1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for SI+ GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600.h" 25 #include "R600TargetMachine.h" 26 #include "SIMachineFunctionInfo.h" 27 #include "SIMachineScheduler.h" 28 #include "TargetInfo/AMDGPUTargetInfo.h" 29 #include "llvm/Analysis/CGSCCPassManager.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/Localizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MIRParser/MIParser.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/RegAllocRegistry.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/IR/IntrinsicsAMDGPU.h" 40 #include "llvm/IR/LegacyPassManager.h" 41 #include "llvm/IR/PassManager.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/TargetRegistry.h" 45 #include "llvm/Passes/PassBuilder.h" 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/Transforms/IPO/AlwaysInliner.h" 48 #include "llvm/Transforms/IPO/GlobalDCE.h" 49 #include "llvm/Transforms/IPO/Internalize.h" 50 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 51 #include "llvm/Transforms/Scalar.h" 52 #include "llvm/Transforms/Scalar/GVN.h" 53 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 54 #include "llvm/Transforms/Utils.h" 55 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 56 #include "llvm/Transforms/Vectorize.h" 57 58 using namespace llvm; 59 60 namespace { 61 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> { 62 public: 63 SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 64 : RegisterRegAllocBase(N, D, C) {} 65 }; 66 67 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> { 68 public: 69 VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 70 : RegisterRegAllocBase(N, D, C) {} 71 }; 72 73 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI, 74 const TargetRegisterClass &RC) { 75 return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 76 } 77 78 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI, 79 const TargetRegisterClass &RC) { 80 return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 81 } 82 83 84 /// -{sgpr|vgpr}-regalloc=... command line option. 85 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } 86 87 /// A dummy default pass factory indicates whether the register allocator is 88 /// overridden on the command line. 89 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag; 90 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag; 91 92 static SGPRRegisterRegAlloc 93 defaultSGPRRegAlloc("default", 94 "pick SGPR register allocator based on -O option", 95 useDefaultRegisterAllocator); 96 97 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false, 98 RegisterPassParser<SGPRRegisterRegAlloc>> 99 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 100 cl::desc("Register allocator to use for SGPRs")); 101 102 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false, 103 RegisterPassParser<VGPRRegisterRegAlloc>> 104 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 105 cl::desc("Register allocator to use for VGPRs")); 106 107 108 static void initializeDefaultSGPRRegisterAllocatorOnce() { 109 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 110 111 if (!Ctor) { 112 Ctor = SGPRRegAlloc; 113 SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc); 114 } 115 } 116 117 static void initializeDefaultVGPRRegisterAllocatorOnce() { 118 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 119 120 if (!Ctor) { 121 Ctor = VGPRRegAlloc; 122 VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc); 123 } 124 } 125 126 static FunctionPass *createBasicSGPRRegisterAllocator() { 127 return createBasicRegisterAllocator(onlyAllocateSGPRs); 128 } 129 130 static FunctionPass *createGreedySGPRRegisterAllocator() { 131 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 132 } 133 134 static FunctionPass *createFastSGPRRegisterAllocator() { 135 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 136 } 137 138 static FunctionPass *createBasicVGPRRegisterAllocator() { 139 return createBasicRegisterAllocator(onlyAllocateVGPRs); 140 } 141 142 static FunctionPass *createGreedyVGPRRegisterAllocator() { 143 return createGreedyRegisterAllocator(onlyAllocateVGPRs); 144 } 145 146 static FunctionPass *createFastVGPRRegisterAllocator() { 147 return createFastRegisterAllocator(onlyAllocateVGPRs, true); 148 } 149 150 static SGPRRegisterRegAlloc basicRegAllocSGPR( 151 "basic", "basic register allocator", createBasicSGPRRegisterAllocator); 152 static SGPRRegisterRegAlloc greedyRegAllocSGPR( 153 "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator); 154 155 static SGPRRegisterRegAlloc fastRegAllocSGPR( 156 "fast", "fast register allocator", createFastSGPRRegisterAllocator); 157 158 159 static VGPRRegisterRegAlloc basicRegAllocVGPR( 160 "basic", "basic register allocator", createBasicVGPRRegisterAllocator); 161 static VGPRRegisterRegAlloc greedyRegAllocVGPR( 162 "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator); 163 164 static VGPRRegisterRegAlloc fastRegAllocVGPR( 165 "fast", "fast register allocator", createFastVGPRRegisterAllocator); 166 } 167 168 static cl::opt<bool> EnableSROA( 169 "amdgpu-sroa", 170 cl::desc("Run SROA after promote alloca pass"), 171 cl::ReallyHidden, 172 cl::init(true)); 173 174 static cl::opt<bool> 175 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 176 cl::desc("Run early if-conversion"), 177 cl::init(false)); 178 179 static cl::opt<bool> 180 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 181 cl::desc("Run pre-RA exec mask optimizations"), 182 cl::init(true)); 183 184 // Option to disable vectorizer for tests. 185 static cl::opt<bool> EnableLoadStoreVectorizer( 186 "amdgpu-load-store-vectorizer", 187 cl::desc("Enable load store vectorizer"), 188 cl::init(true), 189 cl::Hidden); 190 191 // Option to control global loads scalarization 192 static cl::opt<bool> ScalarizeGlobal( 193 "amdgpu-scalarize-global-loads", 194 cl::desc("Enable global load scalarization"), 195 cl::init(true), 196 cl::Hidden); 197 198 // Option to run internalize pass. 199 static cl::opt<bool> InternalizeSymbols( 200 "amdgpu-internalize-symbols", 201 cl::desc("Enable elimination of non-kernel functions and unused globals"), 202 cl::init(false), 203 cl::Hidden); 204 205 // Option to inline all early. 206 static cl::opt<bool> EarlyInlineAll( 207 "amdgpu-early-inline-all", 208 cl::desc("Inline all functions early"), 209 cl::init(false), 210 cl::Hidden); 211 212 static cl::opt<bool> EnableSDWAPeephole( 213 "amdgpu-sdwa-peephole", 214 cl::desc("Enable SDWA peepholer"), 215 cl::init(true)); 216 217 static cl::opt<bool> EnableDPPCombine( 218 "amdgpu-dpp-combine", 219 cl::desc("Enable DPP combiner"), 220 cl::init(true)); 221 222 // Enable address space based alias analysis 223 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 224 cl::desc("Enable AMDGPU Alias Analysis"), 225 cl::init(true)); 226 227 // Option to run late CFG structurizer 228 static cl::opt<bool, true> LateCFGStructurize( 229 "amdgpu-late-structurize", 230 cl::desc("Enable late CFG structurization"), 231 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 232 cl::Hidden); 233 234 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 235 "amdgpu-fixed-function-abi", 236 cl::desc("Enable all implicit function arguments"), 237 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 238 cl::init(false), 239 cl::Hidden); 240 241 // Enable lib calls simplifications 242 static cl::opt<bool> EnableLibCallSimplify( 243 "amdgpu-simplify-libcall", 244 cl::desc("Enable amdgpu library simplifications"), 245 cl::init(true), 246 cl::Hidden); 247 248 static cl::opt<bool> EnableLowerKernelArguments( 249 "amdgpu-ir-lower-kernel-arguments", 250 cl::desc("Lower kernel argument loads in IR pass"), 251 cl::init(true), 252 cl::Hidden); 253 254 static cl::opt<bool> EnableRegReassign( 255 "amdgpu-reassign-regs", 256 cl::desc("Enable register reassign optimizations on gfx10+"), 257 cl::init(true), 258 cl::Hidden); 259 260 static cl::opt<bool> OptVGPRLiveRange( 261 "amdgpu-opt-vgpr-liverange", 262 cl::desc("Enable VGPR liverange optimizations for if-else structure"), 263 cl::init(true), cl::Hidden); 264 265 // Enable atomic optimization 266 static cl::opt<bool> EnableAtomicOptimizations( 267 "amdgpu-atomic-optimizations", 268 cl::desc("Enable atomic optimizations"), 269 cl::init(false), 270 cl::Hidden); 271 272 // Enable Mode register optimization 273 static cl::opt<bool> EnableSIModeRegisterPass( 274 "amdgpu-mode-register", 275 cl::desc("Enable mode register pass"), 276 cl::init(true), 277 cl::Hidden); 278 279 // Option is used in lit tests to prevent deadcoding of patterns inspected. 280 static cl::opt<bool> 281 EnableDCEInRA("amdgpu-dce-in-ra", 282 cl::init(true), cl::Hidden, 283 cl::desc("Enable machine DCE inside regalloc")); 284 285 static cl::opt<bool> EnableScalarIRPasses( 286 "amdgpu-scalar-ir-passes", 287 cl::desc("Enable scalar IR passes"), 288 cl::init(true), 289 cl::Hidden); 290 291 static cl::opt<bool> EnableStructurizerWorkarounds( 292 "amdgpu-enable-structurizer-workarounds", 293 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 294 cl::Hidden); 295 296 static cl::opt<bool> EnableLDSReplaceWithPointer( 297 "amdgpu-enable-lds-replace-with-pointer", 298 cl::desc("Enable LDS replace with pointer pass"), cl::init(false), 299 cl::Hidden); 300 301 static cl::opt<bool, true> EnableLowerModuleLDS( 302 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 303 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 304 cl::Hidden); 305 306 static cl::opt<bool> EnablePreRAOptimizations( 307 "amdgpu-enable-pre-ra-optimizations", 308 cl::desc("Enable Pre-RA optimizations pass"), cl::init(true), 309 cl::Hidden); 310 311 static cl::opt<bool> EnablePromoteKernelArguments( 312 "amdgpu-enable-promote-kernel-arguments", 313 cl::desc("Enable promotion of flat kernel pointer arguments to global"), 314 cl::Hidden, cl::init(true)); 315 316 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 317 // Register the target 318 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 319 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 320 321 PassRegistry *PR = PassRegistry::getPassRegistry(); 322 initializeR600ClauseMergePassPass(*PR); 323 initializeR600ControlFlowFinalizerPass(*PR); 324 initializeR600PacketizerPass(*PR); 325 initializeR600ExpandSpecialInstrsPassPass(*PR); 326 initializeR600VectorRegMergerPass(*PR); 327 initializeGlobalISel(*PR); 328 initializeAMDGPUDAGToDAGISelPass(*PR); 329 initializeGCNDPPCombinePass(*PR); 330 initializeSILowerI1CopiesPass(*PR); 331 initializeSILowerSGPRSpillsPass(*PR); 332 initializeSIFixSGPRCopiesPass(*PR); 333 initializeSIFixVGPRCopiesPass(*PR); 334 initializeSIFoldOperandsPass(*PR); 335 initializeSIPeepholeSDWAPass(*PR); 336 initializeSIShrinkInstructionsPass(*PR); 337 initializeSIOptimizeExecMaskingPreRAPass(*PR); 338 initializeSIOptimizeVGPRLiveRangePass(*PR); 339 initializeSILoadStoreOptimizerPass(*PR); 340 initializeAMDGPUFixFunctionBitcastsPass(*PR); 341 initializeAMDGPUCtorDtorLoweringPass(*PR); 342 initializeAMDGPUAlwaysInlinePass(*PR); 343 initializeAMDGPUAttributorPass(*PR); 344 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 345 initializeAMDGPUAnnotateUniformValuesPass(*PR); 346 initializeAMDGPUArgumentUsageInfoPass(*PR); 347 initializeAMDGPUAtomicOptimizerPass(*PR); 348 initializeAMDGPULowerKernelArgumentsPass(*PR); 349 initializeAMDGPUPromoteKernelArgumentsPass(*PR); 350 initializeAMDGPULowerKernelAttributesPass(*PR); 351 initializeAMDGPULowerIntrinsicsPass(*PR); 352 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 353 initializeAMDGPUPostLegalizerCombinerPass(*PR); 354 initializeAMDGPUPreLegalizerCombinerPass(*PR); 355 initializeAMDGPURegBankCombinerPass(*PR); 356 initializeAMDGPUPromoteAllocaPass(*PR); 357 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 358 initializeAMDGPUCodeGenPreparePass(*PR); 359 initializeAMDGPULateCodeGenPreparePass(*PR); 360 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 361 initializeAMDGPUPropagateAttributesLatePass(*PR); 362 initializeAMDGPUReplaceLDSUseWithPointerPass(*PR); 363 initializeAMDGPULowerModuleLDSPass(*PR); 364 initializeAMDGPURewriteOutArgumentsPass(*PR); 365 initializeAMDGPUUnifyMetadataPass(*PR); 366 initializeSIAnnotateControlFlowPass(*PR); 367 initializeSIInsertHardClausesPass(*PR); 368 initializeSIInsertWaitcntsPass(*PR); 369 initializeSIModeRegisterPass(*PR); 370 initializeSIWholeQuadModePass(*PR); 371 initializeSILowerControlFlowPass(*PR); 372 initializeSIPreEmitPeepholePass(*PR); 373 initializeSILateBranchLoweringPass(*PR); 374 initializeSIMemoryLegalizerPass(*PR); 375 initializeSIOptimizeExecMaskingPass(*PR); 376 initializeSIPreAllocateWWMRegsPass(*PR); 377 initializeSIFormMemoryClausesPass(*PR); 378 initializeSIPostRABundlerPass(*PR); 379 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 380 initializeAMDGPUAAWrapperPassPass(*PR); 381 initializeAMDGPUExternalAAWrapperPass(*PR); 382 initializeAMDGPUUseNativeCallsPass(*PR); 383 initializeAMDGPUSimplifyLibCallsPass(*PR); 384 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 385 initializeAMDGPUResourceUsageAnalysisPass(*PR); 386 initializeGCNNSAReassignPass(*PR); 387 initializeGCNPreRAOptimizationsPass(*PR); 388 } 389 390 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 391 return std::make_unique<AMDGPUTargetObjectFile>(); 392 } 393 394 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 395 return new SIScheduleDAGMI(C); 396 } 397 398 static ScheduleDAGInstrs * 399 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 400 ScheduleDAGMILive *DAG = 401 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 402 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 403 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 404 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 405 return DAG; 406 } 407 408 static ScheduleDAGInstrs * 409 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 410 auto DAG = new GCNIterativeScheduler(C, 411 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 412 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 413 return DAG; 414 } 415 416 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 417 return new GCNIterativeScheduler(C, 418 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 419 } 420 421 static ScheduleDAGInstrs * 422 createIterativeILPMachineScheduler(MachineSchedContext *C) { 423 auto DAG = new GCNIterativeScheduler(C, 424 GCNIterativeScheduler::SCHEDULE_ILP); 425 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 426 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 427 return DAG; 428 } 429 430 static MachineSchedRegistry 431 SISchedRegistry("si", "Run SI's custom scheduler", 432 createSIMachineScheduler); 433 434 static MachineSchedRegistry 435 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 436 "Run GCN scheduler to maximize occupancy", 437 createGCNMaxOccupancyMachineScheduler); 438 439 static MachineSchedRegistry 440 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 441 "Run GCN scheduler to maximize occupancy (experimental)", 442 createIterativeGCNMaxOccupancyMachineScheduler); 443 444 static MachineSchedRegistry 445 GCNMinRegSchedRegistry("gcn-minreg", 446 "Run GCN iterative scheduler for minimal register usage (experimental)", 447 createMinRegScheduler); 448 449 static MachineSchedRegistry 450 GCNILPSchedRegistry("gcn-ilp", 451 "Run GCN iterative scheduler for ILP scheduling (experimental)", 452 createIterativeILPMachineScheduler); 453 454 static StringRef computeDataLayout(const Triple &TT) { 455 if (TT.getArch() == Triple::r600) { 456 // 32-bit pointers. 457 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 458 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 459 } 460 461 // 32-bit private, local, and region pointers. 64-bit global, constant and 462 // flat, non-integral buffer fat pointers. 463 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 464 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 465 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 466 "-ni:7"; 467 } 468 469 LLVM_READNONE 470 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 471 if (!GPU.empty()) 472 return GPU; 473 474 // Need to default to a target with flat support for HSA. 475 if (TT.getArch() == Triple::amdgcn) 476 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 477 478 return "r600"; 479 } 480 481 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 482 // The AMDGPU toolchain only supports generating shared objects, so we 483 // must always use PIC. 484 return Reloc::PIC_; 485 } 486 487 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 488 StringRef CPU, StringRef FS, 489 TargetOptions Options, 490 Optional<Reloc::Model> RM, 491 Optional<CodeModel::Model> CM, 492 CodeGenOpt::Level OptLevel) 493 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 494 FS, Options, getEffectiveRelocModel(RM), 495 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 496 TLOF(createTLOF(getTargetTriple())) { 497 initAsmInfo(); 498 if (TT.getArch() == Triple::amdgcn) { 499 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 500 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 501 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 502 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 503 } 504 } 505 506 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 507 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 508 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 509 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 510 511 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 512 513 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 514 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 515 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 516 } 517 518 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 519 Attribute FSAttr = F.getFnAttribute("target-features"); 520 521 return FSAttr.isValid() ? FSAttr.getValueAsString() 522 : getTargetFeatureString(); 523 } 524 525 /// Predicate for Internalize pass. 526 static bool mustPreserveGV(const GlobalValue &GV) { 527 if (const Function *F = dyn_cast<Function>(&GV)) 528 return F->isDeclaration() || F->getName().startswith("__asan_") || 529 F->getName().startswith("__sanitizer_") || 530 AMDGPU::isEntryFunctionCC(F->getCallingConv()); 531 532 GV.removeDeadConstantUsers(); 533 return !GV.use_empty(); 534 } 535 536 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 537 Builder.DivergentTarget = true; 538 539 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 540 bool Internalize = InternalizeSymbols; 541 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 542 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 543 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 544 bool PromoteKernelArguments = 545 EnablePromoteKernelArguments && getOptLevel() > CodeGenOpt::Less; 546 547 if (EnableFunctionCalls) { 548 delete Builder.Inliner; 549 Builder.Inliner = createFunctionInliningPass(); 550 } 551 552 Builder.addExtension( 553 PassManagerBuilder::EP_ModuleOptimizerEarly, 554 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 555 legacy::PassManagerBase &PM) { 556 if (AMDGPUAA) { 557 PM.add(createAMDGPUAAWrapperPass()); 558 PM.add(createAMDGPUExternalAAWrapperPass()); 559 } 560 PM.add(createAMDGPUUnifyMetadataPass()); 561 PM.add(createAMDGPUPrintfRuntimeBinding()); 562 if (Internalize) 563 PM.add(createInternalizePass(mustPreserveGV)); 564 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 565 if (Internalize) 566 PM.add(createGlobalDCEPass()); 567 if (EarlyInline) 568 PM.add(createAMDGPUAlwaysInlinePass(false)); 569 }); 570 571 Builder.addExtension( 572 PassManagerBuilder::EP_EarlyAsPossible, 573 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 574 legacy::PassManagerBase &PM) { 575 if (AMDGPUAA) { 576 PM.add(createAMDGPUAAWrapperPass()); 577 PM.add(createAMDGPUExternalAAWrapperPass()); 578 } 579 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 580 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 581 if (LibCallSimplify) 582 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 583 }); 584 585 Builder.addExtension( 586 PassManagerBuilder::EP_CGSCCOptimizerLate, 587 [EnableOpt, PromoteKernelArguments](const PassManagerBuilder &, 588 legacy::PassManagerBase &PM) { 589 // Add promote kernel arguments pass to the opt pipeline right before 590 // infer address spaces which is needed to do actual address space 591 // rewriting. 592 if (PromoteKernelArguments) 593 PM.add(createAMDGPUPromoteKernelArgumentsPass()); 594 595 // Add infer address spaces pass to the opt pipeline after inlining 596 // but before SROA to increase SROA opportunities. 597 PM.add(createInferAddressSpacesPass()); 598 599 // This should run after inlining to have any chance of doing anything, 600 // and before other cleanup optimizations. 601 PM.add(createAMDGPULowerKernelAttributesPass()); 602 603 // Promote alloca to vector before SROA and loop unroll. If we manage 604 // to eliminate allocas before unroll we may choose to unroll less. 605 if (EnableOpt) 606 PM.add(createAMDGPUPromoteAllocaToVector()); 607 }); 608 } 609 610 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 611 AAM.registerFunctionAnalysis<AMDGPUAA>(); 612 } 613 614 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { 615 PB.registerPipelineParsingCallback( 616 [this](StringRef PassName, ModulePassManager &PM, 617 ArrayRef<PassBuilder::PipelineElement>) { 618 if (PassName == "amdgpu-propagate-attributes-late") { 619 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 620 return true; 621 } 622 if (PassName == "amdgpu-unify-metadata") { 623 PM.addPass(AMDGPUUnifyMetadataPass()); 624 return true; 625 } 626 if (PassName == "amdgpu-printf-runtime-binding") { 627 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 628 return true; 629 } 630 if (PassName == "amdgpu-always-inline") { 631 PM.addPass(AMDGPUAlwaysInlinePass()); 632 return true; 633 } 634 if (PassName == "amdgpu-replace-lds-use-with-pointer") { 635 PM.addPass(AMDGPUReplaceLDSUseWithPointerPass()); 636 return true; 637 } 638 if (PassName == "amdgpu-lower-module-lds") { 639 PM.addPass(AMDGPULowerModuleLDSPass()); 640 return true; 641 } 642 return false; 643 }); 644 PB.registerPipelineParsingCallback( 645 [this](StringRef PassName, FunctionPassManager &PM, 646 ArrayRef<PassBuilder::PipelineElement>) { 647 if (PassName == "amdgpu-simplifylib") { 648 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 649 return true; 650 } 651 if (PassName == "amdgpu-usenative") { 652 PM.addPass(AMDGPUUseNativeCallsPass()); 653 return true; 654 } 655 if (PassName == "amdgpu-promote-alloca") { 656 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 657 return true; 658 } 659 if (PassName == "amdgpu-promote-alloca-to-vector") { 660 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 661 return true; 662 } 663 if (PassName == "amdgpu-lower-kernel-attributes") { 664 PM.addPass(AMDGPULowerKernelAttributesPass()); 665 return true; 666 } 667 if (PassName == "amdgpu-propagate-attributes-early") { 668 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 669 return true; 670 } 671 if (PassName == "amdgpu-promote-kernel-arguments") { 672 PM.addPass(AMDGPUPromoteKernelArgumentsPass()); 673 return true; 674 } 675 return false; 676 }); 677 678 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 679 FAM.registerPass([&] { return AMDGPUAA(); }); 680 }); 681 682 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 683 if (AAName == "amdgpu-aa") { 684 AAM.registerFunctionAnalysis<AMDGPUAA>(); 685 return true; 686 } 687 return false; 688 }); 689 690 PB.registerPipelineStartEPCallback( 691 [this](ModulePassManager &PM, OptimizationLevel Level) { 692 FunctionPassManager FPM; 693 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 694 FPM.addPass(AMDGPUUseNativeCallsPass()); 695 if (EnableLibCallSimplify && Level != OptimizationLevel::O0) 696 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 697 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 698 }); 699 700 PB.registerPipelineEarlySimplificationEPCallback( 701 [this](ModulePassManager &PM, OptimizationLevel Level) { 702 if (Level == OptimizationLevel::O0) 703 return; 704 705 PM.addPass(AMDGPUUnifyMetadataPass()); 706 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 707 708 if (InternalizeSymbols) { 709 PM.addPass(InternalizePass(mustPreserveGV)); 710 } 711 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 712 if (InternalizeSymbols) { 713 PM.addPass(GlobalDCEPass()); 714 } 715 if (EarlyInlineAll && !EnableFunctionCalls) 716 PM.addPass(AMDGPUAlwaysInlinePass()); 717 }); 718 719 PB.registerCGSCCOptimizerLateEPCallback( 720 [this](CGSCCPassManager &PM, OptimizationLevel Level) { 721 if (Level == OptimizationLevel::O0) 722 return; 723 724 FunctionPassManager FPM; 725 726 // Add promote kernel arguments pass to the opt pipeline right before 727 // infer address spaces which is needed to do actual address space 728 // rewriting. 729 if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() && 730 EnablePromoteKernelArguments) 731 FPM.addPass(AMDGPUPromoteKernelArgumentsPass()); 732 733 // Add infer address spaces pass to the opt pipeline after inlining 734 // but before SROA to increase SROA opportunities. 735 FPM.addPass(InferAddressSpacesPass()); 736 737 // This should run after inlining to have any chance of doing 738 // anything, and before other cleanup optimizations. 739 FPM.addPass(AMDGPULowerKernelAttributesPass()); 740 741 if (Level != OptimizationLevel::O0) { 742 // Promote alloca to vector before SROA and loop unroll. If we 743 // manage to eliminate allocas before unroll we may choose to unroll 744 // less. 745 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 746 } 747 748 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 749 }); 750 } 751 752 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 753 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 754 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 755 AddrSpace == AMDGPUAS::REGION_ADDRESS) 756 ? -1 757 : 0; 758 } 759 760 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 761 unsigned DestAS) const { 762 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 763 AMDGPU::isFlatGlobalAddrSpace(DestAS); 764 } 765 766 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 767 const auto *LD = dyn_cast<LoadInst>(V); 768 if (!LD) 769 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 770 771 // It must be a generic pointer loaded. 772 assert(V->getType()->isPointerTy() && 773 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 774 775 const auto *Ptr = LD->getPointerOperand(); 776 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 777 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 778 // For a generic pointer loaded from the constant memory, it could be assumed 779 // as a global pointer since the constant memory is only populated on the 780 // host side. As implied by the offload programming model, only global 781 // pointers could be referenced on the host side. 782 return AMDGPUAS::GLOBAL_ADDRESS; 783 } 784 785 std::pair<const Value *, unsigned> 786 AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const { 787 if (auto *II = dyn_cast<IntrinsicInst>(V)) { 788 switch (II->getIntrinsicID()) { 789 case Intrinsic::amdgcn_is_shared: 790 return std::make_pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS); 791 case Intrinsic::amdgcn_is_private: 792 return std::make_pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS); 793 default: 794 break; 795 } 796 return std::make_pair(nullptr, -1); 797 } 798 // Check the global pointer predication based on 799 // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and 800 // the order of 'is_shared' and 'is_private' is not significant. 801 Value *Ptr; 802 if (match( 803 const_cast<Value *>(V), 804 m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))), 805 m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>( 806 m_Deferred(Ptr)))))) 807 return std::make_pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS); 808 809 return std::make_pair(nullptr, -1); 810 } 811 812 //===----------------------------------------------------------------------===// 813 // GCN Target Machine (SI+) 814 //===----------------------------------------------------------------------===// 815 816 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 817 StringRef CPU, StringRef FS, 818 TargetOptions Options, 819 Optional<Reloc::Model> RM, 820 Optional<CodeModel::Model> CM, 821 CodeGenOpt::Level OL, bool JIT) 822 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 823 824 const TargetSubtargetInfo * 825 GCNTargetMachine::getSubtargetImpl(const Function &F) const { 826 StringRef GPU = getGPUName(F); 827 StringRef FS = getFeatureString(F); 828 829 SmallString<128> SubtargetKey(GPU); 830 SubtargetKey.append(FS); 831 832 auto &I = SubtargetMap[SubtargetKey]; 833 if (!I) { 834 // This needs to be done before we create a new subtarget since any 835 // creation will depend on the TM and the code generation flags on the 836 // function that reside in TargetOptions. 837 resetTargetOptions(F); 838 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 839 } 840 841 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 842 843 return I.get(); 844 } 845 846 TargetTransformInfo 847 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 848 return TargetTransformInfo(GCNTTIImpl(this, F)); 849 } 850 851 //===----------------------------------------------------------------------===// 852 // AMDGPU Pass Setup 853 //===----------------------------------------------------------------------===// 854 855 std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const { 856 return getStandardCSEConfigForOpt(TM->getOptLevel()); 857 } 858 859 namespace { 860 861 class GCNPassConfig final : public AMDGPUPassConfig { 862 public: 863 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 864 : AMDGPUPassConfig(TM, PM) { 865 // It is necessary to know the register usage of the entire call graph. We 866 // allow calls without EnableAMDGPUFunctionCalls if they are marked 867 // noinline, so this is always required. 868 setRequiresCodeGenSCCOrder(true); 869 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 870 } 871 872 GCNTargetMachine &getGCNTargetMachine() const { 873 return getTM<GCNTargetMachine>(); 874 } 875 876 ScheduleDAGInstrs * 877 createMachineScheduler(MachineSchedContext *C) const override; 878 879 ScheduleDAGInstrs * 880 createPostMachineScheduler(MachineSchedContext *C) const override { 881 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 882 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 883 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 884 DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII)); 885 return DAG; 886 } 887 888 bool addPreISel() override; 889 void addMachineSSAOptimization() override; 890 bool addILPOpts() override; 891 bool addInstSelector() override; 892 bool addIRTranslator() override; 893 void addPreLegalizeMachineIR() override; 894 bool addLegalizeMachineIR() override; 895 void addPreRegBankSelect() override; 896 bool addRegBankSelect() override; 897 void addPreGlobalInstructionSelect() override; 898 bool addGlobalInstructionSelect() override; 899 void addFastRegAlloc() override; 900 void addOptimizedRegAlloc() override; 901 902 FunctionPass *createSGPRAllocPass(bool Optimized); 903 FunctionPass *createVGPRAllocPass(bool Optimized); 904 FunctionPass *createRegAllocPass(bool Optimized) override; 905 906 bool addRegAssignAndRewriteFast() override; 907 bool addRegAssignAndRewriteOptimized() override; 908 909 void addPreRegAlloc() override; 910 bool addPreRewrite() override; 911 void addPostRegAlloc() override; 912 void addPreSched2() override; 913 void addPreEmitPass() override; 914 }; 915 916 } // end anonymous namespace 917 918 AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 919 : TargetPassConfig(TM, PM) { 920 // Exceptions and StackMaps are not supported, so these passes will never do 921 // anything. 922 disablePass(&StackMapLivenessID); 923 disablePass(&FuncletLayoutID); 924 // Garbage collection is not supported. 925 disablePass(&GCLoweringID); 926 disablePass(&ShadowStackGCLoweringID); 927 } 928 929 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 930 if (getOptLevel() == CodeGenOpt::Aggressive) 931 addPass(createGVNPass()); 932 else 933 addPass(createEarlyCSEPass()); 934 } 935 936 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 937 addPass(createLICMPass()); 938 addPass(createSeparateConstOffsetFromGEPPass()); 939 addPass(createSpeculativeExecutionPass()); 940 // ReassociateGEPs exposes more opportunities for SLSR. See 941 // the example in reassociate-geps-and-slsr.ll. 942 addPass(createStraightLineStrengthReducePass()); 943 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 944 // EarlyCSE can reuse. 945 addEarlyCSEOrGVNPass(); 946 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 947 addPass(createNaryReassociatePass()); 948 // NaryReassociate on GEPs creates redundant common expressions, so run 949 // EarlyCSE after it. 950 addPass(createEarlyCSEPass()); 951 } 952 953 void AMDGPUPassConfig::addIRPasses() { 954 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 955 956 // There is no reason to run these. 957 disablePass(&StackMapLivenessID); 958 disablePass(&FuncletLayoutID); 959 disablePass(&PatchableFunctionID); 960 961 addPass(createAMDGPUPrintfRuntimeBinding()); 962 addPass(createAMDGPUCtorDtorLoweringPass()); 963 964 // This must occur before inlining, as the inliner will not look through 965 // bitcast calls. 966 addPass(createAMDGPUFixFunctionBitcastsPass()); 967 968 // A call to propagate attributes pass in the backend in case opt was not run. 969 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 970 971 addPass(createAMDGPULowerIntrinsicsPass()); 972 973 // Function calls are not supported, so make sure we inline everything. 974 addPass(createAMDGPUAlwaysInlinePass()); 975 addPass(createAlwaysInlinerLegacyPass()); 976 // We need to add the barrier noop pass, otherwise adding the function 977 // inlining pass will cause all of the PassConfigs passes to be run 978 // one function at a time, which means if we have a nodule with two 979 // functions, then we will generate code for the first function 980 // without ever running any passes on the second. 981 addPass(createBarrierNoopPass()); 982 983 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 984 if (TM.getTargetTriple().getArch() == Triple::r600) 985 addPass(createR600OpenCLImageTypeLoweringPass()); 986 987 // Replace OpenCL enqueued block function pointers with global variables. 988 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 989 990 // Can increase LDS used by kernel so runs before PromoteAlloca 991 if (EnableLowerModuleLDS) { 992 // The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the 993 // pass "amdgpu-lower-module-lds", and also it required to be run only if 994 // "amdgpu-lower-module-lds" pass is enabled. 995 if (EnableLDSReplaceWithPointer) 996 addPass(createAMDGPUReplaceLDSUseWithPointerPass()); 997 998 addPass(createAMDGPULowerModuleLDSPass()); 999 } 1000 1001 if (TM.getOptLevel() > CodeGenOpt::None) 1002 addPass(createInferAddressSpacesPass()); 1003 1004 addPass(createAtomicExpandPass()); 1005 1006 if (TM.getOptLevel() > CodeGenOpt::None) { 1007 addPass(createAMDGPUPromoteAlloca()); 1008 1009 if (EnableSROA) 1010 addPass(createSROAPass()); 1011 if (isPassEnabled(EnableScalarIRPasses)) 1012 addStraightLineScalarOptimizationPasses(); 1013 1014 if (EnableAMDGPUAliasAnalysis) { 1015 addPass(createAMDGPUAAWrapperPass()); 1016 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 1017 AAResults &AAR) { 1018 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 1019 AAR.addAAResult(WrapperPass->getResult()); 1020 })); 1021 } 1022 1023 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1024 // TODO: May want to move later or split into an early and late one. 1025 addPass(createAMDGPUCodeGenPreparePass()); 1026 } 1027 } 1028 1029 TargetPassConfig::addIRPasses(); 1030 1031 // EarlyCSE is not always strong enough to clean up what LSR produces. For 1032 // example, GVN can combine 1033 // 1034 // %0 = add %a, %b 1035 // %1 = add %b, %a 1036 // 1037 // and 1038 // 1039 // %0 = shl nsw %a, 2 1040 // %1 = shl %a, 2 1041 // 1042 // but EarlyCSE can do neither of them. 1043 if (isPassEnabled(EnableScalarIRPasses)) 1044 addEarlyCSEOrGVNPass(); 1045 } 1046 1047 void AMDGPUPassConfig::addCodeGenPrepare() { 1048 if (TM->getTargetTriple().getArch() == Triple::amdgcn) { 1049 addPass(createAMDGPUAttributorPass()); 1050 1051 // FIXME: This pass adds 2 hacky attributes that can be replaced with an 1052 // analysis, and should be removed. 1053 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 1054 } 1055 1056 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 1057 EnableLowerKernelArguments) 1058 addPass(createAMDGPULowerKernelArgumentsPass()); 1059 1060 TargetPassConfig::addCodeGenPrepare(); 1061 1062 if (isPassEnabled(EnableLoadStoreVectorizer)) 1063 addPass(createLoadStoreVectorizerPass()); 1064 1065 // LowerSwitch pass may introduce unreachable blocks that can 1066 // cause unexpected behavior for subsequent passes. Placing it 1067 // here seems better that these blocks would get cleaned up by 1068 // UnreachableBlockElim inserted next in the pass flow. 1069 addPass(createLowerSwitchPass()); 1070 } 1071 1072 bool AMDGPUPassConfig::addPreISel() { 1073 if (TM->getOptLevel() > CodeGenOpt::None) 1074 addPass(createFlattenCFGPass()); 1075 return false; 1076 } 1077 1078 bool AMDGPUPassConfig::addInstSelector() { 1079 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 1080 return false; 1081 } 1082 1083 bool AMDGPUPassConfig::addGCPasses() { 1084 // Do nothing. GC is not supported. 1085 return false; 1086 } 1087 1088 llvm::ScheduleDAGInstrs * 1089 AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const { 1090 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 1091 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 1092 return DAG; 1093 } 1094 1095 //===----------------------------------------------------------------------===// 1096 // GCN Pass Setup 1097 //===----------------------------------------------------------------------===// 1098 1099 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1100 MachineSchedContext *C) const { 1101 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1102 if (ST.enableSIScheduler()) 1103 return createSIMachineScheduler(C); 1104 return createGCNMaxOccupancyMachineScheduler(C); 1105 } 1106 1107 bool GCNPassConfig::addPreISel() { 1108 AMDGPUPassConfig::addPreISel(); 1109 1110 if (TM->getOptLevel() > CodeGenOpt::None) 1111 addPass(createAMDGPULateCodeGenPreparePass()); 1112 1113 if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) { 1114 addPass(createAMDGPUAtomicOptimizerPass()); 1115 } 1116 1117 if (TM->getOptLevel() > CodeGenOpt::None) 1118 addPass(createSinkingPass()); 1119 1120 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1121 // regions formed by them. 1122 addPass(&AMDGPUUnifyDivergentExitNodesID); 1123 if (!LateCFGStructurize) { 1124 if (EnableStructurizerWorkarounds) { 1125 addPass(createFixIrreduciblePass()); 1126 addPass(createUnifyLoopExitsPass()); 1127 } 1128 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1129 } 1130 addPass(createAMDGPUAnnotateUniformValues()); 1131 if (!LateCFGStructurize) { 1132 addPass(createSIAnnotateControlFlowPass()); 1133 } 1134 addPass(createLCSSAPass()); 1135 1136 if (TM->getOptLevel() > CodeGenOpt::Less) 1137 addPass(&AMDGPUPerfHintAnalysisID); 1138 1139 return false; 1140 } 1141 1142 void GCNPassConfig::addMachineSSAOptimization() { 1143 TargetPassConfig::addMachineSSAOptimization(); 1144 1145 // We want to fold operands after PeepholeOptimizer has run (or as part of 1146 // it), because it will eliminate extra copies making it easier to fold the 1147 // real source operand. We want to eliminate dead instructions after, so that 1148 // we see fewer uses of the copies. We then need to clean up the dead 1149 // instructions leftover after the operands are folded as well. 1150 // 1151 // XXX - Can we get away without running DeadMachineInstructionElim again? 1152 addPass(&SIFoldOperandsID); 1153 if (EnableDPPCombine) 1154 addPass(&GCNDPPCombineID); 1155 addPass(&SILoadStoreOptimizerID); 1156 if (isPassEnabled(EnableSDWAPeephole)) { 1157 addPass(&SIPeepholeSDWAID); 1158 addPass(&EarlyMachineLICMID); 1159 addPass(&MachineCSEID); 1160 addPass(&SIFoldOperandsID); 1161 } 1162 addPass(&DeadMachineInstructionElimID); 1163 addPass(createSIShrinkInstructionsPass()); 1164 } 1165 1166 bool GCNPassConfig::addILPOpts() { 1167 if (EnableEarlyIfConversion) 1168 addPass(&EarlyIfConverterID); 1169 1170 TargetPassConfig::addILPOpts(); 1171 return false; 1172 } 1173 1174 bool GCNPassConfig::addInstSelector() { 1175 AMDGPUPassConfig::addInstSelector(); 1176 addPass(&SIFixSGPRCopiesID); 1177 addPass(createSILowerI1CopiesPass()); 1178 return false; 1179 } 1180 1181 bool GCNPassConfig::addIRTranslator() { 1182 addPass(new IRTranslator(getOptLevel())); 1183 return false; 1184 } 1185 1186 void GCNPassConfig::addPreLegalizeMachineIR() { 1187 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1188 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1189 addPass(new Localizer()); 1190 } 1191 1192 bool GCNPassConfig::addLegalizeMachineIR() { 1193 addPass(new Legalizer()); 1194 return false; 1195 } 1196 1197 void GCNPassConfig::addPreRegBankSelect() { 1198 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1199 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1200 } 1201 1202 bool GCNPassConfig::addRegBankSelect() { 1203 addPass(new RegBankSelect()); 1204 return false; 1205 } 1206 1207 void GCNPassConfig::addPreGlobalInstructionSelect() { 1208 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1209 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1210 } 1211 1212 bool GCNPassConfig::addGlobalInstructionSelect() { 1213 addPass(new InstructionSelect(getOptLevel())); 1214 return false; 1215 } 1216 1217 void GCNPassConfig::addPreRegAlloc() { 1218 if (LateCFGStructurize) { 1219 addPass(createAMDGPUMachineCFGStructurizerPass()); 1220 } 1221 } 1222 1223 void GCNPassConfig::addFastRegAlloc() { 1224 // FIXME: We have to disable the verifier here because of PHIElimination + 1225 // TwoAddressInstructions disabling it. 1226 1227 // This must be run immediately after phi elimination and before 1228 // TwoAddressInstructions, otherwise the processing of the tied operand of 1229 // SI_ELSE will introduce a copy of the tied operand source after the else. 1230 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1231 1232 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1233 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1234 1235 TargetPassConfig::addFastRegAlloc(); 1236 } 1237 1238 void GCNPassConfig::addOptimizedRegAlloc() { 1239 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1240 // instructions that cause scheduling barriers. 1241 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1242 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1243 1244 if (OptExecMaskPreRA) 1245 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1246 1247 if (isPassEnabled(EnablePreRAOptimizations)) 1248 insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID); 1249 1250 // This is not an essential optimization and it has a noticeable impact on 1251 // compilation time, so we only enable it from O2. 1252 if (TM->getOptLevel() > CodeGenOpt::Less) 1253 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1254 1255 // FIXME: when an instruction has a Killed operand, and the instruction is 1256 // inside a bundle, seems only the BUNDLE instruction appears as the Kills of 1257 // the register in LiveVariables, this would trigger a failure in verifier, 1258 // we should fix it and enable the verifier. 1259 if (OptVGPRLiveRange) 1260 insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID); 1261 // This must be run immediately after phi elimination and before 1262 // TwoAddressInstructions, otherwise the processing of the tied operand of 1263 // SI_ELSE will introduce a copy of the tied operand source after the else. 1264 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1265 1266 if (EnableDCEInRA) 1267 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1268 1269 TargetPassConfig::addOptimizedRegAlloc(); 1270 } 1271 1272 bool GCNPassConfig::addPreRewrite() { 1273 if (EnableRegReassign) 1274 addPass(&GCNNSAReassignID); 1275 return true; 1276 } 1277 1278 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) { 1279 // Initialize the global default. 1280 llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag, 1281 initializeDefaultSGPRRegisterAllocatorOnce); 1282 1283 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 1284 if (Ctor != useDefaultRegisterAllocator) 1285 return Ctor(); 1286 1287 if (Optimized) 1288 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 1289 1290 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 1291 } 1292 1293 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) { 1294 // Initialize the global default. 1295 llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag, 1296 initializeDefaultVGPRRegisterAllocatorOnce); 1297 1298 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 1299 if (Ctor != useDefaultRegisterAllocator) 1300 return Ctor(); 1301 1302 if (Optimized) 1303 return createGreedyVGPRRegisterAllocator(); 1304 1305 return createFastVGPRRegisterAllocator(); 1306 } 1307 1308 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) { 1309 llvm_unreachable("should not be used"); 1310 } 1311 1312 static const char RegAllocOptNotSupportedMessage[] = 1313 "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc"; 1314 1315 bool GCNPassConfig::addRegAssignAndRewriteFast() { 1316 if (!usingDefaultRegAlloc()) 1317 report_fatal_error(RegAllocOptNotSupportedMessage); 1318 1319 addPass(createSGPRAllocPass(false)); 1320 1321 // Equivalent of PEI for SGPRs. 1322 addPass(&SILowerSGPRSpillsID); 1323 1324 addPass(createVGPRAllocPass(false)); 1325 return true; 1326 } 1327 1328 bool GCNPassConfig::addRegAssignAndRewriteOptimized() { 1329 if (!usingDefaultRegAlloc()) 1330 report_fatal_error(RegAllocOptNotSupportedMessage); 1331 1332 addPass(createSGPRAllocPass(true)); 1333 1334 // Commit allocated register changes. This is mostly necessary because too 1335 // many things rely on the use lists of the physical registers, such as the 1336 // verifier. This is only necessary with allocators which use LiveIntervals, 1337 // since FastRegAlloc does the replacements itself. 1338 addPass(createVirtRegRewriter(false)); 1339 1340 // Equivalent of PEI for SGPRs. 1341 addPass(&SILowerSGPRSpillsID); 1342 1343 addPass(createVGPRAllocPass(true)); 1344 1345 addPreRewrite(); 1346 addPass(&VirtRegRewriterID); 1347 1348 return true; 1349 } 1350 1351 void GCNPassConfig::addPostRegAlloc() { 1352 addPass(&SIFixVGPRCopiesID); 1353 if (getOptLevel() > CodeGenOpt::None) 1354 addPass(&SIOptimizeExecMaskingID); 1355 TargetPassConfig::addPostRegAlloc(); 1356 } 1357 1358 void GCNPassConfig::addPreSched2() { 1359 if (TM->getOptLevel() > CodeGenOpt::None) 1360 addPass(createSIShrinkInstructionsPass()); 1361 addPass(&SIPostRABundlerID); 1362 } 1363 1364 void GCNPassConfig::addPreEmitPass() { 1365 addPass(createSIMemoryLegalizerPass()); 1366 addPass(createSIInsertWaitcntsPass()); 1367 1368 addPass(createSIModeRegisterPass()); 1369 1370 if (getOptLevel() > CodeGenOpt::None) 1371 addPass(&SIInsertHardClausesID); 1372 1373 addPass(&SILateBranchLoweringPassID); 1374 if (getOptLevel() > CodeGenOpt::None) 1375 addPass(&SIPreEmitPeepholeID); 1376 // The hazard recognizer that runs as part of the post-ra scheduler does not 1377 // guarantee to be able handle all hazards correctly. This is because if there 1378 // are multiple scheduling regions in a basic block, the regions are scheduled 1379 // bottom up, so when we begin to schedule a region we don't know what 1380 // instructions were emitted directly before it. 1381 // 1382 // Here we add a stand-alone hazard recognizer pass which can handle all 1383 // cases. 1384 addPass(&PostRAHazardRecognizerID); 1385 addPass(&BranchRelaxationPassID); 1386 } 1387 1388 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1389 return new GCNPassConfig(*this, PM); 1390 } 1391 1392 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1393 return new yaml::SIMachineFunctionInfo(); 1394 } 1395 1396 yaml::MachineFunctionInfo * 1397 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1398 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1399 return new yaml::SIMachineFunctionInfo( 1400 *MFI, *MF.getSubtarget().getRegisterInfo(), MF); 1401 } 1402 1403 bool GCNTargetMachine::parseMachineFunctionInfo( 1404 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1405 SMDiagnostic &Error, SMRange &SourceRange) const { 1406 const yaml::SIMachineFunctionInfo &YamlMFI = 1407 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1408 MachineFunction &MF = PFS.MF; 1409 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1410 1411 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) 1412 return true; 1413 1414 if (MFI->Occupancy == 0) { 1415 // Fixup the subtarget dependent default value. 1416 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1417 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1418 } 1419 1420 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1421 Register TempReg; 1422 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1423 SourceRange = RegName.SourceRange; 1424 return true; 1425 } 1426 RegVal = TempReg; 1427 1428 return false; 1429 }; 1430 1431 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1432 // Create a diagnostic for a the register string literal. 1433 const MemoryBuffer &Buffer = 1434 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1435 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1436 RegName.Value.size(), SourceMgr::DK_Error, 1437 "incorrect register class for field", RegName.Value, 1438 None, None); 1439 SourceRange = RegName.SourceRange; 1440 return true; 1441 }; 1442 1443 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1444 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1445 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1446 return true; 1447 1448 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1449 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1450 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1451 } 1452 1453 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1454 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1455 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1456 } 1457 1458 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1459 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1460 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1461 } 1462 1463 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1464 const TargetRegisterClass &RC, 1465 ArgDescriptor &Arg, unsigned UserSGPRs, 1466 unsigned SystemSGPRs) { 1467 // Skip parsing if it's not present. 1468 if (!A) 1469 return false; 1470 1471 if (A->IsRegister) { 1472 Register Reg; 1473 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1474 SourceRange = A->RegisterName.SourceRange; 1475 return true; 1476 } 1477 if (!RC.contains(Reg)) 1478 return diagnoseRegisterClass(A->RegisterName); 1479 Arg = ArgDescriptor::createRegister(Reg); 1480 } else 1481 Arg = ArgDescriptor::createStack(A->StackOffset); 1482 // Check and apply the optional mask. 1483 if (A->Mask) 1484 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1485 1486 MFI->NumUserSGPRs += UserSGPRs; 1487 MFI->NumSystemSGPRs += SystemSGPRs; 1488 return false; 1489 }; 1490 1491 if (YamlMFI.ArgInfo && 1492 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1493 AMDGPU::SGPR_128RegClass, 1494 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1495 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1496 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1497 2, 0) || 1498 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1499 MFI->ArgInfo.QueuePtr, 2, 0) || 1500 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1501 AMDGPU::SReg_64RegClass, 1502 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1503 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1504 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1505 2, 0) || 1506 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1507 AMDGPU::SReg_64RegClass, 1508 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1509 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1510 AMDGPU::SGPR_32RegClass, 1511 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1512 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1513 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1514 0, 1) || 1515 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1516 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1517 0, 1) || 1518 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1519 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1520 0, 1) || 1521 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1522 AMDGPU::SGPR_32RegClass, 1523 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1524 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1525 AMDGPU::SGPR_32RegClass, 1526 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1527 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1528 AMDGPU::SReg_64RegClass, 1529 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1530 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1531 AMDGPU::SReg_64RegClass, 1532 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1533 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1534 AMDGPU::VGPR_32RegClass, 1535 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1536 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1537 AMDGPU::VGPR_32RegClass, 1538 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1539 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1540 AMDGPU::VGPR_32RegClass, 1541 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1542 return true; 1543 1544 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1545 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1546 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1547 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1548 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1549 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1550 1551 return false; 1552 } 1553