1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for SI+ GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCtorDtorLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUIGroupLP.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPURegBankSelect.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "AMDGPUUnifyDivergentExitNodes.h" 26 #include "GCNIterativeScheduler.h" 27 #include "GCNSchedStrategy.h" 28 #include "GCNVOPDUtils.h" 29 #include "R600.h" 30 #include "R600MachineFunctionInfo.h" 31 #include "R600TargetMachine.h" 32 #include "SIMachineFunctionInfo.h" 33 #include "SIMachineScheduler.h" 34 #include "TargetInfo/AMDGPUTargetInfo.h" 35 #include "Utils/AMDGPUBaseInfo.h" 36 #include "llvm/Analysis/CGSCCPassManager.h" 37 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 38 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 39 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 40 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 41 #include "llvm/CodeGen/GlobalISel/Localizer.h" 42 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 43 #include "llvm/CodeGen/MIRParser/MIParser.h" 44 #include "llvm/CodeGen/Passes.h" 45 #include "llvm/CodeGen/RegAllocRegistry.h" 46 #include "llvm/CodeGen/TargetPassConfig.h" 47 #include "llvm/IR/IntrinsicsAMDGPU.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/PatternMatch.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/MC/TargetRegistry.h" 52 #include "llvm/Passes/PassBuilder.h" 53 #include "llvm/Transforms/IPO.h" 54 #include "llvm/Transforms/IPO/AlwaysInliner.h" 55 #include "llvm/Transforms/IPO/GlobalDCE.h" 56 #include "llvm/Transforms/IPO/Internalize.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Scalar/GVN.h" 59 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 60 #include "llvm/Transforms/Utils.h" 61 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 62 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" 63 #include <optional> 64 65 using namespace llvm; 66 using namespace llvm::PatternMatch; 67 68 namespace { 69 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> { 70 public: 71 SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 72 : RegisterRegAllocBase(N, D, C) {} 73 }; 74 75 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> { 76 public: 77 VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 78 : RegisterRegAllocBase(N, D, C) {} 79 }; 80 81 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI, 82 const TargetRegisterClass &RC) { 83 return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 84 } 85 86 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI, 87 const TargetRegisterClass &RC) { 88 return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 89 } 90 91 92 /// -{sgpr|vgpr}-regalloc=... command line option. 93 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } 94 95 /// A dummy default pass factory indicates whether the register allocator is 96 /// overridden on the command line. 97 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag; 98 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag; 99 100 static SGPRRegisterRegAlloc 101 defaultSGPRRegAlloc("default", 102 "pick SGPR register allocator based on -O option", 103 useDefaultRegisterAllocator); 104 105 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false, 106 RegisterPassParser<SGPRRegisterRegAlloc>> 107 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 108 cl::desc("Register allocator to use for SGPRs")); 109 110 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false, 111 RegisterPassParser<VGPRRegisterRegAlloc>> 112 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 113 cl::desc("Register allocator to use for VGPRs")); 114 115 116 static void initializeDefaultSGPRRegisterAllocatorOnce() { 117 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 118 119 if (!Ctor) { 120 Ctor = SGPRRegAlloc; 121 SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc); 122 } 123 } 124 125 static void initializeDefaultVGPRRegisterAllocatorOnce() { 126 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 127 128 if (!Ctor) { 129 Ctor = VGPRRegAlloc; 130 VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc); 131 } 132 } 133 134 static FunctionPass *createBasicSGPRRegisterAllocator() { 135 return createBasicRegisterAllocator(onlyAllocateSGPRs); 136 } 137 138 static FunctionPass *createGreedySGPRRegisterAllocator() { 139 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 140 } 141 142 static FunctionPass *createFastSGPRRegisterAllocator() { 143 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 144 } 145 146 static FunctionPass *createBasicVGPRRegisterAllocator() { 147 return createBasicRegisterAllocator(onlyAllocateVGPRs); 148 } 149 150 static FunctionPass *createGreedyVGPRRegisterAllocator() { 151 return createGreedyRegisterAllocator(onlyAllocateVGPRs); 152 } 153 154 static FunctionPass *createFastVGPRRegisterAllocator() { 155 return createFastRegisterAllocator(onlyAllocateVGPRs, true); 156 } 157 158 static SGPRRegisterRegAlloc basicRegAllocSGPR( 159 "basic", "basic register allocator", createBasicSGPRRegisterAllocator); 160 static SGPRRegisterRegAlloc greedyRegAllocSGPR( 161 "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator); 162 163 static SGPRRegisterRegAlloc fastRegAllocSGPR( 164 "fast", "fast register allocator", createFastSGPRRegisterAllocator); 165 166 167 static VGPRRegisterRegAlloc basicRegAllocVGPR( 168 "basic", "basic register allocator", createBasicVGPRRegisterAllocator); 169 static VGPRRegisterRegAlloc greedyRegAllocVGPR( 170 "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator); 171 172 static VGPRRegisterRegAlloc fastRegAllocVGPR( 173 "fast", "fast register allocator", createFastVGPRRegisterAllocator); 174 } 175 176 static cl::opt<bool> EnableSROA( 177 "amdgpu-sroa", 178 cl::desc("Run SROA after promote alloca pass"), 179 cl::ReallyHidden, 180 cl::init(true)); 181 182 static cl::opt<bool> 183 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 184 cl::desc("Run early if-conversion"), 185 cl::init(false)); 186 187 static cl::opt<bool> 188 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 189 cl::desc("Run pre-RA exec mask optimizations"), 190 cl::init(true)); 191 192 static cl::opt<bool> 193 LowerCtorDtor("amdgpu-lower-global-ctor-dtor", 194 cl::desc("Lower GPU ctor / dtors to globals on the device."), 195 cl::init(true), cl::Hidden); 196 197 // Option to disable vectorizer for tests. 198 static cl::opt<bool> EnableLoadStoreVectorizer( 199 "amdgpu-load-store-vectorizer", 200 cl::desc("Enable load store vectorizer"), 201 cl::init(true), 202 cl::Hidden); 203 204 // Option to control global loads scalarization 205 static cl::opt<bool> ScalarizeGlobal( 206 "amdgpu-scalarize-global-loads", 207 cl::desc("Enable global load scalarization"), 208 cl::init(true), 209 cl::Hidden); 210 211 // Option to run internalize pass. 212 static cl::opt<bool> InternalizeSymbols( 213 "amdgpu-internalize-symbols", 214 cl::desc("Enable elimination of non-kernel functions and unused globals"), 215 cl::init(false), 216 cl::Hidden); 217 218 // Option to inline all early. 219 static cl::opt<bool> EarlyInlineAll( 220 "amdgpu-early-inline-all", 221 cl::desc("Inline all functions early"), 222 cl::init(false), 223 cl::Hidden); 224 225 static cl::opt<bool> RemoveIncompatibleFunctions( 226 "amdgpu-enable-remove-incompatible-functions", cl::Hidden, 227 cl::desc("Enable removal of functions when they" 228 "use features not supported by the target GPU"), 229 cl::init(true)); 230 231 static cl::opt<bool> EnableSDWAPeephole( 232 "amdgpu-sdwa-peephole", 233 cl::desc("Enable SDWA peepholer"), 234 cl::init(true)); 235 236 static cl::opt<bool> EnableDPPCombine( 237 "amdgpu-dpp-combine", 238 cl::desc("Enable DPP combiner"), 239 cl::init(true)); 240 241 // Enable address space based alias analysis 242 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 243 cl::desc("Enable AMDGPU Alias Analysis"), 244 cl::init(true)); 245 246 // Option to run late CFG structurizer 247 static cl::opt<bool, true> LateCFGStructurize( 248 "amdgpu-late-structurize", 249 cl::desc("Enable late CFG structurization"), 250 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 251 cl::Hidden); 252 253 // Enable lib calls simplifications 254 static cl::opt<bool> EnableLibCallSimplify( 255 "amdgpu-simplify-libcall", 256 cl::desc("Enable amdgpu library simplifications"), 257 cl::init(true), 258 cl::Hidden); 259 260 static cl::opt<bool> EnableLowerKernelArguments( 261 "amdgpu-ir-lower-kernel-arguments", 262 cl::desc("Lower kernel argument loads in IR pass"), 263 cl::init(true), 264 cl::Hidden); 265 266 static cl::opt<bool> EnableRegReassign( 267 "amdgpu-reassign-regs", 268 cl::desc("Enable register reassign optimizations on gfx10+"), 269 cl::init(true), 270 cl::Hidden); 271 272 static cl::opt<bool> OptVGPRLiveRange( 273 "amdgpu-opt-vgpr-liverange", 274 cl::desc("Enable VGPR liverange optimizations for if-else structure"), 275 cl::init(true), cl::Hidden); 276 277 static cl::opt<ScanOptions> AMDGPUAtomicOptimizerStrategy( 278 "amdgpu-atomic-optimizer-strategy", 279 cl::desc("Select DPP or Iterative strategy for scan"), 280 cl::init(ScanOptions::Iterative), 281 cl::values( 282 clEnumValN(ScanOptions::DPP, "DPP", "Use DPP operations for scan"), 283 clEnumValN(ScanOptions::Iterative, "Iterative", 284 "Use Iterative approach for scan"), 285 clEnumValN(ScanOptions::None, "None", "Disable atomic optimizer"))); 286 287 // Enable Mode register optimization 288 static cl::opt<bool> EnableSIModeRegisterPass( 289 "amdgpu-mode-register", 290 cl::desc("Enable mode register pass"), 291 cl::init(true), 292 cl::Hidden); 293 294 // Enable GFX11+ s_delay_alu insertion 295 static cl::opt<bool> 296 EnableInsertDelayAlu("amdgpu-enable-delay-alu", 297 cl::desc("Enable s_delay_alu insertion"), 298 cl::init(true), cl::Hidden); 299 300 // Enable GFX11+ VOPD 301 static cl::opt<bool> 302 EnableVOPD("amdgpu-enable-vopd", 303 cl::desc("Enable VOPD, dual issue of VALU in wave32"), 304 cl::init(true), cl::Hidden); 305 306 // Option is used in lit tests to prevent deadcoding of patterns inspected. 307 static cl::opt<bool> 308 EnableDCEInRA("amdgpu-dce-in-ra", 309 cl::init(true), cl::Hidden, 310 cl::desc("Enable machine DCE inside regalloc")); 311 312 static cl::opt<bool> EnableSetWavePriority("amdgpu-set-wave-priority", 313 cl::desc("Adjust wave priority"), 314 cl::init(false), cl::Hidden); 315 316 static cl::opt<bool> EnableScalarIRPasses( 317 "amdgpu-scalar-ir-passes", 318 cl::desc("Enable scalar IR passes"), 319 cl::init(true), 320 cl::Hidden); 321 322 static cl::opt<bool> EnableStructurizerWorkarounds( 323 "amdgpu-enable-structurizer-workarounds", 324 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 325 cl::Hidden); 326 327 static cl::opt<bool, true> EnableLowerModuleLDS( 328 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 329 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 330 cl::Hidden); 331 332 static cl::opt<bool> EnablePreRAOptimizations( 333 "amdgpu-enable-pre-ra-optimizations", 334 cl::desc("Enable Pre-RA optimizations pass"), cl::init(true), 335 cl::Hidden); 336 337 static cl::opt<bool> EnablePromoteKernelArguments( 338 "amdgpu-enable-promote-kernel-arguments", 339 cl::desc("Enable promotion of flat kernel pointer arguments to global"), 340 cl::Hidden, cl::init(true)); 341 342 static cl::opt<bool> EnableMaxIlpSchedStrategy( 343 "amdgpu-enable-max-ilp-scheduling-strategy", 344 cl::desc("Enable scheduling strategy to maximize ILP for a single wave."), 345 cl::Hidden, cl::init(false)); 346 347 static cl::opt<bool> EnableRewritePartialRegUses( 348 "amdgpu-enable-rewrite-partial-reg-uses", 349 cl::desc("Enable rewrite partial reg uses pass"), cl::init(false), 350 cl::Hidden); 351 352 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 353 // Register the target 354 RegisterTargetMachine<R600TargetMachine> X(getTheR600Target()); 355 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 356 357 PassRegistry *PR = PassRegistry::getPassRegistry(); 358 initializeR600ClauseMergePassPass(*PR); 359 initializeR600ControlFlowFinalizerPass(*PR); 360 initializeR600PacketizerPass(*PR); 361 initializeR600ExpandSpecialInstrsPassPass(*PR); 362 initializeR600VectorRegMergerPass(*PR); 363 initializeGlobalISel(*PR); 364 initializeAMDGPUDAGToDAGISelPass(*PR); 365 initializeGCNDPPCombinePass(*PR); 366 initializeSILowerI1CopiesPass(*PR); 367 initializeSILowerWWMCopiesPass(*PR); 368 initializeSILowerSGPRSpillsPass(*PR); 369 initializeSIFixSGPRCopiesPass(*PR); 370 initializeSIFixVGPRCopiesPass(*PR); 371 initializeSIFoldOperandsPass(*PR); 372 initializeSIPeepholeSDWAPass(*PR); 373 initializeSIShrinkInstructionsPass(*PR); 374 initializeSIOptimizeExecMaskingPreRAPass(*PR); 375 initializeSIOptimizeVGPRLiveRangePass(*PR); 376 initializeSILoadStoreOptimizerPass(*PR); 377 initializeAMDGPUCtorDtorLoweringLegacyPass(*PR); 378 initializeAMDGPUAlwaysInlinePass(*PR); 379 initializeAMDGPUAttributorPass(*PR); 380 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 381 initializeAMDGPUAnnotateUniformValuesPass(*PR); 382 initializeAMDGPUArgumentUsageInfoPass(*PR); 383 initializeAMDGPUAtomicOptimizerPass(*PR); 384 initializeAMDGPULowerKernelArgumentsPass(*PR); 385 initializeAMDGPUPromoteKernelArgumentsPass(*PR); 386 initializeAMDGPULowerKernelAttributesPass(*PR); 387 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 388 initializeAMDGPUPostLegalizerCombinerPass(*PR); 389 initializeAMDGPUPreLegalizerCombinerPass(*PR); 390 initializeAMDGPURegBankCombinerPass(*PR); 391 initializeAMDGPURegBankSelectPass(*PR); 392 initializeAMDGPUPromoteAllocaPass(*PR); 393 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 394 initializeAMDGPUCodeGenPreparePass(*PR); 395 initializeAMDGPULateCodeGenPreparePass(*PR); 396 initializeAMDGPURemoveIncompatibleFunctionsPass(*PR); 397 initializeAMDGPULowerModuleLDSPass(*PR); 398 initializeAMDGPURewriteOutArgumentsPass(*PR); 399 initializeAMDGPURewriteUndefForPHIPass(*PR); 400 initializeAMDGPUUnifyMetadataPass(*PR); 401 initializeSIAnnotateControlFlowPass(*PR); 402 initializeAMDGPUInsertDelayAluPass(*PR); 403 initializeSIInsertHardClausesPass(*PR); 404 initializeSIInsertWaitcntsPass(*PR); 405 initializeSIModeRegisterPass(*PR); 406 initializeSIWholeQuadModePass(*PR); 407 initializeSILowerControlFlowPass(*PR); 408 initializeSIPreEmitPeepholePass(*PR); 409 initializeSILateBranchLoweringPass(*PR); 410 initializeSIMemoryLegalizerPass(*PR); 411 initializeSIOptimizeExecMaskingPass(*PR); 412 initializeSIPreAllocateWWMRegsPass(*PR); 413 initializeSIFormMemoryClausesPass(*PR); 414 initializeSIPostRABundlerPass(*PR); 415 initializeGCNCreateVOPDPass(*PR); 416 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 417 initializeAMDGPUAAWrapperPassPass(*PR); 418 initializeAMDGPUExternalAAWrapperPass(*PR); 419 initializeAMDGPUUseNativeCallsPass(*PR); 420 initializeAMDGPUSimplifyLibCallsPass(*PR); 421 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 422 initializeAMDGPUResourceUsageAnalysisPass(*PR); 423 initializeGCNNSAReassignPass(*PR); 424 initializeGCNPreRAOptimizationsPass(*PR); 425 initializeGCNPreRALongBranchRegPass(*PR); 426 initializeGCNRewritePartialRegUsesPass(*PR); 427 } 428 429 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 430 return std::make_unique<AMDGPUTargetObjectFile>(); 431 } 432 433 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 434 return new SIScheduleDAGMI(C); 435 } 436 437 static ScheduleDAGInstrs * 438 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 439 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 440 ScheduleDAGMILive *DAG = 441 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 442 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 443 if (ST.shouldClusterStores()) 444 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 445 DAG->addMutation(createIGroupLPDAGMutation()); 446 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 447 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 448 return DAG; 449 } 450 451 static ScheduleDAGInstrs * 452 createGCNMaxILPMachineScheduler(MachineSchedContext *C) { 453 ScheduleDAGMILive *DAG = 454 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxILPSchedStrategy>(C)); 455 DAG->addMutation(createIGroupLPDAGMutation()); 456 return DAG; 457 } 458 459 static ScheduleDAGInstrs * 460 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 461 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 462 auto DAG = new GCNIterativeScheduler(C, 463 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 464 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 465 if (ST.shouldClusterStores()) 466 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 467 return DAG; 468 } 469 470 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 471 return new GCNIterativeScheduler(C, 472 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 473 } 474 475 static ScheduleDAGInstrs * 476 createIterativeILPMachineScheduler(MachineSchedContext *C) { 477 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 478 auto DAG = new GCNIterativeScheduler(C, 479 GCNIterativeScheduler::SCHEDULE_ILP); 480 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 481 if (ST.shouldClusterStores()) 482 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 483 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 484 return DAG; 485 } 486 487 static MachineSchedRegistry 488 SISchedRegistry("si", "Run SI's custom scheduler", 489 createSIMachineScheduler); 490 491 static MachineSchedRegistry 492 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 493 "Run GCN scheduler to maximize occupancy", 494 createGCNMaxOccupancyMachineScheduler); 495 496 static MachineSchedRegistry 497 GCNMaxILPSchedRegistry("gcn-max-ilp", "Run GCN scheduler to maximize ilp", 498 createGCNMaxILPMachineScheduler); 499 500 static MachineSchedRegistry IterativeGCNMaxOccupancySchedRegistry( 501 "gcn-iterative-max-occupancy-experimental", 502 "Run GCN scheduler to maximize occupancy (experimental)", 503 createIterativeGCNMaxOccupancyMachineScheduler); 504 505 static MachineSchedRegistry GCNMinRegSchedRegistry( 506 "gcn-iterative-minreg", 507 "Run GCN iterative scheduler for minimal register usage (experimental)", 508 createMinRegScheduler); 509 510 static MachineSchedRegistry GCNILPSchedRegistry( 511 "gcn-iterative-ilp", 512 "Run GCN iterative scheduler for ILP scheduling (experimental)", 513 createIterativeILPMachineScheduler); 514 515 static StringRef computeDataLayout(const Triple &TT) { 516 if (TT.getArch() == Triple::r600) { 517 // 32-bit pointers. 518 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 519 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 520 } 521 522 // 32-bit private, local, and region pointers. 64-bit global, constant and 523 // flat. 160-bit non-integral fat buffer pointers that include a 128-bit 524 // buffer descriptor and a 32-bit offset, which are indexed by 32-bit values 525 // (address space 7), and 128-bit non-integral buffer resourcees (address 526 // space 8) which cannot be non-trivilally accessed by LLVM memory operations 527 // like getelementptr. 528 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 529 "-p7:160:256:256:32-p8:128:128-i64:64-v16:16-v24:32-v32:32-v48:64-v96:" 530 "128-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-" 531 "G1-ni:7:8"; 532 } 533 534 LLVM_READNONE 535 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 536 if (!GPU.empty()) 537 return GPU; 538 539 // Need to default to a target with flat support for HSA. 540 if (TT.getArch() == Triple::amdgcn) 541 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 542 543 return "r600"; 544 } 545 546 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) { 547 // The AMDGPU toolchain only supports generating shared objects, so we 548 // must always use PIC. 549 return Reloc::PIC_; 550 } 551 552 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 553 StringRef CPU, StringRef FS, 554 TargetOptions Options, 555 std::optional<Reloc::Model> RM, 556 std::optional<CodeModel::Model> CM, 557 CodeGenOpt::Level OptLevel) 558 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 559 FS, Options, getEffectiveRelocModel(RM), 560 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 561 TLOF(createTLOF(getTargetTriple())) { 562 initAsmInfo(); 563 if (TT.getArch() == Triple::amdgcn) { 564 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 565 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 566 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 567 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 568 } 569 } 570 571 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 572 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 573 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 574 575 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 576 577 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 578 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 579 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 580 } 581 582 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 583 Attribute FSAttr = F.getFnAttribute("target-features"); 584 585 return FSAttr.isValid() ? FSAttr.getValueAsString() 586 : getTargetFeatureString(); 587 } 588 589 /// Predicate for Internalize pass. 590 static bool mustPreserveGV(const GlobalValue &GV) { 591 if (const Function *F = dyn_cast<Function>(&GV)) 592 return F->isDeclaration() || F->getName().startswith("__asan_") || 593 F->getName().startswith("__sanitizer_") || 594 AMDGPU::isEntryFunctionCC(F->getCallingConv()); 595 596 GV.removeDeadConstantUsers(); 597 return !GV.use_empty(); 598 } 599 600 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 601 AAM.registerFunctionAnalysis<AMDGPUAA>(); 602 } 603 604 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { 605 PB.registerPipelineParsingCallback( 606 [](StringRef PassName, ModulePassManager &PM, 607 ArrayRef<PassBuilder::PipelineElement>) { 608 if (PassName == "amdgpu-unify-metadata") { 609 PM.addPass(AMDGPUUnifyMetadataPass()); 610 return true; 611 } 612 if (PassName == "amdgpu-printf-runtime-binding") { 613 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 614 return true; 615 } 616 if (PassName == "amdgpu-always-inline") { 617 PM.addPass(AMDGPUAlwaysInlinePass()); 618 return true; 619 } 620 if (PassName == "amdgpu-lower-module-lds") { 621 PM.addPass(AMDGPULowerModuleLDSPass()); 622 return true; 623 } 624 if (PassName == "amdgpu-lower-ctor-dtor") { 625 PM.addPass(AMDGPUCtorDtorLoweringPass()); 626 return true; 627 } 628 return false; 629 }); 630 PB.registerPipelineParsingCallback( 631 [this](StringRef PassName, FunctionPassManager &PM, 632 ArrayRef<PassBuilder::PipelineElement>) { 633 if (PassName == "amdgpu-simplifylib") { 634 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 635 return true; 636 } 637 if (PassName == "amdgpu-usenative") { 638 PM.addPass(AMDGPUUseNativeCallsPass()); 639 return true; 640 } 641 if (PassName == "amdgpu-promote-alloca") { 642 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 643 return true; 644 } 645 if (PassName == "amdgpu-promote-alloca-to-vector") { 646 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 647 return true; 648 } 649 if (PassName == "amdgpu-lower-kernel-attributes") { 650 PM.addPass(AMDGPULowerKernelAttributesPass()); 651 return true; 652 } 653 if (PassName == "amdgpu-promote-kernel-arguments") { 654 PM.addPass(AMDGPUPromoteKernelArgumentsPass()); 655 return true; 656 } 657 if (PassName == "amdgpu-unify-divergent-exit-nodes") { 658 PM.addPass(AMDGPUUnifyDivergentExitNodesPass()); 659 return true; 660 } 661 if (PassName == "amdgpu-atomic-optimizer") { 662 PM.addPass( 663 AMDGPUAtomicOptimizerPass(*this, AMDGPUAtomicOptimizerStrategy)); 664 return true; 665 } 666 if (PassName == "amdgpu-codegenprepare") { 667 PM.addPass(AMDGPUCodeGenPreparePass(*this)); 668 return true; 669 } 670 return false; 671 }); 672 673 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 674 FAM.registerPass([&] { return AMDGPUAA(); }); 675 }); 676 677 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 678 if (AAName == "amdgpu-aa") { 679 AAM.registerFunctionAnalysis<AMDGPUAA>(); 680 return true; 681 } 682 return false; 683 }); 684 685 PB.registerPipelineStartEPCallback( 686 [this](ModulePassManager &PM, OptimizationLevel Level) { 687 FunctionPassManager FPM; 688 FPM.addPass(AMDGPUUseNativeCallsPass()); 689 if (EnableLibCallSimplify && Level != OptimizationLevel::O0) 690 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 691 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 692 }); 693 694 PB.registerPipelineEarlySimplificationEPCallback( 695 [](ModulePassManager &PM, OptimizationLevel Level) { 696 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 697 698 if (Level == OptimizationLevel::O0) 699 return; 700 701 PM.addPass(AMDGPUUnifyMetadataPass()); 702 703 if (InternalizeSymbols) { 704 PM.addPass(InternalizePass(mustPreserveGV)); 705 PM.addPass(GlobalDCEPass()); 706 } 707 708 if (EarlyInlineAll && !EnableFunctionCalls) 709 PM.addPass(AMDGPUAlwaysInlinePass()); 710 }); 711 712 PB.registerCGSCCOptimizerLateEPCallback( 713 [this](CGSCCPassManager &PM, OptimizationLevel Level) { 714 if (Level == OptimizationLevel::O0) 715 return; 716 717 FunctionPassManager FPM; 718 719 // Add promote kernel arguments pass to the opt pipeline right before 720 // infer address spaces which is needed to do actual address space 721 // rewriting. 722 if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() && 723 EnablePromoteKernelArguments) 724 FPM.addPass(AMDGPUPromoteKernelArgumentsPass()); 725 726 // Add infer address spaces pass to the opt pipeline after inlining 727 // but before SROA to increase SROA opportunities. 728 FPM.addPass(InferAddressSpacesPass()); 729 730 // This should run after inlining to have any chance of doing 731 // anything, and before other cleanup optimizations. 732 FPM.addPass(AMDGPULowerKernelAttributesPass()); 733 734 if (Level != OptimizationLevel::O0) { 735 // Promote alloca to vector before SROA and loop unroll. If we 736 // manage to eliminate allocas before unroll we may choose to unroll 737 // less. 738 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 739 } 740 741 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 742 }); 743 } 744 745 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 746 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 747 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 748 AddrSpace == AMDGPUAS::REGION_ADDRESS) 749 ? -1 750 : 0; 751 } 752 753 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 754 unsigned DestAS) const { 755 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 756 AMDGPU::isFlatGlobalAddrSpace(DestAS); 757 } 758 759 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 760 const auto *LD = dyn_cast<LoadInst>(V); 761 if (!LD) 762 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 763 764 // It must be a generic pointer loaded. 765 assert(V->getType()->isPointerTy() && 766 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 767 768 const auto *Ptr = LD->getPointerOperand(); 769 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 770 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 771 // For a generic pointer loaded from the constant memory, it could be assumed 772 // as a global pointer since the constant memory is only populated on the 773 // host side. As implied by the offload programming model, only global 774 // pointers could be referenced on the host side. 775 return AMDGPUAS::GLOBAL_ADDRESS; 776 } 777 778 std::pair<const Value *, unsigned> 779 AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const { 780 if (auto *II = dyn_cast<IntrinsicInst>(V)) { 781 switch (II->getIntrinsicID()) { 782 case Intrinsic::amdgcn_is_shared: 783 return std::pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS); 784 case Intrinsic::amdgcn_is_private: 785 return std::pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS); 786 default: 787 break; 788 } 789 return std::pair(nullptr, -1); 790 } 791 // Check the global pointer predication based on 792 // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and 793 // the order of 'is_shared' and 'is_private' is not significant. 794 Value *Ptr; 795 if (match( 796 const_cast<Value *>(V), 797 m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))), 798 m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>( 799 m_Deferred(Ptr)))))) 800 return std::pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS); 801 802 return std::pair(nullptr, -1); 803 } 804 805 unsigned 806 AMDGPUTargetMachine::getAddressSpaceForPseudoSourceKind(unsigned Kind) const { 807 switch (Kind) { 808 case PseudoSourceValue::Stack: 809 case PseudoSourceValue::FixedStack: 810 return AMDGPUAS::PRIVATE_ADDRESS; 811 case PseudoSourceValue::ConstantPool: 812 case PseudoSourceValue::GOT: 813 case PseudoSourceValue::JumpTable: 814 case PseudoSourceValue::GlobalValueCallEntry: 815 case PseudoSourceValue::ExternalSymbolCallEntry: 816 return AMDGPUAS::CONSTANT_ADDRESS; 817 } 818 return AMDGPUAS::FLAT_ADDRESS; 819 } 820 821 //===----------------------------------------------------------------------===// 822 // GCN Target Machine (SI+) 823 //===----------------------------------------------------------------------===// 824 825 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 826 StringRef CPU, StringRef FS, 827 TargetOptions Options, 828 std::optional<Reloc::Model> RM, 829 std::optional<CodeModel::Model> CM, 830 CodeGenOpt::Level OL, bool JIT) 831 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 832 833 const TargetSubtargetInfo * 834 GCNTargetMachine::getSubtargetImpl(const Function &F) const { 835 StringRef GPU = getGPUName(F); 836 StringRef FS = getFeatureString(F); 837 838 SmallString<128> SubtargetKey(GPU); 839 SubtargetKey.append(FS); 840 841 auto &I = SubtargetMap[SubtargetKey]; 842 if (!I) { 843 // This needs to be done before we create a new subtarget since any 844 // creation will depend on the TM and the code generation flags on the 845 // function that reside in TargetOptions. 846 resetTargetOptions(F); 847 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 848 } 849 850 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 851 852 return I.get(); 853 } 854 855 TargetTransformInfo 856 GCNTargetMachine::getTargetTransformInfo(const Function &F) const { 857 return TargetTransformInfo(GCNTTIImpl(this, F)); 858 } 859 860 //===----------------------------------------------------------------------===// 861 // AMDGPU Pass Setup 862 //===----------------------------------------------------------------------===// 863 864 std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const { 865 return getStandardCSEConfigForOpt(TM->getOptLevel()); 866 } 867 868 namespace { 869 870 class GCNPassConfig final : public AMDGPUPassConfig { 871 public: 872 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 873 : AMDGPUPassConfig(TM, PM) { 874 // It is necessary to know the register usage of the entire call graph. We 875 // allow calls without EnableAMDGPUFunctionCalls if they are marked 876 // noinline, so this is always required. 877 setRequiresCodeGenSCCOrder(true); 878 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 879 } 880 881 GCNTargetMachine &getGCNTargetMachine() const { 882 return getTM<GCNTargetMachine>(); 883 } 884 885 ScheduleDAGInstrs * 886 createMachineScheduler(MachineSchedContext *C) const override; 887 888 ScheduleDAGInstrs * 889 createPostMachineScheduler(MachineSchedContext *C) const override { 890 ScheduleDAGMI *DAG = new GCNPostScheduleDAGMILive( 891 C, std::make_unique<PostGenericScheduler>(C), 892 /*RemoveKillFlags=*/true); 893 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 894 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 895 if (ST.shouldClusterStores()) 896 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 897 DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII)); 898 DAG->addMutation(createIGroupLPDAGMutation()); 899 if (isPassEnabled(EnableVOPD, CodeGenOpt::Less)) 900 DAG->addMutation(createVOPDPairingMutation()); 901 return DAG; 902 } 903 904 bool addPreISel() override; 905 void addMachineSSAOptimization() override; 906 bool addILPOpts() override; 907 bool addInstSelector() override; 908 bool addIRTranslator() override; 909 void addPreLegalizeMachineIR() override; 910 bool addLegalizeMachineIR() override; 911 void addPreRegBankSelect() override; 912 bool addRegBankSelect() override; 913 void addPreGlobalInstructionSelect() override; 914 bool addGlobalInstructionSelect() override; 915 void addFastRegAlloc() override; 916 void addOptimizedRegAlloc() override; 917 918 FunctionPass *createSGPRAllocPass(bool Optimized); 919 FunctionPass *createVGPRAllocPass(bool Optimized); 920 FunctionPass *createRegAllocPass(bool Optimized) override; 921 922 bool addRegAssignAndRewriteFast() override; 923 bool addRegAssignAndRewriteOptimized() override; 924 925 void addPreRegAlloc() override; 926 bool addPreRewrite() override; 927 void addPostRegAlloc() override; 928 void addPreSched2() override; 929 void addPreEmitPass() override; 930 }; 931 932 } // end anonymous namespace 933 934 AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 935 : TargetPassConfig(TM, PM) { 936 // Exceptions and StackMaps are not supported, so these passes will never do 937 // anything. 938 disablePass(&StackMapLivenessID); 939 disablePass(&FuncletLayoutID); 940 // Garbage collection is not supported. 941 disablePass(&GCLoweringID); 942 disablePass(&ShadowStackGCLoweringID); 943 } 944 945 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 946 if (getOptLevel() == CodeGenOpt::Aggressive) 947 addPass(createGVNPass()); 948 else 949 addPass(createEarlyCSEPass()); 950 } 951 952 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 953 addPass(createSeparateConstOffsetFromGEPPass()); 954 // ReassociateGEPs exposes more opportunities for SLSR. See 955 // the example in reassociate-geps-and-slsr.ll. 956 addPass(createStraightLineStrengthReducePass()); 957 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 958 // EarlyCSE can reuse. 959 addEarlyCSEOrGVNPass(); 960 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 961 addPass(createNaryReassociatePass()); 962 // NaryReassociate on GEPs creates redundant common expressions, so run 963 // EarlyCSE after it. 964 addPass(createEarlyCSEPass()); 965 } 966 967 void AMDGPUPassConfig::addIRPasses() { 968 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 969 970 // There is no reason to run these. 971 disablePass(&StackMapLivenessID); 972 disablePass(&FuncletLayoutID); 973 disablePass(&PatchableFunctionID); 974 975 addPass(createAMDGPUPrintfRuntimeBinding()); 976 if (LowerCtorDtor) 977 addPass(createAMDGPUCtorDtorLoweringLegacyPass()); 978 979 // Function calls are not supported, so make sure we inline everything. 980 addPass(createAMDGPUAlwaysInlinePass()); 981 addPass(createAlwaysInlinerLegacyPass()); 982 983 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 984 if (TM.getTargetTriple().getArch() == Triple::r600) 985 addPass(createR600OpenCLImageTypeLoweringPass()); 986 987 // Replace OpenCL enqueued block function pointers with global variables. 988 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 989 990 // Runs before PromoteAlloca so the latter can account for function uses 991 if (EnableLowerModuleLDS) { 992 addPass(createAMDGPULowerModuleLDSPass()); 993 } 994 995 // AMDGPUAttributor infers lack of llvm.amdgcn.lds.kernel.id calls, so run 996 // after their introduction 997 if (TM.getOptLevel() > CodeGenOpt::None) 998 addPass(createAMDGPUAttributorPass()); 999 1000 if (TM.getOptLevel() > CodeGenOpt::None) 1001 addPass(createInferAddressSpacesPass()); 1002 1003 addPass(createAtomicExpandPass()); 1004 1005 if (TM.getOptLevel() > CodeGenOpt::None) { 1006 addPass(createAMDGPUPromoteAlloca()); 1007 1008 if (EnableSROA) 1009 addPass(createSROAPass()); 1010 if (isPassEnabled(EnableScalarIRPasses)) 1011 addStraightLineScalarOptimizationPasses(); 1012 1013 if (EnableAMDGPUAliasAnalysis) { 1014 addPass(createAMDGPUAAWrapperPass()); 1015 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 1016 AAResults &AAR) { 1017 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 1018 AAR.addAAResult(WrapperPass->getResult()); 1019 })); 1020 } 1021 1022 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1023 // TODO: May want to move later or split into an early and late one. 1024 addPass(createAMDGPUCodeGenPreparePass()); 1025 } 1026 1027 // Try to hoist loop invariant parts of divisions AMDGPUCodeGenPrepare may 1028 // have expanded. 1029 if (TM.getOptLevel() > CodeGenOpt::Less) 1030 addPass(createLICMPass()); 1031 } 1032 1033 TargetPassConfig::addIRPasses(); 1034 1035 // EarlyCSE is not always strong enough to clean up what LSR produces. For 1036 // example, GVN can combine 1037 // 1038 // %0 = add %a, %b 1039 // %1 = add %b, %a 1040 // 1041 // and 1042 // 1043 // %0 = shl nsw %a, 2 1044 // %1 = shl %a, 2 1045 // 1046 // but EarlyCSE can do neither of them. 1047 if (isPassEnabled(EnableScalarIRPasses)) 1048 addEarlyCSEOrGVNPass(); 1049 } 1050 1051 void AMDGPUPassConfig::addCodeGenPrepare() { 1052 if (TM->getTargetTriple().getArch() == Triple::amdgcn) { 1053 if (RemoveIncompatibleFunctions) 1054 addPass(createAMDGPURemoveIncompatibleFunctionsPass(TM)); 1055 1056 // FIXME: This pass adds 2 hacky attributes that can be replaced with an 1057 // analysis, and should be removed. 1058 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 1059 } 1060 1061 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 1062 EnableLowerKernelArguments) 1063 addPass(createAMDGPULowerKernelArgumentsPass()); 1064 1065 TargetPassConfig::addCodeGenPrepare(); 1066 1067 if (isPassEnabled(EnableLoadStoreVectorizer)) 1068 addPass(createLoadStoreVectorizerPass()); 1069 1070 // LowerSwitch pass may introduce unreachable blocks that can 1071 // cause unexpected behavior for subsequent passes. Placing it 1072 // here seems better that these blocks would get cleaned up by 1073 // UnreachableBlockElim inserted next in the pass flow. 1074 addPass(createLowerSwitchPass()); 1075 } 1076 1077 bool AMDGPUPassConfig::addPreISel() { 1078 if (TM->getOptLevel() > CodeGenOpt::None) 1079 addPass(createFlattenCFGPass()); 1080 return false; 1081 } 1082 1083 bool AMDGPUPassConfig::addInstSelector() { 1084 addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); 1085 return false; 1086 } 1087 1088 bool AMDGPUPassConfig::addGCPasses() { 1089 // Do nothing. GC is not supported. 1090 return false; 1091 } 1092 1093 llvm::ScheduleDAGInstrs * 1094 AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const { 1095 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1096 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 1097 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 1098 if (ST.shouldClusterStores()) 1099 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 1100 return DAG; 1101 } 1102 1103 MachineFunctionInfo *R600TargetMachine::createMachineFunctionInfo( 1104 BumpPtrAllocator &Allocator, const Function &F, 1105 const TargetSubtargetInfo *STI) const { 1106 return R600MachineFunctionInfo::create<R600MachineFunctionInfo>( 1107 Allocator, F, static_cast<const R600Subtarget *>(STI)); 1108 } 1109 1110 //===----------------------------------------------------------------------===// 1111 // GCN Pass Setup 1112 //===----------------------------------------------------------------------===// 1113 1114 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1115 MachineSchedContext *C) const { 1116 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1117 if (ST.enableSIScheduler()) 1118 return createSIMachineScheduler(C); 1119 1120 if (EnableMaxIlpSchedStrategy) 1121 return createGCNMaxILPMachineScheduler(C); 1122 1123 return createGCNMaxOccupancyMachineScheduler(C); 1124 } 1125 1126 bool GCNPassConfig::addPreISel() { 1127 AMDGPUPassConfig::addPreISel(); 1128 1129 if (TM->getOptLevel() > CodeGenOpt::None) 1130 addPass(createAMDGPULateCodeGenPreparePass()); 1131 1132 if ((TM->getOptLevel() >= CodeGenOpt::Less) && 1133 (AMDGPUAtomicOptimizerStrategy != ScanOptions::None)) { 1134 addPass(createAMDGPUAtomicOptimizerPass(AMDGPUAtomicOptimizerStrategy)); 1135 } 1136 1137 if (TM->getOptLevel() > CodeGenOpt::None) 1138 addPass(createSinkingPass()); 1139 1140 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1141 // regions formed by them. 1142 addPass(&AMDGPUUnifyDivergentExitNodesID); 1143 if (!LateCFGStructurize) { 1144 if (EnableStructurizerWorkarounds) { 1145 addPass(createFixIrreduciblePass()); 1146 addPass(createUnifyLoopExitsPass()); 1147 } 1148 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1149 } 1150 addPass(createAMDGPUAnnotateUniformValues()); 1151 if (!LateCFGStructurize) { 1152 addPass(createSIAnnotateControlFlowPass()); 1153 // TODO: Move this right after structurizeCFG to avoid extra divergence 1154 // analysis. This depends on stopping SIAnnotateControlFlow from making 1155 // control flow modifications. 1156 addPass(createAMDGPURewriteUndefForPHIPass()); 1157 } 1158 addPass(createLCSSAPass()); 1159 1160 if (TM->getOptLevel() > CodeGenOpt::Less) 1161 addPass(&AMDGPUPerfHintAnalysisID); 1162 1163 return false; 1164 } 1165 1166 void GCNPassConfig::addMachineSSAOptimization() { 1167 TargetPassConfig::addMachineSSAOptimization(); 1168 1169 // We want to fold operands after PeepholeOptimizer has run (or as part of 1170 // it), because it will eliminate extra copies making it easier to fold the 1171 // real source operand. We want to eliminate dead instructions after, so that 1172 // we see fewer uses of the copies. We then need to clean up the dead 1173 // instructions leftover after the operands are folded as well. 1174 // 1175 // XXX - Can we get away without running DeadMachineInstructionElim again? 1176 addPass(&SIFoldOperandsID); 1177 if (EnableDPPCombine) 1178 addPass(&GCNDPPCombineID); 1179 addPass(&SILoadStoreOptimizerID); 1180 if (isPassEnabled(EnableSDWAPeephole)) { 1181 addPass(&SIPeepholeSDWAID); 1182 addPass(&EarlyMachineLICMID); 1183 addPass(&MachineCSEID); 1184 addPass(&SIFoldOperandsID); 1185 } 1186 addPass(&DeadMachineInstructionElimID); 1187 addPass(createSIShrinkInstructionsPass()); 1188 } 1189 1190 bool GCNPassConfig::addILPOpts() { 1191 if (EnableEarlyIfConversion) 1192 addPass(&EarlyIfConverterID); 1193 1194 TargetPassConfig::addILPOpts(); 1195 return false; 1196 } 1197 1198 bool GCNPassConfig::addInstSelector() { 1199 AMDGPUPassConfig::addInstSelector(); 1200 addPass(&SIFixSGPRCopiesID); 1201 addPass(createSILowerI1CopiesPass()); 1202 return false; 1203 } 1204 1205 bool GCNPassConfig::addIRTranslator() { 1206 addPass(new IRTranslator(getOptLevel())); 1207 return false; 1208 } 1209 1210 void GCNPassConfig::addPreLegalizeMachineIR() { 1211 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1212 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1213 addPass(new Localizer()); 1214 } 1215 1216 bool GCNPassConfig::addLegalizeMachineIR() { 1217 addPass(new Legalizer()); 1218 return false; 1219 } 1220 1221 void GCNPassConfig::addPreRegBankSelect() { 1222 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1223 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1224 } 1225 1226 bool GCNPassConfig::addRegBankSelect() { 1227 addPass(new AMDGPURegBankSelect()); 1228 return false; 1229 } 1230 1231 void GCNPassConfig::addPreGlobalInstructionSelect() { 1232 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1233 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1234 } 1235 1236 bool GCNPassConfig::addGlobalInstructionSelect() { 1237 addPass(new InstructionSelect(getOptLevel())); 1238 return false; 1239 } 1240 1241 void GCNPassConfig::addPreRegAlloc() { 1242 if (LateCFGStructurize) { 1243 addPass(createAMDGPUMachineCFGStructurizerPass()); 1244 } 1245 } 1246 1247 void GCNPassConfig::addFastRegAlloc() { 1248 // FIXME: We have to disable the verifier here because of PHIElimination + 1249 // TwoAddressInstructions disabling it. 1250 1251 // This must be run immediately after phi elimination and before 1252 // TwoAddressInstructions, otherwise the processing of the tied operand of 1253 // SI_ELSE will introduce a copy of the tied operand source after the else. 1254 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1255 1256 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1257 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1258 1259 TargetPassConfig::addFastRegAlloc(); 1260 } 1261 1262 void GCNPassConfig::addOptimizedRegAlloc() { 1263 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1264 // instructions that cause scheduling barriers. 1265 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1266 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1267 1268 if (OptExecMaskPreRA) 1269 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1270 1271 if (EnableRewritePartialRegUses) 1272 insertPass(&RenameIndependentSubregsID, &GCNRewritePartialRegUsesID); 1273 1274 if (isPassEnabled(EnablePreRAOptimizations)) 1275 insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID); 1276 1277 // This is not an essential optimization and it has a noticeable impact on 1278 // compilation time, so we only enable it from O2. 1279 if (TM->getOptLevel() > CodeGenOpt::Less) 1280 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1281 1282 // FIXME: when an instruction has a Killed operand, and the instruction is 1283 // inside a bundle, seems only the BUNDLE instruction appears as the Kills of 1284 // the register in LiveVariables, this would trigger a failure in verifier, 1285 // we should fix it and enable the verifier. 1286 if (OptVGPRLiveRange) 1287 insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID); 1288 // This must be run immediately after phi elimination and before 1289 // TwoAddressInstructions, otherwise the processing of the tied operand of 1290 // SI_ELSE will introduce a copy of the tied operand source after the else. 1291 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1292 1293 if (EnableDCEInRA) 1294 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1295 1296 TargetPassConfig::addOptimizedRegAlloc(); 1297 } 1298 1299 bool GCNPassConfig::addPreRewrite() { 1300 addPass(&SILowerWWMCopiesID); 1301 if (EnableRegReassign) 1302 addPass(&GCNNSAReassignID); 1303 return true; 1304 } 1305 1306 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) { 1307 // Initialize the global default. 1308 llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag, 1309 initializeDefaultSGPRRegisterAllocatorOnce); 1310 1311 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 1312 if (Ctor != useDefaultRegisterAllocator) 1313 return Ctor(); 1314 1315 if (Optimized) 1316 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 1317 1318 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 1319 } 1320 1321 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) { 1322 // Initialize the global default. 1323 llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag, 1324 initializeDefaultVGPRRegisterAllocatorOnce); 1325 1326 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 1327 if (Ctor != useDefaultRegisterAllocator) 1328 return Ctor(); 1329 1330 if (Optimized) 1331 return createGreedyVGPRRegisterAllocator(); 1332 1333 return createFastVGPRRegisterAllocator(); 1334 } 1335 1336 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) { 1337 llvm_unreachable("should not be used"); 1338 } 1339 1340 static const char RegAllocOptNotSupportedMessage[] = 1341 "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc"; 1342 1343 bool GCNPassConfig::addRegAssignAndRewriteFast() { 1344 if (!usingDefaultRegAlloc()) 1345 report_fatal_error(RegAllocOptNotSupportedMessage); 1346 1347 addPass(&GCNPreRALongBranchRegID); 1348 1349 addPass(createSGPRAllocPass(false)); 1350 1351 // Equivalent of PEI for SGPRs. 1352 addPass(&SILowerSGPRSpillsID); 1353 1354 addPass(createVGPRAllocPass(false)); 1355 1356 addPass(&SILowerWWMCopiesID); 1357 return true; 1358 } 1359 1360 bool GCNPassConfig::addRegAssignAndRewriteOptimized() { 1361 if (!usingDefaultRegAlloc()) 1362 report_fatal_error(RegAllocOptNotSupportedMessage); 1363 1364 addPass(&GCNPreRALongBranchRegID); 1365 1366 addPass(createSGPRAllocPass(true)); 1367 1368 // Commit allocated register changes. This is mostly necessary because too 1369 // many things rely on the use lists of the physical registers, such as the 1370 // verifier. This is only necessary with allocators which use LiveIntervals, 1371 // since FastRegAlloc does the replacements itself. 1372 addPass(createVirtRegRewriter(false)); 1373 1374 // Equivalent of PEI for SGPRs. 1375 addPass(&SILowerSGPRSpillsID); 1376 1377 addPass(createVGPRAllocPass(true)); 1378 1379 addPreRewrite(); 1380 addPass(&VirtRegRewriterID); 1381 1382 return true; 1383 } 1384 1385 void GCNPassConfig::addPostRegAlloc() { 1386 addPass(&SIFixVGPRCopiesID); 1387 if (getOptLevel() > CodeGenOpt::None) 1388 addPass(&SIOptimizeExecMaskingID); 1389 TargetPassConfig::addPostRegAlloc(); 1390 } 1391 1392 void GCNPassConfig::addPreSched2() { 1393 if (TM->getOptLevel() > CodeGenOpt::None) 1394 addPass(createSIShrinkInstructionsPass()); 1395 addPass(&SIPostRABundlerID); 1396 } 1397 1398 void GCNPassConfig::addPreEmitPass() { 1399 if (isPassEnabled(EnableVOPD, CodeGenOpt::Less)) 1400 addPass(&GCNCreateVOPDID); 1401 addPass(createSIMemoryLegalizerPass()); 1402 addPass(createSIInsertWaitcntsPass()); 1403 1404 addPass(createSIModeRegisterPass()); 1405 1406 if (getOptLevel() > CodeGenOpt::None) 1407 addPass(&SIInsertHardClausesID); 1408 1409 addPass(&SILateBranchLoweringPassID); 1410 if (isPassEnabled(EnableSetWavePriority, CodeGenOpt::Less)) 1411 addPass(createAMDGPUSetWavePriorityPass()); 1412 if (getOptLevel() > CodeGenOpt::None) 1413 addPass(&SIPreEmitPeepholeID); 1414 // The hazard recognizer that runs as part of the post-ra scheduler does not 1415 // guarantee to be able handle all hazards correctly. This is because if there 1416 // are multiple scheduling regions in a basic block, the regions are scheduled 1417 // bottom up, so when we begin to schedule a region we don't know what 1418 // instructions were emitted directly before it. 1419 // 1420 // Here we add a stand-alone hazard recognizer pass which can handle all 1421 // cases. 1422 addPass(&PostRAHazardRecognizerID); 1423 1424 if (isPassEnabled(EnableInsertDelayAlu, CodeGenOpt::Less)) 1425 addPass(&AMDGPUInsertDelayAluID); 1426 1427 addPass(&BranchRelaxationPassID); 1428 } 1429 1430 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1431 return new GCNPassConfig(*this, PM); 1432 } 1433 1434 void GCNTargetMachine::registerMachineRegisterInfoCallback( 1435 MachineFunction &MF) const { 1436 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1437 MF.getRegInfo().addDelegate(MFI); 1438 } 1439 1440 MachineFunctionInfo *GCNTargetMachine::createMachineFunctionInfo( 1441 BumpPtrAllocator &Allocator, const Function &F, 1442 const TargetSubtargetInfo *STI) const { 1443 return SIMachineFunctionInfo::create<SIMachineFunctionInfo>( 1444 Allocator, F, static_cast<const GCNSubtarget *>(STI)); 1445 } 1446 1447 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1448 return new yaml::SIMachineFunctionInfo(); 1449 } 1450 1451 yaml::MachineFunctionInfo * 1452 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1453 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1454 return new yaml::SIMachineFunctionInfo( 1455 *MFI, *MF.getSubtarget<GCNSubtarget>().getRegisterInfo(), MF); 1456 } 1457 1458 bool GCNTargetMachine::parseMachineFunctionInfo( 1459 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1460 SMDiagnostic &Error, SMRange &SourceRange) const { 1461 const yaml::SIMachineFunctionInfo &YamlMFI = 1462 static_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1463 MachineFunction &MF = PFS.MF; 1464 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1465 1466 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) 1467 return true; 1468 1469 if (MFI->Occupancy == 0) { 1470 // Fixup the subtarget dependent default value. 1471 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1472 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1473 } 1474 1475 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1476 Register TempReg; 1477 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1478 SourceRange = RegName.SourceRange; 1479 return true; 1480 } 1481 RegVal = TempReg; 1482 1483 return false; 1484 }; 1485 1486 auto parseOptionalRegister = [&](const yaml::StringValue &RegName, 1487 Register &RegVal) { 1488 return !RegName.Value.empty() && parseRegister(RegName, RegVal); 1489 }; 1490 1491 if (parseOptionalRegister(YamlMFI.VGPRForAGPRCopy, MFI->VGPRForAGPRCopy)) 1492 return true; 1493 1494 if (parseOptionalRegister(YamlMFI.SGPRForEXECCopy, MFI->SGPRForEXECCopy)) 1495 return true; 1496 1497 if (parseOptionalRegister(YamlMFI.LongBranchReservedReg, 1498 MFI->LongBranchReservedReg)) 1499 return true; 1500 1501 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1502 // Create a diagnostic for a the register string literal. 1503 const MemoryBuffer &Buffer = 1504 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1505 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1506 RegName.Value.size(), SourceMgr::DK_Error, 1507 "incorrect register class for field", RegName.Value, 1508 std::nullopt, std::nullopt); 1509 SourceRange = RegName.SourceRange; 1510 return true; 1511 }; 1512 1513 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1514 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1515 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1516 return true; 1517 1518 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1519 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1520 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1521 } 1522 1523 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1524 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1525 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1526 } 1527 1528 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1529 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1530 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1531 } 1532 1533 for (const auto &YamlReg : YamlMFI.WWMReservedRegs) { 1534 Register ParsedReg; 1535 if (parseRegister(YamlReg, ParsedReg)) 1536 return true; 1537 1538 MFI->reserveWWMRegister(ParsedReg); 1539 } 1540 1541 auto parseAndCheckArgument = [&](const std::optional<yaml::SIArgument> &A, 1542 const TargetRegisterClass &RC, 1543 ArgDescriptor &Arg, unsigned UserSGPRs, 1544 unsigned SystemSGPRs) { 1545 // Skip parsing if it's not present. 1546 if (!A) 1547 return false; 1548 1549 if (A->IsRegister) { 1550 Register Reg; 1551 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1552 SourceRange = A->RegisterName.SourceRange; 1553 return true; 1554 } 1555 if (!RC.contains(Reg)) 1556 return diagnoseRegisterClass(A->RegisterName); 1557 Arg = ArgDescriptor::createRegister(Reg); 1558 } else 1559 Arg = ArgDescriptor::createStack(A->StackOffset); 1560 // Check and apply the optional mask. 1561 if (A->Mask) 1562 Arg = ArgDescriptor::createArg(Arg, *A->Mask); 1563 1564 MFI->NumUserSGPRs += UserSGPRs; 1565 MFI->NumSystemSGPRs += SystemSGPRs; 1566 return false; 1567 }; 1568 1569 if (YamlMFI.ArgInfo && 1570 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1571 AMDGPU::SGPR_128RegClass, 1572 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1573 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1574 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1575 2, 0) || 1576 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1577 MFI->ArgInfo.QueuePtr, 2, 0) || 1578 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1579 AMDGPU::SReg_64RegClass, 1580 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1581 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1582 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1583 2, 0) || 1584 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1585 AMDGPU::SReg_64RegClass, 1586 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1587 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1588 AMDGPU::SGPR_32RegClass, 1589 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1590 parseAndCheckArgument(YamlMFI.ArgInfo->LDSKernelId, 1591 AMDGPU::SGPR_32RegClass, 1592 MFI->ArgInfo.LDSKernelId, 0, 1) || 1593 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1594 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1595 0, 1) || 1596 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1597 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1598 0, 1) || 1599 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1600 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1601 0, 1) || 1602 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1603 AMDGPU::SGPR_32RegClass, 1604 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1605 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1606 AMDGPU::SGPR_32RegClass, 1607 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1608 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1609 AMDGPU::SReg_64RegClass, 1610 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1611 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1612 AMDGPU::SReg_64RegClass, 1613 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1614 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1615 AMDGPU::VGPR_32RegClass, 1616 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1617 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1618 AMDGPU::VGPR_32RegClass, 1619 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1620 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1621 AMDGPU::VGPR_32RegClass, 1622 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1623 return true; 1624 1625 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1626 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1627 1628 // FIXME: Move proper support for denormal-fp-math into base MachineFunction 1629 MFI->Mode.FP32Denormals.Input = YamlMFI.Mode.FP32InputDenormals 1630 ? DenormalMode::IEEE 1631 : DenormalMode::PreserveSign; 1632 MFI->Mode.FP32Denormals.Output = YamlMFI.Mode.FP32OutputDenormals 1633 ? DenormalMode::IEEE 1634 : DenormalMode::PreserveSign; 1635 1636 MFI->Mode.FP64FP16Denormals.Input = YamlMFI.Mode.FP64FP16InputDenormals 1637 ? DenormalMode::IEEE 1638 : DenormalMode::PreserveSign; 1639 MFI->Mode.FP64FP16Denormals.Output = YamlMFI.Mode.FP64FP16OutputDenormals 1640 ? DenormalMode::IEEE 1641 : DenormalMode::PreserveSign; 1642 1643 return false; 1644 } 1645