1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for SI+ GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUIGroupLP.h" 20 #include "AMDGPUMacroFusion.h" 21 #include "AMDGPUTargetObjectFile.h" 22 #include "AMDGPUTargetTransformInfo.h" 23 #include "GCNIterativeScheduler.h" 24 #include "GCNSchedStrategy.h" 25 #include "GCNVOPDUtils.h" 26 #include "R600.h" 27 #include "R600TargetMachine.h" 28 #include "SIMachineFunctionInfo.h" 29 #include "SIMachineScheduler.h" 30 #include "TargetInfo/AMDGPUTargetInfo.h" 31 #include "Utils/AMDGPUBaseInfo.h" 32 #include "llvm/Analysis/CGSCCPassManager.h" 33 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 34 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 35 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 36 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 37 #include "llvm/CodeGen/GlobalISel/Localizer.h" 38 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 39 #include "llvm/CodeGen/MIRParser/MIParser.h" 40 #include "llvm/CodeGen/Passes.h" 41 #include "llvm/CodeGen/RegAllocRegistry.h" 42 #include "llvm/CodeGen/TargetPassConfig.h" 43 #include "llvm/IR/IntrinsicsAMDGPU.h" 44 #include "llvm/IR/LegacyPassManager.h" 45 #include "llvm/IR/PassManager.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/MC/TargetRegistry.h" 49 #include "llvm/Passes/PassBuilder.h" 50 #include "llvm/Transforms/IPO.h" 51 #include "llvm/Transforms/IPO/AlwaysInliner.h" 52 #include "llvm/Transforms/IPO/GlobalDCE.h" 53 #include "llvm/Transforms/IPO/Internalize.h" 54 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Scalar/GVN.h" 57 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 58 #include "llvm/Transforms/Utils.h" 59 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 60 #include "llvm/Transforms/Vectorize.h" 61 62 using namespace llvm; 63 using namespace llvm::PatternMatch; 64 65 namespace { 66 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> { 67 public: 68 SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 69 : RegisterRegAllocBase(N, D, C) {} 70 }; 71 72 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> { 73 public: 74 VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 75 : RegisterRegAllocBase(N, D, C) {} 76 }; 77 78 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI, 79 const TargetRegisterClass &RC) { 80 return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 81 } 82 83 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI, 84 const TargetRegisterClass &RC) { 85 return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 86 } 87 88 89 /// -{sgpr|vgpr}-regalloc=... command line option. 90 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } 91 92 /// A dummy default pass factory indicates whether the register allocator is 93 /// overridden on the command line. 94 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag; 95 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag; 96 97 static SGPRRegisterRegAlloc 98 defaultSGPRRegAlloc("default", 99 "pick SGPR register allocator based on -O option", 100 useDefaultRegisterAllocator); 101 102 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false, 103 RegisterPassParser<SGPRRegisterRegAlloc>> 104 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 105 cl::desc("Register allocator to use for SGPRs")); 106 107 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false, 108 RegisterPassParser<VGPRRegisterRegAlloc>> 109 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 110 cl::desc("Register allocator to use for VGPRs")); 111 112 113 static void initializeDefaultSGPRRegisterAllocatorOnce() { 114 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 115 116 if (!Ctor) { 117 Ctor = SGPRRegAlloc; 118 SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc); 119 } 120 } 121 122 static void initializeDefaultVGPRRegisterAllocatorOnce() { 123 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 124 125 if (!Ctor) { 126 Ctor = VGPRRegAlloc; 127 VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc); 128 } 129 } 130 131 static FunctionPass *createBasicSGPRRegisterAllocator() { 132 return createBasicRegisterAllocator(onlyAllocateSGPRs); 133 } 134 135 static FunctionPass *createGreedySGPRRegisterAllocator() { 136 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 137 } 138 139 static FunctionPass *createFastSGPRRegisterAllocator() { 140 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 141 } 142 143 static FunctionPass *createBasicVGPRRegisterAllocator() { 144 return createBasicRegisterAllocator(onlyAllocateVGPRs); 145 } 146 147 static FunctionPass *createGreedyVGPRRegisterAllocator() { 148 return createGreedyRegisterAllocator(onlyAllocateVGPRs); 149 } 150 151 static FunctionPass *createFastVGPRRegisterAllocator() { 152 return createFastRegisterAllocator(onlyAllocateVGPRs, true); 153 } 154 155 static SGPRRegisterRegAlloc basicRegAllocSGPR( 156 "basic", "basic register allocator", createBasicSGPRRegisterAllocator); 157 static SGPRRegisterRegAlloc greedyRegAllocSGPR( 158 "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator); 159 160 static SGPRRegisterRegAlloc fastRegAllocSGPR( 161 "fast", "fast register allocator", createFastSGPRRegisterAllocator); 162 163 164 static VGPRRegisterRegAlloc basicRegAllocVGPR( 165 "basic", "basic register allocator", createBasicVGPRRegisterAllocator); 166 static VGPRRegisterRegAlloc greedyRegAllocVGPR( 167 "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator); 168 169 static VGPRRegisterRegAlloc fastRegAllocVGPR( 170 "fast", "fast register allocator", createFastVGPRRegisterAllocator); 171 } 172 173 static cl::opt<bool> EnableSROA( 174 "amdgpu-sroa", 175 cl::desc("Run SROA after promote alloca pass"), 176 cl::ReallyHidden, 177 cl::init(true)); 178 179 static cl::opt<bool> 180 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 181 cl::desc("Run early if-conversion"), 182 cl::init(false)); 183 184 static cl::opt<bool> 185 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 186 cl::desc("Run pre-RA exec mask optimizations"), 187 cl::init(true)); 188 189 // Option to disable vectorizer for tests. 190 static cl::opt<bool> EnableLoadStoreVectorizer( 191 "amdgpu-load-store-vectorizer", 192 cl::desc("Enable load store vectorizer"), 193 cl::init(true), 194 cl::Hidden); 195 196 // Option to control global loads scalarization 197 static cl::opt<bool> ScalarizeGlobal( 198 "amdgpu-scalarize-global-loads", 199 cl::desc("Enable global load scalarization"), 200 cl::init(true), 201 cl::Hidden); 202 203 // Option to run internalize pass. 204 static cl::opt<bool> InternalizeSymbols( 205 "amdgpu-internalize-symbols", 206 cl::desc("Enable elimination of non-kernel functions and unused globals"), 207 cl::init(false), 208 cl::Hidden); 209 210 // Option to inline all early. 211 static cl::opt<bool> EarlyInlineAll( 212 "amdgpu-early-inline-all", 213 cl::desc("Inline all functions early"), 214 cl::init(false), 215 cl::Hidden); 216 217 static cl::opt<bool> EnableSDWAPeephole( 218 "amdgpu-sdwa-peephole", 219 cl::desc("Enable SDWA peepholer"), 220 cl::init(true)); 221 222 static cl::opt<bool> EnableDPPCombine( 223 "amdgpu-dpp-combine", 224 cl::desc("Enable DPP combiner"), 225 cl::init(true)); 226 227 // Enable address space based alias analysis 228 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 229 cl::desc("Enable AMDGPU Alias Analysis"), 230 cl::init(true)); 231 232 // Option to run late CFG structurizer 233 static cl::opt<bool, true> LateCFGStructurize( 234 "amdgpu-late-structurize", 235 cl::desc("Enable late CFG structurization"), 236 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 237 cl::Hidden); 238 239 // Enable lib calls simplifications 240 static cl::opt<bool> EnableLibCallSimplify( 241 "amdgpu-simplify-libcall", 242 cl::desc("Enable amdgpu library simplifications"), 243 cl::init(true), 244 cl::Hidden); 245 246 static cl::opt<bool> EnableLowerKernelArguments( 247 "amdgpu-ir-lower-kernel-arguments", 248 cl::desc("Lower kernel argument loads in IR pass"), 249 cl::init(true), 250 cl::Hidden); 251 252 static cl::opt<bool> EnableRegReassign( 253 "amdgpu-reassign-regs", 254 cl::desc("Enable register reassign optimizations on gfx10+"), 255 cl::init(true), 256 cl::Hidden); 257 258 static cl::opt<bool> OptVGPRLiveRange( 259 "amdgpu-opt-vgpr-liverange", 260 cl::desc("Enable VGPR liverange optimizations for if-else structure"), 261 cl::init(true), cl::Hidden); 262 263 // Enable atomic optimization 264 static cl::opt<bool> EnableAtomicOptimizations( 265 "amdgpu-atomic-optimizations", 266 cl::desc("Enable atomic optimizations"), 267 cl::init(false), 268 cl::Hidden); 269 270 // Enable Mode register optimization 271 static cl::opt<bool> EnableSIModeRegisterPass( 272 "amdgpu-mode-register", 273 cl::desc("Enable mode register pass"), 274 cl::init(true), 275 cl::Hidden); 276 277 // Enable GFX11+ s_delay_alu insertion 278 static cl::opt<bool> 279 EnableInsertDelayAlu("amdgpu-enable-delay-alu", 280 cl::desc("Enable s_delay_alu insertion"), 281 cl::init(true), cl::Hidden); 282 283 // Enable GFX11+ VOPD 284 static cl::opt<bool> 285 EnableVOPD("amdgpu-enable-vopd", 286 cl::desc("Enable VOPD, dual issue of VALU in wave32"), 287 cl::init(true), cl::Hidden); 288 289 // Option is used in lit tests to prevent deadcoding of patterns inspected. 290 static cl::opt<bool> 291 EnableDCEInRA("amdgpu-dce-in-ra", 292 cl::init(true), cl::Hidden, 293 cl::desc("Enable machine DCE inside regalloc")); 294 295 static cl::opt<bool> EnableSetWavePriority("amdgpu-set-wave-priority", 296 cl::desc("Adjust wave priority"), 297 cl::init(false), cl::Hidden); 298 299 static cl::opt<bool> EnableScalarIRPasses( 300 "amdgpu-scalar-ir-passes", 301 cl::desc("Enable scalar IR passes"), 302 cl::init(true), 303 cl::Hidden); 304 305 static cl::opt<bool> EnableStructurizerWorkarounds( 306 "amdgpu-enable-structurizer-workarounds", 307 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 308 cl::Hidden); 309 310 static cl::opt<bool> EnableLDSReplaceWithPointer( 311 "amdgpu-enable-lds-replace-with-pointer", 312 cl::desc("Enable LDS replace with pointer pass"), cl::init(false), 313 cl::Hidden); 314 315 static cl::opt<bool, true> EnableLowerModuleLDS( 316 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 317 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 318 cl::Hidden); 319 320 static cl::opt<bool> EnablePreRAOptimizations( 321 "amdgpu-enable-pre-ra-optimizations", 322 cl::desc("Enable Pre-RA optimizations pass"), cl::init(true), 323 cl::Hidden); 324 325 static cl::opt<bool> EnablePromoteKernelArguments( 326 "amdgpu-enable-promote-kernel-arguments", 327 cl::desc("Enable promotion of flat kernel pointer arguments to global"), 328 cl::Hidden, cl::init(true)); 329 330 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 331 // Register the target 332 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 333 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 334 335 PassRegistry *PR = PassRegistry::getPassRegistry(); 336 initializeR600ClauseMergePassPass(*PR); 337 initializeR600ControlFlowFinalizerPass(*PR); 338 initializeR600PacketizerPass(*PR); 339 initializeR600ExpandSpecialInstrsPassPass(*PR); 340 initializeR600VectorRegMergerPass(*PR); 341 initializeGlobalISel(*PR); 342 initializeAMDGPUDAGToDAGISelPass(*PR); 343 initializeGCNDPPCombinePass(*PR); 344 initializeSILowerI1CopiesPass(*PR); 345 initializeSILowerSGPRSpillsPass(*PR); 346 initializeSIFixSGPRCopiesPass(*PR); 347 initializeSIFixVGPRCopiesPass(*PR); 348 initializeSIFoldOperandsPass(*PR); 349 initializeSIPeepholeSDWAPass(*PR); 350 initializeSIShrinkInstructionsPass(*PR); 351 initializeSIOptimizeExecMaskingPreRAPass(*PR); 352 initializeSIOptimizeVGPRLiveRangePass(*PR); 353 initializeSILoadStoreOptimizerPass(*PR); 354 initializeAMDGPUCtorDtorLoweringPass(*PR); 355 initializeAMDGPUAlwaysInlinePass(*PR); 356 initializeAMDGPUAttributorPass(*PR); 357 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 358 initializeAMDGPUAnnotateUniformValuesPass(*PR); 359 initializeAMDGPUArgumentUsageInfoPass(*PR); 360 initializeAMDGPUAtomicOptimizerPass(*PR); 361 initializeAMDGPULowerKernelArgumentsPass(*PR); 362 initializeAMDGPUPromoteKernelArgumentsPass(*PR); 363 initializeAMDGPULowerKernelAttributesPass(*PR); 364 initializeAMDGPULowerIntrinsicsPass(*PR); 365 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 366 initializeAMDGPUPostLegalizerCombinerPass(*PR); 367 initializeAMDGPUPreLegalizerCombinerPass(*PR); 368 initializeAMDGPURegBankCombinerPass(*PR); 369 initializeAMDGPUPromoteAllocaPass(*PR); 370 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 371 initializeAMDGPUCodeGenPreparePass(*PR); 372 initializeAMDGPULateCodeGenPreparePass(*PR); 373 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 374 initializeAMDGPUPropagateAttributesLatePass(*PR); 375 initializeAMDGPUReplaceLDSUseWithPointerPass(*PR); 376 initializeAMDGPULowerModuleLDSPass(*PR); 377 initializeAMDGPURewriteOutArgumentsPass(*PR); 378 initializeAMDGPUUnifyMetadataPass(*PR); 379 initializeSIAnnotateControlFlowPass(*PR); 380 initializeAMDGPUReleaseVGPRsPass(*PR); 381 initializeAMDGPUInsertDelayAluPass(*PR); 382 initializeSIInsertHardClausesPass(*PR); 383 initializeSIInsertWaitcntsPass(*PR); 384 initializeSIModeRegisterPass(*PR); 385 initializeSIWholeQuadModePass(*PR); 386 initializeSILowerControlFlowPass(*PR); 387 initializeSIPreEmitPeepholePass(*PR); 388 initializeSILateBranchLoweringPass(*PR); 389 initializeSIMemoryLegalizerPass(*PR); 390 initializeSIOptimizeExecMaskingPass(*PR); 391 initializeSIPreAllocateWWMRegsPass(*PR); 392 initializeSIFormMemoryClausesPass(*PR); 393 initializeSIPostRABundlerPass(*PR); 394 initializeGCNCreateVOPDPass(*PR); 395 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 396 initializeAMDGPUAAWrapperPassPass(*PR); 397 initializeAMDGPUExternalAAWrapperPass(*PR); 398 initializeAMDGPUUseNativeCallsPass(*PR); 399 initializeAMDGPUSimplifyLibCallsPass(*PR); 400 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 401 initializeAMDGPUResourceUsageAnalysisPass(*PR); 402 initializeGCNNSAReassignPass(*PR); 403 initializeGCNPreRAOptimizationsPass(*PR); 404 } 405 406 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 407 return std::make_unique<AMDGPUTargetObjectFile>(); 408 } 409 410 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 411 return new SIScheduleDAGMI(C); 412 } 413 414 static ScheduleDAGInstrs * 415 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 416 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 417 ScheduleDAGMILive *DAG = 418 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 419 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 420 if (ST.shouldClusterStores()) 421 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 422 DAG->addMutation(createIGroupLPDAGMutation()); 423 DAG->addMutation(createSchedBarrierDAGMutation()); 424 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 425 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 426 return DAG; 427 } 428 429 static ScheduleDAGInstrs * 430 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 431 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 432 auto DAG = new GCNIterativeScheduler(C, 433 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 434 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 435 if (ST.shouldClusterStores()) 436 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 437 return DAG; 438 } 439 440 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 441 return new GCNIterativeScheduler(C, 442 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 443 } 444 445 static ScheduleDAGInstrs * 446 createIterativeILPMachineScheduler(MachineSchedContext *C) { 447 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 448 auto DAG = new GCNIterativeScheduler(C, 449 GCNIterativeScheduler::SCHEDULE_ILP); 450 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 451 if (ST.shouldClusterStores()) 452 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 453 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 454 return DAG; 455 } 456 457 static MachineSchedRegistry 458 SISchedRegistry("si", "Run SI's custom scheduler", 459 createSIMachineScheduler); 460 461 static MachineSchedRegistry 462 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 463 "Run GCN scheduler to maximize occupancy", 464 createGCNMaxOccupancyMachineScheduler); 465 466 static MachineSchedRegistry 467 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 468 "Run GCN scheduler to maximize occupancy (experimental)", 469 createIterativeGCNMaxOccupancyMachineScheduler); 470 471 static MachineSchedRegistry 472 GCNMinRegSchedRegistry("gcn-minreg", 473 "Run GCN iterative scheduler for minimal register usage (experimental)", 474 createMinRegScheduler); 475 476 static MachineSchedRegistry 477 GCNILPSchedRegistry("gcn-ilp", 478 "Run GCN iterative scheduler for ILP scheduling (experimental)", 479 createIterativeILPMachineScheduler); 480 481 static StringRef computeDataLayout(const Triple &TT) { 482 if (TT.getArch() == Triple::r600) { 483 // 32-bit pointers. 484 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 485 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 486 } 487 488 // 32-bit private, local, and region pointers. 64-bit global, constant and 489 // flat, non-integral buffer fat pointers. 490 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 491 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 492 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 493 "-ni:7"; 494 } 495 496 LLVM_READNONE 497 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 498 if (!GPU.empty()) 499 return GPU; 500 501 // Need to default to a target with flat support for HSA. 502 if (TT.getArch() == Triple::amdgcn) 503 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 504 505 return "r600"; 506 } 507 508 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 509 // The AMDGPU toolchain only supports generating shared objects, so we 510 // must always use PIC. 511 return Reloc::PIC_; 512 } 513 514 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 515 StringRef CPU, StringRef FS, 516 TargetOptions Options, 517 Optional<Reloc::Model> RM, 518 Optional<CodeModel::Model> CM, 519 CodeGenOpt::Level OptLevel) 520 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 521 FS, Options, getEffectiveRelocModel(RM), 522 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 523 TLOF(createTLOF(getTargetTriple())) { 524 initAsmInfo(); 525 if (TT.getArch() == Triple::amdgcn) { 526 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 527 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 528 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 529 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 530 } 531 } 532 533 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 534 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 535 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 536 537 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 538 539 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 540 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 541 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 542 } 543 544 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 545 Attribute FSAttr = F.getFnAttribute("target-features"); 546 547 return FSAttr.isValid() ? FSAttr.getValueAsString() 548 : getTargetFeatureString(); 549 } 550 551 /// Predicate for Internalize pass. 552 static bool mustPreserveGV(const GlobalValue &GV) { 553 if (const Function *F = dyn_cast<Function>(&GV)) 554 return F->isDeclaration() || F->getName().startswith("__asan_") || 555 F->getName().startswith("__sanitizer_") || 556 AMDGPU::isEntryFunctionCC(F->getCallingConv()); 557 558 GV.removeDeadConstantUsers(); 559 return !GV.use_empty(); 560 } 561 562 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 563 Builder.DivergentTarget = true; 564 565 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 566 bool Internalize = InternalizeSymbols; 567 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 568 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 569 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 570 bool PromoteKernelArguments = 571 EnablePromoteKernelArguments && getOptLevel() > CodeGenOpt::Less; 572 573 if (EnableFunctionCalls) { 574 delete Builder.Inliner; 575 Builder.Inliner = createFunctionInliningPass(); 576 } 577 578 Builder.addExtension( 579 PassManagerBuilder::EP_ModuleOptimizerEarly, 580 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 581 legacy::PassManagerBase &PM) { 582 if (AMDGPUAA) { 583 PM.add(createAMDGPUAAWrapperPass()); 584 PM.add(createAMDGPUExternalAAWrapperPass()); 585 } 586 PM.add(createAMDGPUUnifyMetadataPass()); 587 PM.add(createAMDGPUPrintfRuntimeBinding()); 588 if (Internalize) 589 PM.add(createInternalizePass(mustPreserveGV)); 590 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 591 if (Internalize) 592 PM.add(createGlobalDCEPass()); 593 if (EarlyInline) 594 PM.add(createAMDGPUAlwaysInlinePass(false)); 595 }); 596 597 Builder.addExtension( 598 PassManagerBuilder::EP_EarlyAsPossible, 599 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 600 legacy::PassManagerBase &PM) { 601 if (AMDGPUAA) { 602 PM.add(createAMDGPUAAWrapperPass()); 603 PM.add(createAMDGPUExternalAAWrapperPass()); 604 } 605 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 606 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 607 if (LibCallSimplify) 608 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 609 }); 610 611 Builder.addExtension( 612 PassManagerBuilder::EP_CGSCCOptimizerLate, 613 [EnableOpt, PromoteKernelArguments](const PassManagerBuilder &, 614 legacy::PassManagerBase &PM) { 615 // Add promote kernel arguments pass to the opt pipeline right before 616 // infer address spaces which is needed to do actual address space 617 // rewriting. 618 if (PromoteKernelArguments) 619 PM.add(createAMDGPUPromoteKernelArgumentsPass()); 620 621 // Add infer address spaces pass to the opt pipeline after inlining 622 // but before SROA to increase SROA opportunities. 623 PM.add(createInferAddressSpacesPass()); 624 625 // This should run after inlining to have any chance of doing anything, 626 // and before other cleanup optimizations. 627 PM.add(createAMDGPULowerKernelAttributesPass()); 628 629 // Promote alloca to vector before SROA and loop unroll. If we manage 630 // to eliminate allocas before unroll we may choose to unroll less. 631 if (EnableOpt) 632 PM.add(createAMDGPUPromoteAllocaToVector()); 633 }); 634 } 635 636 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 637 AAM.registerFunctionAnalysis<AMDGPUAA>(); 638 } 639 640 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { 641 PB.registerPipelineParsingCallback( 642 [this](StringRef PassName, ModulePassManager &PM, 643 ArrayRef<PassBuilder::PipelineElement>) { 644 if (PassName == "amdgpu-propagate-attributes-late") { 645 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 646 return true; 647 } 648 if (PassName == "amdgpu-unify-metadata") { 649 PM.addPass(AMDGPUUnifyMetadataPass()); 650 return true; 651 } 652 if (PassName == "amdgpu-printf-runtime-binding") { 653 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 654 return true; 655 } 656 if (PassName == "amdgpu-always-inline") { 657 PM.addPass(AMDGPUAlwaysInlinePass()); 658 return true; 659 } 660 if (PassName == "amdgpu-replace-lds-use-with-pointer") { 661 PM.addPass(AMDGPUReplaceLDSUseWithPointerPass()); 662 return true; 663 } 664 if (PassName == "amdgpu-lower-module-lds") { 665 PM.addPass(AMDGPULowerModuleLDSPass()); 666 return true; 667 } 668 return false; 669 }); 670 PB.registerPipelineParsingCallback( 671 [this](StringRef PassName, FunctionPassManager &PM, 672 ArrayRef<PassBuilder::PipelineElement>) { 673 if (PassName == "amdgpu-simplifylib") { 674 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 675 return true; 676 } 677 if (PassName == "amdgpu-usenative") { 678 PM.addPass(AMDGPUUseNativeCallsPass()); 679 return true; 680 } 681 if (PassName == "amdgpu-promote-alloca") { 682 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 683 return true; 684 } 685 if (PassName == "amdgpu-promote-alloca-to-vector") { 686 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 687 return true; 688 } 689 if (PassName == "amdgpu-lower-kernel-attributes") { 690 PM.addPass(AMDGPULowerKernelAttributesPass()); 691 return true; 692 } 693 if (PassName == "amdgpu-propagate-attributes-early") { 694 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 695 return true; 696 } 697 if (PassName == "amdgpu-promote-kernel-arguments") { 698 PM.addPass(AMDGPUPromoteKernelArgumentsPass()); 699 return true; 700 } 701 return false; 702 }); 703 704 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 705 FAM.registerPass([&] { return AMDGPUAA(); }); 706 }); 707 708 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 709 if (AAName == "amdgpu-aa") { 710 AAM.registerFunctionAnalysis<AMDGPUAA>(); 711 return true; 712 } 713 return false; 714 }); 715 716 PB.registerPipelineStartEPCallback( 717 [this](ModulePassManager &PM, OptimizationLevel Level) { 718 FunctionPassManager FPM; 719 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 720 FPM.addPass(AMDGPUUseNativeCallsPass()); 721 if (EnableLibCallSimplify && Level != OptimizationLevel::O0) 722 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 723 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 724 }); 725 726 PB.registerPipelineEarlySimplificationEPCallback( 727 [this](ModulePassManager &PM, OptimizationLevel Level) { 728 if (Level == OptimizationLevel::O0) 729 return; 730 731 PM.addPass(AMDGPUUnifyMetadataPass()); 732 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 733 734 if (InternalizeSymbols) { 735 PM.addPass(InternalizePass(mustPreserveGV)); 736 } 737 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 738 if (InternalizeSymbols) { 739 PM.addPass(GlobalDCEPass()); 740 } 741 if (EarlyInlineAll && !EnableFunctionCalls) 742 PM.addPass(AMDGPUAlwaysInlinePass()); 743 }); 744 745 PB.registerCGSCCOptimizerLateEPCallback( 746 [this](CGSCCPassManager &PM, OptimizationLevel Level) { 747 if (Level == OptimizationLevel::O0) 748 return; 749 750 FunctionPassManager FPM; 751 752 // Add promote kernel arguments pass to the opt pipeline right before 753 // infer address spaces which is needed to do actual address space 754 // rewriting. 755 if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() && 756 EnablePromoteKernelArguments) 757 FPM.addPass(AMDGPUPromoteKernelArgumentsPass()); 758 759 // Add infer address spaces pass to the opt pipeline after inlining 760 // but before SROA to increase SROA opportunities. 761 FPM.addPass(InferAddressSpacesPass()); 762 763 // This should run after inlining to have any chance of doing 764 // anything, and before other cleanup optimizations. 765 FPM.addPass(AMDGPULowerKernelAttributesPass()); 766 767 if (Level != OptimizationLevel::O0) { 768 // Promote alloca to vector before SROA and loop unroll. If we 769 // manage to eliminate allocas before unroll we may choose to unroll 770 // less. 771 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 772 } 773 774 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 775 }); 776 } 777 778 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 779 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 780 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 781 AddrSpace == AMDGPUAS::REGION_ADDRESS) 782 ? -1 783 : 0; 784 } 785 786 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 787 unsigned DestAS) const { 788 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 789 AMDGPU::isFlatGlobalAddrSpace(DestAS); 790 } 791 792 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 793 const auto *LD = dyn_cast<LoadInst>(V); 794 if (!LD) 795 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 796 797 // It must be a generic pointer loaded. 798 assert(V->getType()->isPointerTy() && 799 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 800 801 const auto *Ptr = LD->getPointerOperand(); 802 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 803 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 804 // For a generic pointer loaded from the constant memory, it could be assumed 805 // as a global pointer since the constant memory is only populated on the 806 // host side. As implied by the offload programming model, only global 807 // pointers could be referenced on the host side. 808 return AMDGPUAS::GLOBAL_ADDRESS; 809 } 810 811 std::pair<const Value *, unsigned> 812 AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const { 813 if (auto *II = dyn_cast<IntrinsicInst>(V)) { 814 switch (II->getIntrinsicID()) { 815 case Intrinsic::amdgcn_is_shared: 816 return std::make_pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS); 817 case Intrinsic::amdgcn_is_private: 818 return std::make_pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS); 819 default: 820 break; 821 } 822 return std::make_pair(nullptr, -1); 823 } 824 // Check the global pointer predication based on 825 // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and 826 // the order of 'is_shared' and 'is_private' is not significant. 827 Value *Ptr; 828 if (match( 829 const_cast<Value *>(V), 830 m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))), 831 m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>( 832 m_Deferred(Ptr)))))) 833 return std::make_pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS); 834 835 return std::make_pair(nullptr, -1); 836 } 837 838 unsigned 839 AMDGPUTargetMachine::getAddressSpaceForPseudoSourceKind(unsigned Kind) const { 840 switch (Kind) { 841 case PseudoSourceValue::Stack: 842 case PseudoSourceValue::FixedStack: 843 return AMDGPUAS::PRIVATE_ADDRESS; 844 case PseudoSourceValue::ConstantPool: 845 case PseudoSourceValue::GOT: 846 case PseudoSourceValue::JumpTable: 847 case PseudoSourceValue::GlobalValueCallEntry: 848 case PseudoSourceValue::ExternalSymbolCallEntry: 849 case PseudoSourceValue::TargetCustom: 850 return AMDGPUAS::CONSTANT_ADDRESS; 851 } 852 return AMDGPUAS::FLAT_ADDRESS; 853 } 854 855 //===----------------------------------------------------------------------===// 856 // GCN Target Machine (SI+) 857 //===----------------------------------------------------------------------===// 858 859 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 860 StringRef CPU, StringRef FS, 861 TargetOptions Options, 862 Optional<Reloc::Model> RM, 863 Optional<CodeModel::Model> CM, 864 CodeGenOpt::Level OL, bool JIT) 865 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 866 867 const TargetSubtargetInfo * 868 GCNTargetMachine::getSubtargetImpl(const Function &F) const { 869 StringRef GPU = getGPUName(F); 870 StringRef FS = getFeatureString(F); 871 872 SmallString<128> SubtargetKey(GPU); 873 SubtargetKey.append(FS); 874 875 auto &I = SubtargetMap[SubtargetKey]; 876 if (!I) { 877 // This needs to be done before we create a new subtarget since any 878 // creation will depend on the TM and the code generation flags on the 879 // function that reside in TargetOptions. 880 resetTargetOptions(F); 881 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 882 } 883 884 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 885 886 return I.get(); 887 } 888 889 TargetTransformInfo 890 GCNTargetMachine::getTargetTransformInfo(const Function &F) const { 891 return TargetTransformInfo(GCNTTIImpl(this, F)); 892 } 893 894 //===----------------------------------------------------------------------===// 895 // AMDGPU Pass Setup 896 //===----------------------------------------------------------------------===// 897 898 std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const { 899 return getStandardCSEConfigForOpt(TM->getOptLevel()); 900 } 901 902 namespace { 903 904 class GCNPassConfig final : public AMDGPUPassConfig { 905 public: 906 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 907 : AMDGPUPassConfig(TM, PM) { 908 // It is necessary to know the register usage of the entire call graph. We 909 // allow calls without EnableAMDGPUFunctionCalls if they are marked 910 // noinline, so this is always required. 911 setRequiresCodeGenSCCOrder(true); 912 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 913 } 914 915 GCNTargetMachine &getGCNTargetMachine() const { 916 return getTM<GCNTargetMachine>(); 917 } 918 919 ScheduleDAGInstrs * 920 createMachineScheduler(MachineSchedContext *C) const override; 921 922 ScheduleDAGInstrs * 923 createPostMachineScheduler(MachineSchedContext *C) const override { 924 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 925 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 926 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 927 if (ST.shouldClusterStores()) 928 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 929 DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII)); 930 DAG->addMutation(createIGroupLPDAGMutation()); 931 DAG->addMutation(createSchedBarrierDAGMutation()); 932 if (isPassEnabled(EnableVOPD, CodeGenOpt::Less)) 933 DAG->addMutation(createVOPDPairingMutation()); 934 return DAG; 935 } 936 937 bool addPreISel() override; 938 void addMachineSSAOptimization() override; 939 bool addILPOpts() override; 940 bool addInstSelector() override; 941 bool addIRTranslator() override; 942 void addPreLegalizeMachineIR() override; 943 bool addLegalizeMachineIR() override; 944 void addPreRegBankSelect() override; 945 bool addRegBankSelect() override; 946 void addPreGlobalInstructionSelect() override; 947 bool addGlobalInstructionSelect() override; 948 void addFastRegAlloc() override; 949 void addOptimizedRegAlloc() override; 950 951 FunctionPass *createSGPRAllocPass(bool Optimized); 952 FunctionPass *createVGPRAllocPass(bool Optimized); 953 FunctionPass *createRegAllocPass(bool Optimized) override; 954 955 bool addRegAssignAndRewriteFast() override; 956 bool addRegAssignAndRewriteOptimized() override; 957 958 void addPreRegAlloc() override; 959 bool addPreRewrite() override; 960 void addPostRegAlloc() override; 961 void addPreSched2() override; 962 void addPreEmitPass() override; 963 }; 964 965 } // end anonymous namespace 966 967 AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 968 : TargetPassConfig(TM, PM) { 969 // Exceptions and StackMaps are not supported, so these passes will never do 970 // anything. 971 disablePass(&StackMapLivenessID); 972 disablePass(&FuncletLayoutID); 973 // Garbage collection is not supported. 974 disablePass(&GCLoweringID); 975 disablePass(&ShadowStackGCLoweringID); 976 } 977 978 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 979 if (getOptLevel() == CodeGenOpt::Aggressive) 980 addPass(createGVNPass()); 981 else 982 addPass(createEarlyCSEPass()); 983 } 984 985 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 986 addPass(createLICMPass()); 987 addPass(createSeparateConstOffsetFromGEPPass()); 988 addPass(createSpeculativeExecutionPass()); 989 // ReassociateGEPs exposes more opportunities for SLSR. See 990 // the example in reassociate-geps-and-slsr.ll. 991 addPass(createStraightLineStrengthReducePass()); 992 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 993 // EarlyCSE can reuse. 994 addEarlyCSEOrGVNPass(); 995 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 996 addPass(createNaryReassociatePass()); 997 // NaryReassociate on GEPs creates redundant common expressions, so run 998 // EarlyCSE after it. 999 addPass(createEarlyCSEPass()); 1000 } 1001 1002 void AMDGPUPassConfig::addIRPasses() { 1003 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 1004 1005 // There is no reason to run these. 1006 disablePass(&StackMapLivenessID); 1007 disablePass(&FuncletLayoutID); 1008 disablePass(&PatchableFunctionID); 1009 1010 addPass(createAMDGPUPrintfRuntimeBinding()); 1011 addPass(createAMDGPUCtorDtorLoweringPass()); 1012 1013 // A call to propagate attributes pass in the backend in case opt was not run. 1014 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 1015 1016 addPass(createAMDGPULowerIntrinsicsPass()); 1017 1018 // Function calls are not supported, so make sure we inline everything. 1019 addPass(createAMDGPUAlwaysInlinePass()); 1020 addPass(createAlwaysInlinerLegacyPass()); 1021 // We need to add the barrier noop pass, otherwise adding the function 1022 // inlining pass will cause all of the PassConfigs passes to be run 1023 // one function at a time, which means if we have a module with two 1024 // functions, then we will generate code for the first function 1025 // without ever running any passes on the second. 1026 addPass(createBarrierNoopPass()); 1027 1028 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 1029 if (TM.getTargetTriple().getArch() == Triple::r600) 1030 addPass(createR600OpenCLImageTypeLoweringPass()); 1031 1032 // Replace OpenCL enqueued block function pointers with global variables. 1033 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 1034 1035 // Can increase LDS used by kernel so runs before PromoteAlloca 1036 if (EnableLowerModuleLDS) { 1037 // The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the 1038 // pass "amdgpu-lower-module-lds", and also it required to be run only if 1039 // "amdgpu-lower-module-lds" pass is enabled. 1040 if (EnableLDSReplaceWithPointer) 1041 addPass(createAMDGPUReplaceLDSUseWithPointerPass()); 1042 1043 addPass(createAMDGPULowerModuleLDSPass()); 1044 } 1045 1046 if (TM.getOptLevel() > CodeGenOpt::None) 1047 addPass(createInferAddressSpacesPass()); 1048 1049 addPass(createAtomicExpandPass()); 1050 1051 if (TM.getOptLevel() > CodeGenOpt::None) { 1052 addPass(createAMDGPUPromoteAlloca()); 1053 1054 if (EnableSROA) 1055 addPass(createSROAPass()); 1056 if (isPassEnabled(EnableScalarIRPasses)) 1057 addStraightLineScalarOptimizationPasses(); 1058 1059 if (EnableAMDGPUAliasAnalysis) { 1060 addPass(createAMDGPUAAWrapperPass()); 1061 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 1062 AAResults &AAR) { 1063 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 1064 AAR.addAAResult(WrapperPass->getResult()); 1065 })); 1066 } 1067 1068 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1069 // TODO: May want to move later or split into an early and late one. 1070 addPass(createAMDGPUCodeGenPreparePass()); 1071 } 1072 } 1073 1074 TargetPassConfig::addIRPasses(); 1075 1076 // EarlyCSE is not always strong enough to clean up what LSR produces. For 1077 // example, GVN can combine 1078 // 1079 // %0 = add %a, %b 1080 // %1 = add %b, %a 1081 // 1082 // and 1083 // 1084 // %0 = shl nsw %a, 2 1085 // %1 = shl %a, 2 1086 // 1087 // but EarlyCSE can do neither of them. 1088 if (isPassEnabled(EnableScalarIRPasses)) 1089 addEarlyCSEOrGVNPass(); 1090 } 1091 1092 void AMDGPUPassConfig::addCodeGenPrepare() { 1093 if (TM->getTargetTriple().getArch() == Triple::amdgcn) { 1094 addPass(createAMDGPUAttributorPass()); 1095 1096 // FIXME: This pass adds 2 hacky attributes that can be replaced with an 1097 // analysis, and should be removed. 1098 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 1099 } 1100 1101 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 1102 EnableLowerKernelArguments) 1103 addPass(createAMDGPULowerKernelArgumentsPass()); 1104 1105 TargetPassConfig::addCodeGenPrepare(); 1106 1107 if (isPassEnabled(EnableLoadStoreVectorizer)) 1108 addPass(createLoadStoreVectorizerPass()); 1109 1110 // LowerSwitch pass may introduce unreachable blocks that can 1111 // cause unexpected behavior for subsequent passes. Placing it 1112 // here seems better that these blocks would get cleaned up by 1113 // UnreachableBlockElim inserted next in the pass flow. 1114 addPass(createLowerSwitchPass()); 1115 } 1116 1117 bool AMDGPUPassConfig::addPreISel() { 1118 if (TM->getOptLevel() > CodeGenOpt::None) 1119 addPass(createFlattenCFGPass()); 1120 return false; 1121 } 1122 1123 bool AMDGPUPassConfig::addInstSelector() { 1124 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 1125 return false; 1126 } 1127 1128 bool AMDGPUPassConfig::addGCPasses() { 1129 // Do nothing. GC is not supported. 1130 return false; 1131 } 1132 1133 llvm::ScheduleDAGInstrs * 1134 AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const { 1135 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1136 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 1137 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 1138 if (ST.shouldClusterStores()) 1139 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 1140 return DAG; 1141 } 1142 1143 //===----------------------------------------------------------------------===// 1144 // GCN Pass Setup 1145 //===----------------------------------------------------------------------===// 1146 1147 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1148 MachineSchedContext *C) const { 1149 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1150 if (ST.enableSIScheduler()) 1151 return createSIMachineScheduler(C); 1152 return createGCNMaxOccupancyMachineScheduler(C); 1153 } 1154 1155 bool GCNPassConfig::addPreISel() { 1156 AMDGPUPassConfig::addPreISel(); 1157 1158 if (TM->getOptLevel() > CodeGenOpt::None) 1159 addPass(createAMDGPULateCodeGenPreparePass()); 1160 1161 if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) { 1162 addPass(createAMDGPUAtomicOptimizerPass()); 1163 } 1164 1165 if (TM->getOptLevel() > CodeGenOpt::None) 1166 addPass(createSinkingPass()); 1167 1168 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1169 // regions formed by them. 1170 addPass(&AMDGPUUnifyDivergentExitNodesID); 1171 if (!LateCFGStructurize) { 1172 if (EnableStructurizerWorkarounds) { 1173 addPass(createFixIrreduciblePass()); 1174 addPass(createUnifyLoopExitsPass()); 1175 } 1176 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1177 } 1178 addPass(createAMDGPUAnnotateUniformValues()); 1179 if (!LateCFGStructurize) { 1180 addPass(createSIAnnotateControlFlowPass()); 1181 } 1182 addPass(createLCSSAPass()); 1183 1184 if (TM->getOptLevel() > CodeGenOpt::Less) 1185 addPass(&AMDGPUPerfHintAnalysisID); 1186 1187 return false; 1188 } 1189 1190 void GCNPassConfig::addMachineSSAOptimization() { 1191 TargetPassConfig::addMachineSSAOptimization(); 1192 1193 // We want to fold operands after PeepholeOptimizer has run (or as part of 1194 // it), because it will eliminate extra copies making it easier to fold the 1195 // real source operand. We want to eliminate dead instructions after, so that 1196 // we see fewer uses of the copies. We then need to clean up the dead 1197 // instructions leftover after the operands are folded as well. 1198 // 1199 // XXX - Can we get away without running DeadMachineInstructionElim again? 1200 addPass(&SIFoldOperandsID); 1201 if (EnableDPPCombine) 1202 addPass(&GCNDPPCombineID); 1203 addPass(&SILoadStoreOptimizerID); 1204 if (isPassEnabled(EnableSDWAPeephole)) { 1205 addPass(&SIPeepholeSDWAID); 1206 addPass(&EarlyMachineLICMID); 1207 addPass(&MachineCSEID); 1208 addPass(&SIFoldOperandsID); 1209 } 1210 addPass(&DeadMachineInstructionElimID); 1211 addPass(createSIShrinkInstructionsPass()); 1212 } 1213 1214 bool GCNPassConfig::addILPOpts() { 1215 if (EnableEarlyIfConversion) 1216 addPass(&EarlyIfConverterID); 1217 1218 TargetPassConfig::addILPOpts(); 1219 return false; 1220 } 1221 1222 bool GCNPassConfig::addInstSelector() { 1223 AMDGPUPassConfig::addInstSelector(); 1224 addPass(&SIFixSGPRCopiesID); 1225 addPass(createSILowerI1CopiesPass()); 1226 return false; 1227 } 1228 1229 bool GCNPassConfig::addIRTranslator() { 1230 addPass(new IRTranslator(getOptLevel())); 1231 return false; 1232 } 1233 1234 void GCNPassConfig::addPreLegalizeMachineIR() { 1235 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1236 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1237 addPass(new Localizer()); 1238 } 1239 1240 bool GCNPassConfig::addLegalizeMachineIR() { 1241 addPass(new Legalizer()); 1242 return false; 1243 } 1244 1245 void GCNPassConfig::addPreRegBankSelect() { 1246 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1247 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1248 } 1249 1250 bool GCNPassConfig::addRegBankSelect() { 1251 addPass(new RegBankSelect()); 1252 return false; 1253 } 1254 1255 void GCNPassConfig::addPreGlobalInstructionSelect() { 1256 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1257 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1258 } 1259 1260 bool GCNPassConfig::addGlobalInstructionSelect() { 1261 addPass(new InstructionSelect(getOptLevel())); 1262 return false; 1263 } 1264 1265 void GCNPassConfig::addPreRegAlloc() { 1266 if (LateCFGStructurize) { 1267 addPass(createAMDGPUMachineCFGStructurizerPass()); 1268 } 1269 } 1270 1271 void GCNPassConfig::addFastRegAlloc() { 1272 // FIXME: We have to disable the verifier here because of PHIElimination + 1273 // TwoAddressInstructions disabling it. 1274 1275 // This must be run immediately after phi elimination and before 1276 // TwoAddressInstructions, otherwise the processing of the tied operand of 1277 // SI_ELSE will introduce a copy of the tied operand source after the else. 1278 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1279 1280 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1281 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1282 1283 TargetPassConfig::addFastRegAlloc(); 1284 } 1285 1286 void GCNPassConfig::addOptimizedRegAlloc() { 1287 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1288 // instructions that cause scheduling barriers. 1289 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1290 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1291 1292 if (OptExecMaskPreRA) 1293 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1294 1295 if (isPassEnabled(EnablePreRAOptimizations)) 1296 insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID); 1297 1298 // This is not an essential optimization and it has a noticeable impact on 1299 // compilation time, so we only enable it from O2. 1300 if (TM->getOptLevel() > CodeGenOpt::Less) 1301 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1302 1303 // FIXME: when an instruction has a Killed operand, and the instruction is 1304 // inside a bundle, seems only the BUNDLE instruction appears as the Kills of 1305 // the register in LiveVariables, this would trigger a failure in verifier, 1306 // we should fix it and enable the verifier. 1307 if (OptVGPRLiveRange) 1308 insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID); 1309 // This must be run immediately after phi elimination and before 1310 // TwoAddressInstructions, otherwise the processing of the tied operand of 1311 // SI_ELSE will introduce a copy of the tied operand source after the else. 1312 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1313 1314 if (EnableDCEInRA) 1315 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1316 1317 TargetPassConfig::addOptimizedRegAlloc(); 1318 } 1319 1320 bool GCNPassConfig::addPreRewrite() { 1321 if (EnableRegReassign) 1322 addPass(&GCNNSAReassignID); 1323 return true; 1324 } 1325 1326 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) { 1327 // Initialize the global default. 1328 llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag, 1329 initializeDefaultSGPRRegisterAllocatorOnce); 1330 1331 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 1332 if (Ctor != useDefaultRegisterAllocator) 1333 return Ctor(); 1334 1335 if (Optimized) 1336 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 1337 1338 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 1339 } 1340 1341 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) { 1342 // Initialize the global default. 1343 llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag, 1344 initializeDefaultVGPRRegisterAllocatorOnce); 1345 1346 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 1347 if (Ctor != useDefaultRegisterAllocator) 1348 return Ctor(); 1349 1350 if (Optimized) 1351 return createGreedyVGPRRegisterAllocator(); 1352 1353 return createFastVGPRRegisterAllocator(); 1354 } 1355 1356 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) { 1357 llvm_unreachable("should not be used"); 1358 } 1359 1360 static const char RegAllocOptNotSupportedMessage[] = 1361 "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc"; 1362 1363 bool GCNPassConfig::addRegAssignAndRewriteFast() { 1364 if (!usingDefaultRegAlloc()) 1365 report_fatal_error(RegAllocOptNotSupportedMessage); 1366 1367 addPass(createSGPRAllocPass(false)); 1368 1369 // Equivalent of PEI for SGPRs. 1370 addPass(&SILowerSGPRSpillsID); 1371 1372 addPass(createVGPRAllocPass(false)); 1373 return true; 1374 } 1375 1376 bool GCNPassConfig::addRegAssignAndRewriteOptimized() { 1377 if (!usingDefaultRegAlloc()) 1378 report_fatal_error(RegAllocOptNotSupportedMessage); 1379 1380 addPass(createSGPRAllocPass(true)); 1381 1382 // Commit allocated register changes. This is mostly necessary because too 1383 // many things rely on the use lists of the physical registers, such as the 1384 // verifier. This is only necessary with allocators which use LiveIntervals, 1385 // since FastRegAlloc does the replacements itself. 1386 addPass(createVirtRegRewriter(false)); 1387 1388 // Equivalent of PEI for SGPRs. 1389 addPass(&SILowerSGPRSpillsID); 1390 1391 addPass(createVGPRAllocPass(true)); 1392 1393 addPreRewrite(); 1394 addPass(&VirtRegRewriterID); 1395 1396 return true; 1397 } 1398 1399 void GCNPassConfig::addPostRegAlloc() { 1400 addPass(&SIFixVGPRCopiesID); 1401 if (getOptLevel() > CodeGenOpt::None) 1402 addPass(&SIOptimizeExecMaskingID); 1403 TargetPassConfig::addPostRegAlloc(); 1404 } 1405 1406 void GCNPassConfig::addPreSched2() { 1407 if (TM->getOptLevel() > CodeGenOpt::None) 1408 addPass(createSIShrinkInstructionsPass()); 1409 addPass(&SIPostRABundlerID); 1410 } 1411 1412 void GCNPassConfig::addPreEmitPass() { 1413 if (isPassEnabled(EnableVOPD, CodeGenOpt::Less)) 1414 addPass(&GCNCreateVOPDID); 1415 addPass(createSIMemoryLegalizerPass()); 1416 addPass(createSIInsertWaitcntsPass()); 1417 1418 addPass(createSIModeRegisterPass()); 1419 1420 if (getOptLevel() > CodeGenOpt::None) 1421 addPass(&SIInsertHardClausesID); 1422 1423 addPass(&SILateBranchLoweringPassID); 1424 if (isPassEnabled(EnableSetWavePriority, CodeGenOpt::Less)) 1425 addPass(createAMDGPUSetWavePriorityPass()); 1426 if (getOptLevel() > CodeGenOpt::None) 1427 addPass(&SIPreEmitPeepholeID); 1428 // The hazard recognizer that runs as part of the post-ra scheduler does not 1429 // guarantee to be able handle all hazards correctly. This is because if there 1430 // are multiple scheduling regions in a basic block, the regions are scheduled 1431 // bottom up, so when we begin to schedule a region we don't know what 1432 // instructions were emitted directly before it. 1433 // 1434 // Here we add a stand-alone hazard recognizer pass which can handle all 1435 // cases. 1436 addPass(&PostRAHazardRecognizerID); 1437 1438 if (getOptLevel() > CodeGenOpt::Less) 1439 addPass(&AMDGPUReleaseVGPRsID); 1440 1441 if (isPassEnabled(EnableInsertDelayAlu, CodeGenOpt::Less)) 1442 addPass(&AMDGPUInsertDelayAluID); 1443 1444 addPass(&BranchRelaxationPassID); 1445 } 1446 1447 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1448 return new GCNPassConfig(*this, PM); 1449 } 1450 1451 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1452 return new yaml::SIMachineFunctionInfo(); 1453 } 1454 1455 yaml::MachineFunctionInfo * 1456 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1457 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1458 return new yaml::SIMachineFunctionInfo( 1459 *MFI, *MF.getSubtarget().getRegisterInfo(), MF); 1460 } 1461 1462 bool GCNTargetMachine::parseMachineFunctionInfo( 1463 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1464 SMDiagnostic &Error, SMRange &SourceRange) const { 1465 const yaml::SIMachineFunctionInfo &YamlMFI = 1466 static_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1467 MachineFunction &MF = PFS.MF; 1468 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1469 1470 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) 1471 return true; 1472 1473 if (MFI->Occupancy == 0) { 1474 // Fixup the subtarget dependent default value. 1475 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1476 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1477 } 1478 1479 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1480 Register TempReg; 1481 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1482 SourceRange = RegName.SourceRange; 1483 return true; 1484 } 1485 RegVal = TempReg; 1486 1487 return false; 1488 }; 1489 1490 auto parseOptionalRegister = [&](const yaml::StringValue &RegName, 1491 Register &RegVal) { 1492 return !RegName.Value.empty() && parseRegister(RegName, RegVal); 1493 }; 1494 1495 if (parseOptionalRegister(YamlMFI.VGPRForAGPRCopy, MFI->VGPRForAGPRCopy)) 1496 return true; 1497 1498 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1499 // Create a diagnostic for a the register string literal. 1500 const MemoryBuffer &Buffer = 1501 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1502 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1503 RegName.Value.size(), SourceMgr::DK_Error, 1504 "incorrect register class for field", RegName.Value, 1505 None, None); 1506 SourceRange = RegName.SourceRange; 1507 return true; 1508 }; 1509 1510 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1511 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1512 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1513 return true; 1514 1515 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1516 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1517 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1518 } 1519 1520 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1521 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1522 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1523 } 1524 1525 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1526 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1527 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1528 } 1529 1530 for (const auto &YamlReg : YamlMFI.WWMReservedRegs) { 1531 Register ParsedReg; 1532 if (parseRegister(YamlReg, ParsedReg)) 1533 return true; 1534 1535 MFI->reserveWWMRegister(ParsedReg); 1536 } 1537 1538 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1539 const TargetRegisterClass &RC, 1540 ArgDescriptor &Arg, unsigned UserSGPRs, 1541 unsigned SystemSGPRs) { 1542 // Skip parsing if it's not present. 1543 if (!A) 1544 return false; 1545 1546 if (A->IsRegister) { 1547 Register Reg; 1548 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1549 SourceRange = A->RegisterName.SourceRange; 1550 return true; 1551 } 1552 if (!RC.contains(Reg)) 1553 return diagnoseRegisterClass(A->RegisterName); 1554 Arg = ArgDescriptor::createRegister(Reg); 1555 } else 1556 Arg = ArgDescriptor::createStack(A->StackOffset); 1557 // Check and apply the optional mask. 1558 if (A->Mask) 1559 Arg = ArgDescriptor::createArg(Arg, *A->Mask); 1560 1561 MFI->NumUserSGPRs += UserSGPRs; 1562 MFI->NumSystemSGPRs += SystemSGPRs; 1563 return false; 1564 }; 1565 1566 if (YamlMFI.ArgInfo && 1567 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1568 AMDGPU::SGPR_128RegClass, 1569 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1570 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1571 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1572 2, 0) || 1573 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1574 MFI->ArgInfo.QueuePtr, 2, 0) || 1575 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1576 AMDGPU::SReg_64RegClass, 1577 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1578 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1579 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1580 2, 0) || 1581 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1582 AMDGPU::SReg_64RegClass, 1583 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1584 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1585 AMDGPU::SGPR_32RegClass, 1586 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1587 parseAndCheckArgument(YamlMFI.ArgInfo->LDSKernelId, 1588 AMDGPU::SGPR_32RegClass, 1589 MFI->ArgInfo.LDSKernelId, 0, 1) || 1590 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1591 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1592 0, 1) || 1593 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1594 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1595 0, 1) || 1596 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1597 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1598 0, 1) || 1599 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1600 AMDGPU::SGPR_32RegClass, 1601 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1602 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1603 AMDGPU::SGPR_32RegClass, 1604 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1605 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1606 AMDGPU::SReg_64RegClass, 1607 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1608 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1609 AMDGPU::SReg_64RegClass, 1610 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1611 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1612 AMDGPU::VGPR_32RegClass, 1613 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1614 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1615 AMDGPU::VGPR_32RegClass, 1616 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1617 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1618 AMDGPU::VGPR_32RegClass, 1619 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1620 return true; 1621 1622 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1623 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1624 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1625 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1626 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1627 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1628 1629 return false; 1630 } 1631