xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetMachine.cpp (revision 9729f076e4d93c5a37e78d427bfe0f1ab99bbcc6)
1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// The AMDGPU target machine contains all of the hardware specific
11 /// information  needed to emit code for SI+ GPUs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUTargetMachine.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUAliasAnalysis.h"
18 #include "AMDGPUExportClustering.h"
19 #include "AMDGPUMacroFusion.h"
20 #include "AMDGPUTargetObjectFile.h"
21 #include "AMDGPUTargetTransformInfo.h"
22 #include "GCNIterativeScheduler.h"
23 #include "GCNSchedStrategy.h"
24 #include "R600.h"
25 #include "R600TargetMachine.h"
26 #include "SIMachineFunctionInfo.h"
27 #include "SIMachineScheduler.h"
28 #include "TargetInfo/AMDGPUTargetInfo.h"
29 #include "llvm/Analysis/CGSCCPassManager.h"
30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
32 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
33 #include "llvm/CodeGen/GlobalISel/Localizer.h"
34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35 #include "llvm/CodeGen/MIRParser/MIParser.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/RegAllocRegistry.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/IR/IntrinsicsAMDGPU.h"
40 #include "llvm/IR/LegacyPassManager.h"
41 #include "llvm/IR/PassManager.h"
42 #include "llvm/IR/PatternMatch.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/TargetRegistry.h"
45 #include "llvm/Passes/PassBuilder.h"
46 #include "llvm/Transforms/IPO.h"
47 #include "llvm/Transforms/IPO/AlwaysInliner.h"
48 #include "llvm/Transforms/IPO/GlobalDCE.h"
49 #include "llvm/Transforms/IPO/Internalize.h"
50 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
51 #include "llvm/Transforms/Scalar.h"
52 #include "llvm/Transforms/Scalar/GVN.h"
53 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
54 #include "llvm/Transforms/Utils.h"
55 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
56 #include "llvm/Transforms/Vectorize.h"
57 
58 using namespace llvm;
59 
60 namespace {
61 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> {
62 public:
63   SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
64     : RegisterRegAllocBase(N, D, C) {}
65 };
66 
67 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> {
68 public:
69   VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
70     : RegisterRegAllocBase(N, D, C) {}
71 };
72 
73 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI,
74                               const TargetRegisterClass &RC) {
75   return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
76 }
77 
78 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI,
79                               const TargetRegisterClass &RC) {
80   return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
81 }
82 
83 
84 /// -{sgpr|vgpr}-regalloc=... command line option.
85 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }
86 
87 /// A dummy default pass factory indicates whether the register allocator is
88 /// overridden on the command line.
89 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag;
90 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag;
91 
92 static SGPRRegisterRegAlloc
93 defaultSGPRRegAlloc("default",
94                     "pick SGPR register allocator based on -O option",
95                     useDefaultRegisterAllocator);
96 
97 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false,
98                RegisterPassParser<SGPRRegisterRegAlloc>>
99 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
100              cl::desc("Register allocator to use for SGPRs"));
101 
102 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false,
103                RegisterPassParser<VGPRRegisterRegAlloc>>
104 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
105              cl::desc("Register allocator to use for VGPRs"));
106 
107 
108 static void initializeDefaultSGPRRegisterAllocatorOnce() {
109   RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
110 
111   if (!Ctor) {
112     Ctor = SGPRRegAlloc;
113     SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc);
114   }
115 }
116 
117 static void initializeDefaultVGPRRegisterAllocatorOnce() {
118   RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
119 
120   if (!Ctor) {
121     Ctor = VGPRRegAlloc;
122     VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc);
123   }
124 }
125 
126 static FunctionPass *createBasicSGPRRegisterAllocator() {
127   return createBasicRegisterAllocator(onlyAllocateSGPRs);
128 }
129 
130 static FunctionPass *createGreedySGPRRegisterAllocator() {
131   return createGreedyRegisterAllocator(onlyAllocateSGPRs);
132 }
133 
134 static FunctionPass *createFastSGPRRegisterAllocator() {
135   return createFastRegisterAllocator(onlyAllocateSGPRs, false);
136 }
137 
138 static FunctionPass *createBasicVGPRRegisterAllocator() {
139   return createBasicRegisterAllocator(onlyAllocateVGPRs);
140 }
141 
142 static FunctionPass *createGreedyVGPRRegisterAllocator() {
143   return createGreedyRegisterAllocator(onlyAllocateVGPRs);
144 }
145 
146 static FunctionPass *createFastVGPRRegisterAllocator() {
147   return createFastRegisterAllocator(onlyAllocateVGPRs, true);
148 }
149 
150 static SGPRRegisterRegAlloc basicRegAllocSGPR(
151   "basic", "basic register allocator", createBasicSGPRRegisterAllocator);
152 static SGPRRegisterRegAlloc greedyRegAllocSGPR(
153   "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator);
154 
155 static SGPRRegisterRegAlloc fastRegAllocSGPR(
156   "fast", "fast register allocator", createFastSGPRRegisterAllocator);
157 
158 
159 static VGPRRegisterRegAlloc basicRegAllocVGPR(
160   "basic", "basic register allocator", createBasicVGPRRegisterAllocator);
161 static VGPRRegisterRegAlloc greedyRegAllocVGPR(
162   "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator);
163 
164 static VGPRRegisterRegAlloc fastRegAllocVGPR(
165   "fast", "fast register allocator", createFastVGPRRegisterAllocator);
166 }
167 
168 static cl::opt<bool> EnableSROA(
169   "amdgpu-sroa",
170   cl::desc("Run SROA after promote alloca pass"),
171   cl::ReallyHidden,
172   cl::init(true));
173 
174 static cl::opt<bool>
175 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
176                         cl::desc("Run early if-conversion"),
177                         cl::init(false));
178 
179 static cl::opt<bool>
180 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
181             cl::desc("Run pre-RA exec mask optimizations"),
182             cl::init(true));
183 
184 // Option to disable vectorizer for tests.
185 static cl::opt<bool> EnableLoadStoreVectorizer(
186   "amdgpu-load-store-vectorizer",
187   cl::desc("Enable load store vectorizer"),
188   cl::init(true),
189   cl::Hidden);
190 
191 // Option to control global loads scalarization
192 static cl::opt<bool> ScalarizeGlobal(
193   "amdgpu-scalarize-global-loads",
194   cl::desc("Enable global load scalarization"),
195   cl::init(true),
196   cl::Hidden);
197 
198 // Option to run internalize pass.
199 static cl::opt<bool> InternalizeSymbols(
200   "amdgpu-internalize-symbols",
201   cl::desc("Enable elimination of non-kernel functions and unused globals"),
202   cl::init(false),
203   cl::Hidden);
204 
205 // Option to inline all early.
206 static cl::opt<bool> EarlyInlineAll(
207   "amdgpu-early-inline-all",
208   cl::desc("Inline all functions early"),
209   cl::init(false),
210   cl::Hidden);
211 
212 static cl::opt<bool> EnableSDWAPeephole(
213   "amdgpu-sdwa-peephole",
214   cl::desc("Enable SDWA peepholer"),
215   cl::init(true));
216 
217 static cl::opt<bool> EnableDPPCombine(
218   "amdgpu-dpp-combine",
219   cl::desc("Enable DPP combiner"),
220   cl::init(true));
221 
222 // Enable address space based alias analysis
223 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
224   cl::desc("Enable AMDGPU Alias Analysis"),
225   cl::init(true));
226 
227 // Option to run late CFG structurizer
228 static cl::opt<bool, true> LateCFGStructurize(
229   "amdgpu-late-structurize",
230   cl::desc("Enable late CFG structurization"),
231   cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
232   cl::Hidden);
233 
234 // Enable lib calls simplifications
235 static cl::opt<bool> EnableLibCallSimplify(
236   "amdgpu-simplify-libcall",
237   cl::desc("Enable amdgpu library simplifications"),
238   cl::init(true),
239   cl::Hidden);
240 
241 static cl::opt<bool> EnableLowerKernelArguments(
242   "amdgpu-ir-lower-kernel-arguments",
243   cl::desc("Lower kernel argument loads in IR pass"),
244   cl::init(true),
245   cl::Hidden);
246 
247 static cl::opt<bool> EnableRegReassign(
248   "amdgpu-reassign-regs",
249   cl::desc("Enable register reassign optimizations on gfx10+"),
250   cl::init(true),
251   cl::Hidden);
252 
253 static cl::opt<bool> OptVGPRLiveRange(
254     "amdgpu-opt-vgpr-liverange",
255     cl::desc("Enable VGPR liverange optimizations for if-else structure"),
256     cl::init(true), cl::Hidden);
257 
258 // Enable atomic optimization
259 static cl::opt<bool> EnableAtomicOptimizations(
260   "amdgpu-atomic-optimizations",
261   cl::desc("Enable atomic optimizations"),
262   cl::init(false),
263   cl::Hidden);
264 
265 // Enable Mode register optimization
266 static cl::opt<bool> EnableSIModeRegisterPass(
267   "amdgpu-mode-register",
268   cl::desc("Enable mode register pass"),
269   cl::init(true),
270   cl::Hidden);
271 
272 // Option is used in lit tests to prevent deadcoding of patterns inspected.
273 static cl::opt<bool>
274 EnableDCEInRA("amdgpu-dce-in-ra",
275     cl::init(true), cl::Hidden,
276     cl::desc("Enable machine DCE inside regalloc"));
277 
278 static cl::opt<bool> EnableScalarIRPasses(
279   "amdgpu-scalar-ir-passes",
280   cl::desc("Enable scalar IR passes"),
281   cl::init(true),
282   cl::Hidden);
283 
284 static cl::opt<bool> EnableStructurizerWorkarounds(
285     "amdgpu-enable-structurizer-workarounds",
286     cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true),
287     cl::Hidden);
288 
289 static cl::opt<bool> EnableLDSReplaceWithPointer(
290     "amdgpu-enable-lds-replace-with-pointer",
291     cl::desc("Enable LDS replace with pointer pass"), cl::init(false),
292     cl::Hidden);
293 
294 static cl::opt<bool, true> EnableLowerModuleLDS(
295     "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"),
296     cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true),
297     cl::Hidden);
298 
299 static cl::opt<bool> EnablePreRAOptimizations(
300     "amdgpu-enable-pre-ra-optimizations",
301     cl::desc("Enable Pre-RA optimizations pass"), cl::init(true),
302     cl::Hidden);
303 
304 static cl::opt<bool> EnablePromoteKernelArguments(
305     "amdgpu-enable-promote-kernel-arguments",
306     cl::desc("Enable promotion of flat kernel pointer arguments to global"),
307     cl::Hidden, cl::init(true));
308 
309 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
310   // Register the target
311   RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
312   RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
313 
314   PassRegistry *PR = PassRegistry::getPassRegistry();
315   initializeR600ClauseMergePassPass(*PR);
316   initializeR600ControlFlowFinalizerPass(*PR);
317   initializeR600PacketizerPass(*PR);
318   initializeR600ExpandSpecialInstrsPassPass(*PR);
319   initializeR600VectorRegMergerPass(*PR);
320   initializeGlobalISel(*PR);
321   initializeAMDGPUDAGToDAGISelPass(*PR);
322   initializeGCNDPPCombinePass(*PR);
323   initializeSILowerI1CopiesPass(*PR);
324   initializeSILowerSGPRSpillsPass(*PR);
325   initializeSIFixSGPRCopiesPass(*PR);
326   initializeSIFixVGPRCopiesPass(*PR);
327   initializeSIFoldOperandsPass(*PR);
328   initializeSIPeepholeSDWAPass(*PR);
329   initializeSIShrinkInstructionsPass(*PR);
330   initializeSIOptimizeExecMaskingPreRAPass(*PR);
331   initializeSIOptimizeVGPRLiveRangePass(*PR);
332   initializeSILoadStoreOptimizerPass(*PR);
333   initializeAMDGPUFixFunctionBitcastsPass(*PR);
334   initializeAMDGPUCtorDtorLoweringPass(*PR);
335   initializeAMDGPUAlwaysInlinePass(*PR);
336   initializeAMDGPUAttributorPass(*PR);
337   initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
338   initializeAMDGPUAnnotateUniformValuesPass(*PR);
339   initializeAMDGPUArgumentUsageInfoPass(*PR);
340   initializeAMDGPUAtomicOptimizerPass(*PR);
341   initializeAMDGPULowerKernelArgumentsPass(*PR);
342   initializeAMDGPUPromoteKernelArgumentsPass(*PR);
343   initializeAMDGPULowerKernelAttributesPass(*PR);
344   initializeAMDGPULowerIntrinsicsPass(*PR);
345   initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
346   initializeAMDGPUPostLegalizerCombinerPass(*PR);
347   initializeAMDGPUPreLegalizerCombinerPass(*PR);
348   initializeAMDGPURegBankCombinerPass(*PR);
349   initializeAMDGPUPromoteAllocaPass(*PR);
350   initializeAMDGPUPromoteAllocaToVectorPass(*PR);
351   initializeAMDGPUCodeGenPreparePass(*PR);
352   initializeAMDGPULateCodeGenPreparePass(*PR);
353   initializeAMDGPUPropagateAttributesEarlyPass(*PR);
354   initializeAMDGPUPropagateAttributesLatePass(*PR);
355   initializeAMDGPUReplaceLDSUseWithPointerPass(*PR);
356   initializeAMDGPULowerModuleLDSPass(*PR);
357   initializeAMDGPURewriteOutArgumentsPass(*PR);
358   initializeAMDGPUUnifyMetadataPass(*PR);
359   initializeSIAnnotateControlFlowPass(*PR);
360   initializeSIInsertHardClausesPass(*PR);
361   initializeSIInsertWaitcntsPass(*PR);
362   initializeSIModeRegisterPass(*PR);
363   initializeSIWholeQuadModePass(*PR);
364   initializeSILowerControlFlowPass(*PR);
365   initializeSIPreEmitPeepholePass(*PR);
366   initializeSILateBranchLoweringPass(*PR);
367   initializeSIMemoryLegalizerPass(*PR);
368   initializeSIOptimizeExecMaskingPass(*PR);
369   initializeSIPreAllocateWWMRegsPass(*PR);
370   initializeSIFormMemoryClausesPass(*PR);
371   initializeSIPostRABundlerPass(*PR);
372   initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
373   initializeAMDGPUAAWrapperPassPass(*PR);
374   initializeAMDGPUExternalAAWrapperPass(*PR);
375   initializeAMDGPUUseNativeCallsPass(*PR);
376   initializeAMDGPUSimplifyLibCallsPass(*PR);
377   initializeAMDGPUPrintfRuntimeBindingPass(*PR);
378   initializeAMDGPUResourceUsageAnalysisPass(*PR);
379   initializeGCNNSAReassignPass(*PR);
380   initializeGCNPreRAOptimizationsPass(*PR);
381 }
382 
383 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
384   return std::make_unique<AMDGPUTargetObjectFile>();
385 }
386 
387 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
388   return new SIScheduleDAGMI(C);
389 }
390 
391 static ScheduleDAGInstrs *
392 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
393   ScheduleDAGMILive *DAG =
394     new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
395   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
396   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
397   DAG->addMutation(createAMDGPUExportClusteringDAGMutation());
398   return DAG;
399 }
400 
401 static ScheduleDAGInstrs *
402 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
403   auto DAG = new GCNIterativeScheduler(C,
404     GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
405   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
406   return DAG;
407 }
408 
409 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
410   return new GCNIterativeScheduler(C,
411     GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
412 }
413 
414 static ScheduleDAGInstrs *
415 createIterativeILPMachineScheduler(MachineSchedContext *C) {
416   auto DAG = new GCNIterativeScheduler(C,
417     GCNIterativeScheduler::SCHEDULE_ILP);
418   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
419   DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
420   return DAG;
421 }
422 
423 static MachineSchedRegistry
424 SISchedRegistry("si", "Run SI's custom scheduler",
425                 createSIMachineScheduler);
426 
427 static MachineSchedRegistry
428 GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
429                              "Run GCN scheduler to maximize occupancy",
430                              createGCNMaxOccupancyMachineScheduler);
431 
432 static MachineSchedRegistry
433 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
434   "Run GCN scheduler to maximize occupancy (experimental)",
435   createIterativeGCNMaxOccupancyMachineScheduler);
436 
437 static MachineSchedRegistry
438 GCNMinRegSchedRegistry("gcn-minreg",
439   "Run GCN iterative scheduler for minimal register usage (experimental)",
440   createMinRegScheduler);
441 
442 static MachineSchedRegistry
443 GCNILPSchedRegistry("gcn-ilp",
444   "Run GCN iterative scheduler for ILP scheduling (experimental)",
445   createIterativeILPMachineScheduler);
446 
447 static StringRef computeDataLayout(const Triple &TT) {
448   if (TT.getArch() == Triple::r600) {
449     // 32-bit pointers.
450     return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
451            "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1";
452   }
453 
454   // 32-bit private, local, and region pointers. 64-bit global, constant and
455   // flat, non-integral buffer fat pointers.
456   return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
457          "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
458          "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"
459          "-ni:7";
460 }
461 
462 LLVM_READNONE
463 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
464   if (!GPU.empty())
465     return GPU;
466 
467   // Need to default to a target with flat support for HSA.
468   if (TT.getArch() == Triple::amdgcn)
469     return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
470 
471   return "r600";
472 }
473 
474 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
475   // The AMDGPU toolchain only supports generating shared objects, so we
476   // must always use PIC.
477   return Reloc::PIC_;
478 }
479 
480 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
481                                          StringRef CPU, StringRef FS,
482                                          TargetOptions Options,
483                                          Optional<Reloc::Model> RM,
484                                          Optional<CodeModel::Model> CM,
485                                          CodeGenOpt::Level OptLevel)
486     : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
487                         FS, Options, getEffectiveRelocModel(RM),
488                         getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
489       TLOF(createTLOF(getTargetTriple())) {
490   initAsmInfo();
491   if (TT.getArch() == Triple::amdgcn) {
492     if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64"))
493       MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64));
494     else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32"))
495       MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32));
496   }
497 }
498 
499 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
500 bool AMDGPUTargetMachine::EnableFunctionCalls = false;
501 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true;
502 
503 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
504 
505 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
506   Attribute GPUAttr = F.getFnAttribute("target-cpu");
507   return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU();
508 }
509 
510 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
511   Attribute FSAttr = F.getFnAttribute("target-features");
512 
513   return FSAttr.isValid() ? FSAttr.getValueAsString()
514                           : getTargetFeatureString();
515 }
516 
517 /// Predicate for Internalize pass.
518 static bool mustPreserveGV(const GlobalValue &GV) {
519   if (const Function *F = dyn_cast<Function>(&GV))
520     return F->isDeclaration() || F->getName().startswith("__asan_") ||
521            F->getName().startswith("__sanitizer_") ||
522            AMDGPU::isEntryFunctionCC(F->getCallingConv());
523 
524   GV.removeDeadConstantUsers();
525   return !GV.use_empty();
526 }
527 
528 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
529   Builder.DivergentTarget = true;
530 
531   bool EnableOpt = getOptLevel() > CodeGenOpt::None;
532   bool Internalize = InternalizeSymbols;
533   bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
534   bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
535   bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
536   bool PromoteKernelArguments =
537       EnablePromoteKernelArguments && getOptLevel() > CodeGenOpt::Less;
538 
539   if (EnableFunctionCalls) {
540     delete Builder.Inliner;
541     Builder.Inliner = createFunctionInliningPass();
542   }
543 
544   Builder.addExtension(
545     PassManagerBuilder::EP_ModuleOptimizerEarly,
546     [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
547                                                legacy::PassManagerBase &PM) {
548       if (AMDGPUAA) {
549         PM.add(createAMDGPUAAWrapperPass());
550         PM.add(createAMDGPUExternalAAWrapperPass());
551       }
552       PM.add(createAMDGPUUnifyMetadataPass());
553       PM.add(createAMDGPUPrintfRuntimeBinding());
554       if (Internalize)
555         PM.add(createInternalizePass(mustPreserveGV));
556       PM.add(createAMDGPUPropagateAttributesLatePass(this));
557       if (Internalize)
558         PM.add(createGlobalDCEPass());
559       if (EarlyInline)
560         PM.add(createAMDGPUAlwaysInlinePass(false));
561   });
562 
563   Builder.addExtension(
564     PassManagerBuilder::EP_EarlyAsPossible,
565     [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &,
566                                       legacy::PassManagerBase &PM) {
567       if (AMDGPUAA) {
568         PM.add(createAMDGPUAAWrapperPass());
569         PM.add(createAMDGPUExternalAAWrapperPass());
570       }
571       PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
572       PM.add(llvm::createAMDGPUUseNativeCallsPass());
573       if (LibCallSimplify)
574         PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this));
575   });
576 
577   Builder.addExtension(
578     PassManagerBuilder::EP_CGSCCOptimizerLate,
579     [EnableOpt, PromoteKernelArguments](const PassManagerBuilder &,
580                                         legacy::PassManagerBase &PM) {
581       // Add promote kernel arguments pass to the opt pipeline right before
582       // infer address spaces which is needed to do actual address space
583       // rewriting.
584       if (PromoteKernelArguments)
585         PM.add(createAMDGPUPromoteKernelArgumentsPass());
586 
587       // Add infer address spaces pass to the opt pipeline after inlining
588       // but before SROA to increase SROA opportunities.
589       PM.add(createInferAddressSpacesPass());
590 
591       // This should run after inlining to have any chance of doing anything,
592       // and before other cleanup optimizations.
593       PM.add(createAMDGPULowerKernelAttributesPass());
594 
595       // Promote alloca to vector before SROA and loop unroll. If we manage
596       // to eliminate allocas before unroll we may choose to unroll less.
597       if (EnableOpt)
598         PM.add(createAMDGPUPromoteAllocaToVector());
599   });
600 }
601 
602 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
603   AAM.registerFunctionAnalysis<AMDGPUAA>();
604 }
605 
606 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) {
607   PB.registerPipelineParsingCallback(
608       [this](StringRef PassName, ModulePassManager &PM,
609              ArrayRef<PassBuilder::PipelineElement>) {
610         if (PassName == "amdgpu-propagate-attributes-late") {
611           PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
612           return true;
613         }
614         if (PassName == "amdgpu-unify-metadata") {
615           PM.addPass(AMDGPUUnifyMetadataPass());
616           return true;
617         }
618         if (PassName == "amdgpu-printf-runtime-binding") {
619           PM.addPass(AMDGPUPrintfRuntimeBindingPass());
620           return true;
621         }
622         if (PassName == "amdgpu-always-inline") {
623           PM.addPass(AMDGPUAlwaysInlinePass());
624           return true;
625         }
626         if (PassName == "amdgpu-replace-lds-use-with-pointer") {
627           PM.addPass(AMDGPUReplaceLDSUseWithPointerPass());
628           return true;
629         }
630         if (PassName == "amdgpu-lower-module-lds") {
631           PM.addPass(AMDGPULowerModuleLDSPass());
632           return true;
633         }
634         return false;
635       });
636   PB.registerPipelineParsingCallback(
637       [this](StringRef PassName, FunctionPassManager &PM,
638              ArrayRef<PassBuilder::PipelineElement>) {
639         if (PassName == "amdgpu-simplifylib") {
640           PM.addPass(AMDGPUSimplifyLibCallsPass(*this));
641           return true;
642         }
643         if (PassName == "amdgpu-usenative") {
644           PM.addPass(AMDGPUUseNativeCallsPass());
645           return true;
646         }
647         if (PassName == "amdgpu-promote-alloca") {
648           PM.addPass(AMDGPUPromoteAllocaPass(*this));
649           return true;
650         }
651         if (PassName == "amdgpu-promote-alloca-to-vector") {
652           PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
653           return true;
654         }
655         if (PassName == "amdgpu-lower-kernel-attributes") {
656           PM.addPass(AMDGPULowerKernelAttributesPass());
657           return true;
658         }
659         if (PassName == "amdgpu-propagate-attributes-early") {
660           PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
661           return true;
662         }
663         if (PassName == "amdgpu-promote-kernel-arguments") {
664           PM.addPass(AMDGPUPromoteKernelArgumentsPass());
665           return true;
666         }
667         return false;
668       });
669 
670   PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) {
671     FAM.registerPass([&] { return AMDGPUAA(); });
672   });
673 
674   PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) {
675     if (AAName == "amdgpu-aa") {
676       AAM.registerFunctionAnalysis<AMDGPUAA>();
677       return true;
678     }
679     return false;
680   });
681 
682   PB.registerPipelineStartEPCallback(
683       [this](ModulePassManager &PM, OptimizationLevel Level) {
684         FunctionPassManager FPM;
685         FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
686         FPM.addPass(AMDGPUUseNativeCallsPass());
687         if (EnableLibCallSimplify && Level != OptimizationLevel::O0)
688           FPM.addPass(AMDGPUSimplifyLibCallsPass(*this));
689         PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
690       });
691 
692   PB.registerPipelineEarlySimplificationEPCallback(
693       [this](ModulePassManager &PM, OptimizationLevel Level) {
694         if (Level == OptimizationLevel::O0)
695           return;
696 
697         PM.addPass(AMDGPUUnifyMetadataPass());
698         PM.addPass(AMDGPUPrintfRuntimeBindingPass());
699 
700         if (InternalizeSymbols) {
701           PM.addPass(InternalizePass(mustPreserveGV));
702         }
703         PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
704         if (InternalizeSymbols) {
705           PM.addPass(GlobalDCEPass());
706         }
707         if (EarlyInlineAll && !EnableFunctionCalls)
708           PM.addPass(AMDGPUAlwaysInlinePass());
709       });
710 
711   PB.registerCGSCCOptimizerLateEPCallback(
712       [this](CGSCCPassManager &PM, OptimizationLevel Level) {
713         if (Level == OptimizationLevel::O0)
714           return;
715 
716         FunctionPassManager FPM;
717 
718         // Add promote kernel arguments pass to the opt pipeline right before
719         // infer address spaces which is needed to do actual address space
720         // rewriting.
721         if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() &&
722             EnablePromoteKernelArguments)
723           FPM.addPass(AMDGPUPromoteKernelArgumentsPass());
724 
725         // Add infer address spaces pass to the opt pipeline after inlining
726         // but before SROA to increase SROA opportunities.
727         FPM.addPass(InferAddressSpacesPass());
728 
729         // This should run after inlining to have any chance of doing
730         // anything, and before other cleanup optimizations.
731         FPM.addPass(AMDGPULowerKernelAttributesPass());
732 
733         if (Level != OptimizationLevel::O0) {
734           // Promote alloca to vector before SROA and loop unroll. If we
735           // manage to eliminate allocas before unroll we may choose to unroll
736           // less.
737           FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
738         }
739 
740         PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM)));
741       });
742 }
743 
744 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) {
745   return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
746           AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
747           AddrSpace == AMDGPUAS::REGION_ADDRESS)
748              ? -1
749              : 0;
750 }
751 
752 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
753                                               unsigned DestAS) const {
754   return AMDGPU::isFlatGlobalAddrSpace(SrcAS) &&
755          AMDGPU::isFlatGlobalAddrSpace(DestAS);
756 }
757 
758 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const {
759   const auto *LD = dyn_cast<LoadInst>(V);
760   if (!LD)
761     return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
762 
763   // It must be a generic pointer loaded.
764   assert(V->getType()->isPointerTy() &&
765          V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS);
766 
767   const auto *Ptr = LD->getPointerOperand();
768   if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
769     return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
770   // For a generic pointer loaded from the constant memory, it could be assumed
771   // as a global pointer since the constant memory is only populated on the
772   // host side. As implied by the offload programming model, only global
773   // pointers could be referenced on the host side.
774   return AMDGPUAS::GLOBAL_ADDRESS;
775 }
776 
777 std::pair<const Value *, unsigned>
778 AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const {
779   if (auto *II = dyn_cast<IntrinsicInst>(V)) {
780     switch (II->getIntrinsicID()) {
781     case Intrinsic::amdgcn_is_shared:
782       return std::make_pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS);
783     case Intrinsic::amdgcn_is_private:
784       return std::make_pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS);
785     default:
786       break;
787     }
788     return std::make_pair(nullptr, -1);
789   }
790   // Check the global pointer predication based on
791   // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and
792   // the order of 'is_shared' and 'is_private' is not significant.
793   Value *Ptr;
794   if (match(
795           const_cast<Value *>(V),
796           m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))),
797                   m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>(
798                       m_Deferred(Ptr))))))
799     return std::make_pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS);
800 
801   return std::make_pair(nullptr, -1);
802 }
803 
804 //===----------------------------------------------------------------------===//
805 // GCN Target Machine (SI+)
806 //===----------------------------------------------------------------------===//
807 
808 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
809                                    StringRef CPU, StringRef FS,
810                                    TargetOptions Options,
811                                    Optional<Reloc::Model> RM,
812                                    Optional<CodeModel::Model> CM,
813                                    CodeGenOpt::Level OL, bool JIT)
814     : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
815 
816 const TargetSubtargetInfo *
817 GCNTargetMachine::getSubtargetImpl(const Function &F) const {
818   StringRef GPU = getGPUName(F);
819   StringRef FS = getFeatureString(F);
820 
821   SmallString<128> SubtargetKey(GPU);
822   SubtargetKey.append(FS);
823 
824   auto &I = SubtargetMap[SubtargetKey];
825   if (!I) {
826     // This needs to be done before we create a new subtarget since any
827     // creation will depend on the TM and the code generation flags on the
828     // function that reside in TargetOptions.
829     resetTargetOptions(F);
830     I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
831   }
832 
833   I->setScalarizeGlobalBehavior(ScalarizeGlobal);
834 
835   return I.get();
836 }
837 
838 TargetTransformInfo
839 GCNTargetMachine::getTargetTransformInfo(const Function &F) {
840   return TargetTransformInfo(GCNTTIImpl(this, F));
841 }
842 
843 //===----------------------------------------------------------------------===//
844 // AMDGPU Pass Setup
845 //===----------------------------------------------------------------------===//
846 
847 std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const {
848   return getStandardCSEConfigForOpt(TM->getOptLevel());
849 }
850 
851 namespace {
852 
853 class GCNPassConfig final : public AMDGPUPassConfig {
854 public:
855   GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
856     : AMDGPUPassConfig(TM, PM) {
857     // It is necessary to know the register usage of the entire call graph.  We
858     // allow calls without EnableAMDGPUFunctionCalls if they are marked
859     // noinline, so this is always required.
860     setRequiresCodeGenSCCOrder(true);
861     substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
862   }
863 
864   GCNTargetMachine &getGCNTargetMachine() const {
865     return getTM<GCNTargetMachine>();
866   }
867 
868   ScheduleDAGInstrs *
869   createMachineScheduler(MachineSchedContext *C) const override;
870 
871   ScheduleDAGInstrs *
872   createPostMachineScheduler(MachineSchedContext *C) const override {
873     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
874     const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
875     DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
876     DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII));
877     return DAG;
878   }
879 
880   bool addPreISel() override;
881   void addMachineSSAOptimization() override;
882   bool addILPOpts() override;
883   bool addInstSelector() override;
884   bool addIRTranslator() override;
885   void addPreLegalizeMachineIR() override;
886   bool addLegalizeMachineIR() override;
887   void addPreRegBankSelect() override;
888   bool addRegBankSelect() override;
889   void addPreGlobalInstructionSelect() override;
890   bool addGlobalInstructionSelect() override;
891   void addFastRegAlloc() override;
892   void addOptimizedRegAlloc() override;
893 
894   FunctionPass *createSGPRAllocPass(bool Optimized);
895   FunctionPass *createVGPRAllocPass(bool Optimized);
896   FunctionPass *createRegAllocPass(bool Optimized) override;
897 
898   bool addRegAssignAndRewriteFast() override;
899   bool addRegAssignAndRewriteOptimized() override;
900 
901   void addPreRegAlloc() override;
902   bool addPreRewrite() override;
903   void addPostRegAlloc() override;
904   void addPreSched2() override;
905   void addPreEmitPass() override;
906 };
907 
908 } // end anonymous namespace
909 
910 AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
911     : TargetPassConfig(TM, PM) {
912   // Exceptions and StackMaps are not supported, so these passes will never do
913   // anything.
914   disablePass(&StackMapLivenessID);
915   disablePass(&FuncletLayoutID);
916   // Garbage collection is not supported.
917   disablePass(&GCLoweringID);
918   disablePass(&ShadowStackGCLoweringID);
919 }
920 
921 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
922   if (getOptLevel() == CodeGenOpt::Aggressive)
923     addPass(createGVNPass());
924   else
925     addPass(createEarlyCSEPass());
926 }
927 
928 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
929   addPass(createLICMPass());
930   addPass(createSeparateConstOffsetFromGEPPass());
931   addPass(createSpeculativeExecutionPass());
932   // ReassociateGEPs exposes more opportunities for SLSR. See
933   // the example in reassociate-geps-and-slsr.ll.
934   addPass(createStraightLineStrengthReducePass());
935   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
936   // EarlyCSE can reuse.
937   addEarlyCSEOrGVNPass();
938   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
939   addPass(createNaryReassociatePass());
940   // NaryReassociate on GEPs creates redundant common expressions, so run
941   // EarlyCSE after it.
942   addPass(createEarlyCSEPass());
943 }
944 
945 void AMDGPUPassConfig::addIRPasses() {
946   const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
947 
948   // There is no reason to run these.
949   disablePass(&StackMapLivenessID);
950   disablePass(&FuncletLayoutID);
951   disablePass(&PatchableFunctionID);
952 
953   addPass(createAMDGPUPrintfRuntimeBinding());
954   addPass(createAMDGPUCtorDtorLoweringPass());
955 
956   // This must occur before inlining, as the inliner will not look through
957   // bitcast calls.
958   addPass(createAMDGPUFixFunctionBitcastsPass());
959 
960   // A call to propagate attributes pass in the backend in case opt was not run.
961   addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));
962 
963   addPass(createAMDGPULowerIntrinsicsPass());
964 
965   // Function calls are not supported, so make sure we inline everything.
966   addPass(createAMDGPUAlwaysInlinePass());
967   addPass(createAlwaysInlinerLegacyPass());
968   // We need to add the barrier noop pass, otherwise adding the function
969   // inlining pass will cause all of the PassConfigs passes to be run
970   // one function at a time, which means if we have a nodule with two
971   // functions, then we will generate code for the first function
972   // without ever running any passes on the second.
973   addPass(createBarrierNoopPass());
974 
975   // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
976   if (TM.getTargetTriple().getArch() == Triple::r600)
977     addPass(createR600OpenCLImageTypeLoweringPass());
978 
979   // Replace OpenCL enqueued block function pointers with global variables.
980   addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
981 
982   // Can increase LDS used by kernel so runs before PromoteAlloca
983   if (EnableLowerModuleLDS) {
984     // The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the
985     // pass "amdgpu-lower-module-lds", and also it required to be run only if
986     // "amdgpu-lower-module-lds" pass is enabled.
987     if (EnableLDSReplaceWithPointer)
988       addPass(createAMDGPUReplaceLDSUseWithPointerPass());
989 
990     addPass(createAMDGPULowerModuleLDSPass());
991   }
992 
993   if (TM.getOptLevel() > CodeGenOpt::None)
994     addPass(createInferAddressSpacesPass());
995 
996   addPass(createAtomicExpandPass());
997 
998   if (TM.getOptLevel() > CodeGenOpt::None) {
999     addPass(createAMDGPUPromoteAlloca());
1000 
1001     if (EnableSROA)
1002       addPass(createSROAPass());
1003     if (isPassEnabled(EnableScalarIRPasses))
1004       addStraightLineScalarOptimizationPasses();
1005 
1006     if (EnableAMDGPUAliasAnalysis) {
1007       addPass(createAMDGPUAAWrapperPass());
1008       addPass(createExternalAAWrapperPass([](Pass &P, Function &,
1009                                              AAResults &AAR) {
1010         if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
1011           AAR.addAAResult(WrapperPass->getResult());
1012         }));
1013     }
1014 
1015     if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
1016       // TODO: May want to move later or split into an early and late one.
1017       addPass(createAMDGPUCodeGenPreparePass());
1018     }
1019   }
1020 
1021   TargetPassConfig::addIRPasses();
1022 
1023   // EarlyCSE is not always strong enough to clean up what LSR produces. For
1024   // example, GVN can combine
1025   //
1026   //   %0 = add %a, %b
1027   //   %1 = add %b, %a
1028   //
1029   // and
1030   //
1031   //   %0 = shl nsw %a, 2
1032   //   %1 = shl %a, 2
1033   //
1034   // but EarlyCSE can do neither of them.
1035   if (isPassEnabled(EnableScalarIRPasses))
1036     addEarlyCSEOrGVNPass();
1037 }
1038 
1039 void AMDGPUPassConfig::addCodeGenPrepare() {
1040   if (TM->getTargetTriple().getArch() == Triple::amdgcn) {
1041     addPass(createAMDGPUAttributorPass());
1042 
1043     // FIXME: This pass adds 2 hacky attributes that can be replaced with an
1044     // analysis, and should be removed.
1045     addPass(createAMDGPUAnnotateKernelFeaturesPass());
1046   }
1047 
1048   if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
1049       EnableLowerKernelArguments)
1050     addPass(createAMDGPULowerKernelArgumentsPass());
1051 
1052   TargetPassConfig::addCodeGenPrepare();
1053 
1054   if (isPassEnabled(EnableLoadStoreVectorizer))
1055     addPass(createLoadStoreVectorizerPass());
1056 
1057   // LowerSwitch pass may introduce unreachable blocks that can
1058   // cause unexpected behavior for subsequent passes. Placing it
1059   // here seems better that these blocks would get cleaned up by
1060   // UnreachableBlockElim inserted next in the pass flow.
1061   addPass(createLowerSwitchPass());
1062 }
1063 
1064 bool AMDGPUPassConfig::addPreISel() {
1065   if (TM->getOptLevel() > CodeGenOpt::None)
1066     addPass(createFlattenCFGPass());
1067   return false;
1068 }
1069 
1070 bool AMDGPUPassConfig::addInstSelector() {
1071   addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
1072   return false;
1073 }
1074 
1075 bool AMDGPUPassConfig::addGCPasses() {
1076   // Do nothing. GC is not supported.
1077   return false;
1078 }
1079 
1080 llvm::ScheduleDAGInstrs *
1081 AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const {
1082   ScheduleDAGMILive *DAG = createGenericSchedLive(C);
1083   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1084   return DAG;
1085 }
1086 
1087 //===----------------------------------------------------------------------===//
1088 // GCN Pass Setup
1089 //===----------------------------------------------------------------------===//
1090 
1091 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
1092   MachineSchedContext *C) const {
1093   const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
1094   if (ST.enableSIScheduler())
1095     return createSIMachineScheduler(C);
1096   return createGCNMaxOccupancyMachineScheduler(C);
1097 }
1098 
1099 bool GCNPassConfig::addPreISel() {
1100   AMDGPUPassConfig::addPreISel();
1101 
1102   if (TM->getOptLevel() > CodeGenOpt::None)
1103     addPass(createAMDGPULateCodeGenPreparePass());
1104 
1105   if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) {
1106     addPass(createAMDGPUAtomicOptimizerPass());
1107   }
1108 
1109   if (TM->getOptLevel() > CodeGenOpt::None)
1110     addPass(createSinkingPass());
1111 
1112   // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
1113   // regions formed by them.
1114   addPass(&AMDGPUUnifyDivergentExitNodesID);
1115   if (!LateCFGStructurize) {
1116     if (EnableStructurizerWorkarounds) {
1117       addPass(createFixIrreduciblePass());
1118       addPass(createUnifyLoopExitsPass());
1119     }
1120     addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions
1121   }
1122   addPass(createAMDGPUAnnotateUniformValues());
1123   if (!LateCFGStructurize) {
1124     addPass(createSIAnnotateControlFlowPass());
1125   }
1126   addPass(createLCSSAPass());
1127 
1128   if (TM->getOptLevel() > CodeGenOpt::Less)
1129     addPass(&AMDGPUPerfHintAnalysisID);
1130 
1131   return false;
1132 }
1133 
1134 void GCNPassConfig::addMachineSSAOptimization() {
1135   TargetPassConfig::addMachineSSAOptimization();
1136 
1137   // We want to fold operands after PeepholeOptimizer has run (or as part of
1138   // it), because it will eliminate extra copies making it easier to fold the
1139   // real source operand. We want to eliminate dead instructions after, so that
1140   // we see fewer uses of the copies. We then need to clean up the dead
1141   // instructions leftover after the operands are folded as well.
1142   //
1143   // XXX - Can we get away without running DeadMachineInstructionElim again?
1144   addPass(&SIFoldOperandsID);
1145   if (EnableDPPCombine)
1146     addPass(&GCNDPPCombineID);
1147   addPass(&SILoadStoreOptimizerID);
1148   if (isPassEnabled(EnableSDWAPeephole)) {
1149     addPass(&SIPeepholeSDWAID);
1150     addPass(&EarlyMachineLICMID);
1151     addPass(&MachineCSEID);
1152     addPass(&SIFoldOperandsID);
1153   }
1154   addPass(&DeadMachineInstructionElimID);
1155   addPass(createSIShrinkInstructionsPass());
1156 }
1157 
1158 bool GCNPassConfig::addILPOpts() {
1159   if (EnableEarlyIfConversion)
1160     addPass(&EarlyIfConverterID);
1161 
1162   TargetPassConfig::addILPOpts();
1163   return false;
1164 }
1165 
1166 bool GCNPassConfig::addInstSelector() {
1167   AMDGPUPassConfig::addInstSelector();
1168   addPass(&SIFixSGPRCopiesID);
1169   addPass(createSILowerI1CopiesPass());
1170   return false;
1171 }
1172 
1173 bool GCNPassConfig::addIRTranslator() {
1174   addPass(new IRTranslator(getOptLevel()));
1175   return false;
1176 }
1177 
1178 void GCNPassConfig::addPreLegalizeMachineIR() {
1179   bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1180   addPass(createAMDGPUPreLegalizeCombiner(IsOptNone));
1181   addPass(new Localizer());
1182 }
1183 
1184 bool GCNPassConfig::addLegalizeMachineIR() {
1185   addPass(new Legalizer());
1186   return false;
1187 }
1188 
1189 void GCNPassConfig::addPreRegBankSelect() {
1190   bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1191   addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
1192 }
1193 
1194 bool GCNPassConfig::addRegBankSelect() {
1195   addPass(new RegBankSelect());
1196   return false;
1197 }
1198 
1199 void GCNPassConfig::addPreGlobalInstructionSelect() {
1200   bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1201   addPass(createAMDGPURegBankCombiner(IsOptNone));
1202 }
1203 
1204 bool GCNPassConfig::addGlobalInstructionSelect() {
1205   addPass(new InstructionSelect(getOptLevel()));
1206   return false;
1207 }
1208 
1209 void GCNPassConfig::addPreRegAlloc() {
1210   if (LateCFGStructurize) {
1211     addPass(createAMDGPUMachineCFGStructurizerPass());
1212   }
1213 }
1214 
1215 void GCNPassConfig::addFastRegAlloc() {
1216   // FIXME: We have to disable the verifier here because of PHIElimination +
1217   // TwoAddressInstructions disabling it.
1218 
1219   // This must be run immediately after phi elimination and before
1220   // TwoAddressInstructions, otherwise the processing of the tied operand of
1221   // SI_ELSE will introduce a copy of the tied operand source after the else.
1222   insertPass(&PHIEliminationID, &SILowerControlFlowID);
1223 
1224   insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID);
1225   insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID);
1226 
1227   TargetPassConfig::addFastRegAlloc();
1228 }
1229 
1230 void GCNPassConfig::addOptimizedRegAlloc() {
1231   // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation
1232   // instructions that cause scheduling barriers.
1233   insertPass(&MachineSchedulerID, &SIWholeQuadModeID);
1234   insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID);
1235 
1236   if (OptExecMaskPreRA)
1237     insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
1238 
1239   if (isPassEnabled(EnablePreRAOptimizations))
1240     insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID);
1241 
1242   // This is not an essential optimization and it has a noticeable impact on
1243   // compilation time, so we only enable it from O2.
1244   if (TM->getOptLevel() > CodeGenOpt::Less)
1245     insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
1246 
1247   // FIXME: when an instruction has a Killed operand, and the instruction is
1248   // inside a bundle, seems only the BUNDLE instruction appears as the Kills of
1249   // the register in LiveVariables, this would trigger a failure in verifier,
1250   // we should fix it and enable the verifier.
1251   if (OptVGPRLiveRange)
1252     insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID);
1253   // This must be run immediately after phi elimination and before
1254   // TwoAddressInstructions, otherwise the processing of the tied operand of
1255   // SI_ELSE will introduce a copy of the tied operand source after the else.
1256   insertPass(&PHIEliminationID, &SILowerControlFlowID);
1257 
1258   if (EnableDCEInRA)
1259     insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);
1260 
1261   TargetPassConfig::addOptimizedRegAlloc();
1262 }
1263 
1264 bool GCNPassConfig::addPreRewrite() {
1265   if (EnableRegReassign)
1266     addPass(&GCNNSAReassignID);
1267   return true;
1268 }
1269 
1270 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) {
1271   // Initialize the global default.
1272   llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag,
1273                   initializeDefaultSGPRRegisterAllocatorOnce);
1274 
1275   RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
1276   if (Ctor != useDefaultRegisterAllocator)
1277     return Ctor();
1278 
1279   if (Optimized)
1280     return createGreedyRegisterAllocator(onlyAllocateSGPRs);
1281 
1282   return createFastRegisterAllocator(onlyAllocateSGPRs, false);
1283 }
1284 
1285 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) {
1286   // Initialize the global default.
1287   llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag,
1288                   initializeDefaultVGPRRegisterAllocatorOnce);
1289 
1290   RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
1291   if (Ctor != useDefaultRegisterAllocator)
1292     return Ctor();
1293 
1294   if (Optimized)
1295     return createGreedyVGPRRegisterAllocator();
1296 
1297   return createFastVGPRRegisterAllocator();
1298 }
1299 
1300 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) {
1301   llvm_unreachable("should not be used");
1302 }
1303 
1304 static const char RegAllocOptNotSupportedMessage[] =
1305   "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc";
1306 
1307 bool GCNPassConfig::addRegAssignAndRewriteFast() {
1308   if (!usingDefaultRegAlloc())
1309     report_fatal_error(RegAllocOptNotSupportedMessage);
1310 
1311   addPass(createSGPRAllocPass(false));
1312 
1313   // Equivalent of PEI for SGPRs.
1314   addPass(&SILowerSGPRSpillsID);
1315 
1316   addPass(createVGPRAllocPass(false));
1317   return true;
1318 }
1319 
1320 bool GCNPassConfig::addRegAssignAndRewriteOptimized() {
1321   if (!usingDefaultRegAlloc())
1322     report_fatal_error(RegAllocOptNotSupportedMessage);
1323 
1324   addPass(createSGPRAllocPass(true));
1325 
1326   // Commit allocated register changes. This is mostly necessary because too
1327   // many things rely on the use lists of the physical registers, such as the
1328   // verifier. This is only necessary with allocators which use LiveIntervals,
1329   // since FastRegAlloc does the replacements itself.
1330   addPass(createVirtRegRewriter(false));
1331 
1332   // Equivalent of PEI for SGPRs.
1333   addPass(&SILowerSGPRSpillsID);
1334 
1335   addPass(createVGPRAllocPass(true));
1336 
1337   addPreRewrite();
1338   addPass(&VirtRegRewriterID);
1339 
1340   return true;
1341 }
1342 
1343 void GCNPassConfig::addPostRegAlloc() {
1344   addPass(&SIFixVGPRCopiesID);
1345   if (getOptLevel() > CodeGenOpt::None)
1346     addPass(&SIOptimizeExecMaskingID);
1347   TargetPassConfig::addPostRegAlloc();
1348 }
1349 
1350 void GCNPassConfig::addPreSched2() {
1351   if (TM->getOptLevel() > CodeGenOpt::None)
1352     addPass(createSIShrinkInstructionsPass());
1353   addPass(&SIPostRABundlerID);
1354 }
1355 
1356 void GCNPassConfig::addPreEmitPass() {
1357   addPass(createSIMemoryLegalizerPass());
1358   addPass(createSIInsertWaitcntsPass());
1359 
1360   addPass(createSIModeRegisterPass());
1361 
1362   if (getOptLevel() > CodeGenOpt::None)
1363     addPass(&SIInsertHardClausesID);
1364 
1365   addPass(&SILateBranchLoweringPassID);
1366   if (getOptLevel() > CodeGenOpt::None)
1367     addPass(&SIPreEmitPeepholeID);
1368   // The hazard recognizer that runs as part of the post-ra scheduler does not
1369   // guarantee to be able handle all hazards correctly. This is because if there
1370   // are multiple scheduling regions in a basic block, the regions are scheduled
1371   // bottom up, so when we begin to schedule a region we don't know what
1372   // instructions were emitted directly before it.
1373   //
1374   // Here we add a stand-alone hazard recognizer pass which can handle all
1375   // cases.
1376   addPass(&PostRAHazardRecognizerID);
1377   addPass(&BranchRelaxationPassID);
1378 }
1379 
1380 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
1381   return new GCNPassConfig(*this, PM);
1382 }
1383 
1384 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
1385   return new yaml::SIMachineFunctionInfo();
1386 }
1387 
1388 yaml::MachineFunctionInfo *
1389 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
1390   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1391   return new yaml::SIMachineFunctionInfo(
1392       *MFI, *MF.getSubtarget().getRegisterInfo(), MF);
1393 }
1394 
1395 bool GCNTargetMachine::parseMachineFunctionInfo(
1396     const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
1397     SMDiagnostic &Error, SMRange &SourceRange) const {
1398   const yaml::SIMachineFunctionInfo &YamlMFI =
1399       reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
1400   MachineFunction &MF = PFS.MF;
1401   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1402 
1403   if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange))
1404     return true;
1405 
1406   if (MFI->Occupancy == 0) {
1407     // Fixup the subtarget dependent default value.
1408     const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1409     MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize());
1410   }
1411 
1412   auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) {
1413     Register TempReg;
1414     if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) {
1415       SourceRange = RegName.SourceRange;
1416       return true;
1417     }
1418     RegVal = TempReg;
1419 
1420     return false;
1421   };
1422 
1423   auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
1424     // Create a diagnostic for a the register string literal.
1425     const MemoryBuffer &Buffer =
1426         *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
1427     Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
1428                          RegName.Value.size(), SourceMgr::DK_Error,
1429                          "incorrect register class for field", RegName.Value,
1430                          None, None);
1431     SourceRange = RegName.SourceRange;
1432     return true;
1433   };
1434 
1435   if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
1436       parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
1437       parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
1438     return true;
1439 
1440   if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
1441       !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
1442     return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
1443   }
1444 
1445   if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
1446       !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
1447     return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
1448   }
1449 
1450   if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
1451       !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
1452     return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
1453   }
1454 
1455   auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
1456                                    const TargetRegisterClass &RC,
1457                                    ArgDescriptor &Arg, unsigned UserSGPRs,
1458                                    unsigned SystemSGPRs) {
1459     // Skip parsing if it's not present.
1460     if (!A)
1461       return false;
1462 
1463     if (A->IsRegister) {
1464       Register Reg;
1465       if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
1466         SourceRange = A->RegisterName.SourceRange;
1467         return true;
1468       }
1469       if (!RC.contains(Reg))
1470         return diagnoseRegisterClass(A->RegisterName);
1471       Arg = ArgDescriptor::createRegister(Reg);
1472     } else
1473       Arg = ArgDescriptor::createStack(A->StackOffset);
1474     // Check and apply the optional mask.
1475     if (A->Mask)
1476       Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue());
1477 
1478     MFI->NumUserSGPRs += UserSGPRs;
1479     MFI->NumSystemSGPRs += SystemSGPRs;
1480     return false;
1481   };
1482 
1483   if (YamlMFI.ArgInfo &&
1484       (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
1485                              AMDGPU::SGPR_128RegClass,
1486                              MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
1487        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
1488                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
1489                              2, 0) ||
1490        parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
1491                              MFI->ArgInfo.QueuePtr, 2, 0) ||
1492        parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
1493                              AMDGPU::SReg_64RegClass,
1494                              MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
1495        parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
1496                              AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
1497                              2, 0) ||
1498        parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
1499                              AMDGPU::SReg_64RegClass,
1500                              MFI->ArgInfo.FlatScratchInit, 2, 0) ||
1501        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
1502                              AMDGPU::SGPR_32RegClass,
1503                              MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
1504        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
1505                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
1506                              0, 1) ||
1507        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
1508                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
1509                              0, 1) ||
1510        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
1511                              AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
1512                              0, 1) ||
1513        parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
1514                              AMDGPU::SGPR_32RegClass,
1515                              MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
1516        parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
1517                              AMDGPU::SGPR_32RegClass,
1518                              MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
1519        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
1520                              AMDGPU::SReg_64RegClass,
1521                              MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
1522        parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
1523                              AMDGPU::SReg_64RegClass,
1524                              MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
1525        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
1526                              AMDGPU::VGPR_32RegClass,
1527                              MFI->ArgInfo.WorkItemIDX, 0, 0) ||
1528        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
1529                              AMDGPU::VGPR_32RegClass,
1530                              MFI->ArgInfo.WorkItemIDY, 0, 0) ||
1531        parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
1532                              AMDGPU::VGPR_32RegClass,
1533                              MFI->ArgInfo.WorkItemIDZ, 0, 0)))
1534     return true;
1535 
1536   MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
1537   MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
1538   MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals;
1539   MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals;
1540   MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals;
1541   MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals;
1542 
1543   return false;
1544 }
1545