xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetMachine.cpp (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// The AMDGPU target machine contains all of the hardware specific
11 /// information  needed to emit code for R600 and SI GPUs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUTargetMachine.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUAliasAnalysis.h"
18 #include "AMDGPUExportClustering.h"
19 #include "AMDGPUMacroFusion.h"
20 #include "AMDGPUTargetObjectFile.h"
21 #include "AMDGPUTargetTransformInfo.h"
22 #include "GCNIterativeScheduler.h"
23 #include "GCNSchedStrategy.h"
24 #include "R600MachineScheduler.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIMachineScheduler.h"
27 #include "TargetInfo/AMDGPUTargetInfo.h"
28 #include "llvm/Analysis/CGSCCPassManager.h"
29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
32 #include "llvm/CodeGen/GlobalISel/Localizer.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MIRParser/MIParser.h"
35 #include "llvm/CodeGen/TargetPassConfig.h"
36 #include "llvm/IR/LegacyPassManager.h"
37 #include "llvm/IR/PassManager.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Passes/PassBuilder.h"
40 #include "llvm/Support/TargetRegistry.h"
41 #include "llvm/Transforms/IPO.h"
42 #include "llvm/Transforms/IPO/AlwaysInliner.h"
43 #include "llvm/Transforms/IPO/GlobalDCE.h"
44 #include "llvm/Transforms/IPO/Internalize.h"
45 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Scalar/GVN.h"
48 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
49 #include "llvm/Transforms/Utils.h"
50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
51 #include "llvm/Transforms/Vectorize.h"
52 
53 using namespace llvm;
54 
55 static cl::opt<bool> EnableR600StructurizeCFG(
56   "r600-ir-structurize",
57   cl::desc("Use StructurizeCFG IR pass"),
58   cl::init(true));
59 
60 static cl::opt<bool> EnableSROA(
61   "amdgpu-sroa",
62   cl::desc("Run SROA after promote alloca pass"),
63   cl::ReallyHidden,
64   cl::init(true));
65 
66 static cl::opt<bool>
67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
68                         cl::desc("Run early if-conversion"),
69                         cl::init(false));
70 
71 static cl::opt<bool>
72 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
73             cl::desc("Run pre-RA exec mask optimizations"),
74             cl::init(true));
75 
76 static cl::opt<bool> EnableR600IfConvert(
77   "r600-if-convert",
78   cl::desc("Use if conversion pass"),
79   cl::ReallyHidden,
80   cl::init(true));
81 
82 // Option to disable vectorizer for tests.
83 static cl::opt<bool> EnableLoadStoreVectorizer(
84   "amdgpu-load-store-vectorizer",
85   cl::desc("Enable load store vectorizer"),
86   cl::init(true),
87   cl::Hidden);
88 
89 // Option to control global loads scalarization
90 static cl::opt<bool> ScalarizeGlobal(
91   "amdgpu-scalarize-global-loads",
92   cl::desc("Enable global load scalarization"),
93   cl::init(true),
94   cl::Hidden);
95 
96 // Option to run internalize pass.
97 static cl::opt<bool> InternalizeSymbols(
98   "amdgpu-internalize-symbols",
99   cl::desc("Enable elimination of non-kernel functions and unused globals"),
100   cl::init(false),
101   cl::Hidden);
102 
103 // Option to inline all early.
104 static cl::opt<bool> EarlyInlineAll(
105   "amdgpu-early-inline-all",
106   cl::desc("Inline all functions early"),
107   cl::init(false),
108   cl::Hidden);
109 
110 static cl::opt<bool> EnableSDWAPeephole(
111   "amdgpu-sdwa-peephole",
112   cl::desc("Enable SDWA peepholer"),
113   cl::init(true));
114 
115 static cl::opt<bool> EnableDPPCombine(
116   "amdgpu-dpp-combine",
117   cl::desc("Enable DPP combiner"),
118   cl::init(true));
119 
120 // Enable address space based alias analysis
121 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
122   cl::desc("Enable AMDGPU Alias Analysis"),
123   cl::init(true));
124 
125 // Option to run late CFG structurizer
126 static cl::opt<bool, true> LateCFGStructurize(
127   "amdgpu-late-structurize",
128   cl::desc("Enable late CFG structurization"),
129   cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
130   cl::Hidden);
131 
132 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt(
133   "amdgpu-function-calls",
134   cl::desc("Enable AMDGPU function call support"),
135   cl::location(AMDGPUTargetMachine::EnableFunctionCalls),
136   cl::init(true),
137   cl::Hidden);
138 
139 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt(
140   "amdgpu-fixed-function-abi",
141   cl::desc("Enable all implicit function arguments"),
142   cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI),
143   cl::init(false),
144   cl::Hidden);
145 
146 // Enable lib calls simplifications
147 static cl::opt<bool> EnableLibCallSimplify(
148   "amdgpu-simplify-libcall",
149   cl::desc("Enable amdgpu library simplifications"),
150   cl::init(true),
151   cl::Hidden);
152 
153 static cl::opt<bool> EnableLowerKernelArguments(
154   "amdgpu-ir-lower-kernel-arguments",
155   cl::desc("Lower kernel argument loads in IR pass"),
156   cl::init(true),
157   cl::Hidden);
158 
159 static cl::opt<bool> EnableRegReassign(
160   "amdgpu-reassign-regs",
161   cl::desc("Enable register reassign optimizations on gfx10+"),
162   cl::init(true),
163   cl::Hidden);
164 
165 // Enable atomic optimization
166 static cl::opt<bool> EnableAtomicOptimizations(
167   "amdgpu-atomic-optimizations",
168   cl::desc("Enable atomic optimizations"),
169   cl::init(false),
170   cl::Hidden);
171 
172 // Enable Mode register optimization
173 static cl::opt<bool> EnableSIModeRegisterPass(
174   "amdgpu-mode-register",
175   cl::desc("Enable mode register pass"),
176   cl::init(true),
177   cl::Hidden);
178 
179 // Option is used in lit tests to prevent deadcoding of patterns inspected.
180 static cl::opt<bool>
181 EnableDCEInRA("amdgpu-dce-in-ra",
182     cl::init(true), cl::Hidden,
183     cl::desc("Enable machine DCE inside regalloc"));
184 
185 static cl::opt<bool> EnableScalarIRPasses(
186   "amdgpu-scalar-ir-passes",
187   cl::desc("Enable scalar IR passes"),
188   cl::init(true),
189   cl::Hidden);
190 
191 static cl::opt<bool> EnableStructurizerWorkarounds(
192     "amdgpu-enable-structurizer-workarounds",
193     cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true),
194     cl::Hidden);
195 
196 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
197   // Register the target
198   RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
199   RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
200 
201   PassRegistry *PR = PassRegistry::getPassRegistry();
202   initializeR600ClauseMergePassPass(*PR);
203   initializeR600ControlFlowFinalizerPass(*PR);
204   initializeR600PacketizerPass(*PR);
205   initializeR600ExpandSpecialInstrsPassPass(*PR);
206   initializeR600VectorRegMergerPass(*PR);
207   initializeGlobalISel(*PR);
208   initializeAMDGPUDAGToDAGISelPass(*PR);
209   initializeGCNDPPCombinePass(*PR);
210   initializeSILowerI1CopiesPass(*PR);
211   initializeSILowerSGPRSpillsPass(*PR);
212   initializeSIFixSGPRCopiesPass(*PR);
213   initializeSIFixVGPRCopiesPass(*PR);
214   initializeSIFoldOperandsPass(*PR);
215   initializeSIPeepholeSDWAPass(*PR);
216   initializeSIShrinkInstructionsPass(*PR);
217   initializeSIOptimizeExecMaskingPreRAPass(*PR);
218   initializeSILoadStoreOptimizerPass(*PR);
219   initializeAMDGPUFixFunctionBitcastsPass(*PR);
220   initializeAMDGPUAlwaysInlinePass(*PR);
221   initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
222   initializeAMDGPUAnnotateUniformValuesPass(*PR);
223   initializeAMDGPUArgumentUsageInfoPass(*PR);
224   initializeAMDGPUAtomicOptimizerPass(*PR);
225   initializeAMDGPULowerKernelArgumentsPass(*PR);
226   initializeAMDGPULowerKernelAttributesPass(*PR);
227   initializeAMDGPULowerIntrinsicsPass(*PR);
228   initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
229   initializeAMDGPUPostLegalizerCombinerPass(*PR);
230   initializeAMDGPUPreLegalizerCombinerPass(*PR);
231   initializeAMDGPUPromoteAllocaPass(*PR);
232   initializeAMDGPUPromoteAllocaToVectorPass(*PR);
233   initializeAMDGPUCodeGenPreparePass(*PR);
234   initializeAMDGPULateCodeGenPreparePass(*PR);
235   initializeAMDGPUPropagateAttributesEarlyPass(*PR);
236   initializeAMDGPUPropagateAttributesLatePass(*PR);
237   initializeAMDGPURewriteOutArgumentsPass(*PR);
238   initializeAMDGPUUnifyMetadataPass(*PR);
239   initializeSIAnnotateControlFlowPass(*PR);
240   initializeSIInsertHardClausesPass(*PR);
241   initializeSIInsertWaitcntsPass(*PR);
242   initializeSIModeRegisterPass(*PR);
243   initializeSIWholeQuadModePass(*PR);
244   initializeSILowerControlFlowPass(*PR);
245   initializeSIRemoveShortExecBranchesPass(*PR);
246   initializeSIPreEmitPeepholePass(*PR);
247   initializeSIInsertSkipsPass(*PR);
248   initializeSIMemoryLegalizerPass(*PR);
249   initializeSIOptimizeExecMaskingPass(*PR);
250   initializeSIPreAllocateWWMRegsPass(*PR);
251   initializeSIFormMemoryClausesPass(*PR);
252   initializeSIPostRABundlerPass(*PR);
253   initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
254   initializeAMDGPUAAWrapperPassPass(*PR);
255   initializeAMDGPUExternalAAWrapperPass(*PR);
256   initializeAMDGPUUseNativeCallsPass(*PR);
257   initializeAMDGPUSimplifyLibCallsPass(*PR);
258   initializeAMDGPUPrintfRuntimeBindingPass(*PR);
259   initializeGCNRegBankReassignPass(*PR);
260   initializeGCNNSAReassignPass(*PR);
261   initializeSIAddIMGInitPass(*PR);
262 }
263 
264 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
265   return std::make_unique<AMDGPUTargetObjectFile>();
266 }
267 
268 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
269   return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>());
270 }
271 
272 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
273   return new SIScheduleDAGMI(C);
274 }
275 
276 static ScheduleDAGInstrs *
277 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
278   ScheduleDAGMILive *DAG =
279     new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
280   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
281   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
282   DAG->addMutation(createAMDGPUExportClusteringDAGMutation());
283   return DAG;
284 }
285 
286 static ScheduleDAGInstrs *
287 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
288   auto DAG = new GCNIterativeScheduler(C,
289     GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
290   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
291   return DAG;
292 }
293 
294 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
295   return new GCNIterativeScheduler(C,
296     GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
297 }
298 
299 static ScheduleDAGInstrs *
300 createIterativeILPMachineScheduler(MachineSchedContext *C) {
301   auto DAG = new GCNIterativeScheduler(C,
302     GCNIterativeScheduler::SCHEDULE_ILP);
303   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
304   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
305   return DAG;
306 }
307 
308 static MachineSchedRegistry
309 R600SchedRegistry("r600", "Run R600's custom scheduler",
310                    createR600MachineScheduler);
311 
312 static MachineSchedRegistry
313 SISchedRegistry("si", "Run SI's custom scheduler",
314                 createSIMachineScheduler);
315 
316 static MachineSchedRegistry
317 GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
318                              "Run GCN scheduler to maximize occupancy",
319                              createGCNMaxOccupancyMachineScheduler);
320 
321 static MachineSchedRegistry
322 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
323   "Run GCN scheduler to maximize occupancy (experimental)",
324   createIterativeGCNMaxOccupancyMachineScheduler);
325 
326 static MachineSchedRegistry
327 GCNMinRegSchedRegistry("gcn-minreg",
328   "Run GCN iterative scheduler for minimal register usage (experimental)",
329   createMinRegScheduler);
330 
331 static MachineSchedRegistry
332 GCNILPSchedRegistry("gcn-ilp",
333   "Run GCN iterative scheduler for ILP scheduling (experimental)",
334   createIterativeILPMachineScheduler);
335 
336 static StringRef computeDataLayout(const Triple &TT) {
337   if (TT.getArch() == Triple::r600) {
338     // 32-bit pointers.
339     return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
340            "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1";
341   }
342 
343   // 32-bit private, local, and region pointers. 64-bit global, constant and
344   // flat, non-integral buffer fat pointers.
345   return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
346          "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
347          "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"
348          "-ni:7";
349 }
350 
351 LLVM_READNONE
352 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
353   if (!GPU.empty())
354     return GPU;
355 
356   // Need to default to a target with flat support for HSA.
357   if (TT.getArch() == Triple::amdgcn)
358     return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
359 
360   return "r600";
361 }
362 
363 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
364   // The AMDGPU toolchain only supports generating shared objects, so we
365   // must always use PIC.
366   return Reloc::PIC_;
367 }
368 
369 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
370                                          StringRef CPU, StringRef FS,
371                                          TargetOptions Options,
372                                          Optional<Reloc::Model> RM,
373                                          Optional<CodeModel::Model> CM,
374                                          CodeGenOpt::Level OptLevel)
375     : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
376                         FS, Options, getEffectiveRelocModel(RM),
377                         getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
378       TLOF(createTLOF(getTargetTriple())) {
379   initAsmInfo();
380   if (TT.getArch() == Triple::amdgcn) {
381     if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64"))
382       MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64));
383     else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32"))
384       MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32));
385   }
386 }
387 
388 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
389 bool AMDGPUTargetMachine::EnableFunctionCalls = false;
390 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false;
391 
392 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
393 
394 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
395   Attribute GPUAttr = F.getFnAttribute("target-cpu");
396   return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU();
397 }
398 
399 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
400   Attribute FSAttr = F.getFnAttribute("target-features");
401 
402   return FSAttr.isValid() ? FSAttr.getValueAsString()
403                           : getTargetFeatureString();
404 }
405 
406 /// Predicate for Internalize pass.
407 static bool mustPreserveGV(const GlobalValue &GV) {
408   if (const Function *F = dyn_cast<Function>(&GV))
409     return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());
410 
411   return !GV.use_empty();
412 }
413 
414 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
415   Builder.DivergentTarget = true;
416 
417   bool EnableOpt = getOptLevel() > CodeGenOpt::None;
418   bool Internalize = InternalizeSymbols;
419   bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
420   bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
421   bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
422 
423   if (EnableFunctionCalls) {
424     delete Builder.Inliner;
425     Builder.Inliner = createFunctionInliningPass();
426   }
427 
428   Builder.addExtension(
429     PassManagerBuilder::EP_ModuleOptimizerEarly,
430     [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
431                                                legacy::PassManagerBase &PM) {
432       if (AMDGPUAA) {
433         PM.add(createAMDGPUAAWrapperPass());
434         PM.add(createAMDGPUExternalAAWrapperPass());
435       }
436       PM.add(createAMDGPUUnifyMetadataPass());
437       PM.add(createAMDGPUPrintfRuntimeBinding());
438       if (Internalize)
439         PM.add(createInternalizePass(mustPreserveGV));
440       PM.add(createAMDGPUPropagateAttributesLatePass(this));
441       if (Internalize)
442         PM.add(createGlobalDCEPass());
443       if (EarlyInline)
444         PM.add(createAMDGPUAlwaysInlinePass(false));
445   });
446 
447   Builder.addExtension(
448     PassManagerBuilder::EP_EarlyAsPossible,
449     [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &,
450                                       legacy::PassManagerBase &PM) {
451       if (AMDGPUAA) {
452         PM.add(createAMDGPUAAWrapperPass());
453         PM.add(createAMDGPUExternalAAWrapperPass());
454       }
455       PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
456       PM.add(llvm::createAMDGPUUseNativeCallsPass());
457       if (LibCallSimplify)
458         PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this));
459   });
460 
461   Builder.addExtension(
462     PassManagerBuilder::EP_CGSCCOptimizerLate,
463     [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
464       // Add infer address spaces pass to the opt pipeline after inlining
465       // but before SROA to increase SROA opportunities.
466       PM.add(createInferAddressSpacesPass());
467 
468       // This should run after inlining to have any chance of doing anything,
469       // and before other cleanup optimizations.
470       PM.add(createAMDGPULowerKernelAttributesPass());
471 
472       // Promote alloca to vector before SROA and loop unroll. If we manage
473       // to eliminate allocas before unroll we may choose to unroll less.
474       if (EnableOpt)
475         PM.add(createAMDGPUPromoteAllocaToVector());
476   });
477 }
478 
479 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
480   AAM.registerFunctionAnalysis<AMDGPUAA>();
481 }
482 
483 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB,
484                                                        bool DebugPassManager) {
485   PB.registerPipelineParsingCallback(
486       [this](StringRef PassName, ModulePassManager &PM,
487              ArrayRef<PassBuilder::PipelineElement>) {
488         if (PassName == "amdgpu-propagate-attributes-late") {
489           PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
490           return true;
491         }
492         if (PassName == "amdgpu-unify-metadata") {
493           PM.addPass(AMDGPUUnifyMetadataPass());
494           return true;
495         }
496         if (PassName == "amdgpu-printf-runtime-binding") {
497           PM.addPass(AMDGPUPrintfRuntimeBindingPass());
498           return true;
499         }
500         if (PassName == "amdgpu-always-inline") {
501           PM.addPass(AMDGPUAlwaysInlinePass());
502           return true;
503         }
504         return false;
505       });
506   PB.registerPipelineParsingCallback(
507       [this](StringRef PassName, FunctionPassManager &PM,
508              ArrayRef<PassBuilder::PipelineElement>) {
509         if (PassName == "amdgpu-simplifylib") {
510           PM.addPass(AMDGPUSimplifyLibCallsPass(*this));
511           return true;
512         }
513         if (PassName == "amdgpu-usenative") {
514           PM.addPass(AMDGPUUseNativeCallsPass());
515           return true;
516         }
517         if (PassName == "amdgpu-promote-alloca") {
518           PM.addPass(AMDGPUPromoteAllocaPass(*this));
519           return true;
520         }
521         if (PassName == "amdgpu-promote-alloca-to-vector") {
522           PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
523           return true;
524         }
525         if (PassName == "amdgpu-lower-kernel-attributes") {
526           PM.addPass(AMDGPULowerKernelAttributesPass());
527           return true;
528         }
529         if (PassName == "amdgpu-propagate-attributes-early") {
530           PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
531           return true;
532         }
533 
534         return false;
535       });
536 
537   PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) {
538     FAM.registerPass([&] { return AMDGPUAA(); });
539   });
540 
541   PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) {
542     if (AAName == "amdgpu-aa") {
543       AAM.registerFunctionAnalysis<AMDGPUAA>();
544       return true;
545     }
546     return false;
547   });
548 
549   PB.registerPipelineStartEPCallback([this, DebugPassManager](
550                                          ModulePassManager &PM,
551                                          PassBuilder::OptimizationLevel Level) {
552     FunctionPassManager FPM(DebugPassManager);
553     FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
554     FPM.addPass(AMDGPUUseNativeCallsPass());
555     if (EnableLibCallSimplify && Level != PassBuilder::OptimizationLevel::O0)
556       FPM.addPass(AMDGPUSimplifyLibCallsPass(*this));
557     PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
558   });
559 
560   PB.registerPipelineEarlySimplificationEPCallback(
561       [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) {
562         if (Level == PassBuilder::OptimizationLevel::O0)
563           return;
564 
565         PM.addPass(AMDGPUUnifyMetadataPass());
566         PM.addPass(AMDGPUPrintfRuntimeBindingPass());
567 
568         if (InternalizeSymbols) {
569           PM.addPass(InternalizePass(mustPreserveGV));
570         }
571         PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
572         if (InternalizeSymbols) {
573           PM.addPass(GlobalDCEPass());
574         }
575         if (EarlyInlineAll && !EnableFunctionCalls)
576           PM.addPass(AMDGPUAlwaysInlinePass());
577       });
578 
579   PB.registerCGSCCOptimizerLateEPCallback(
580       [this, DebugPassManager](CGSCCPassManager &PM,
581                                PassBuilder::OptimizationLevel Level) {
582         if (Level == PassBuilder::OptimizationLevel::O0)
583           return;
584 
585         FunctionPassManager FPM(DebugPassManager);
586 
587         // Add infer address spaces pass to the opt pipeline after inlining
588         // but before SROA to increase SROA opportunities.
589         FPM.addPass(InferAddressSpacesPass());
590 
591         // This should run after inlining to have any chance of doing
592         // anything, and before other cleanup optimizations.
593         FPM.addPass(AMDGPULowerKernelAttributesPass());
594 
595         if (Level != PassBuilder::OptimizationLevel::O0) {
596           // Promote alloca to vector before SROA and loop unroll. If we
597           // manage to eliminate allocas before unroll we may choose to unroll
598           // less.
599           FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
600         }
601 
602         PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM)));
603       });
604 }
605 
606 //===----------------------------------------------------------------------===//
607 // R600 Target Machine (R600 -> Cayman)
608 //===----------------------------------------------------------------------===//
609 
610 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
611                                      StringRef CPU, StringRef FS,
612                                      TargetOptions Options,
613                                      Optional<Reloc::Model> RM,
614                                      Optional<CodeModel::Model> CM,
615                                      CodeGenOpt::Level OL, bool JIT)
616     : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
617   setRequiresStructuredCFG(true);
618 
619   // Override the default since calls aren't supported for r600.
620   if (EnableFunctionCalls &&
621       EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0)
622     EnableFunctionCalls = false;
623 }
624 
625 const R600Subtarget *R600TargetMachine::getSubtargetImpl(
626   const Function &F) const {
627   StringRef GPU = getGPUName(F);
628   StringRef FS = getFeatureString(F);
629 
630   SmallString<128> SubtargetKey(GPU);
631   SubtargetKey.append(FS);
632 
633   auto &I = SubtargetMap[SubtargetKey];
634   if (!I) {
635     // This needs to be done before we create a new subtarget since any
636     // creation will depend on the TM and the code generation flags on the
637     // function that reside in TargetOptions.
638     resetTargetOptions(F);
639     I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
640   }
641 
642   return I.get();
643 }
644 
645 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) {
646   return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
647           AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
648           AddrSpace == AMDGPUAS::REGION_ADDRESS)
649              ? -1
650              : 0;
651 }
652 
653 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
654                                               unsigned DestAS) const {
655   return AMDGPU::isFlatGlobalAddrSpace(SrcAS) &&
656          AMDGPU::isFlatGlobalAddrSpace(DestAS);
657 }
658 
659 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const {
660   const auto *LD = dyn_cast<LoadInst>(V);
661   if (!LD)
662     return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
663 
664   // It must be a generic pointer loaded.
665   assert(V->getType()->isPointerTy() &&
666          V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS);
667 
668   const auto *Ptr = LD->getPointerOperand();
669   if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
670     return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
671   // For a generic pointer loaded from the constant memory, it could be assumed
672   // as a global pointer since the constant memory is only populated on the
673   // host side. As implied by the offload programming model, only global
674   // pointers could be referenced on the host side.
675   return AMDGPUAS::GLOBAL_ADDRESS;
676 }
677 
678 TargetTransformInfo
679 R600TargetMachine::getTargetTransformInfo(const Function &F) {
680   return TargetTransformInfo(R600TTIImpl(this, F));
681 }
682 
683 //===----------------------------------------------------------------------===//
684 // GCN Target Machine (SI+)
685 //===----------------------------------------------------------------------===//
686 
687 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
688                                    StringRef CPU, StringRef FS,
689                                    TargetOptions Options,
690                                    Optional<Reloc::Model> RM,
691                                    Optional<CodeModel::Model> CM,
692                                    CodeGenOpt::Level OL, bool JIT)
693     : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
694 
695 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
696   StringRef GPU = getGPUName(F);
697   StringRef FS = getFeatureString(F);
698 
699   SmallString<128> SubtargetKey(GPU);
700   SubtargetKey.append(FS);
701 
702   auto &I = SubtargetMap[SubtargetKey];
703   if (!I) {
704     // This needs to be done before we create a new subtarget since any
705     // creation will depend on the TM and the code generation flags on the
706     // function that reside in TargetOptions.
707     resetTargetOptions(F);
708     I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
709   }
710 
711   I->setScalarizeGlobalBehavior(ScalarizeGlobal);
712 
713   return I.get();
714 }
715 
716 TargetTransformInfo
717 GCNTargetMachine::getTargetTransformInfo(const Function &F) {
718   return TargetTransformInfo(GCNTTIImpl(this, F));
719 }
720 
721 //===----------------------------------------------------------------------===//
722 // AMDGPU Pass Setup
723 //===----------------------------------------------------------------------===//
724 
725 namespace {
726 
727 class AMDGPUPassConfig : public TargetPassConfig {
728 public:
729   AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
730     : TargetPassConfig(TM, PM) {
731     // Exceptions and StackMaps are not supported, so these passes will never do
732     // anything.
733     disablePass(&StackMapLivenessID);
734     disablePass(&FuncletLayoutID);
735   }
736 
737   AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
738     return getTM<AMDGPUTargetMachine>();
739   }
740 
741   ScheduleDAGInstrs *
742   createMachineScheduler(MachineSchedContext *C) const override {
743     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
744     DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
745     return DAG;
746   }
747 
748   void addEarlyCSEOrGVNPass();
749   void addStraightLineScalarOptimizationPasses();
750   void addIRPasses() override;
751   void addCodeGenPrepare() override;
752   bool addPreISel() override;
753   bool addInstSelector() override;
754   bool addGCPasses() override;
755 
756   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
757 };
758 
759 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const {
760   return getStandardCSEConfigForOpt(TM->getOptLevel());
761 }
762 
763 class R600PassConfig final : public AMDGPUPassConfig {
764 public:
765   R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
766     : AMDGPUPassConfig(TM, PM) {}
767 
768   ScheduleDAGInstrs *createMachineScheduler(
769     MachineSchedContext *C) const override {
770     return createR600MachineScheduler(C);
771   }
772 
773   bool addPreISel() override;
774   bool addInstSelector() override;
775   void addPreRegAlloc() override;
776   void addPreSched2() override;
777   void addPreEmitPass() override;
778 };
779 
780 class GCNPassConfig final : public AMDGPUPassConfig {
781 public:
782   GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
783     : AMDGPUPassConfig(TM, PM) {
784     // It is necessary to know the register usage of the entire call graph.  We
785     // allow calls without EnableAMDGPUFunctionCalls if they are marked
786     // noinline, so this is always required.
787     setRequiresCodeGenSCCOrder(true);
788   }
789 
790   GCNTargetMachine &getGCNTargetMachine() const {
791     return getTM<GCNTargetMachine>();
792   }
793 
794   ScheduleDAGInstrs *
795   createMachineScheduler(MachineSchedContext *C) const override;
796 
797   bool addPreISel() override;
798   void addMachineSSAOptimization() override;
799   bool addILPOpts() override;
800   bool addInstSelector() override;
801   bool addIRTranslator() override;
802   void addPreLegalizeMachineIR() override;
803   bool addLegalizeMachineIR() override;
804   void addPreRegBankSelect() override;
805   bool addRegBankSelect() override;
806   bool addGlobalInstructionSelect() override;
807   void addFastRegAlloc() override;
808   void addOptimizedRegAlloc() override;
809   void addPreRegAlloc() override;
810   bool addPreRewrite() override;
811   void addPostRegAlloc() override;
812   void addPreSched2() override;
813   void addPreEmitPass() override;
814 };
815 
816 } // end anonymous namespace
817 
818 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
819   if (getOptLevel() == CodeGenOpt::Aggressive)
820     addPass(createGVNPass());
821   else
822     addPass(createEarlyCSEPass());
823 }
824 
825 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
826   addPass(createLICMPass());
827   addPass(createSeparateConstOffsetFromGEPPass());
828   addPass(createSpeculativeExecutionPass());
829   // ReassociateGEPs exposes more opportunites for SLSR. See
830   // the example in reassociate-geps-and-slsr.ll.
831   addPass(createStraightLineStrengthReducePass());
832   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
833   // EarlyCSE can reuse.
834   addEarlyCSEOrGVNPass();
835   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
836   addPass(createNaryReassociatePass());
837   // NaryReassociate on GEPs creates redundant common expressions, so run
838   // EarlyCSE after it.
839   addPass(createEarlyCSEPass());
840 }
841 
842 void AMDGPUPassConfig::addIRPasses() {
843   const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
844 
845   // There is no reason to run these.
846   disablePass(&StackMapLivenessID);
847   disablePass(&FuncletLayoutID);
848   disablePass(&PatchableFunctionID);
849 
850   addPass(createAMDGPUPrintfRuntimeBinding());
851 
852   // This must occur before inlining, as the inliner will not look through
853   // bitcast calls.
854   addPass(createAMDGPUFixFunctionBitcastsPass());
855 
856   // A call to propagate attributes pass in the backend in case opt was not run.
857   addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));
858 
859   addPass(createAtomicExpandPass());
860 
861 
862   addPass(createAMDGPULowerIntrinsicsPass());
863 
864   // Function calls are not supported, so make sure we inline everything.
865   addPass(createAMDGPUAlwaysInlinePass());
866   addPass(createAlwaysInlinerLegacyPass());
867   // We need to add the barrier noop pass, otherwise adding the function
868   // inlining pass will cause all of the PassConfigs passes to be run
869   // one function at a time, which means if we have a nodule with two
870   // functions, then we will generate code for the first function
871   // without ever running any passes on the second.
872   addPass(createBarrierNoopPass());
873 
874   // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
875   if (TM.getTargetTriple().getArch() == Triple::r600)
876     addPass(createR600OpenCLImageTypeLoweringPass());
877 
878   // Replace OpenCL enqueued block function pointers with global variables.
879   addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
880 
881   if (TM.getOptLevel() > CodeGenOpt::None) {
882     addPass(createInferAddressSpacesPass());
883     addPass(createAMDGPUPromoteAlloca());
884 
885     if (EnableSROA)
886       addPass(createSROAPass());
887 
888     if (EnableScalarIRPasses)
889       addStraightLineScalarOptimizationPasses();
890 
891     if (EnableAMDGPUAliasAnalysis) {
892       addPass(createAMDGPUAAWrapperPass());
893       addPass(createExternalAAWrapperPass([](Pass &P, Function &,
894                                              AAResults &AAR) {
895         if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
896           AAR.addAAResult(WrapperPass->getResult());
897         }));
898     }
899   }
900 
901   if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
902     // TODO: May want to move later or split into an early and late one.
903     addPass(createAMDGPUCodeGenPreparePass());
904   }
905 
906   TargetPassConfig::addIRPasses();
907 
908   // EarlyCSE is not always strong enough to clean up what LSR produces. For
909   // example, GVN can combine
910   //
911   //   %0 = add %a, %b
912   //   %1 = add %b, %a
913   //
914   // and
915   //
916   //   %0 = shl nsw %a, 2
917   //   %1 = shl %a, 2
918   //
919   // but EarlyCSE can do neither of them.
920   if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses)
921     addEarlyCSEOrGVNPass();
922 }
923 
924 void AMDGPUPassConfig::addCodeGenPrepare() {
925   if (TM->getTargetTriple().getArch() == Triple::amdgcn)
926     addPass(createAMDGPUAnnotateKernelFeaturesPass());
927 
928   if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
929       EnableLowerKernelArguments)
930     addPass(createAMDGPULowerKernelArgumentsPass());
931 
932   addPass(&AMDGPUPerfHintAnalysisID);
933 
934   TargetPassConfig::addCodeGenPrepare();
935 
936   if (EnableLoadStoreVectorizer)
937     addPass(createLoadStoreVectorizerPass());
938 
939   // LowerSwitch pass may introduce unreachable blocks that can
940   // cause unexpected behavior for subsequent passes. Placing it
941   // here seems better that these blocks would get cleaned up by
942   // UnreachableBlockElim inserted next in the pass flow.
943   addPass(createLowerSwitchPass());
944 }
945 
946 bool AMDGPUPassConfig::addPreISel() {
947   addPass(createFlattenCFGPass());
948   return false;
949 }
950 
951 bool AMDGPUPassConfig::addInstSelector() {
952   // Defer the verifier until FinalizeISel.
953   addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false);
954   return false;
955 }
956 
957 bool AMDGPUPassConfig::addGCPasses() {
958   // Do nothing. GC is not supported.
959   return false;
960 }
961 
962 //===----------------------------------------------------------------------===//
963 // R600 Pass Setup
964 //===----------------------------------------------------------------------===//
965 
966 bool R600PassConfig::addPreISel() {
967   AMDGPUPassConfig::addPreISel();
968 
969   if (EnableR600StructurizeCFG)
970     addPass(createStructurizeCFGPass());
971   return false;
972 }
973 
974 bool R600PassConfig::addInstSelector() {
975   addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
976   return false;
977 }
978 
979 void R600PassConfig::addPreRegAlloc() {
980   addPass(createR600VectorRegMerger());
981 }
982 
983 void R600PassConfig::addPreSched2() {
984   addPass(createR600EmitClauseMarkers(), false);
985   if (EnableR600IfConvert)
986     addPass(&IfConverterID, false);
987   addPass(createR600ClauseMergePass(), false);
988 }
989 
990 void R600PassConfig::addPreEmitPass() {
991   addPass(createAMDGPUCFGStructurizerPass(), false);
992   addPass(createR600ExpandSpecialInstrsPass(), false);
993   addPass(&FinalizeMachineBundlesID, false);
994   addPass(createR600Packetizer(), false);
995   addPass(createR600ControlFlowFinalizer(), false);
996 }
997 
998 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
999   return new R600PassConfig(*this, PM);
1000 }
1001 
1002 //===----------------------------------------------------------------------===//
1003 // GCN Pass Setup
1004 //===----------------------------------------------------------------------===//
1005 
1006 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
1007   MachineSchedContext *C) const {
1008   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
1009   if (ST.enableSIScheduler())
1010     return createSIMachineScheduler(C);
1011   return createGCNMaxOccupancyMachineScheduler(C);
1012 }
1013 
1014 bool GCNPassConfig::addPreISel() {
1015   AMDGPUPassConfig::addPreISel();
1016 
1017   addPass(createAMDGPULateCodeGenPreparePass());
1018   if (EnableAtomicOptimizations) {
1019     addPass(createAMDGPUAtomicOptimizerPass());
1020   }
1021 
1022   // FIXME: We need to run a pass to propagate the attributes when calls are
1023   // supported.
1024 
1025   // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
1026   // regions formed by them.
1027   addPass(&AMDGPUUnifyDivergentExitNodesID);
1028   if (!LateCFGStructurize) {
1029     if (EnableStructurizerWorkarounds) {
1030       addPass(createFixIrreduciblePass());
1031       addPass(createUnifyLoopExitsPass());
1032     }
1033     addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions
1034   }
1035   addPass(createSinkingPass());
1036   addPass(createAMDGPUAnnotateUniformValues());
1037   if (!LateCFGStructurize) {
1038     addPass(createSIAnnotateControlFlowPass());
1039   }
1040   addPass(createLCSSAPass());
1041 
1042   return false;
1043 }
1044 
1045 void GCNPassConfig::addMachineSSAOptimization() {
1046   TargetPassConfig::addMachineSSAOptimization();
1047 
1048   // We want to fold operands after PeepholeOptimizer has run (or as part of
1049   // it), because it will eliminate extra copies making it easier to fold the
1050   // real source operand. We want to eliminate dead instructions after, so that
1051   // we see fewer uses of the copies. We then need to clean up the dead
1052   // instructions leftover after the operands are folded as well.
1053   //
1054   // XXX - Can we get away without running DeadMachineInstructionElim again?
1055   addPass(&SIFoldOperandsID);
1056   if (EnableDPPCombine)
1057     addPass(&GCNDPPCombineID);
1058   addPass(&DeadMachineInstructionElimID);
1059   addPass(&SILoadStoreOptimizerID);
1060   if (EnableSDWAPeephole) {
1061     addPass(&SIPeepholeSDWAID);
1062     addPass(&EarlyMachineLICMID);
1063     addPass(&MachineCSEID);
1064     addPass(&SIFoldOperandsID);
1065     addPass(&DeadMachineInstructionElimID);
1066   }
1067   addPass(createSIShrinkInstructionsPass());
1068 }
1069 
1070 bool GCNPassConfig::addILPOpts() {
1071   if (EnableEarlyIfConversion)
1072     addPass(&EarlyIfConverterID);
1073 
1074   TargetPassConfig::addILPOpts();
1075   return false;
1076 }
1077 
1078 bool GCNPassConfig::addInstSelector() {
1079   AMDGPUPassConfig::addInstSelector();
1080   addPass(&SIFixSGPRCopiesID);
1081   addPass(createSILowerI1CopiesPass());
1082   addPass(createSIAddIMGInitPass());
1083   return false;
1084 }
1085 
1086 bool GCNPassConfig::addIRTranslator() {
1087   addPass(new IRTranslator(getOptLevel()));
1088   return false;
1089 }
1090 
1091 void GCNPassConfig::addPreLegalizeMachineIR() {
1092   bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1093   addPass(createAMDGPUPreLegalizeCombiner(IsOptNone));
1094   addPass(new Localizer());
1095 }
1096 
1097 bool GCNPassConfig::addLegalizeMachineIR() {
1098   addPass(new Legalizer());
1099   return false;
1100 }
1101 
1102 void GCNPassConfig::addPreRegBankSelect() {
1103   bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1104   addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
1105 }
1106 
1107 bool GCNPassConfig::addRegBankSelect() {
1108   addPass(new RegBankSelect());
1109   return false;
1110 }
1111 
1112 bool GCNPassConfig::addGlobalInstructionSelect() {
1113   addPass(new InstructionSelect());
1114   // TODO: Fix instruction selection to do the right thing for image
1115   // instructions with tfe or lwe in the first place, instead of running a
1116   // separate pass to fix them up?
1117   addPass(createSIAddIMGInitPass());
1118   return false;
1119 }
1120 
1121 void GCNPassConfig::addPreRegAlloc() {
1122   if (LateCFGStructurize) {
1123     addPass(createAMDGPUMachineCFGStructurizerPass());
1124   }
1125 }
1126 
1127 void GCNPassConfig::addFastRegAlloc() {
1128   // FIXME: We have to disable the verifier here because of PHIElimination +
1129   // TwoAddressInstructions disabling it.
1130 
1131   // This must be run immediately after phi elimination and before
1132   // TwoAddressInstructions, otherwise the processing of the tied operand of
1133   // SI_ELSE will introduce a copy of the tied operand source after the else.
1134   insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
1135 
1136   insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID);
1137   insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID);
1138 
1139   TargetPassConfig::addFastRegAlloc();
1140 }
1141 
1142 void GCNPassConfig::addOptimizedRegAlloc() {
1143   // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation
1144   // instructions that cause scheduling barriers.
1145   insertPass(&MachineSchedulerID, &SIWholeQuadModeID);
1146   insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID);
1147 
1148   if (OptExecMaskPreRA)
1149     insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
1150   insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
1151 
1152   // This must be run immediately after phi elimination and before
1153   // TwoAddressInstructions, otherwise the processing of the tied operand of
1154   // SI_ELSE will introduce a copy of the tied operand source after the else.
1155   insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
1156 
1157   if (EnableDCEInRA)
1158     insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);
1159 
1160   TargetPassConfig::addOptimizedRegAlloc();
1161 }
1162 
1163 bool GCNPassConfig::addPreRewrite() {
1164   if (EnableRegReassign) {
1165     addPass(&GCNNSAReassignID);
1166     addPass(&GCNRegBankReassignID);
1167   }
1168   return true;
1169 }
1170 
1171 void GCNPassConfig::addPostRegAlloc() {
1172   addPass(&SIFixVGPRCopiesID);
1173   if (getOptLevel() > CodeGenOpt::None)
1174     addPass(&SIOptimizeExecMaskingID);
1175   TargetPassConfig::addPostRegAlloc();
1176 
1177   // Equivalent of PEI for SGPRs.
1178   addPass(&SILowerSGPRSpillsID);
1179 }
1180 
1181 void GCNPassConfig::addPreSched2() {
1182   addPass(&SIPostRABundlerID);
1183 }
1184 
1185 void GCNPassConfig::addPreEmitPass() {
1186   addPass(createSIMemoryLegalizerPass());
1187   addPass(createSIInsertWaitcntsPass());
1188   addPass(createSIShrinkInstructionsPass());
1189   addPass(createSIModeRegisterPass());
1190 
1191   if (getOptLevel() > CodeGenOpt::None)
1192     addPass(&SIInsertHardClausesID);
1193 
1194   addPass(&SIRemoveShortExecBranchesID);
1195   addPass(&SIInsertSkipsPassID);
1196   addPass(&SIPreEmitPeepholeID);
1197   // The hazard recognizer that runs as part of the post-ra scheduler does not
1198   // guarantee to be able handle all hazards correctly. This is because if there
1199   // are multiple scheduling regions in a basic block, the regions are scheduled
1200   // bottom up, so when we begin to schedule a region we don't know what
1201   // instructions were emitted directly before it.
1202   //
1203   // Here we add a stand-alone hazard recognizer pass which can handle all
1204   // cases.
1205   addPass(&PostRAHazardRecognizerID);
1206   addPass(&BranchRelaxationPassID);
1207 }
1208 
1209 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
1210   return new GCNPassConfig(*this, PM);
1211 }
1212 
1213 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
1214   return new yaml::SIMachineFunctionInfo();
1215 }
1216 
1217 yaml::MachineFunctionInfo *
1218 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
1219   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1220   return new yaml::SIMachineFunctionInfo(*MFI,
1221                                          *MF.getSubtarget().getRegisterInfo());
1222 }
1223 
1224 bool GCNTargetMachine::parseMachineFunctionInfo(
1225     const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
1226     SMDiagnostic &Error, SMRange &SourceRange) const {
1227   const yaml::SIMachineFunctionInfo &YamlMFI =
1228       reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
1229   MachineFunction &MF = PFS.MF;
1230   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1231 
1232   MFI->initializeBaseYamlFields(YamlMFI);
1233 
1234   if (MFI->Occupancy == 0) {
1235     // Fixup the subtarget dependent default value.
1236     const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1237     MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize());
1238   }
1239 
1240   auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) {
1241     Register TempReg;
1242     if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) {
1243       SourceRange = RegName.SourceRange;
1244       return true;
1245     }
1246     RegVal = TempReg;
1247 
1248     return false;
1249   };
1250 
1251   auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
1252     // Create a diagnostic for a the register string literal.
1253     const MemoryBuffer &Buffer =
1254         *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
1255     Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
1256                          RegName.Value.size(), SourceMgr::DK_Error,
1257                          "incorrect register class for field", RegName.Value,
1258                          None, None);
1259     SourceRange = RegName.SourceRange;
1260     return true;
1261   };
1262 
1263   if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
1264       parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
1265       parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
1266     return true;
1267 
1268   if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
1269       !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
1270     return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
1271   }
1272 
1273   if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
1274       !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
1275     return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
1276   }
1277 
1278   if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
1279       !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
1280     return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
1281   }
1282 
1283   auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
1284                                    const TargetRegisterClass &RC,
1285                                    ArgDescriptor &Arg, unsigned UserSGPRs,
1286                                    unsigned SystemSGPRs) {
1287     // Skip parsing if it's not present.
1288     if (!A)
1289       return false;
1290 
1291     if (A->IsRegister) {
1292       Register Reg;
1293       if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
1294         SourceRange = A->RegisterName.SourceRange;
1295         return true;
1296       }
1297       if (!RC.contains(Reg))
1298         return diagnoseRegisterClass(A->RegisterName);
1299       Arg = ArgDescriptor::createRegister(Reg);
1300     } else
1301       Arg = ArgDescriptor::createStack(A->StackOffset);
1302     // Check and apply the optional mask.
1303     if (A->Mask)
1304       Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue());
1305 
1306     MFI->NumUserSGPRs += UserSGPRs;
1307     MFI->NumSystemSGPRs += SystemSGPRs;
1308     return false;
1309   };
1310 
1311   if (YamlMFI.ArgInfo &&
1312       (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
1313                              AMDGPU::SGPR_128RegClass,
1314                              MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
1315        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
1316                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
1317                              2, 0) ||
1318        parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
1319                              MFI->ArgInfo.QueuePtr, 2, 0) ||
1320        parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
1321                              AMDGPU::SReg_64RegClass,
1322                              MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
1323        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
1324                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
1325                              2, 0) ||
1326        parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
1327                              AMDGPU::SReg_64RegClass,
1328                              MFI->ArgInfo.FlatScratchInit, 2, 0) ||
1329        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
1330                              AMDGPU::SGPR_32RegClass,
1331                              MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
1332        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
1333                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
1334                              0, 1) ||
1335        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
1336                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
1337                              0, 1) ||
1338        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
1339                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
1340                              0, 1) ||
1341        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
1342                              AMDGPU::SGPR_32RegClass,
1343                              MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
1344        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
1345                              AMDGPU::SGPR_32RegClass,
1346                              MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
1347        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
1348                              AMDGPU::SReg_64RegClass,
1349                              MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
1350        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
1351                              AMDGPU::SReg_64RegClass,
1352                              MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
1353        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
1354                              AMDGPU::VGPR_32RegClass,
1355                              MFI->ArgInfo.WorkItemIDX, 0, 0) ||
1356        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
1357                              AMDGPU::VGPR_32RegClass,
1358                              MFI->ArgInfo.WorkItemIDY, 0, 0) ||
1359        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
1360                              AMDGPU::VGPR_32RegClass,
1361                              MFI->ArgInfo.WorkItemIDZ, 0, 0)))
1362     return true;
1363 
1364   MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
1365   MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
1366   MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals;
1367   MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals;
1368   MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals;
1369   MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals;
1370 
1371   return false;
1372 }
1373