xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetMachine.cpp (revision eb24e1491f9900e922c78e53af588f22a3e9535f)
1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// The AMDGPU target machine contains all of the hardware specific
11 /// information  needed to emit code for R600 and SI GPUs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUTargetMachine.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUAliasAnalysis.h"
18 #include "AMDGPUCallLowering.h"
19 #include "AMDGPUInstructionSelector.h"
20 #include "AMDGPULegalizerInfo.h"
21 #include "AMDGPUMacroFusion.h"
22 #include "AMDGPUTargetObjectFile.h"
23 #include "AMDGPUTargetTransformInfo.h"
24 #include "GCNIterativeScheduler.h"
25 #include "GCNSchedStrategy.h"
26 #include "R600MachineScheduler.h"
27 #include "SIMachineFunctionInfo.h"
28 #include "SIMachineScheduler.h"
29 #include "TargetInfo/AMDGPUTargetInfo.h"
30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
32 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MIRParser/MIParser.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/LegacyPassManager.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/TargetRegistry.h"
44 #include "llvm/Target/TargetLoweringObjectFile.h"
45 #include "llvm/Transforms/IPO.h"
46 #include "llvm/Transforms/IPO/AlwaysInliner.h"
47 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
48 #include "llvm/Transforms/Scalar.h"
49 #include "llvm/Transforms/Scalar/GVN.h"
50 #include "llvm/Transforms/Utils.h"
51 #include "llvm/Transforms/Vectorize.h"
52 #include <memory>
53 
54 using namespace llvm;
55 
56 static cl::opt<bool> EnableR600StructurizeCFG(
57   "r600-ir-structurize",
58   cl::desc("Use StructurizeCFG IR pass"),
59   cl::init(true));
60 
61 static cl::opt<bool> EnableSROA(
62   "amdgpu-sroa",
63   cl::desc("Run SROA after promote alloca pass"),
64   cl::ReallyHidden,
65   cl::init(true));
66 
67 static cl::opt<bool>
68 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
69                         cl::desc("Run early if-conversion"),
70                         cl::init(false));
71 
72 static cl::opt<bool>
73 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
74             cl::desc("Run pre-RA exec mask optimizations"),
75             cl::init(true));
76 
77 static cl::opt<bool> EnableR600IfConvert(
78   "r600-if-convert",
79   cl::desc("Use if conversion pass"),
80   cl::ReallyHidden,
81   cl::init(true));
82 
83 // Option to disable vectorizer for tests.
84 static cl::opt<bool> EnableLoadStoreVectorizer(
85   "amdgpu-load-store-vectorizer",
86   cl::desc("Enable load store vectorizer"),
87   cl::init(true),
88   cl::Hidden);
89 
90 // Option to control global loads scalarization
91 static cl::opt<bool> ScalarizeGlobal(
92   "amdgpu-scalarize-global-loads",
93   cl::desc("Enable global load scalarization"),
94   cl::init(true),
95   cl::Hidden);
96 
97 // Option to run internalize pass.
98 static cl::opt<bool> InternalizeSymbols(
99   "amdgpu-internalize-symbols",
100   cl::desc("Enable elimination of non-kernel functions and unused globals"),
101   cl::init(false),
102   cl::Hidden);
103 
104 // Option to inline all early.
105 static cl::opt<bool> EarlyInlineAll(
106   "amdgpu-early-inline-all",
107   cl::desc("Inline all functions early"),
108   cl::init(false),
109   cl::Hidden);
110 
111 static cl::opt<bool> EnableSDWAPeephole(
112   "amdgpu-sdwa-peephole",
113   cl::desc("Enable SDWA peepholer"),
114   cl::init(true));
115 
116 static cl::opt<bool> EnableDPPCombine(
117   "amdgpu-dpp-combine",
118   cl::desc("Enable DPP combiner"),
119   cl::init(true));
120 
121 // Enable address space based alias analysis
122 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
123   cl::desc("Enable AMDGPU Alias Analysis"),
124   cl::init(true));
125 
126 // Option to run late CFG structurizer
127 static cl::opt<bool, true> LateCFGStructurize(
128   "amdgpu-late-structurize",
129   cl::desc("Enable late CFG structurization"),
130   cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
131   cl::Hidden);
132 
133 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt(
134   "amdgpu-function-calls",
135   cl::desc("Enable AMDGPU function call support"),
136   cl::location(AMDGPUTargetMachine::EnableFunctionCalls),
137   cl::init(true),
138   cl::Hidden);
139 
140 // Enable lib calls simplifications
141 static cl::opt<bool> EnableLibCallSimplify(
142   "amdgpu-simplify-libcall",
143   cl::desc("Enable amdgpu library simplifications"),
144   cl::init(true),
145   cl::Hidden);
146 
147 static cl::opt<bool> EnableLowerKernelArguments(
148   "amdgpu-ir-lower-kernel-arguments",
149   cl::desc("Lower kernel argument loads in IR pass"),
150   cl::init(true),
151   cl::Hidden);
152 
153 static cl::opt<bool> EnableRegReassign(
154   "amdgpu-reassign-regs",
155   cl::desc("Enable register reassign optimizations on gfx10+"),
156   cl::init(true),
157   cl::Hidden);
158 
159 // Enable atomic optimization
160 static cl::opt<bool> EnableAtomicOptimizations(
161   "amdgpu-atomic-optimizations",
162   cl::desc("Enable atomic optimizations"),
163   cl::init(false),
164   cl::Hidden);
165 
166 // Enable Mode register optimization
167 static cl::opt<bool> EnableSIModeRegisterPass(
168   "amdgpu-mode-register",
169   cl::desc("Enable mode register pass"),
170   cl::init(true),
171   cl::Hidden);
172 
173 // Option is used in lit tests to prevent deadcoding of patterns inspected.
174 static cl::opt<bool>
175 EnableDCEInRA("amdgpu-dce-in-ra",
176     cl::init(true), cl::Hidden,
177     cl::desc("Enable machine DCE inside regalloc"));
178 
179 static cl::opt<bool> EnableScalarIRPasses(
180   "amdgpu-scalar-ir-passes",
181   cl::desc("Enable scalar IR passes"),
182   cl::init(true),
183   cl::Hidden);
184 
185 extern "C" void LLVMInitializeAMDGPUTarget() {
186   // Register the target
187   RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
188   RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
189 
190   PassRegistry *PR = PassRegistry::getPassRegistry();
191   initializeR600ClauseMergePassPass(*PR);
192   initializeR600ControlFlowFinalizerPass(*PR);
193   initializeR600PacketizerPass(*PR);
194   initializeR600ExpandSpecialInstrsPassPass(*PR);
195   initializeR600VectorRegMergerPass(*PR);
196   initializeGlobalISel(*PR);
197   initializeAMDGPUDAGToDAGISelPass(*PR);
198   initializeGCNDPPCombinePass(*PR);
199   initializeSILowerI1CopiesPass(*PR);
200   initializeSILowerSGPRSpillsPass(*PR);
201   initializeSIFixSGPRCopiesPass(*PR);
202   initializeSIFixVGPRCopiesPass(*PR);
203   initializeSIFixupVectorISelPass(*PR);
204   initializeSIFoldOperandsPass(*PR);
205   initializeSIPeepholeSDWAPass(*PR);
206   initializeSIShrinkInstructionsPass(*PR);
207   initializeSIOptimizeExecMaskingPreRAPass(*PR);
208   initializeSILoadStoreOptimizerPass(*PR);
209   initializeAMDGPUFixFunctionBitcastsPass(*PR);
210   initializeAMDGPUAlwaysInlinePass(*PR);
211   initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
212   initializeAMDGPUAnnotateUniformValuesPass(*PR);
213   initializeAMDGPUArgumentUsageInfoPass(*PR);
214   initializeAMDGPUAtomicOptimizerPass(*PR);
215   initializeAMDGPULowerKernelArgumentsPass(*PR);
216   initializeAMDGPULowerKernelAttributesPass(*PR);
217   initializeAMDGPULowerIntrinsicsPass(*PR);
218   initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
219   initializeAMDGPUPromoteAllocaPass(*PR);
220   initializeAMDGPUCodeGenPreparePass(*PR);
221   initializeAMDGPUPropagateAttributesEarlyPass(*PR);
222   initializeAMDGPUPropagateAttributesLatePass(*PR);
223   initializeAMDGPURewriteOutArgumentsPass(*PR);
224   initializeAMDGPUUnifyMetadataPass(*PR);
225   initializeSIAnnotateControlFlowPass(*PR);
226   initializeSIInsertWaitcntsPass(*PR);
227   initializeSIModeRegisterPass(*PR);
228   initializeSIWholeQuadModePass(*PR);
229   initializeSILowerControlFlowPass(*PR);
230   initializeSIInsertSkipsPass(*PR);
231   initializeSIMemoryLegalizerPass(*PR);
232   initializeSIOptimizeExecMaskingPass(*PR);
233   initializeSIPreAllocateWWMRegsPass(*PR);
234   initializeSIFormMemoryClausesPass(*PR);
235   initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
236   initializeAMDGPUAAWrapperPassPass(*PR);
237   initializeAMDGPUExternalAAWrapperPass(*PR);
238   initializeAMDGPUUseNativeCallsPass(*PR);
239   initializeAMDGPUSimplifyLibCallsPass(*PR);
240   initializeAMDGPUInlinerPass(*PR);
241   initializeGCNRegBankReassignPass(*PR);
242   initializeGCNNSAReassignPass(*PR);
243 }
244 
245 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
246   return llvm::make_unique<AMDGPUTargetObjectFile>();
247 }
248 
249 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
250   return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>());
251 }
252 
253 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
254   return new SIScheduleDAGMI(C);
255 }
256 
257 static ScheduleDAGInstrs *
258 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
259   ScheduleDAGMILive *DAG =
260     new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C));
261   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
262   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
263   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
264   return DAG;
265 }
266 
267 static ScheduleDAGInstrs *
268 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
269   auto DAG = new GCNIterativeScheduler(C,
270     GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
271   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
272   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
273   return DAG;
274 }
275 
276 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
277   return new GCNIterativeScheduler(C,
278     GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
279 }
280 
281 static ScheduleDAGInstrs *
282 createIterativeILPMachineScheduler(MachineSchedContext *C) {
283   auto DAG = new GCNIterativeScheduler(C,
284     GCNIterativeScheduler::SCHEDULE_ILP);
285   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
286   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
287   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
288   return DAG;
289 }
290 
291 static MachineSchedRegistry
292 R600SchedRegistry("r600", "Run R600's custom scheduler",
293                    createR600MachineScheduler);
294 
295 static MachineSchedRegistry
296 SISchedRegistry("si", "Run SI's custom scheduler",
297                 createSIMachineScheduler);
298 
299 static MachineSchedRegistry
300 GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
301                              "Run GCN scheduler to maximize occupancy",
302                              createGCNMaxOccupancyMachineScheduler);
303 
304 static MachineSchedRegistry
305 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
306   "Run GCN scheduler to maximize occupancy (experimental)",
307   createIterativeGCNMaxOccupancyMachineScheduler);
308 
309 static MachineSchedRegistry
310 GCNMinRegSchedRegistry("gcn-minreg",
311   "Run GCN iterative scheduler for minimal register usage (experimental)",
312   createMinRegScheduler);
313 
314 static MachineSchedRegistry
315 GCNILPSchedRegistry("gcn-ilp",
316   "Run GCN iterative scheduler for ILP scheduling (experimental)",
317   createIterativeILPMachineScheduler);
318 
319 static StringRef computeDataLayout(const Triple &TT) {
320   if (TT.getArch() == Triple::r600) {
321     // 32-bit pointers.
322       return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
323              "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5";
324   }
325 
326   // 32-bit private, local, and region pointers. 64-bit global, constant and
327   // flat, non-integral buffer fat pointers.
328     return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
329          "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
330          "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"
331          "-ni:7";
332 }
333 
334 LLVM_READNONE
335 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
336   if (!GPU.empty())
337     return GPU;
338 
339   // Need to default to a target with flat support for HSA.
340   if (TT.getArch() == Triple::amdgcn)
341     return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
342 
343   return "r600";
344 }
345 
346 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
347   // The AMDGPU toolchain only supports generating shared objects, so we
348   // must always use PIC.
349   return Reloc::PIC_;
350 }
351 
352 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
353                                          StringRef CPU, StringRef FS,
354                                          TargetOptions Options,
355                                          Optional<Reloc::Model> RM,
356                                          Optional<CodeModel::Model> CM,
357                                          CodeGenOpt::Level OptLevel)
358     : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
359                         FS, Options, getEffectiveRelocModel(RM),
360                         getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
361       TLOF(createTLOF(getTargetTriple())) {
362   initAsmInfo();
363 }
364 
365 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
366 bool AMDGPUTargetMachine::EnableFunctionCalls = false;
367 
368 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
369 
370 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
371   Attribute GPUAttr = F.getFnAttribute("target-cpu");
372   return GPUAttr.hasAttribute(Attribute::None) ?
373     getTargetCPU() : GPUAttr.getValueAsString();
374 }
375 
376 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
377   Attribute FSAttr = F.getFnAttribute("target-features");
378 
379   return FSAttr.hasAttribute(Attribute::None) ?
380     getTargetFeatureString() :
381     FSAttr.getValueAsString();
382 }
383 
384 /// Predicate for Internalize pass.
385 static bool mustPreserveGV(const GlobalValue &GV) {
386   if (const Function *F = dyn_cast<Function>(&GV))
387     return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());
388 
389   return !GV.use_empty();
390 }
391 
392 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
393   Builder.DivergentTarget = true;
394 
395   bool EnableOpt = getOptLevel() > CodeGenOpt::None;
396   bool Internalize = InternalizeSymbols;
397   bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
398   bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
399   bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
400 
401   if (EnableFunctionCalls) {
402     delete Builder.Inliner;
403     Builder.Inliner = createAMDGPUFunctionInliningPass();
404   }
405 
406   Builder.addExtension(
407     PassManagerBuilder::EP_ModuleOptimizerEarly,
408     [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
409                                                legacy::PassManagerBase &PM) {
410       if (AMDGPUAA) {
411         PM.add(createAMDGPUAAWrapperPass());
412         PM.add(createAMDGPUExternalAAWrapperPass());
413       }
414       PM.add(createAMDGPUUnifyMetadataPass());
415       PM.add(createAMDGPUPropagateAttributesLatePass(this));
416       if (Internalize) {
417         PM.add(createInternalizePass(mustPreserveGV));
418         PM.add(createGlobalDCEPass());
419       }
420       if (EarlyInline)
421         PM.add(createAMDGPUAlwaysInlinePass(false));
422   });
423 
424   const auto &Opt = Options;
425   Builder.addExtension(
426     PassManagerBuilder::EP_EarlyAsPossible,
427     [AMDGPUAA, LibCallSimplify, &Opt, this](const PassManagerBuilder &,
428                                             legacy::PassManagerBase &PM) {
429       if (AMDGPUAA) {
430         PM.add(createAMDGPUAAWrapperPass());
431         PM.add(createAMDGPUExternalAAWrapperPass());
432       }
433       PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
434       PM.add(llvm::createAMDGPUUseNativeCallsPass());
435       if (LibCallSimplify)
436         PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt, this));
437   });
438 
439   Builder.addExtension(
440     PassManagerBuilder::EP_CGSCCOptimizerLate,
441     [](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
442       // Add infer address spaces pass to the opt pipeline after inlining
443       // but before SROA to increase SROA opportunities.
444       PM.add(createInferAddressSpacesPass());
445 
446       // This should run after inlining to have any chance of doing anything,
447       // and before other cleanup optimizations.
448       PM.add(createAMDGPULowerKernelAttributesPass());
449   });
450 }
451 
452 //===----------------------------------------------------------------------===//
453 // R600 Target Machine (R600 -> Cayman)
454 //===----------------------------------------------------------------------===//
455 
456 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
457                                      StringRef CPU, StringRef FS,
458                                      TargetOptions Options,
459                                      Optional<Reloc::Model> RM,
460                                      Optional<CodeModel::Model> CM,
461                                      CodeGenOpt::Level OL, bool JIT)
462     : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
463   setRequiresStructuredCFG(true);
464 
465   // Override the default since calls aren't supported for r600.
466   if (EnableFunctionCalls &&
467       EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0)
468     EnableFunctionCalls = false;
469 }
470 
471 const R600Subtarget *R600TargetMachine::getSubtargetImpl(
472   const Function &F) const {
473   StringRef GPU = getGPUName(F);
474   StringRef FS = getFeatureString(F);
475 
476   SmallString<128> SubtargetKey(GPU);
477   SubtargetKey.append(FS);
478 
479   auto &I = SubtargetMap[SubtargetKey];
480   if (!I) {
481     // This needs to be done before we create a new subtarget since any
482     // creation will depend on the TM and the code generation flags on the
483     // function that reside in TargetOptions.
484     resetTargetOptions(F);
485     I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
486   }
487 
488   return I.get();
489 }
490 
491 TargetTransformInfo
492 R600TargetMachine::getTargetTransformInfo(const Function &F) {
493   return TargetTransformInfo(R600TTIImpl(this, F));
494 }
495 
496 //===----------------------------------------------------------------------===//
497 // GCN Target Machine (SI+)
498 //===----------------------------------------------------------------------===//
499 
500 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
501                                    StringRef CPU, StringRef FS,
502                                    TargetOptions Options,
503                                    Optional<Reloc::Model> RM,
504                                    Optional<CodeModel::Model> CM,
505                                    CodeGenOpt::Level OL, bool JIT)
506     : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
507 
508 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
509   StringRef GPU = getGPUName(F);
510   StringRef FS = getFeatureString(F);
511 
512   SmallString<128> SubtargetKey(GPU);
513   SubtargetKey.append(FS);
514 
515   auto &I = SubtargetMap[SubtargetKey];
516   if (!I) {
517     // This needs to be done before we create a new subtarget since any
518     // creation will depend on the TM and the code generation flags on the
519     // function that reside in TargetOptions.
520     resetTargetOptions(F);
521     I = llvm::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
522   }
523 
524   I->setScalarizeGlobalBehavior(ScalarizeGlobal);
525 
526   return I.get();
527 }
528 
529 TargetTransformInfo
530 GCNTargetMachine::getTargetTransformInfo(const Function &F) {
531   return TargetTransformInfo(GCNTTIImpl(this, F));
532 }
533 
534 //===----------------------------------------------------------------------===//
535 // AMDGPU Pass Setup
536 //===----------------------------------------------------------------------===//
537 
538 namespace {
539 
540 class AMDGPUPassConfig : public TargetPassConfig {
541 public:
542   AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
543     : TargetPassConfig(TM, PM) {
544     // Exceptions and StackMaps are not supported, so these passes will never do
545     // anything.
546     disablePass(&StackMapLivenessID);
547     disablePass(&FuncletLayoutID);
548   }
549 
550   AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
551     return getTM<AMDGPUTargetMachine>();
552   }
553 
554   ScheduleDAGInstrs *
555   createMachineScheduler(MachineSchedContext *C) const override {
556     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
557     DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
558     DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
559     return DAG;
560   }
561 
562   void addEarlyCSEOrGVNPass();
563   void addStraightLineScalarOptimizationPasses();
564   void addIRPasses() override;
565   void addCodeGenPrepare() override;
566   bool addPreISel() override;
567   bool addInstSelector() override;
568   bool addGCPasses() override;
569 
570   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
571 };
572 
573 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const {
574   return getStandardCSEConfigForOpt(TM->getOptLevel());
575 }
576 
577 class R600PassConfig final : public AMDGPUPassConfig {
578 public:
579   R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
580     : AMDGPUPassConfig(TM, PM) {}
581 
582   ScheduleDAGInstrs *createMachineScheduler(
583     MachineSchedContext *C) const override {
584     return createR600MachineScheduler(C);
585   }
586 
587   bool addPreISel() override;
588   bool addInstSelector() override;
589   void addPreRegAlloc() override;
590   void addPreSched2() override;
591   void addPreEmitPass() override;
592 };
593 
594 class GCNPassConfig final : public AMDGPUPassConfig {
595 public:
596   GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
597     : AMDGPUPassConfig(TM, PM) {
598     // It is necessary to know the register usage of the entire call graph.  We
599     // allow calls without EnableAMDGPUFunctionCalls if they are marked
600     // noinline, so this is always required.
601     setRequiresCodeGenSCCOrder(true);
602   }
603 
604   GCNTargetMachine &getGCNTargetMachine() const {
605     return getTM<GCNTargetMachine>();
606   }
607 
608   ScheduleDAGInstrs *
609   createMachineScheduler(MachineSchedContext *C) const override;
610 
611   bool addPreISel() override;
612   void addMachineSSAOptimization() override;
613   bool addILPOpts() override;
614   bool addInstSelector() override;
615   bool addIRTranslator() override;
616   bool addLegalizeMachineIR() override;
617   bool addRegBankSelect() override;
618   bool addGlobalInstructionSelect() override;
619   void addFastRegAlloc() override;
620   void addOptimizedRegAlloc() override;
621   void addPreRegAlloc() override;
622   bool addPreRewrite() override;
623   void addPostRegAlloc() override;
624   void addPreSched2() override;
625   void addPreEmitPass() override;
626 };
627 
628 } // end anonymous namespace
629 
630 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
631   if (getOptLevel() == CodeGenOpt::Aggressive)
632     addPass(createGVNPass());
633   else
634     addPass(createEarlyCSEPass());
635 }
636 
637 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
638   addPass(createLICMPass());
639   addPass(createSeparateConstOffsetFromGEPPass());
640   addPass(createSpeculativeExecutionPass());
641   // ReassociateGEPs exposes more opportunites for SLSR. See
642   // the example in reassociate-geps-and-slsr.ll.
643   addPass(createStraightLineStrengthReducePass());
644   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
645   // EarlyCSE can reuse.
646   addEarlyCSEOrGVNPass();
647   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
648   addPass(createNaryReassociatePass());
649   // NaryReassociate on GEPs creates redundant common expressions, so run
650   // EarlyCSE after it.
651   addPass(createEarlyCSEPass());
652 }
653 
654 void AMDGPUPassConfig::addIRPasses() {
655   const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
656 
657   // There is no reason to run these.
658   disablePass(&StackMapLivenessID);
659   disablePass(&FuncletLayoutID);
660   disablePass(&PatchableFunctionID);
661 
662   // This must occur before inlining, as the inliner will not look through
663   // bitcast calls.
664   addPass(createAMDGPUFixFunctionBitcastsPass());
665 
666   // A call to propagate attributes pass in the backend in case opt was not run.
667   addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));
668 
669   addPass(createAtomicExpandPass());
670 
671 
672   addPass(createAMDGPULowerIntrinsicsPass());
673 
674   // Function calls are not supported, so make sure we inline everything.
675   addPass(createAMDGPUAlwaysInlinePass());
676   addPass(createAlwaysInlinerLegacyPass());
677   // We need to add the barrier noop pass, otherwise adding the function
678   // inlining pass will cause all of the PassConfigs passes to be run
679   // one function at a time, which means if we have a nodule with two
680   // functions, then we will generate code for the first function
681   // without ever running any passes on the second.
682   addPass(createBarrierNoopPass());
683 
684   if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
685     // TODO: May want to move later or split into an early and late one.
686 
687     addPass(createAMDGPUCodeGenPreparePass());
688   }
689 
690   // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
691   if (TM.getTargetTriple().getArch() == Triple::r600)
692     addPass(createR600OpenCLImageTypeLoweringPass());
693 
694   // Replace OpenCL enqueued block function pointers with global variables.
695   addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
696 
697   if (TM.getOptLevel() > CodeGenOpt::None) {
698     addPass(createInferAddressSpacesPass());
699     addPass(createAMDGPUPromoteAlloca());
700 
701     if (EnableSROA)
702       addPass(createSROAPass());
703 
704     if (EnableScalarIRPasses)
705       addStraightLineScalarOptimizationPasses();
706 
707     if (EnableAMDGPUAliasAnalysis) {
708       addPass(createAMDGPUAAWrapperPass());
709       addPass(createExternalAAWrapperPass([](Pass &P, Function &,
710                                              AAResults &AAR) {
711         if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
712           AAR.addAAResult(WrapperPass->getResult());
713         }));
714     }
715   }
716 
717   TargetPassConfig::addIRPasses();
718 
719   // EarlyCSE is not always strong enough to clean up what LSR produces. For
720   // example, GVN can combine
721   //
722   //   %0 = add %a, %b
723   //   %1 = add %b, %a
724   //
725   // and
726   //
727   //   %0 = shl nsw %a, 2
728   //   %1 = shl %a, 2
729   //
730   // but EarlyCSE can do neither of them.
731   if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses)
732     addEarlyCSEOrGVNPass();
733 }
734 
735 void AMDGPUPassConfig::addCodeGenPrepare() {
736   if (TM->getTargetTriple().getArch() == Triple::amdgcn)
737     addPass(createAMDGPUAnnotateKernelFeaturesPass());
738 
739   if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
740       EnableLowerKernelArguments)
741     addPass(createAMDGPULowerKernelArgumentsPass());
742 
743   addPass(&AMDGPUPerfHintAnalysisID);
744 
745   TargetPassConfig::addCodeGenPrepare();
746 
747   if (EnableLoadStoreVectorizer)
748     addPass(createLoadStoreVectorizerPass());
749 }
750 
751 bool AMDGPUPassConfig::addPreISel() {
752   addPass(createLowerSwitchPass());
753   addPass(createFlattenCFGPass());
754   return false;
755 }
756 
757 bool AMDGPUPassConfig::addInstSelector() {
758   // Defer the verifier until FinalizeISel.
759   addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false);
760   return false;
761 }
762 
763 bool AMDGPUPassConfig::addGCPasses() {
764   // Do nothing. GC is not supported.
765   return false;
766 }
767 
768 //===----------------------------------------------------------------------===//
769 // R600 Pass Setup
770 //===----------------------------------------------------------------------===//
771 
772 bool R600PassConfig::addPreISel() {
773   AMDGPUPassConfig::addPreISel();
774 
775   if (EnableR600StructurizeCFG)
776     addPass(createStructurizeCFGPass());
777   return false;
778 }
779 
780 bool R600PassConfig::addInstSelector() {
781   addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
782   return false;
783 }
784 
785 void R600PassConfig::addPreRegAlloc() {
786   addPass(createR600VectorRegMerger());
787 }
788 
789 void R600PassConfig::addPreSched2() {
790   addPass(createR600EmitClauseMarkers(), false);
791   if (EnableR600IfConvert)
792     addPass(&IfConverterID, false);
793   addPass(createR600ClauseMergePass(), false);
794 }
795 
796 void R600PassConfig::addPreEmitPass() {
797   addPass(createAMDGPUCFGStructurizerPass(), false);
798   addPass(createR600ExpandSpecialInstrsPass(), false);
799   addPass(&FinalizeMachineBundlesID, false);
800   addPass(createR600Packetizer(), false);
801   addPass(createR600ControlFlowFinalizer(), false);
802 }
803 
804 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
805   return new R600PassConfig(*this, PM);
806 }
807 
808 //===----------------------------------------------------------------------===//
809 // GCN Pass Setup
810 //===----------------------------------------------------------------------===//
811 
812 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
813   MachineSchedContext *C) const {
814   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
815   if (ST.enableSIScheduler())
816     return createSIMachineScheduler(C);
817   return createGCNMaxOccupancyMachineScheduler(C);
818 }
819 
820 bool GCNPassConfig::addPreISel() {
821   AMDGPUPassConfig::addPreISel();
822 
823   if (EnableAtomicOptimizations) {
824     addPass(createAMDGPUAtomicOptimizerPass());
825   }
826 
827   // FIXME: We need to run a pass to propagate the attributes when calls are
828   // supported.
829 
830   // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
831   // regions formed by them.
832   addPass(&AMDGPUUnifyDivergentExitNodesID);
833   if (!LateCFGStructurize) {
834     addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions
835   }
836   addPass(createSinkingPass());
837   addPass(createAMDGPUAnnotateUniformValues());
838   if (!LateCFGStructurize) {
839     addPass(createSIAnnotateControlFlowPass());
840   }
841   addPass(createLCSSAPass());
842 
843   return false;
844 }
845 
846 void GCNPassConfig::addMachineSSAOptimization() {
847   TargetPassConfig::addMachineSSAOptimization();
848 
849   // We want to fold operands after PeepholeOptimizer has run (or as part of
850   // it), because it will eliminate extra copies making it easier to fold the
851   // real source operand. We want to eliminate dead instructions after, so that
852   // we see fewer uses of the copies. We then need to clean up the dead
853   // instructions leftover after the operands are folded as well.
854   //
855   // XXX - Can we get away without running DeadMachineInstructionElim again?
856   addPass(&SIFoldOperandsID);
857   if (EnableDPPCombine)
858     addPass(&GCNDPPCombineID);
859   addPass(&DeadMachineInstructionElimID);
860   addPass(&SILoadStoreOptimizerID);
861   if (EnableSDWAPeephole) {
862     addPass(&SIPeepholeSDWAID);
863     addPass(&EarlyMachineLICMID);
864     addPass(&MachineCSEID);
865     addPass(&SIFoldOperandsID);
866     addPass(&DeadMachineInstructionElimID);
867   }
868   addPass(createSIShrinkInstructionsPass());
869 }
870 
871 bool GCNPassConfig::addILPOpts() {
872   if (EnableEarlyIfConversion)
873     addPass(&EarlyIfConverterID);
874 
875   TargetPassConfig::addILPOpts();
876   return false;
877 }
878 
879 bool GCNPassConfig::addInstSelector() {
880   AMDGPUPassConfig::addInstSelector();
881   addPass(&SIFixSGPRCopiesID);
882   addPass(createSILowerI1CopiesPass());
883   addPass(createSIFixupVectorISelPass());
884   addPass(createSIAddIMGInitPass());
885   return false;
886 }
887 
888 bool GCNPassConfig::addIRTranslator() {
889   addPass(new IRTranslator());
890   return false;
891 }
892 
893 bool GCNPassConfig::addLegalizeMachineIR() {
894   addPass(new Legalizer());
895   return false;
896 }
897 
898 bool GCNPassConfig::addRegBankSelect() {
899   addPass(new RegBankSelect());
900   return false;
901 }
902 
903 bool GCNPassConfig::addGlobalInstructionSelect() {
904   addPass(new InstructionSelect());
905   return false;
906 }
907 
908 void GCNPassConfig::addPreRegAlloc() {
909   if (LateCFGStructurize) {
910     addPass(createAMDGPUMachineCFGStructurizerPass());
911   }
912   addPass(createSIWholeQuadModePass());
913 }
914 
915 void GCNPassConfig::addFastRegAlloc() {
916   // FIXME: We have to disable the verifier here because of PHIElimination +
917   // TwoAddressInstructions disabling it.
918 
919   // This must be run immediately after phi elimination and before
920   // TwoAddressInstructions, otherwise the processing of the tied operand of
921   // SI_ELSE will introduce a copy of the tied operand source after the else.
922   insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
923 
924   // This must be run just after RegisterCoalescing.
925   insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false);
926 
927   TargetPassConfig::addFastRegAlloc();
928 }
929 
930 void GCNPassConfig::addOptimizedRegAlloc() {
931   if (OptExecMaskPreRA) {
932     insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
933     insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID);
934   } else {
935     insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
936   }
937 
938   // This must be run immediately after phi elimination and before
939   // TwoAddressInstructions, otherwise the processing of the tied operand of
940   // SI_ELSE will introduce a copy of the tied operand source after the else.
941   insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
942 
943   // This must be run just after RegisterCoalescing.
944   insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false);
945 
946   if (EnableDCEInRA)
947     insertPass(&RenameIndependentSubregsID, &DeadMachineInstructionElimID);
948 
949   TargetPassConfig::addOptimizedRegAlloc();
950 }
951 
952 bool GCNPassConfig::addPreRewrite() {
953   if (EnableRegReassign) {
954     addPass(&GCNNSAReassignID);
955     addPass(&GCNRegBankReassignID);
956   }
957   return true;
958 }
959 
960 void GCNPassConfig::addPostRegAlloc() {
961   addPass(&SIFixVGPRCopiesID);
962   if (getOptLevel() > CodeGenOpt::None)
963     addPass(&SIOptimizeExecMaskingID);
964   TargetPassConfig::addPostRegAlloc();
965 
966   // Equivalent of PEI for SGPRs.
967   addPass(&SILowerSGPRSpillsID);
968 }
969 
970 void GCNPassConfig::addPreSched2() {
971 }
972 
973 void GCNPassConfig::addPreEmitPass() {
974   addPass(createSIMemoryLegalizerPass());
975   addPass(createSIInsertWaitcntsPass());
976   addPass(createSIShrinkInstructionsPass());
977   addPass(createSIModeRegisterPass());
978 
979   // The hazard recognizer that runs as part of the post-ra scheduler does not
980   // guarantee to be able handle all hazards correctly. This is because if there
981   // are multiple scheduling regions in a basic block, the regions are scheduled
982   // bottom up, so when we begin to schedule a region we don't know what
983   // instructions were emitted directly before it.
984   //
985   // Here we add a stand-alone hazard recognizer pass which can handle all
986   // cases.
987   //
988   // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would
989   // be better for it to emit S_NOP <N> when possible.
990   addPass(&PostRAHazardRecognizerID);
991 
992   addPass(&SIInsertSkipsPassID);
993   addPass(&BranchRelaxationPassID);
994 }
995 
996 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
997   return new GCNPassConfig(*this, PM);
998 }
999 
1000 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
1001   return new yaml::SIMachineFunctionInfo();
1002 }
1003 
1004 yaml::MachineFunctionInfo *
1005 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
1006   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1007   return new yaml::SIMachineFunctionInfo(*MFI,
1008                                          *MF.getSubtarget().getRegisterInfo());
1009 }
1010 
1011 bool GCNTargetMachine::parseMachineFunctionInfo(
1012     const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
1013     SMDiagnostic &Error, SMRange &SourceRange) const {
1014   const yaml::SIMachineFunctionInfo &YamlMFI =
1015       reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
1016   MachineFunction &MF = PFS.MF;
1017   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1018 
1019   MFI->initializeBaseYamlFields(YamlMFI);
1020 
1021   auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) {
1022     if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) {
1023       SourceRange = RegName.SourceRange;
1024       return true;
1025     }
1026 
1027     return false;
1028   };
1029 
1030   auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
1031     // Create a diagnostic for a the register string literal.
1032     const MemoryBuffer &Buffer =
1033         *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
1034     Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
1035                          RegName.Value.size(), SourceMgr::DK_Error,
1036                          "incorrect register class for field", RegName.Value,
1037                          None, None);
1038     SourceRange = RegName.SourceRange;
1039     return true;
1040   };
1041 
1042   if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
1043       parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) ||
1044       parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
1045       parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
1046     return true;
1047 
1048   if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
1049       !AMDGPU::SReg_128RegClass.contains(MFI->ScratchRSrcReg)) {
1050     return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
1051   }
1052 
1053   if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG &&
1054       !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) {
1055     return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg);
1056   }
1057 
1058   if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
1059       !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
1060     return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
1061   }
1062 
1063   if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
1064       !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
1065     return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
1066   }
1067 
1068   auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
1069                                    const TargetRegisterClass &RC,
1070                                    ArgDescriptor &Arg, unsigned UserSGPRs,
1071                                    unsigned SystemSGPRs) {
1072     // Skip parsing if it's not present.
1073     if (!A)
1074       return false;
1075 
1076     if (A->IsRegister) {
1077       unsigned Reg;
1078       if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
1079         SourceRange = A->RegisterName.SourceRange;
1080         return true;
1081       }
1082       if (!RC.contains(Reg))
1083         return diagnoseRegisterClass(A->RegisterName);
1084       Arg = ArgDescriptor::createRegister(Reg);
1085     } else
1086       Arg = ArgDescriptor::createStack(A->StackOffset);
1087     // Check and apply the optional mask.
1088     if (A->Mask)
1089       Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue());
1090 
1091     MFI->NumUserSGPRs += UserSGPRs;
1092     MFI->NumSystemSGPRs += SystemSGPRs;
1093     return false;
1094   };
1095 
1096   if (YamlMFI.ArgInfo &&
1097       (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
1098                              AMDGPU::SReg_128RegClass,
1099                              MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
1100        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
1101                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
1102                              2, 0) ||
1103        parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
1104                              MFI->ArgInfo.QueuePtr, 2, 0) ||
1105        parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
1106                              AMDGPU::SReg_64RegClass,
1107                              MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
1108        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
1109                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
1110                              2, 0) ||
1111        parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
1112                              AMDGPU::SReg_64RegClass,
1113                              MFI->ArgInfo.FlatScratchInit, 2, 0) ||
1114        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
1115                              AMDGPU::SGPR_32RegClass,
1116                              MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
1117        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
1118                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
1119                              0, 1) ||
1120        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
1121                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
1122                              0, 1) ||
1123        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
1124                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
1125                              0, 1) ||
1126        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
1127                              AMDGPU::SGPR_32RegClass,
1128                              MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
1129        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
1130                              AMDGPU::SGPR_32RegClass,
1131                              MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
1132        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
1133                              AMDGPU::SReg_64RegClass,
1134                              MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
1135        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
1136                              AMDGPU::SReg_64RegClass,
1137                              MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
1138        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
1139                              AMDGPU::VGPR_32RegClass,
1140                              MFI->ArgInfo.WorkItemIDX, 0, 0) ||
1141        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
1142                              AMDGPU::VGPR_32RegClass,
1143                              MFI->ArgInfo.WorkItemIDY, 0, 0) ||
1144        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
1145                              AMDGPU::VGPR_32RegClass,
1146                              MFI->ArgInfo.WorkItemIDZ, 0, 0)))
1147     return true;
1148 
1149   MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
1150   MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
1151 
1152   return false;
1153 }
1154