlining to have any chance of doing 730 // anything, and before other cleanup optimizations. 731 FPM.addPass(AMDGPULowerKernelAttributesPass()); 732 733 if (Level != OptimizationLevel::O0) { 734 // Promote alloca to vector before SROA and loop unroll. If we 735 // manage to eliminate allocas before unroll we may choose to unroll 736 // less. 737 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 738 } 739 740 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 741 }); 742 } 743 744 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 745 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 746 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 747 AddrSpace == AMDGPUAS::REGION_ADDRESS) 748 ? -1 749 : 0; 750 } 751 752 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 753 unsigned DestAS) const { 754 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 755 AMDGPU::isFlatGlobalAddrSpace(DestAS); 756 } 757 758 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 759 const auto *LD = dyn_cast<LoadInst>(V); 760 if (!LD) 761 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 762 763 // It must be a generic pointer loaded. 764 assert(V->getType()->isPointerTy() && 765 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 766 767 const auto *Ptr = LD->getPointerOperand(); 768 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 769 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 770 // For a generic pointer loaded from the constant memory, it could be assumed 771 // as a global pointer since the constant memory is only populated on the 772 // host side. As implied by the offload programming model, only global 773 // pointers could be referenced on the host side. 774 return AMDGPUAS::GLOBAL_ADDRESS; 775 } 776 777 std::pair<const Value *, unsigned> 778 AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const { 779 if (auto *II = dyn_cast<IntrinsicInst>(V)) { 780 switch (II->getIntrinsicID()) { 781 case Intrinsic::amdgcn_is_shared: 782 return std::pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS); 783 case Intrinsic::amdgcn_is_private: 784 return std::pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS); 785 default: 786 break; 787 } 788 return std::pair(nullptr, -1); 789 } 790 // Check the global pointer predication based on 791 // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and 792 // the order of 'is_shared' and 'is_private' is not significant. 793 Value *Ptr; 794 if (match( 795 const_cast<Value *>(V), 796 m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))), 797 m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>( 798 m_Deferred(Ptr)))))) 799 return std::pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS); 800 801 return std::pair(nullptr, -1); 802 } 803 804 unsigned 805 AMDGPUTargetMachine::getAddressSpaceForPseudoSourceKind(unsigned Kind) const { 806 switch (Kind) { 807 case PseudoSourceValue::Stack: 808 case PseudoSourceValue::FixedStack: 809 return AMDGPUAS::PRIVATE_ADDRESS; 810 case PseudoSourceValue::ConstantPool: 811 case PseudoSourceValue::GOT: 812 case PseudoSourceValue::JumpTable: 813 case PseudoSourceValue::GlobalValueCallEntry: 814 case PseudoSourceValue::ExternalSymbolCallEntry: 815 return AMDGPUAS::CONSTANT_ADDRESS; 816 } 817 return AMDGPUAS::FLAT_ADDRESS; 818 } 819 820 //===----------------------------------------------------------------------===// 821 // GCN Target Machine (SI+) 822 //===----------------------------------------------------------------------===// 823 824 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 825 StringRef CPU, StringRef FS, 826 TargetOptions Options, 827 std::optional<Reloc::Model> RM, 828 std::optional<CodeModel::Model> CM, 829 CodeGenOpt::Level OL, bool JIT) 830 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 831 832 const TargetSubtargetInfo * 833 GCNTargetMachine::getSubtargetImpl(const Function &F) const { 834 StringRef GPU = getGPUName(F); 835 StringRef FS = getFeatureString(F); 836 837 SmallString<128> SubtargetKey(GPU); 838 SubtargetKey.append(FS); 839 840 auto &I = SubtargetMap[SubtargetKey]; 841 if (!I) { 842 // This needs to be done before we create a new subtarget since any 843 // creation will depend on the TM and the code generation flags on the 844 // function that reside in TargetOptions. 845 resetTargetOptions(F); 846 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 847 } 848 849 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 850 851 return I.get(); 852 } 853 854 TargetTransformInfo 855 GCNTargetMachine::getTargetTransformInfo(const Function &F) const { 856 return TargetTransformInfo(GCNTTIImpl(this, F)); 857 } 858 859 //===----------------------------------------------------------------------===// 860 // AMDGPU Pass Setup 861 //===----------------------------------------------------------------------===// 862 863 std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const { 864 return getStandardCSEConfigForOpt(TM->getOptLevel()); 865 } 866 867 namespace { 868 869 class GCNPassConfig final : public AMDGPUPassConfig { 870 public: 871 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 872 : AMDGPUPassConfig(TM, PM) { 873 // It is necessary to know the register usage of the entire call graph. We 874 // allow calls without EnableAMDGPUFunctionCalls if they are marked 875 // noinline, so this is always required. 876 setRequiresCodeGenSCCOrder(true); 877 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 878 } 879 880 GCNTargetMachine &getGCNTargetMachine() const { 881 return getTM<GCNTargetMachine>(); 882 } 883 884 ScheduleDAGInstrs * 885 createMachineScheduler(MachineSchedContext *C) const override; 886 887 ScheduleDAGInstrs * 888 createPostMachineScheduler(MachineSchedContext *C) const override { 889 ScheduleDAGMI *DAG = new GCNPostScheduleDAGMILive( 890 C, std::make_unique<PostGenericScheduler>(C), 891 /*RemoveKillFlags=*/true); 892 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 893 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 894 if (ST.shouldClusterStores()) 895 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 896 DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII)); 897 DAG->addMutation(createIGroupLPDAGMutation()); 898 if (isPassEnabled(EnableVOPD, CodeGenOpt::Less)) 899 DAG->addMutation(createVOPDPairingMutation()); 900 return DAG; 901 } 902 903 bool addPreISel() override; 904 void addMachineSSAOptimization() override; 905 bool addILPOpts() override; 906 bool addInstSelector() override; 907 bool addIRTranslator() override; 908 void addPreLegalizeMachineIR() override; 909 bool addLegalizeMachineIR() override; 910 void addPreRegBankSelect() override; 911 bool addRegBankSelect() override; 912 void addPreGlobalInstructionSelect() override; 913 bool addGlobalInstructionSelect() override; 914 void addFastRegAlloc() override; 915 void addOptimizedRegAlloc() override; 916 917 FunctionPass *createSGPRAllocPass(bool Optimized); 918 FunctionPass *createVGPRAllocPass(bool Optimized); 919 FunctionPass *createRegAllocPass(bool Optimized) override; 920 921 bool addRegAssignAndRewriteFast() override; 922 bool addRegAssignAndRewriteOptimized() override; 923 924 void addPreRegAlloc() override; 925 bool addPreRewrite() override; 926 void addPostRegAlloc() override; 927 void addPreSched2() override; 928 void addPreEmitPass() override; 929 }; 930 931 } // end anonymous namespace 932 933 AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 934 : TargetPassConfig(TM, PM) { 935 // Exceptions and StackMaps are not supported, so these passes will never do 936 // anything. 937 disablePass(&StackMapLivenessID); 938 disablePass(&FuncletLayoutID); 939 // Garbage collection is not supported. 940 disablePass(&GCLoweringID); 941 disablePass(&ShadowStackGCLoweringID); 942 } 943 944 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 945 if (getOptLevel() == CodeGenOpt::Aggressive) 946 addPass(createGVNPass()); 947 else 948 addPass(createEarlyCSEPass()); 949 } 950 951 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 952 addPass(createSeparateConstOffsetFromGEPPass()); 953 // ReassociateGEPs exposes more opportunities for SLSR. See 954 // the example in reassociate-geps-and-slsr.ll. 955 addPass(createStraightLineStrengthReducePass()); 956 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 957 // EarlyCSE can reuse. 958 addEarlyCSEOrGVNPass(); 959 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 960 addPass(createNaryReassociatePass()); 961 // NaryReassociate on GEPs creates redundant common expressions, so run 962 // EarlyCSE after it. 963 addPass(createEarlyCSEPass()); 964 } 965 966 void AMDGPUPassConfig::addIRPasses() { 967 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 968 969 // There is no reason to run these. 970 disablePass(&StackMapLivenessID); 971 disablePass(&FuncletLayoutID); 972 disablePass(&PatchableFunctionID); 973 974 addPass(createAMDGPUPrintfRuntimeBinding()); 975 if (LowerCtorDtor) 976 addPass(createAMDGPUCtorDtorLoweringLegacyPass()); 977 978 // Function calls are not supported, so make sure we inline everything. 979 addPass(createAMDGPUAlwaysInlinePass()); 980 addPass(createAlwaysInlinerLegacyPass()); 981 982 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 983 if (TM.getTargetTriple().getArch() == Triple::r600) 984 addPass(createR600OpenCLImageTypeLoweringPass()); 985 986 // Replace OpenCL enqueued block function pointers with global variables. 987 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 988 989 // Runs before PromoteAlloca so the latter can account for function uses 990 if (EnableLowerModuleLDS) { 991 addPass(createAMDGPULowerModuleLDSPass()); 992 } 993 994 // AMDGPUAttributor infers lack of llvm.amdgcn.lds.kernel.id calls, so run 995 // after their introduction 996 if (TM.getOptLevel() > CodeGenOpt::None) 997 addPass(createAMDGPUAttributorPass()); 998 999 if (TM.getOptLevel() > CodeGenOpt::None) 1000 addPass(createInferAddressSpacesPass()); 1001 1002 addPass(createAtomicExpandPass()); 1003 1004 if (TM.getOptLevel() > CodeGenOpt::None) { 1005 addPass(createAMDGPUPromoteAlloca()); 1006 1007 if (EnableSROA) 1008 addPass(createSROAPass()); 1009 if (isPassEnabled(EnableScalarIRPasses)) 1010 addStraightLineScalarOptimizationPasses(); 1011 1012 if (EnableAMDGPUAliasAnalysis) { 1013 addPass(createAMDGPUAAWrapperPass()); 1014 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 1015 AAResults &AAR) { 1016 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 1017 AAR.addAAResult(WrapperPass->getResult()); 1018 })); 1019 } 1020 1021 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1022 // TODO: May want to move later or split into an early and late one. 1023 addPass(createAMDGPUCodeGenPreparePass()); 1024 } 1025 1026 // Try to hoist loop invariant parts of divisions AMDGPUCodeGenPrepare may 1027 // have expanded. 1028 if (TM.getOptLevel() > CodeGenOpt::Less) 1029 addPass(createLICMPass()); 1030 } 1031 1032 TargetPassConfig::addIRPasses(); 1033 1034 // EarlyCSE is not always strong enough to clean up what LSR produces. For 1035 // example, GVN can combine 1036 // 1037 // %0 = add %a, %b 1038 // %1 = add %b, %a 1039 // 1040 // and 1041 // 1042 // %0 = shl nsw %a, 2 1043 // %1 = shl %a, 2 1044 // 1045 // but EarlyCSE can do neither of them. 1046 if (isPassEnabled(EnableScalarIRPasses)) 1047 addEarlyCSEOrGVNPass(); 1048 } 1049 1050 void AMDGPUPassConfig::addCodeGenPrepare() { 1051 if (TM->getTargetTriple().getArch() == Triple::amdgcn) { 1052 if (RemoveIncompatibleFunctions) 1053 addPass(createAMDGPURemoveIncompatibleFunctionsPass(TM)); 1054 1055 // FIXME: This pass adds 2 hacky attributes that can be replaced with an 1056 // analysis, and should be removed. 1057 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 1058 } 1059 1060 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 1061 EnableLowerKernelArguments) 1062 addPass(createAMDGPULowerKernelArgumentsPass()); 1063 1064 TargetPassConfig::addCodeGenPrepare(); 1065 1066 if (isPassEnabled(EnableLoadStoreVectorizer)) 1067 addPass(createLoadStoreVectorizerPass()); 1068 1069 // LowerSwitch pass may introduce unreachable blocks that can 1070 // cause unexpected behavior for subsequent passes. Placing it 1071 // here seems better that these blocks would get cleaned up by 1072 // UnreachableBlockElim inserted next in the pass flow. 1073 addPass(createLowerSwitchPass()); 1074 } 1075 1076 bool AMDGPUPassConfig::addPreISel() { 1077 if (TM->getOptLevel() > CodeGenOpt::None) 1078 addPass(createFlattenCFGPass()); 1079 return false; 1080 } 1081 1082 bool AMDGPUPassConfig::addInstSelector() { 1083 addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); 1084 return false; 1085 } 1086 1087 bool AMDGPUPassConfig::addGCPasses() { 1088 // Do nothing. GC is not supported. 1089 return false; 1090 } 1091 1092 llvm::ScheduleDAGInstrs * 1093 AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const { 1094 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1095 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 1096 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 1097 if (ST.shouldClusterStores()) 1098 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 1099 return DAG; 1100 } 1101 1102 MachineFunctionInfo *R600TargetMachine::createMachineFunctionInfo( 1103 BumpPtrAllocator &Allocator, const Function &F, 1104 const TargetSubtargetInfo *STI) const { 1105 return R600MachineFunctionInfo::create<R600MachineFunctionInfo>( 1106 Allocator, F, static_cast<const R600Subtarget *>(STI)); 1107 } 1108 1109 //===----------------------------------------------------------------------===// 1110 // GCN Pass Setup 1111 //===----------------------------------------------------------------------===// 1112 1113 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1114 MachineSchedContext *C) const { 1115 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1116 if (ST.enableSIScheduler()) 1117 return createSIMachineScheduler(C); 1118 1119 if (EnableMaxIlpSchedStrategy) 1120 return createGCNMaxILPMachineScheduler(C); 1121 1122 return createGCNMaxOccupancyMachineScheduler(C); 1123 } 1124 1125 bool GCNPassConfig::addPreISel() { 1126 AMDGPUPassConfig::addPreISel(); 1127 1128 if (TM->getOptLevel() > CodeGenOpt::None) 1129 addPass(createAMDGPULateCodeGenPreparePass()); 1130 1131 if ((TM->getOptLevel() >= CodeGenOpt::Less) && 1132 (AMDGPUAtomicOptimizerStrategy != ScanOptions::None)) { 1133 addPass(createAMDGPUAtomicOptimizerPass(AMDGPUAtomicOptimizerStrategy)); 1134 } 1135 1136 if (TM->getOptLevel() > CodeGenOpt::None) 1137 addPass(createSinkingPass()); 1138 1139 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1140 // regions formed by them. 1141 addPass(&AMDGPUUnifyDivergentExitNodesID); 1142 if (!LateCFGStructurize) { 1143 if (EnableStructurizerWorkarounds) { 1144 addPass(createFixIrreduciblePass()); 1145 addPass(createUnifyLoopExitsPass()); 1146 } 1147 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1148 } 1149 addPass(createAMDGPUAnnotateUniformValues()); 1150 if (!LateCFGStructurize) { 1151 addPass(createSIAnnotateControlFlowPass()); 1152 // TODO: Move this right after structurizeCFG to avoid extra divergence 1153 // analysis. This depends on stopping SIAnnotateControlFlow from making 1154 // control flow modifications. 1155 addPass(createAMDGPURewriteUndefForPHIPass()); 1156 } 1157 addPass(createLCSSAPass()); 1158 1159 if (TM->getOptLevel() > CodeGenOpt::Less) 1160 addPass(&AMDGPUPerfHintAnalysisID); 1161 1162 return false; 1163 } 1164 1165 void GCNPassConfig::addMachineSSAOptimization() { 1166 TargetPassConfig::addMachineSSAOptimization(); 1167 1168 // We want to fold operands after PeepholeOptimizer has run (or as part of 1169 // it), because it will eliminate extra copies making it easier to fold the 1170 // real source operand. We want to eliminate dead instructions after, so that 1171 // we see fewer uses of the copies. We then need to clean up the dead 1172 // instructions leftover after the operands are folded as well. 1173 // 1174 // XXX - Can we get away without running DeadMachineInstructionElim again? 1175 addPass(&SIFoldOperandsID); 1176 if (EnableDPPCombine) 1177 addPass(&GCNDPPCombineID); 1178 addPass(&SILoadStoreOptimizerID); 1179 if (isPassEnabled(EnableSDWAPeephole)) { 1180 addPass(&SIPeepholeSDWAID); 1181 addPass(&EarlyMachineLICMID); 1182 addPass(&MachineCSEID); 1183 addPass(&SIFoldOperandsID); 1184 } 1185 addPass(&DeadMachineInstructionElimID); 1186 addPass(createSIShrinkInstructionsPass()); 1187 } 1188 1189 bool GCNPassConfig::addILPOpts() { 1190 if (EnableEarlyIfConversion) 1191 addPass(&EarlyIfConverterID); 1192 1193 TargetPassConfig::addILPOpts(); 1194 return false; 1195 } 1196 1197 bool GCNPassConfig::addInstSelector() { 1198 AMDGPUPassConfig::addInstSelector(); 1199 addPass(&SIFixSGPRCopiesID); 1200 addPass(createSILowerI1CopiesPass()); 1201 return false; 1202 } 1203 1204 bool GCNPassConfig::addIRTranslator() { 1205 addPass(new IRTranslator(getOptLevel())); 1206 return false; 1207 } 1208 1209 void GCNPassConfig::addPreLegalizeMachineIR() { 1210 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1211 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1212 addPass(new Localizer()); 1213 } 1214 1215 bool GCNPassConfig::addLegalizeMachineIR() { 1216 addPass(new Legalizer()); 1217 return false; 1218 } 1219 1220 void GCNPassConfig::addPreRegBankSelect() { 1221 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1222 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1223 } 1224 1225 bool GCNPassConfig::addRegBankSelect() { 1226 addPass(new AMDGPURegBankSelect()); 1227 return false; 1228 } 1229 1230 void GCNPassConfig::addPreGlobalInstructionSelect() { 1231 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1232 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1233 } 1234 1235 bool GCNPassConfig::addGlobalInstructionSelect() { 1236 addPass(new InstructionSelect(getOptLevel())); 1237 return false; 1238 } 1239 1240 void GCNPassConfig::addPreRegAlloc() { 1241 if (LateCFGStructurize) { 1242 addPass(createAMDGPUMachineCFGStructurizerPass()); 1243 } 1244 } 1245 1246 void GCNPassConfig::addFastRegAlloc() { 1247 // FIXME: We have to disable the verifier here because of PHIElimination + 1248 // TwoAddressInstructions disabling it. 1249 1250 // This must be run immediately after phi elimination and before 1251 // TwoAddressInstructions, otherwise the processing of the tied operand of 1252 // SI_ELSE will introduce a copy of the tied operand source after the else. 1253 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1254 1255 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1256 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1257 1258 TargetPassConfig::addFastRegAlloc(); 1259 } 1260 1261 void GCNPassConfig::addOptimizedRegAlloc() { 1262 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1263 // instructions that cause scheduling barriers. 1264 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1265 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1266 1267 if (OptExecMaskPreRA) 1268 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1269 1270 if (EnableRewritePartialRegUses) 1271 insertPass(&RenameIndependentSubregsID, &GCNRewritePartialRegUsesID); 1272 1273 if (isPassEnabled(EnablePreRAOptimizations)) 1274 insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID); 1275 1276 // This is not an essential optimization and it has a noticeable impact on 1277 // compilation time, so we only enable it from O2. 1278 if (TM->getOptLevel() > CodeGenOpt::Less) 1279 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1280 1281 // FIXME: when an instruction has a Killed operand, and the instruction is 1282 // inside a bundle, seems only the BUNDLE instruction appears as the Kills of 1283 // the register in LiveVariables, this would trigger a failure in verifier, 1284 // we should fix it and enable the verifier. 1285 if (OptVGPRLiveRange) 1286 insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID); 1287 // This must be run immediately after phi elimination and before 1288 // TwoAddressInstructions, otherwise the processing of the tied operand of 1289 // SI_ELSE will introduce a copy of the tied operand source after the else. 1290 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1291 1292 if (EnableDCEInRA) 1293 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1294 1295 TargetPassConfig::addOptimizedRegAlloc(); 1296 } 1297 1298 bool GCNPassConfig::addPreRewrite() { 1299 if (EnableRegReassign) 1300 addPass(&GCNNSAReassignID); 1301 return true; 1302 } 1303 1304 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) { 1305 // Initialize the global default. 1306 llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag, 1307 initializeDefaultSGPRRegisterAllocatorOnce); 1308 1309 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 1310 if (Ctor != useDefaultRegisterAllocator) 1311 return Ctor(); 1312 1313 if (Optimized) 1314 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 1315 1316 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 1317 } 1318 1319 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) { 1320 // Initialize the global default. 1321 llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag, 1322 initializeDefaultVGPRRegisterAllocatorOnce); 1323 1324 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 1325 if (Ctor != useDefaultRegisterAllocator) 1326 return Ctor(); 1327 1328 if (Optimized) 1329 return createGreedyVGPRRegisterAllocator(); 1330 1331 return createFastVGPRRegisterAllocator(); 1332 } 1333 1334 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) { 1335 llvm_unreachable("should not be used"); 1336 } 1337 1338 static const char RegAllocOptNotSupportedMessage[] = 1339 "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc"; 1340 1341 bool GCNPassConfig::addRegAssignAndRewriteFast() { 1342 if (!usingDefaultRegAlloc()) 1343 report_fatal_error(RegAllocOptNotSupportedMessage); 1344 1345 addPass(&GCNPreRALongBranchRegID); 1346 1347 addPass(createSGPRAllocPass(false)); 1348 1349 // Equivalent of PEI for SGPRs. 1350 addPass(&SILowerSGPRSpillsID); 1351 1352 addPass(createVGPRAllocPass(false)); 1353 return true; 1354 } 1355 1356 bool GCNPassConfig::addRegAssignAndRewriteOptimized() { 1357 if (!usingDefaultRegAlloc()) 1358 report_fatal_error(RegAllocOptNotSupportedMessage); 1359 1360 addPass(&GCNPreRALongBranchRegID); 1361 1362 addPass(createSGPRAllocPass(true)); 1363 1364 // Commit allocated register changes. This is mostly necessary because too 1365 // many things rely on the use lists of the physical registers, such as the 1366 // verifier. This is only necessary with allocators which use LiveIntervals, 1367 // since FastRegAlloc does the replacements itself. 1368 addPass(createVirtRegRewriter(false)); 1369 1370 // Equivalent of PEI for SGPRs. 1371 addPass(&SILowerSGPRSpillsID); 1372 1373 addPass(createVGPRAllocPass(true)); 1374 1375 addPreRewrite(); 1376 addPass(&VirtRegRewriterID); 1377 1378 return true; 1379 } 1380 1381 void GCNPassConfig::addPostRegAlloc() { 1382 addPass(&SIFixVGPRCopiesID); 1383 if (getOptLevel() > CodeGenOpt::None) 1384 addPass(&SIOptimizeExecMaskingID); 1385 TargetPassConfig::addPostRegAlloc(); 1386 } 1387 1388 void GCNPassConfig::addPreSched2() { 1389 if (TM->getOptLevel() > CodeGenOpt::None) 1390 addPass(createSIShrinkInstructionsPass()); 1391 addPass(&SIPostRABundlerID); 1392 } 1393 1394 void GCNPassConfig::addPreEmitPass() { 1395 if (isPassEnabled(EnableVOPD, CodeGenOpt::Less)) 1396 addPass(&GCNCreateVOPDID); 1397 addPass(createSIMemoryLegalizerPass()); 1398 addPass(createSIInsertWaitcntsPass()); 1399 1400 addPass(createSIModeRegisterPass()); 1401 1402 if (getOptLevel() > CodeGenOpt::None) 1403 addPass(&SIInsertHardClausesID); 1404 1405 addPass(&SILateBranchLoweringPassID); 1406 if (isPassEnabled(EnableSetWavePriority, CodeGenOpt::Less)) 1407 addPass(createAMDGPUSetWavePriorityPass()); 1408 if (getOptLevel() > CodeGenOpt::None) 1409 addPass(&SIPreEmitPeepholeID); 1410 // The hazard recognizer that runs as part of the post-ra scheduler does not 1411 // guarantee to be able handle all hazards correctly. This is because if there 1412 // are multiple scheduling regions in a basic block, the regions are scheduled 1413 // bottom up, so when we begin to schedule a region we don't know what 1414 // instructions were emitted directly before it. 1415 // 1416 // Here we add a stand-alone hazard recognizer pass which can handle all 1417 // cases. 1418 addPass(&PostRAHazardRecognizerID); 1419 1420 if (isPassEnabled(EnableInsertDelayAlu, CodeGenOpt::Less)) 1421 addPass(&AMDGPUInsertDelayAluID); 1422 1423 addPass(&BranchRelaxationPassID); 1424 } 1425 1426 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1427 return new GCNPassConfig(*this, PM); 1428 } 1429 1430 void GCNTargetMachine::registerMachineRegisterInfoCallback( 1431 MachineFunction &MF) const { 1432 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1433 MF.getRegInfo().addDelegate(MFI); 1434 } 1435 1436 MachineFunctionInfo *GCNTargetMachine::createMachineFunctionInfo( 1437 BumpPtrAllocator &Allocator, const Function &F, 1438 const TargetSubtargetInfo *STI) const { 1439 return SIMachineFunctionInfo::create<SIMachineFunctionInfo>( 1440 Allocator, F, static_cast<const GCNSubtarget *>(STI)); 1441 } 1442 1443 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1444 return new yaml::SIMachineFunctionInfo(); 1445 } 1446 1447 yaml::MachineFunctionInfo * 1448 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1449 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1450 return new yaml::SIMachineFunctionInfo( 1451 *MFI, *MF.getSubtarget<GCNSubtarget>().getRegisterInfo(), MF); 1452 } 1453 1454 bool GCNTargetMachine::parseMachineFunctionInfo( 1455 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1456 SMDiagnostic &Error, SMRange &SourceRange) const { 1457 const yaml::SIMachineFunctionInfo &YamlMFI = 1458 static_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1459 MachineFunction &MF = PFS.MF; 1460 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1461 1462 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) 1463 return true; 1464 1465 if (MFI->Occupancy == 0) { 1466 // Fixup the subtarget dependent default value. 1467 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1468 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1469 } 1470 1471 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1472 Register TempReg; 1473 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1474 SourceRange = RegName.SourceRange; 1475 return true; 1476 } 1477 RegVal = TempReg; 1478 1479 return false; 1480 }; 1481 1482 auto parseOptionalRegister = [&](const yaml::StringValue &RegName, 1483 Register &RegVal) { 1484 return !RegName.Value.empty() && parseRegister(RegName, RegVal); 1485 }; 1486 1487 if (parseOptionalRegister(YamlMFI.VGPRForAGPRCopy, MFI->VGPRForAGPRCopy)) 1488 return true; 1489 1490 if (parseOptionalRegister(YamlMFI.SGPRForEXECCopy, MFI->SGPRForEXECCopy)) 1491 return true; 1492 1493 if (parseOptionalRegister(YamlMFI.LongBranchReservedReg, 1494 MFI->LongBranchReservedReg)) 1495 return true; 1496 1497 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1498 // Create a diagnostic for a the register string literal. 1499 const MemoryBuffer &Buffer = 1500 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1501 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1502 RegName.Value.size(), SourceMgr::DK_Error, 1503 "incorrect register class for field", RegName.Value, 1504 std::nullopt, std::nullopt); 1505 SourceRange = RegName.SourceRange; 1506 return true; 1507 }; 1508 1509 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1510 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1511 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1512 return true; 1513 1514 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1515 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1516 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1517 } 1518 1519 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1520 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1521 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1522 } 1523 1524 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1525 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1526 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1527 } 1528 1529 for (const auto &YamlReg : YamlMFI.WWMReservedRegs) { 1530 Register ParsedReg; 1531 if (parseRegister(YamlReg, ParsedReg)) 1532 return true; 1533 1534 MFI->reserveWWMRegister(ParsedReg); 1535 } 1536 1537 auto parseAndCheckArgument = [&](const std::optional<yaml::SIArgument> &A, 1538 const TargetRegisterClass &RC, 1539 ArgDescriptor &Arg, unsigned UserSGPRs, 1540 unsigned SystemSGPRs) { 1541 // Skip parsing if it's not present. 1542 if (!A) 1543 return false; 1544 1545 if (A->IsRegister) { 1546 Register Reg; 1547 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1548 SourceRange = A->RegisterName.SourceRange; 1549 return true; 1550 } 1551 if (!RC.contains(Reg)) 1552 return diagnoseRegisterClass(A->RegisterName); 1553 Arg = ArgDescriptor::createRegister(Reg); 1554 } else 1555 Arg = ArgDescriptor::createStack(A->StackOffset); 1556 // Check and apply the optional mask. 1557 if (A->Mask) 1558 Arg = ArgDescriptor::createArg(Arg, *A->Mask); 1559 1560 MFI->NumUserSGPRs += UserSGPRs; 1561 MFI->NumSystemSGPRs += SystemSGPRs; 1562 return false; 1563 }; 1564 1565 if (YamlMFI.ArgInfo && 1566 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1567 AMDGPU::SGPR_128RegClass, 1568 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1569 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1570 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1571 2, 0) || 1572 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1573 MFI->ArgInfo.QueuePtr, 2, 0) || 1574 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1575 AMDGPU::SReg_64RegClass, 1576 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1577 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1578 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1579 2, 0) || 1580 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1581 AMDGPU::SReg_64RegClass, 1582 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1583 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1584 AMDGPU::SGPR_32RegClass, 1585 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1586 parseAndCheckArgument(YamlMFI.ArgInfo->LDSKernelId, 1587 AMDGPU::SGPR_32RegClass, 1588 MFI->ArgInfo.LDSKernelId, 0, 1) || 1589 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1590 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1591 0, 1) || 1592 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1593 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1594 0, 1) || 1595 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1596 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1597 0, 1) || 1598 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1599 AMDGPU::SGPR_32RegClass, 1600 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1601 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1602 AMDGPU::SGPR_32RegClass, 1603 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1604 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1605 AMDGPU::SReg_64RegClass, 1606 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1607 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1608 AMDGPU::SReg_64RegClass, 1609 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1610 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1611 AMDGPU::VGPR_32RegClass, 1612 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1613 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1614 AMDGPU::VGPR_32RegClass, 1615 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1616 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1617 AMDGPU::VGPR_32RegClass, 1618 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1619 return true; 1620 1621 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1622 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1623 1624 // FIXME: Move proper support for denormal-fp-math into base MachineFunction 1625 MFI->Mode.FP32Denormals.Input = YamlMFI.Mode.FP32InputDenormals 1626 ? DenormalMode::IEEE 1627 : DenormalMode::PreserveSign; 1628 MFI->Mode.FP32Denormals.Output = YamlMFI.Mode.FP32OutputDenormals 1629 ? DenormalMode::IEEE 1630 : DenormalMode::PreserveSign; 1631 1632 MFI->Mode.FP64FP16Denormals.Input = YamlMFI.Mode.FP64FP16InputDenormals 1633 ? DenormalMode::IEEE 1634 : DenormalMode::PreserveSign; 1635 MFI->Mode.FP64FP16Denormals.Output = YamlMFI.Mode.FP64FP16OutputDenormals 1636 ? DenormalMode::IEEE 1637 : DenormalMode::PreserveSign; 1638 1639 return false; 1640 } 1641