1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for SI+ GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCtorDtorLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUIGroupLP.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "GCNVOPDUtils.h" 27 #include "R600.h" 28 #include "R600MachineFunctionInfo.h" 29 #include "R600TargetMachine.h" 30 #include "SIMachineFunctionInfo.h" 31 #include "SIMachineScheduler.h" 32 #include "TargetInfo/AMDGPUTargetInfo.h" 33 #include "Utils/AMDGPUBaseInfo.h" 34 #include "llvm/Analysis/CGSCCPassManager.h" 35 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 36 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 37 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 38 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 39 #include "llvm/CodeGen/GlobalISel/Localizer.h" 40 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 41 #include "llvm/CodeGen/MIRParser/MIParser.h" 42 #include "llvm/CodeGen/Passes.h" 43 #include "llvm/CodeGen/RegAllocRegistry.h" 44 #include "llvm/CodeGen/TargetPassConfig.h" 45 #include "llvm/IR/IntrinsicsAMDGPU.h" 46 #include "llvm/IR/LegacyPassManager.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/IR/PatternMatch.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/MC/TargetRegistry.h" 51 #include "llvm/Passes/PassBuilder.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/IPO/AlwaysInliner.h" 54 #include "llvm/Transforms/IPO/GlobalDCE.h" 55 #include "llvm/Transforms/IPO/Internalize.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Scalar/GVN.h" 58 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 59 #include "llvm/Transforms/Utils.h" 60 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 61 #include "llvm/Transforms/Vectorize.h" 62 #include <optional> 63 64 using namespace llvm; 65 using namespace llvm::PatternMatch; 66 67 namespace { 68 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> { 69 public: 70 SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 71 : RegisterRegAllocBase(N, D, C) {} 72 }; 73 74 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> { 75 public: 76 VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 77 : RegisterRegAllocBase(N, D, C) {} 78 }; 79 80 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI, 81 const TargetRegisterClass &RC) { 82 return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 83 } 84 85 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI, 86 const TargetRegisterClass &RC) { 87 return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 88 } 89 90 91 /// -{sgpr|vgpr}-regalloc=... command line option. 92 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } 93 94 /// A dummy default pass factory indicates whether the register allocator is 95 /// overridden on the command line. 96 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag; 97 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag; 98 99 static SGPRRegisterRegAlloc 100 defaultSGPRRegAlloc("default", 101 "pick SGPR register allocator based on -O option", 102 useDefaultRegisterAllocator); 103 104 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false, 105 RegisterPassParser<SGPRRegisterRegAlloc>> 106 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 107 cl::desc("Register allocator to use for SGPRs")); 108 109 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false, 110 RegisterPassParser<VGPRRegisterRegAlloc>> 111 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 112 cl::desc("Register allocator to use for VGPRs")); 113 114 115 static void initializeDefaultSGPRRegisterAllocatorOnce() { 116 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 117 118 if (!Ctor) { 119 Ctor = SGPRRegAlloc; 120 SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc); 121 } 122 } 123 124 static void initializeDefaultVGPRRegisterAllocatorOnce() { 125 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 126 127 if (!Ctor) { 128 Ctor = VGPRRegAlloc; 129 VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc); 130 } 131 } 132 133 static FunctionPass *createBasicSGPRRegisterAllocator() { 134 return createBasicRegisterAllocator(onlyAllocateSGPRs); 135 } 136 137 static FunctionPass *createGreedySGPRRegisterAllocator() { 138 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 139 } 140 141 static FunctionPass *createFastSGPRRegisterAllocator() { 142 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 143 } 144 145 static FunctionPass *createBasicVGPRRegisterAllocator() { 146 return createBasicRegisterAllocator(onlyAllocateVGPRs); 147 } 148 149 static FunctionPass *createGreedyVGPRRegisterAllocator() { 150 return createGreedyRegisterAllocator(onlyAllocateVGPRs); 151 } 152 153 static FunctionPass *createFastVGPRRegisterAllocator() { 154 return createFastRegisterAllocator(onlyAllocateVGPRs, true); 155 } 156 157 static SGPRRegisterRegAlloc basicRegAllocSGPR( 158 "basic", "basic register allocator", createBasicSGPRRegisterAllocator); 159 static SGPRRegisterRegAlloc greedyRegAllocSGPR( 160 "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator); 161 162 static SGPRRegisterRegAlloc fastRegAllocSGPR( 163 "fast", "fast register allocator", createFastSGPRRegisterAllocator); 164 165 166 static VGPRRegisterRegAlloc basicRegAllocVGPR( 167 "basic", "basic register allocator", createBasicVGPRRegisterAllocator); 168 static VGPRRegisterRegAlloc greedyRegAllocVGPR( 169 "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator); 170 171 static VGPRRegisterRegAlloc fastRegAllocVGPR( 172 "fast", "fast register allocator", createFastVGPRRegisterAllocator); 173 } 174 175 static cl::opt<bool> EnableSROA( 176 "amdgpu-sroa", 177 cl::desc("Run SROA after promote alloca pass"), 178 cl::ReallyHidden, 179 cl::init(true)); 180 181 static cl::opt<bool> 182 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 183 cl::desc("Run early if-conversion"), 184 cl::init(false)); 185 186 static cl::opt<bool> 187 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 188 cl::desc("Run pre-RA exec mask optimizations"), 189 cl::init(true)); 190 191 // Option to disable vectorizer for tests. 192 static cl::opt<bool> EnableLoadStoreVectorizer( 193 "amdgpu-load-store-vectorizer", 194 cl::desc("Enable load store vectorizer"), 195 cl::init(true), 196 cl::Hidden); 197 198 // Option to control global loads scalarization 199 static cl::opt<bool> ScalarizeGlobal( 200 "amdgpu-scalarize-global-loads", 201 cl::desc("Enable global load scalarization"), 202 cl::init(true), 203 cl::Hidden); 204 205 // Option to run internalize pass. 206 static cl::opt<bool> InternalizeSymbols( 207 "amdgpu-internalize-symbols", 208 cl::desc("Enable elimination of non-kernel functions and unused globals"), 209 cl::init(false), 210 cl::Hidden); 211 212 // Option to inline all early. 213 static cl::opt<bool> EarlyInlineAll( 214 "amdgpu-early-inline-all", 215 cl::desc("Inline all functions early"), 216 cl::init(false), 217 cl::Hidden); 218 219 static cl::opt<bool> EnableSDWAPeephole( 220 "amdgpu-sdwa-peephole", 221 cl::desc("Enable SDWA peepholer"), 222 cl::init(true)); 223 224 static cl::opt<bool> EnableDPPCombine( 225 "amdgpu-dpp-combine", 226 cl::desc("Enable DPP combiner"), 227 cl::init(true)); 228 229 // Enable address space based alias analysis 230 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 231 cl::desc("Enable AMDGPU Alias Analysis"), 232 cl::init(true)); 233 234 // Option to run late CFG structurizer 235 static cl::opt<bool, true> LateCFGStructurize( 236 "amdgpu-late-structurize", 237 cl::desc("Enable late CFG structurization"), 238 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 239 cl::Hidden); 240 241 // Enable lib calls simplifications 242 static cl::opt<bool> EnableLibCallSimplify( 243 "amdgpu-simplify-libcall", 244 cl::desc("Enable amdgpu library simplifications"), 245 cl::init(true), 246 cl::Hidden); 247 248 static cl::opt<bool> EnableLowerKernelArguments( 249 "amdgpu-ir-lower-kernel-arguments", 250 cl::desc("Lower kernel argument loads in IR pass"), 251 cl::init(true), 252 cl::Hidden); 253 254 static cl::opt<bool> EnableRegReassign( 255 "amdgpu-reassign-regs", 256 cl::desc("Enable register reassign optimizations on gfx10+"), 257 cl::init(true), 258 cl::Hidden); 259 260 static cl::opt<bool> OptVGPRLiveRange( 261 "amdgpu-opt-vgpr-liverange", 262 cl::desc("Enable VGPR liverange optimizations for if-else structure"), 263 cl::init(true), cl::Hidden); 264 265 // Enable atomic optimization 266 static cl::opt<bool> EnableAtomicOptimizations( 267 "amdgpu-atomic-optimizations", 268 cl::desc("Enable atomic optimizations"), 269 cl::init(false), 270 cl::Hidden); 271 272 // Enable Mode register optimization 273 static cl::opt<bool> EnableSIModeRegisterPass( 274 "amdgpu-mode-register", 275 cl::desc("Enable mode register pass"), 276 cl::init(true), 277 cl::Hidden); 278 279 // Enable GFX11+ s_delay_alu insertion 280 static cl::opt<bool> 281 EnableInsertDelayAlu("amdgpu-enable-delay-alu", 282 cl::desc("Enable s_delay_alu insertion"), 283 cl::init(true), cl::Hidden); 284 285 // Enable GFX11+ VOPD 286 static cl::opt<bool> 287 EnableVOPD("amdgpu-enable-vopd", 288 cl::desc("Enable VOPD, dual issue of VALU in wave32"), 289 cl::init(true), cl::Hidden); 290 291 // Option is used in lit tests to prevent deadcoding of patterns inspected. 292 static cl::opt<bool> 293 EnableDCEInRA("amdgpu-dce-in-ra", 294 cl::init(true), cl::Hidden, 295 cl::desc("Enable machine DCE inside regalloc")); 296 297 static cl::opt<bool> EnableSetWavePriority("amdgpu-set-wave-priority", 298 cl::desc("Adjust wave priority"), 299 cl::init(false), cl::Hidden); 300 301 static cl::opt<bool> EnableScalarIRPasses( 302 "amdgpu-scalar-ir-passes", 303 cl::desc("Enable scalar IR passes"), 304 cl::init(true), 305 cl::Hidden); 306 307 static cl::opt<bool> EnableStructurizerWorkarounds( 308 "amdgpu-enable-structurizer-workarounds", 309 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 310 cl::Hidden); 311 312 static cl::opt<bool> EnableLDSReplaceWithPointer( 313 "amdgpu-enable-lds-replace-with-pointer", 314 cl::desc("Enable LDS replace with pointer pass"), cl::init(false), 315 cl::Hidden); 316 317 static cl::opt<bool, true> EnableLowerModuleLDS( 318 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 319 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 320 cl::Hidden); 321 322 static cl::opt<bool> EnablePreRAOptimizations( 323 "amdgpu-enable-pre-ra-optimizations", 324 cl::desc("Enable Pre-RA optimizations pass"), cl::init(true), 325 cl::Hidden); 326 327 static cl::opt<bool> EnablePromoteKernelArguments( 328 "amdgpu-enable-promote-kernel-arguments", 329 cl::desc("Enable promotion of flat kernel pointer arguments to global"), 330 cl::Hidden, cl::init(true)); 331 332 static cl::opt<bool> EnableMaxIlpSchedStrategy( 333 "amdgpu-enable-max-ilp-scheduling-strategy", 334 cl::desc("Enable scheduling strategy to maximize ILP for a single wave."), 335 cl::Hidden, cl::init(false)); 336 337 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 338 // Register the target 339 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 340 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 341 342 PassRegistry *PR = PassRegistry::getPassRegistry(); 343 initializeR600ClauseMergePassPass(*PR); 344 initializeR600ControlFlowFinalizerPass(*PR); 345 initializeR600PacketizerPass(*PR); 346 initializeR600ExpandSpecialInstrsPassPass(*PR); 347 initializeR600VectorRegMergerPass(*PR); 348 initializeGlobalISel(*PR); 349 initializeAMDGPUDAGToDAGISelPass(*PR); 350 initializeGCNDPPCombinePass(*PR); 351 initializeSILowerI1CopiesPass(*PR); 352 initializeSILowerSGPRSpillsPass(*PR); 353 initializeSIFixSGPRCopiesPass(*PR); 354 initializeSIFixVGPRCopiesPass(*PR); 355 initializeSIFoldOperandsPass(*PR); 356 initializeSIPeepholeSDWAPass(*PR); 357 initializeSIShrinkInstructionsPass(*PR); 358 initializeSIOptimizeExecMaskingPreRAPass(*PR); 359 initializeSIOptimizeVGPRLiveRangePass(*PR); 360 initializeSILoadStoreOptimizerPass(*PR); 361 initializeAMDGPUCtorDtorLoweringLegacyPass(*PR); 362 initializeAMDGPUAlwaysInlinePass(*PR); 363 initializeAMDGPUAttributorPass(*PR); 364 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 365 initializeAMDGPUAnnotateUniformValuesPass(*PR); 366 initializeAMDGPUArgumentUsageInfoPass(*PR); 367 initializeAMDGPUAtomicOptimizerPass(*PR); 368 initializeAMDGPULowerKernelArgumentsPass(*PR); 369 initializeAMDGPUPromoteKernelArgumentsPass(*PR); 370 initializeAMDGPULowerKernelAttributesPass(*PR); 371 initializeAMDGPULowerIntrinsicsPass(*PR); 372 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 373 initializeAMDGPUPostLegalizerCombinerPass(*PR); 374 initializeAMDGPUPreLegalizerCombinerPass(*PR); 375 initializeAMDGPURegBankCombinerPass(*PR); 376 initializeAMDGPUPromoteAllocaPass(*PR); 377 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 378 initializeAMDGPUCodeGenPreparePass(*PR); 379 initializeAMDGPULateCodeGenPreparePass(*PR); 380 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 381 initializeAMDGPUPropagateAttributesLatePass(*PR); 382 initializeAMDGPUReplaceLDSUseWithPointerPass(*PR); 383 initializeAMDGPULowerModuleLDSPass(*PR); 384 initializeAMDGPURewriteOutArgumentsPass(*PR); 385 initializeAMDGPURewriteUndefForPHIPass(*PR); 386 initializeAMDGPUUnifyMetadataPass(*PR); 387 initializeSIAnnotateControlFlowPass(*PR); 388 initializeAMDGPUReleaseVGPRsPass(*PR); 389 initializeAMDGPUInsertDelayAluPass(*PR); 390 initializeSIInsertHardClausesPass(*PR); 391 initializeSIInsertWaitcntsPass(*PR); 392 initializeSIModeRegisterPass(*PR); 393 initializeSIWholeQuadModePass(*PR); 394 initializeSILowerControlFlowPass(*PR); 395 initializeSIPreEmitPeepholePass(*PR); 396 initializeSILateBranchLoweringPass(*PR); 397 initializeSIMemoryLegalizerPass(*PR); 398 initializeSIOptimizeExecMaskingPass(*PR); 399 initializeSIPreAllocateWWMRegsPass(*PR); 400 initializeSIFormMemoryClausesPass(*PR); 401 initializeSIPostRABundlerPass(*PR); 402 initializeGCNCreateVOPDPass(*PR); 403 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 404 initializeAMDGPUAAWrapperPassPass(*PR); 405 initializeAMDGPUExternalAAWrapperPass(*PR); 406 initializeAMDGPUUseNativeCallsPass(*PR); 407 initializeAMDGPUSimplifyLibCallsPass(*PR); 408 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 409 initializeAMDGPUResourceUsageAnalysisPass(*PR); 410 initializeGCNNSAReassignPass(*PR); 411 initializeGCNPreRAOptimizationsPass(*PR); 412 } 413 414 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 415 return std::make_unique<AMDGPUTargetObjectFile>(); 416 } 417 418 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 419 return new SIScheduleDAGMI(C); 420 } 421 422 static ScheduleDAGInstrs * 423 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 424 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 425 ScheduleDAGMILive *DAG = 426 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 427 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 428 if (ST.shouldClusterStores()) 429 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 430 DAG->addMutation(createIGroupLPDAGMutation()); 431 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 432 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 433 return DAG; 434 } 435 436 static ScheduleDAGInstrs * 437 createGCNMaxILPMachineScheduler(MachineSchedContext *C) { 438 ScheduleDAGMILive *DAG = 439 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxILPSchedStrategy>(C)); 440 DAG->addMutation(createIGroupLPDAGMutation()); 441 return DAG; 442 } 443 444 static ScheduleDAGInstrs * 445 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 446 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 447 auto DAG = new GCNIterativeScheduler(C, 448 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 449 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 450 if (ST.shouldClusterStores()) 451 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 452 return DAG; 453 } 454 455 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 456 return new GCNIterativeScheduler(C, 457 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 458 } 459 460 static ScheduleDAGInstrs * 461 createIterativeILPMachineScheduler(MachineSchedContext *C) { 462 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 463 auto DAG = new GCNIterativeScheduler(C, 464 GCNIterativeScheduler::SCHEDULE_ILP); 465 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 466 if (ST.shouldClusterStores()) 467 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 468 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 469 return DAG; 470 } 471 472 static MachineSchedRegistry 473 SISchedRegistry("si", "Run SI's custom scheduler", 474 createSIMachineScheduler); 475 476 static MachineSchedRegistry 477 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 478 "Run GCN scheduler to maximize occupancy", 479 createGCNMaxOccupancyMachineScheduler); 480 481 static MachineSchedRegistry 482 GCNMaxILPSchedRegistry("gcn-max-ilp", "Run GCN scheduler to maximize ilp", 483 createGCNMaxILPMachineScheduler); 484 485 static MachineSchedRegistry IterativeGCNMaxOccupancySchedRegistry( 486 "gcn-iterative-max-occupancy-experimental", 487 "Run GCN scheduler to maximize occupancy (experimental)", 488 createIterativeGCNMaxOccupancyMachineScheduler); 489 490 static MachineSchedRegistry GCNMinRegSchedRegistry( 491 "gcn-iterative-minreg", 492 "Run GCN iterative scheduler for minimal register usage (experimental)", 493 createMinRegScheduler); 494 495 static MachineSchedRegistry GCNILPSchedRegistry( 496 "gcn-iterative-ilp", 497 "Run GCN iterative scheduler for ILP scheduling (experimental)", 498 createIterativeILPMachineScheduler); 499 500 static StringRef computeDataLayout(const Triple &TT) { 501 if (TT.getArch() == Triple::r600) { 502 // 32-bit pointers. 503 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 504 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 505 } 506 507 // 32-bit private, local, and region pointers. 64-bit global, constant and 508 // flat, non-integral buffer fat pointers. 509 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 510 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 511 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 512 "-ni:7"; 513 } 514 515 LLVM_READNONE 516 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 517 if (!GPU.empty()) 518 return GPU; 519 520 // Need to default to a target with flat support for HSA. 521 if (TT.getArch() == Triple::amdgcn) 522 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 523 524 return "r600"; 525 } 526 527 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) { 528 // The AMDGPU toolchain only supports generating shared objects, so we 529 // must always use PIC. 530 return Reloc::PIC_; 531 } 532 533 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 534 StringRef CPU, StringRef FS, 535 TargetOptions Options, 536 std::optional<Reloc::Model> RM, 537 std::optional<CodeModel::Model> CM, 538 CodeGenOpt::Level OptLevel) 539 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 540 FS, Options, getEffectiveRelocModel(RM), 541 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 542 TLOF(createTLOF(getTargetTriple())) { 543 initAsmInfo(); 544 if (TT.getArch() == Triple::amdgcn) { 545 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 546 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 547 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 548 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 549 } 550 } 551 552 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 553 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 554 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 555 556 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 557 558 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 559 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 560 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 561 } 562 563 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 564 Attribute FSAttr = F.getFnAttribute("target-features"); 565 566 return FSAttr.isValid() ? FSAttr.getValueAsString() 567 : getTargetFeatureString(); 568 } 569 570 /// Predicate for Internalize pass. 571 static bool mustPreserveGV(const GlobalValue &GV) { 572 if (const Function *F = dyn_cast<Function>(&GV)) 573 return F->isDeclaration() || F->getName().startswith("__asan_") || 574 F->getName().startswith("__sanitizer_") || 575 AMDGPU::isEntryFunctionCC(F->getCallingConv()); 576 577 GV.removeDeadConstantUsers(); 578 return !GV.use_empty(); 579 } 580 581 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 582 AAM.registerFunctionAnalysis<AMDGPUAA>(); 583 } 584 585 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { 586 PB.registerPipelineParsingCallback( 587 [this](StringRef PassName, ModulePassManager &PM, 588 ArrayRef<PassBuilder::PipelineElement>) { 589 if (PassName == "amdgpu-propagate-attributes-late") { 590 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 591 return true; 592 } 593 if (PassName == "amdgpu-unify-metadata") { 594 PM.addPass(AMDGPUUnifyMetadataPass()); 595 return true; 596 } 597 if (PassName == "amdgpu-printf-runtime-binding") { 598 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 599 return true; 600 } 601 if (PassName == "amdgpu-always-inline") { 602 PM.addPass(AMDGPUAlwaysInlinePass()); 603 return true; 604 } 605 if (PassName == "amdgpu-replace-lds-use-with-pointer") { 606 PM.addPass(AMDGPUReplaceLDSUseWithPointerPass()); 607 return true; 608 } 609 if (PassName == "amdgpu-lower-module-lds") { 610 PM.addPass(AMDGPULowerModuleLDSPass()); 611 return true; 612 } 613 if (PassName == "amdgpu-lower-ctor-dtor") { 614 PM.addPass(AMDGPUCtorDtorLoweringPass()); 615 return true; 616 } 617 return false; 618 }); 619 PB.registerPipelineParsingCallback( 620 [this](StringRef PassName, FunctionPassManager &PM, 621 ArrayRef<PassBuilder::PipelineElement>) { 622 if (PassName == "amdgpu-simplifylib") { 623 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 624 return true; 625 } 626 if (PassName == "amdgpu-usenative") { 627 PM.addPass(AMDGPUUseNativeCallsPass()); 628 return true; 629 } 630 if (PassName == "amdgpu-promote-alloca") { 631 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 632 return true; 633 } 634 if (PassName == "amdgpu-promote-alloca-to-vector") { 635 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 636 return true; 637 } 638 if (PassName == "amdgpu-lower-kernel-attributes") { 639 PM.addPass(AMDGPULowerKernelAttributesPass()); 640 return true; 641 } 642 if (PassName == "amdgpu-propagate-attributes-early") { 643 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 644 return true; 645 } 646 if (PassName == "amdgpu-promote-kernel-arguments") { 647 PM.addPass(AMDGPUPromoteKernelArgumentsPass()); 648 return true; 649 } 650 return false; 651 }); 652 653 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 654 FAM.registerPass([&] { return AMDGPUAA(); }); 655 }); 656 657 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 658 if (AAName == "amdgpu-aa") { 659 AAM.registerFunctionAnalysis<AMDGPUAA>(); 660 return true; 661 } 662 return false; 663 }); 664 665 PB.registerPipelineStartEPCallback( 666 [this](ModulePassManager &PM, OptimizationLevel Level) { 667 FunctionPassManager FPM; 668 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 669 FPM.addPass(AMDGPUUseNativeCallsPass()); 670 if (EnableLibCallSimplify && Level != OptimizationLevel::O0) 671 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 672 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 673 }); 674 675 PB.registerPipelineEarlySimplificationEPCallback( 676 [this](ModulePassManager &PM, OptimizationLevel Level) { 677 if (Level == OptimizationLevel::O0) 678 return; 679 680 PM.addPass(AMDGPUUnifyMetadataPass()); 681 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 682 683 if (InternalizeSymbols) { 684 PM.addPass(InternalizePass(mustPreserveGV)); 685 } 686 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 687 if (InternalizeSymbols) { 688 PM.addPass(GlobalDCEPass()); 689 } 690 if (EarlyInlineAll && !EnableFunctionCalls) 691 PM.addPass(AMDGPUAlwaysInlinePass()); 692 }); 693 694 PB.registerCGSCCOptimizerLateEPCallback( 695 [this](CGSCCPassManager &PM, OptimizationLevel Level) { 696 if (Level == OptimizationLevel::O0) 697 return; 698 699 FunctionPassManager FPM; 700 701 // Add promote kernel arguments pass to the opt pipeline right before 702 // infer address spaces which is needed to do actual address space 703 // rewriting. 704 if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() && 705 EnablePromoteKernelArguments) 706 FPM.addPass(AMDGPUPromoteKernelArgumentsPass()); 707 708 // Add infer address spaces pass to the opt pipeline after inlining 709 // but before SROA to increase SROA opportunities. 710 FPM.addPass(InferAddressSpacesPass()); 711 712 // This should run after inlining to have any chance of doing 713 // anything, and before other cleanup optimizations. 714 FPM.addPass(AMDGPULowerKernelAttributesPass()); 715 716 if (Level != OptimizationLevel::O0) { 717 // Promote alloca to vector before SROA and loop unroll. If we 718 // manage to eliminate allocas before unroll we may choose to unroll 719 // less. 720 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 721 } 722 723 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 724 }); 725 } 726 727 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 728 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 729 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 730 AddrSpace == AMDGPUAS::REGION_ADDRESS) 731 ? -1 732 : 0; 733 } 734 735 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 736 unsigned DestAS) const { 737 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 738 AMDGPU::isFlatGlobalAddrSpace(DestAS); 739 } 740 741 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 742 const auto *LD = dyn_cast<LoadInst>(V); 743 if (!LD) 744 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 745 746 // It must be a generic pointer loaded. 747 assert(V->getType()->isPointerTy() && 748 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 749 750 const auto *Ptr = LD->getPointerOperand(); 751 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 752 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 753 // For a generic pointer loaded from the constant memory, it could be assumed 754 // as a global pointer since the constant memory is only populated on the 755 // host side. As implied by the offload programming model, only global 756 // pointers could be referenced on the host side. 757 return AMDGPUAS::GLOBAL_ADDRESS; 758 } 759 760 std::pair<const Value *, unsigned> 761 AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const { 762 if (auto *II = dyn_cast<IntrinsicInst>(V)) { 763 switch (II->getIntrinsicID()) { 764 case Intrinsic::amdgcn_is_shared: 765 return std::pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS); 766 case Intrinsic::amdgcn_is_private: 767 return std::pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS); 768 default: 769 break; 770 } 771 return std::pair(nullptr, -1); 772 } 773 // Check the global pointer predication based on 774 // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and 775 // the order of 'is_shared' and 'is_private' is not significant. 776 Value *Ptr; 777 if (match( 778 const_cast<Value *>(V), 779 m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))), 780 m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>( 781 m_Deferred(Ptr)))))) 782 return std::pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS); 783 784 return std::pair(nullptr, -1); 785 } 786 787 unsigned 788 AMDGPUTargetMachine::getAddressSpaceForPseudoSourceKind(unsigned Kind) const { 789 switch (Kind) { 790 case PseudoSourceValue::Stack: 791 case PseudoSourceValue::FixedStack: 792 return AMDGPUAS::PRIVATE_ADDRESS; 793 case PseudoSourceValue::ConstantPool: 794 case PseudoSourceValue::GOT: 795 case PseudoSourceValue::JumpTable: 796 case PseudoSourceValue::GlobalValueCallEntry: 797 case PseudoSourceValue::ExternalSymbolCallEntry: 798 return AMDGPUAS::CONSTANT_ADDRESS; 799 } 800 return AMDGPUAS::FLAT_ADDRESS; 801 } 802 803 //===----------------------------------------------------------------------===// 804 // GCN Target Machine (SI+) 805 //===----------------------------------------------------------------------===// 806 807 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 808 StringRef CPU, StringRef FS, 809 TargetOptions Options, 810 std::optional<Reloc::Model> RM, 811 std::optional<CodeModel::Model> CM, 812 CodeGenOpt::Level OL, bool JIT) 813 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 814 815 const TargetSubtargetInfo * 816 GCNTargetMachine::getSubtargetImpl(const Function &F) const { 817 StringRef GPU = getGPUName(F); 818 StringRef FS = getFeatureString(F); 819 820 SmallString<128> SubtargetKey(GPU); 821 SubtargetKey.append(FS); 822 823 auto &I = SubtargetMap[SubtargetKey]; 824 if (!I) { 825 // This needs to be done before we create a new subtarget since any 826 // creation will depend on the TM and the code generation flags on the 827 // function that reside in TargetOptions. 828 resetTargetOptions(F); 829 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 830 } 831 832 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 833 834 return I.get(); 835 } 836 837 TargetTransformInfo 838 GCNTargetMachine::getTargetTransformInfo(const Function &F) const { 839 return TargetTransformInfo(GCNTTIImpl(this, F)); 840 } 841 842 //===----------------------------------------------------------------------===// 843 // AMDGPU Pass Setup 844 //===----------------------------------------------------------------------===// 845 846 std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const { 847 return getStandardCSEConfigForOpt(TM->getOptLevel()); 848 } 849 850 namespace { 851 852 class GCNPassConfig final : public AMDGPUPassConfig { 853 public: 854 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 855 : AMDGPUPassConfig(TM, PM) { 856 // It is necessary to know the register usage of the entire call graph. We 857 // allow calls without EnableAMDGPUFunctionCalls if they are marked 858 // noinline, so this is always required. 859 setRequiresCodeGenSCCOrder(true); 860 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 861 } 862 863 GCNTargetMachine &getGCNTargetMachine() const { 864 return getTM<GCNTargetMachine>(); 865 } 866 867 ScheduleDAGInstrs * 868 createMachineScheduler(MachineSchedContext *C) const override; 869 870 ScheduleDAGInstrs * 871 createPostMachineScheduler(MachineSchedContext *C) const override { 872 ScheduleDAGMI *DAG = new GCNPostScheduleDAGMILive( 873 C, std::make_unique<PostGenericScheduler>(C), 874 /*RemoveKillFlags=*/true); 875 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 876 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 877 if (ST.shouldClusterStores()) 878 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 879 DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII)); 880 DAG->addMutation(createIGroupLPDAGMutation()); 881 if (isPassEnabled(EnableVOPD, CodeGenOpt::Less)) 882 DAG->addMutation(createVOPDPairingMutation()); 883 return DAG; 884 } 885 886 bool addPreISel() override; 887 void addMachineSSAOptimization() override; 888 bool addILPOpts() override; 889 bool addInstSelector() override; 890 bool addIRTranslator() override; 891 void addPreLegalizeMachineIR() override; 892 bool addLegalizeMachineIR() override; 893 void addPreRegBankSelect() override; 894 bool addRegBankSelect() override; 895 void addPreGlobalInstructionSelect() override; 896 bool addGlobalInstructionSelect() override; 897 void addFastRegAlloc() override; 898 void addOptimizedRegAlloc() override; 899 900 FunctionPass *createSGPRAllocPass(bool Optimized); 901 FunctionPass *createVGPRAllocPass(bool Optimized); 902 FunctionPass *createRegAllocPass(bool Optimized) override; 903 904 bool addRegAssignAndRewriteFast() override; 905 bool addRegAssignAndRewriteOptimized() override; 906 907 void addPreRegAlloc() override; 908 bool addPreRewrite() override; 909 void addPostRegAlloc() override; 910 void addPreSched2() override; 911 void addPreEmitPass() override; 912 }; 913 914 } // end anonymous namespace 915 916 AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 917 : TargetPassConfig(TM, PM) { 918 // Exceptions and StackMaps are not supported, so these passes will never do 919 // anything. 920 disablePass(&StackMapLivenessID); 921 disablePass(&FuncletLayoutID); 922 // Garbage collection is not supported. 923 disablePass(&GCLoweringID); 924 disablePass(&ShadowStackGCLoweringID); 925 } 926 927 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 928 if (getOptLevel() == CodeGenOpt::Aggressive) 929 addPass(createGVNPass()); 930 else 931 addPass(createEarlyCSEPass()); 932 } 933 934 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 935 addPass(createLICMPass()); 936 addPass(createSeparateConstOffsetFromGEPPass()); 937 // ReassociateGEPs exposes more opportunities for SLSR. See 938 // the example in reassociate-geps-and-slsr.ll. 939 addPass(createStraightLineStrengthReducePass()); 940 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 941 // EarlyCSE can reuse. 942 addEarlyCSEOrGVNPass(); 943 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 944 addPass(createNaryReassociatePass()); 945 // NaryReassociate on GEPs creates redundant common expressions, so run 946 // EarlyCSE after it. 947 addPass(createEarlyCSEPass()); 948 } 949 950 void AMDGPUPassConfig::addIRPasses() { 951 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 952 953 // There is no reason to run these. 954 disablePass(&StackMapLivenessID); 955 disablePass(&FuncletLayoutID); 956 disablePass(&PatchableFunctionID); 957 958 addPass(createAMDGPUPrintfRuntimeBinding()); 959 addPass(createAMDGPUCtorDtorLoweringLegacyPass()); 960 961 // A call to propagate attributes pass in the backend in case opt was not run. 962 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 963 964 addPass(createAMDGPULowerIntrinsicsPass()); 965 966 // Function calls are not supported, so make sure we inline everything. 967 addPass(createAMDGPUAlwaysInlinePass()); 968 addPass(createAlwaysInlinerLegacyPass()); 969 // We need to add the barrier noop pass, otherwise adding the function 970 // inlining pass will cause all of the PassConfigs passes to be run 971 // one function at a time, which means if we have a module with two 972 // functions, then we will generate code for the first function 973 // without ever running any passes on the second. 974 addPass(createBarrierNoopPass()); 975 976 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 977 if (TM.getTargetTriple().getArch() == Triple::r600) 978 addPass(createR600OpenCLImageTypeLoweringPass()); 979 980 // Replace OpenCL enqueued block function pointers with global variables. 981 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 982 983 // Can increase LDS used by kernel so runs before PromoteAlloca 984 if (EnableLowerModuleLDS) { 985 // The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the 986 // pass "amdgpu-lower-module-lds", and also it required to be run only if 987 // "amdgpu-lower-module-lds" pass is enabled. 988 if (EnableLDSReplaceWithPointer) 989 addPass(createAMDGPUReplaceLDSUseWithPointerPass()); 990 991 addPass(createAMDGPULowerModuleLDSPass()); 992 } 993 994 if (TM.getOptLevel() > CodeGenOpt::None) 995 addPass(createInferAddressSpacesPass()); 996 997 addPass(createAtomicExpandPass()); 998 999 if (TM.getOptLevel() > CodeGenOpt::None) { 1000 addPass(createAMDGPUPromoteAlloca()); 1001 1002 if (EnableSROA) 1003 addPass(createSROAPass()); 1004 if (isPassEnabled(EnableScalarIRPasses)) 1005 addStraightLineScalarOptimizationPasses(); 1006 1007 if (EnableAMDGPUAliasAnalysis) { 1008 addPass(createAMDGPUAAWrapperPass()); 1009 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 1010 AAResults &AAR) { 1011 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 1012 AAR.addAAResult(WrapperPass->getResult()); 1013 })); 1014 } 1015 1016 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1017 // TODO: May want to move later or split into an early and late one. 1018 addPass(createAMDGPUCodeGenPreparePass()); 1019 } 1020 } 1021 1022 TargetPassConfig::addIRPasses(); 1023 1024 // EarlyCSE is not always strong enough to clean up what LSR produces. For 1025 // example, GVN can combine 1026 // 1027 // %0 = add %a, %b 1028 // %1 = add %b, %a 1029 // 1030 // and 1031 // 1032 // %0 = shl nsw %a, 2 1033 // %1 = shl %a, 2 1034 // 1035 // but EarlyCSE can do neither of them. 1036 if (isPassEnabled(EnableScalarIRPasses)) 1037 addEarlyCSEOrGVNPass(); 1038 } 1039 1040 void AMDGPUPassConfig::addCodeGenPrepare() { 1041 if (TM->getTargetTriple().getArch() == Triple::amdgcn) { 1042 addPass(createAMDGPUAttributorPass()); 1043 1044 // FIXME: This pass adds 2 hacky attributes that can be replaced with an 1045 // analysis, and should be removed. 1046 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 1047 } 1048 1049 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 1050 EnableLowerKernelArguments) 1051 addPass(createAMDGPULowerKernelArgumentsPass()); 1052 1053 TargetPassConfig::addCodeGenPrepare(); 1054 1055 if (isPassEnabled(EnableLoadStoreVectorizer)) 1056 addPass(createLoadStoreVectorizerPass()); 1057 1058 // LowerSwitch pass may introduce unreachable blocks that can 1059 // cause unexpected behavior for subsequent passes. Placing it 1060 // here seems better that these blocks would get cleaned up by 1061 // UnreachableBlockElim inserted next in the pass flow. 1062 addPass(createLowerSwitchPass()); 1063 } 1064 1065 bool AMDGPUPassConfig::addPreISel() { 1066 if (TM->getOptLevel() > CodeGenOpt::None) 1067 addPass(createFlattenCFGPass()); 1068 return false; 1069 } 1070 1071 bool AMDGPUPassConfig::addInstSelector() { 1072 addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); 1073 return false; 1074 } 1075 1076 bool AMDGPUPassConfig::addGCPasses() { 1077 // Do nothing. GC is not supported. 1078 return false; 1079 } 1080 1081 llvm::ScheduleDAGInstrs * 1082 AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const { 1083 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1084 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 1085 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 1086 if (ST.shouldClusterStores()) 1087 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 1088 return DAG; 1089 } 1090 1091 MachineFunctionInfo *R600TargetMachine::createMachineFunctionInfo( 1092 BumpPtrAllocator &Allocator, const Function &F, 1093 const TargetSubtargetInfo *STI) const { 1094 return R600MachineFunctionInfo::create<R600MachineFunctionInfo>( 1095 Allocator, F, static_cast<const R600Subtarget *>(STI)); 1096 } 1097 1098 //===----------------------------------------------------------------------===// 1099 // GCN Pass Setup 1100 //===----------------------------------------------------------------------===// 1101 1102 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1103 MachineSchedContext *C) const { 1104 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1105 if (ST.enableSIScheduler()) 1106 return createSIMachineScheduler(C); 1107 1108 if (EnableMaxIlpSchedStrategy) 1109 return createGCNMaxILPMachineScheduler(C); 1110 1111 return createGCNMaxOccupancyMachineScheduler(C); 1112 } 1113 1114 bool GCNPassConfig::addPreISel() { 1115 AMDGPUPassConfig::addPreISel(); 1116 1117 if (TM->getOptLevel() > CodeGenOpt::None) 1118 addPass(createAMDGPULateCodeGenPreparePass()); 1119 1120 if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) { 1121 addPass(createAMDGPUAtomicOptimizerPass()); 1122 } 1123 1124 if (TM->getOptLevel() > CodeGenOpt::None) 1125 addPass(createSinkingPass()); 1126 1127 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1128 // regions formed by them. 1129 addPass(&AMDGPUUnifyDivergentExitNodesID); 1130 if (!LateCFGStructurize) { 1131 if (EnableStructurizerWorkarounds) { 1132 addPass(createFixIrreduciblePass()); 1133 addPass(createUnifyLoopExitsPass()); 1134 } 1135 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1136 } 1137 addPass(createAMDGPUAnnotateUniformValues()); 1138 if (!LateCFGStructurize) { 1139 addPass(createSIAnnotateControlFlowPass()); 1140 // TODO: Move this right after structurizeCFG to avoid extra divergence 1141 // analysis. This depends on stopping SIAnnotateControlFlow from making 1142 // control flow modifications. 1143 addPass(createAMDGPURewriteUndefForPHIPass()); 1144 } 1145 addPass(createLCSSAPass()); 1146 1147 if (TM->getOptLevel() > CodeGenOpt::Less) 1148 addPass(&AMDGPUPerfHintAnalysisID); 1149 1150 return false; 1151 } 1152 1153 void GCNPassConfig::addMachineSSAOptimization() { 1154 TargetPassConfig::addMachineSSAOptimization(); 1155 1156 // We want to fold operands after PeepholeOptimizer has run (or as part of 1157 // it), because it will eliminate extra copies making it easier to fold the 1158 // real source operand. We want to eliminate dead instructions after, so that 1159 // we see fewer uses of the copies. We then need to clean up the dead 1160 // instructions leftover after the operands are folded as well. 1161 // 1162 // XXX - Can we get away without running DeadMachineInstructionElim again? 1163 addPass(&SIFoldOperandsID); 1164 if (EnableDPPCombine) 1165 addPass(&GCNDPPCombineID); 1166 addPass(&SILoadStoreOptimizerID); 1167 if (isPassEnabled(EnableSDWAPeephole)) { 1168 addPass(&SIPeepholeSDWAID); 1169 addPass(&EarlyMachineLICMID); 1170 addPass(&MachineCSEID); 1171 addPass(&SIFoldOperandsID); 1172 } 1173 addPass(&DeadMachineInstructionElimID); 1174 addPass(createSIShrinkInstructionsPass()); 1175 } 1176 1177 bool GCNPassConfig::addILPOpts() { 1178 if (EnableEarlyIfConversion) 1179 addPass(&EarlyIfConverterID); 1180 1181 TargetPassConfig::addILPOpts(); 1182 return false; 1183 } 1184 1185 bool GCNPassConfig::addInstSelector() { 1186 AMDGPUPassConfig::addInstSelector(); 1187 addPass(&SIFixSGPRCopiesID); 1188 addPass(createSILowerI1CopiesPass()); 1189 return false; 1190 } 1191 1192 bool GCNPassConfig::addIRTranslator() { 1193 addPass(new IRTranslator(getOptLevel())); 1194 return false; 1195 } 1196 1197 void GCNPassConfig::addPreLegalizeMachineIR() { 1198 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1199 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1200 addPass(new Localizer()); 1201 } 1202 1203 bool GCNPassConfig::addLegalizeMachineIR() { 1204 addPass(new Legalizer()); 1205 return false; 1206 } 1207 1208 void GCNPassConfig::addPreRegBankSelect() { 1209 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1210 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1211 } 1212 1213 bool GCNPassConfig::addRegBankSelect() { 1214 addPass(new RegBankSelect()); 1215 return false; 1216 } 1217 1218 void GCNPassConfig::addPreGlobalInstructionSelect() { 1219 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1220 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1221 } 1222 1223 bool GCNPassConfig::addGlobalInstructionSelect() { 1224 addPass(new InstructionSelect(getOptLevel())); 1225 return false; 1226 } 1227 1228 void GCNPassConfig::addPreRegAlloc() { 1229 if (LateCFGStructurize) { 1230 addPass(createAMDGPUMachineCFGStructurizerPass()); 1231 } 1232 } 1233 1234 void GCNPassConfig::addFastRegAlloc() { 1235 // FIXME: We have to disable the verifier here because of PHIElimination + 1236 // TwoAddressInstructions disabling it. 1237 1238 // This must be run immediately after phi elimination and before 1239 // TwoAddressInstructions, otherwise the processing of the tied operand of 1240 // SI_ELSE will introduce a copy of the tied operand source after the else. 1241 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1242 1243 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1244 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1245 1246 TargetPassConfig::addFastRegAlloc(); 1247 } 1248 1249 void GCNPassConfig::addOptimizedRegAlloc() { 1250 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1251 // instructions that cause scheduling barriers. 1252 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1253 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1254 1255 if (OptExecMaskPreRA) 1256 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1257 1258 if (isPassEnabled(EnablePreRAOptimizations)) 1259 insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID); 1260 1261 // This is not an essential optimization and it has a noticeable impact on 1262 // compilation time, so we only enable it from O2. 1263 if (TM->getOptLevel() > CodeGenOpt::Less) 1264 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1265 1266 // FIXME: when an instruction has a Killed operand, and the instruction is 1267 // inside a bundle, seems only the BUNDLE instruction appears as the Kills of 1268 // the register in LiveVariables, this would trigger a failure in verifier, 1269 // we should fix it and enable the verifier. 1270 if (OptVGPRLiveRange) 1271 insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID); 1272 // This must be run immediately after phi elimination and before 1273 // TwoAddressInstructions, otherwise the processing of the tied operand of 1274 // SI_ELSE will introduce a copy of the tied operand source after the else. 1275 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1276 1277 if (EnableDCEInRA) 1278 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1279 1280 TargetPassConfig::addOptimizedRegAlloc(); 1281 } 1282 1283 bool GCNPassConfig::addPreRewrite() { 1284 if (EnableRegReassign) 1285 addPass(&GCNNSAReassignID); 1286 return true; 1287 } 1288 1289 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) { 1290 // Initialize the global default. 1291 llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag, 1292 initializeDefaultSGPRRegisterAllocatorOnce); 1293 1294 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 1295 if (Ctor != useDefaultRegisterAllocator) 1296 return Ctor(); 1297 1298 if (Optimized) 1299 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 1300 1301 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 1302 } 1303 1304 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) { 1305 // Initialize the global default. 1306 llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag, 1307 initializeDefaultVGPRRegisterAllocatorOnce); 1308 1309 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 1310 if (Ctor != useDefaultRegisterAllocator) 1311 return Ctor(); 1312 1313 if (Optimized) 1314 return createGreedyVGPRRegisterAllocator(); 1315 1316 return createFastVGPRRegisterAllocator(); 1317 } 1318 1319 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) { 1320 llvm_unreachable("should not be used"); 1321 } 1322 1323 static const char RegAllocOptNotSupportedMessage[] = 1324 "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc"; 1325 1326 bool GCNPassConfig::addRegAssignAndRewriteFast() { 1327 if (!usingDefaultRegAlloc()) 1328 report_fatal_error(RegAllocOptNotSupportedMessage); 1329 1330 addPass(createSGPRAllocPass(false)); 1331 1332 // Equivalent of PEI for SGPRs. 1333 addPass(&SILowerSGPRSpillsID); 1334 1335 addPass(createVGPRAllocPass(false)); 1336 return true; 1337 } 1338 1339 bool GCNPassConfig::addRegAssignAndRewriteOptimized() { 1340 if (!usingDefaultRegAlloc()) 1341 report_fatal_error(RegAllocOptNotSupportedMessage); 1342 1343 addPass(createSGPRAllocPass(true)); 1344 1345 // Commit allocated register changes. This is mostly necessary because too 1346 // many things rely on the use lists of the physical registers, such as the 1347 // verifier. This is only necessary with allocators which use LiveIntervals, 1348 // since FastRegAlloc does the replacements itself. 1349 addPass(createVirtRegRewriter(false)); 1350 1351 // Equivalent of PEI for SGPRs. 1352 addPass(&SILowerSGPRSpillsID); 1353 1354 addPass(createVGPRAllocPass(true)); 1355 1356 addPreRewrite(); 1357 addPass(&VirtRegRewriterID); 1358 1359 return true; 1360 } 1361 1362 void GCNPassConfig::addPostRegAlloc() { 1363 addPass(&SIFixVGPRCopiesID); 1364 if (getOptLevel() > CodeGenOpt::None) 1365 addPass(&SIOptimizeExecMaskingID); 1366 TargetPassConfig::addPostRegAlloc(); 1367 } 1368 1369 void GCNPassConfig::addPreSched2() { 1370 if (TM->getOptLevel() > CodeGenOpt::None) 1371 addPass(createSIShrinkInstructionsPass()); 1372 addPass(&SIPostRABundlerID); 1373 } 1374 1375 void GCNPassConfig::addPreEmitPass() { 1376 if (isPassEnabled(EnableVOPD, CodeGenOpt::Less)) 1377 addPass(&GCNCreateVOPDID); 1378 addPass(createSIMemoryLegalizerPass()); 1379 addPass(createSIInsertWaitcntsPass()); 1380 1381 addPass(createSIModeRegisterPass()); 1382 1383 if (getOptLevel() > CodeGenOpt::None) 1384 addPass(&SIInsertHardClausesID); 1385 1386 addPass(&SILateBranchLoweringPassID); 1387 if (isPassEnabled(EnableSetWavePriority, CodeGenOpt::Less)) 1388 addPass(createAMDGPUSetWavePriorityPass()); 1389 if (getOptLevel() > CodeGenOpt::None) 1390 addPass(&SIPreEmitPeepholeID); 1391 // The hazard recognizer that runs as part of the post-ra scheduler does not 1392 // guarantee to be able handle all hazards correctly. This is because if there 1393 // are multiple scheduling regions in a basic block, the regions are scheduled 1394 // bottom up, so when we begin to schedule a region we don't know what 1395 // instructions were emitted directly before it. 1396 // 1397 // Here we add a stand-alone hazard recognizer pass which can handle all 1398 // cases. 1399 addPass(&PostRAHazardRecognizerID); 1400 1401 if (getOptLevel() > CodeGenOpt::Less) 1402 addPass(&AMDGPUReleaseVGPRsID); 1403 1404 if (isPassEnabled(EnableInsertDelayAlu, CodeGenOpt::Less)) 1405 addPass(&AMDGPUInsertDelayAluID); 1406 1407 addPass(&BranchRelaxationPassID); 1408 } 1409 1410 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1411 return new GCNPassConfig(*this, PM); 1412 } 1413 1414 MachineFunctionInfo *GCNTargetMachine::createMachineFunctionInfo( 1415 BumpPtrAllocator &Allocator, const Function &F, 1416 const TargetSubtargetInfo *STI) const { 1417 return SIMachineFunctionInfo::create<SIMachineFunctionInfo>( 1418 Allocator, F, static_cast<const GCNSubtarget *>(STI)); 1419 } 1420 1421 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1422 return new yaml::SIMachineFunctionInfo(); 1423 } 1424 1425 yaml::MachineFunctionInfo * 1426 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1427 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1428 return new yaml::SIMachineFunctionInfo( 1429 *MFI, *MF.getSubtarget<GCNSubtarget>().getRegisterInfo(), MF); 1430 } 1431 1432 bool GCNTargetMachine::parseMachineFunctionInfo( 1433 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1434 SMDiagnostic &Error, SMRange &SourceRange) const { 1435 const yaml::SIMachineFunctionInfo &YamlMFI = 1436 static_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1437 MachineFunction &MF = PFS.MF; 1438 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1439 1440 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) 1441 return true; 1442 1443 if (MFI->Occupancy == 0) { 1444 // Fixup the subtarget dependent default value. 1445 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1446 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1447 } 1448 1449 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1450 Register TempReg; 1451 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1452 SourceRange = RegName.SourceRange; 1453 return true; 1454 } 1455 RegVal = TempReg; 1456 1457 return false; 1458 }; 1459 1460 auto parseOptionalRegister = [&](const yaml::StringValue &RegName, 1461 Register &RegVal) { 1462 return !RegName.Value.empty() && parseRegister(RegName, RegVal); 1463 }; 1464 1465 if (parseOptionalRegister(YamlMFI.VGPRForAGPRCopy, MFI->VGPRForAGPRCopy)) 1466 return true; 1467 1468 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1469 // Create a diagnostic for a the register string literal. 1470 const MemoryBuffer &Buffer = 1471 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1472 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1473 RegName.Value.size(), SourceMgr::DK_Error, 1474 "incorrect register class for field", RegName.Value, 1475 std::nullopt, std::nullopt); 1476 SourceRange = RegName.SourceRange; 1477 return true; 1478 }; 1479 1480 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1481 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1482 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1483 return true; 1484 1485 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1486 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1487 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1488 } 1489 1490 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1491 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1492 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1493 } 1494 1495 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1496 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1497 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1498 } 1499 1500 for (const auto &YamlReg : YamlMFI.WWMReservedRegs) { 1501 Register ParsedReg; 1502 if (parseRegister(YamlReg, ParsedReg)) 1503 return true; 1504 1505 MFI->reserveWWMRegister(ParsedReg); 1506 } 1507 1508 auto parseAndCheckArgument = [&](const std::optional<yaml::SIArgument> &A, 1509 const TargetRegisterClass &RC, 1510 ArgDescriptor &Arg, unsigned UserSGPRs, 1511 unsigned SystemSGPRs) { 1512 // Skip parsing if it's not present. 1513 if (!A) 1514 return false; 1515 1516 if (A->IsRegister) { 1517 Register Reg; 1518 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1519 SourceRange = A->RegisterName.SourceRange; 1520 return true; 1521 } 1522 if (!RC.contains(Reg)) 1523 return diagnoseRegisterClass(A->RegisterName); 1524 Arg = ArgDescriptor::createRegister(Reg); 1525 } else 1526 Arg = ArgDescriptor::createStack(A->StackOffset); 1527 // Check and apply the optional mask. 1528 if (A->Mask) 1529 Arg = ArgDescriptor::createArg(Arg, *A->Mask); 1530 1531 MFI->NumUserSGPRs += UserSGPRs; 1532 MFI->NumSystemSGPRs += SystemSGPRs; 1533 return false; 1534 }; 1535 1536 if (YamlMFI.ArgInfo && 1537 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1538 AMDGPU::SGPR_128RegClass, 1539 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1540 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1541 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1542 2, 0) || 1543 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1544 MFI->ArgInfo.QueuePtr, 2, 0) || 1545 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1546 AMDGPU::SReg_64RegClass, 1547 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1548 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1549 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1550 2, 0) || 1551 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1552 AMDGPU::SReg_64RegClass, 1553 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1554 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1555 AMDGPU::SGPR_32RegClass, 1556 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1557 parseAndCheckArgument(YamlMFI.ArgInfo->LDSKernelId, 1558 AMDGPU::SGPR_32RegClass, 1559 MFI->ArgInfo.LDSKernelId, 0, 1) || 1560 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1561 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1562 0, 1) || 1563 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1564 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1565 0, 1) || 1566 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1567 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1568 0, 1) || 1569 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1570 AMDGPU::SGPR_32RegClass, 1571 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1572 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1573 AMDGPU::SGPR_32RegClass, 1574 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1575 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1576 AMDGPU::SReg_64RegClass, 1577 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1578 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1579 AMDGPU::SReg_64RegClass, 1580 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1581 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1582 AMDGPU::VGPR_32RegClass, 1583 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1584 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1585 AMDGPU::VGPR_32RegClass, 1586 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1587 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1588 AMDGPU::VGPR_32RegClass, 1589 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1590 return true; 1591 1592 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1593 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1594 1595 // FIXME: Move proper support for denormal-fp-math into base MachineFunction 1596 MFI->Mode.FP32Denormals.Input = YamlMFI.Mode.FP32InputDenormals 1597 ? DenormalMode::IEEE 1598 : DenormalMode::PreserveSign; 1599 MFI->Mode.FP32Denormals.Output = YamlMFI.Mode.FP32OutputDenormals 1600 ? DenormalMode::IEEE 1601 : DenormalMode::PreserveSign; 1602 1603 MFI->Mode.FP64FP16Denormals.Input = YamlMFI.Mode.FP64FP16InputDenormals 1604 ? DenormalMode::IEEE 1605 : DenormalMode::PreserveSign; 1606 MFI->Mode.FP64FP16Denormals.Output = YamlMFI.Mode.FP64FP16OutputDenormals 1607 ? DenormalMode::IEEE 1608 : DenormalMode::PreserveSign; 1609 1610 return false; 1611 } 1612