1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUInstructionSelector.h" 20 #include "AMDGPULegalizerInfo.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "R600MachineScheduler.h" 27 #include "SIMachineFunctionInfo.h" 28 #include "SIMachineScheduler.h" 29 #include "TargetInfo/AMDGPUTargetInfo.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/LegacyPassManager.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Target/TargetLoweringObjectFile.h" 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/Transforms/IPO/AlwaysInliner.h" 48 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 49 #include "llvm/Transforms/Scalar.h" 50 #include "llvm/Transforms/Scalar/GVN.h" 51 #include "llvm/Transforms/Utils.h" 52 #include "llvm/Transforms/Vectorize.h" 53 #include <memory> 54 55 using namespace llvm; 56 57 static cl::opt<bool> EnableR600StructurizeCFG( 58 "r600-ir-structurize", 59 cl::desc("Use StructurizeCFG IR pass"), 60 cl::init(true)); 61 62 static cl::opt<bool> EnableSROA( 63 "amdgpu-sroa", 64 cl::desc("Run SROA after promote alloca pass"), 65 cl::ReallyHidden, 66 cl::init(true)); 67 68 static cl::opt<bool> 69 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 70 cl::desc("Run early if-conversion"), 71 cl::init(false)); 72 73 static cl::opt<bool> 74 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 75 cl::desc("Run pre-RA exec mask optimizations"), 76 cl::init(true)); 77 78 static cl::opt<bool> EnableR600IfConvert( 79 "r600-if-convert", 80 cl::desc("Use if conversion pass"), 81 cl::ReallyHidden, 82 cl::init(true)); 83 84 // Option to disable vectorizer for tests. 85 static cl::opt<bool> EnableLoadStoreVectorizer( 86 "amdgpu-load-store-vectorizer", 87 cl::desc("Enable load store vectorizer"), 88 cl::init(true), 89 cl::Hidden); 90 91 // Option to control global loads scalarization 92 static cl::opt<bool> ScalarizeGlobal( 93 "amdgpu-scalarize-global-loads", 94 cl::desc("Enable global load scalarization"), 95 cl::init(true), 96 cl::Hidden); 97 98 // Option to run internalize pass. 99 static cl::opt<bool> InternalizeSymbols( 100 "amdgpu-internalize-symbols", 101 cl::desc("Enable elimination of non-kernel functions and unused globals"), 102 cl::init(false), 103 cl::Hidden); 104 105 // Option to inline all early. 106 static cl::opt<bool> EarlyInlineAll( 107 "amdgpu-early-inline-all", 108 cl::desc("Inline all functions early"), 109 cl::init(false), 110 cl::Hidden); 111 112 static cl::opt<bool> EnableSDWAPeephole( 113 "amdgpu-sdwa-peephole", 114 cl::desc("Enable SDWA peepholer"), 115 cl::init(true)); 116 117 static cl::opt<bool> EnableDPPCombine( 118 "amdgpu-dpp-combine", 119 cl::desc("Enable DPP combiner"), 120 cl::init(true)); 121 122 // Enable address space based alias analysis 123 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 124 cl::desc("Enable AMDGPU Alias Analysis"), 125 cl::init(true)); 126 127 // Option to run late CFG structurizer 128 static cl::opt<bool, true> LateCFGStructurize( 129 "amdgpu-late-structurize", 130 cl::desc("Enable late CFG structurization"), 131 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 132 cl::Hidden); 133 134 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 135 "amdgpu-function-calls", 136 cl::desc("Enable AMDGPU function call support"), 137 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 138 cl::init(true), 139 cl::Hidden); 140 141 // Enable lib calls simplifications 142 static cl::opt<bool> EnableLibCallSimplify( 143 "amdgpu-simplify-libcall", 144 cl::desc("Enable amdgpu library simplifications"), 145 cl::init(true), 146 cl::Hidden); 147 148 static cl::opt<bool> EnableLowerKernelArguments( 149 "amdgpu-ir-lower-kernel-arguments", 150 cl::desc("Lower kernel argument loads in IR pass"), 151 cl::init(true), 152 cl::Hidden); 153 154 static cl::opt<bool> EnableRegReassign( 155 "amdgpu-reassign-regs", 156 cl::desc("Enable register reassign optimizations on gfx10+"), 157 cl::init(true), 158 cl::Hidden); 159 160 // Enable atomic optimization 161 static cl::opt<bool> EnableAtomicOptimizations( 162 "amdgpu-atomic-optimizations", 163 cl::desc("Enable atomic optimizations"), 164 cl::init(false), 165 cl::Hidden); 166 167 // Enable Mode register optimization 168 static cl::opt<bool> EnableSIModeRegisterPass( 169 "amdgpu-mode-register", 170 cl::desc("Enable mode register pass"), 171 cl::init(true), 172 cl::Hidden); 173 174 // Option is used in lit tests to prevent deadcoding of patterns inspected. 175 static cl::opt<bool> 176 EnableDCEInRA("amdgpu-dce-in-ra", 177 cl::init(true), cl::Hidden, 178 cl::desc("Enable machine DCE inside regalloc")); 179 180 static cl::opt<bool> EnableScalarIRPasses( 181 "amdgpu-scalar-ir-passes", 182 cl::desc("Enable scalar IR passes"), 183 cl::init(true), 184 cl::Hidden); 185 186 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 187 // Register the target 188 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 189 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 190 191 PassRegistry *PR = PassRegistry::getPassRegistry(); 192 initializeR600ClauseMergePassPass(*PR); 193 initializeR600ControlFlowFinalizerPass(*PR); 194 initializeR600PacketizerPass(*PR); 195 initializeR600ExpandSpecialInstrsPassPass(*PR); 196 initializeR600VectorRegMergerPass(*PR); 197 initializeGlobalISel(*PR); 198 initializeAMDGPUDAGToDAGISelPass(*PR); 199 initializeGCNDPPCombinePass(*PR); 200 initializeSILowerI1CopiesPass(*PR); 201 initializeSILowerSGPRSpillsPass(*PR); 202 initializeSIFixSGPRCopiesPass(*PR); 203 initializeSIFixVGPRCopiesPass(*PR); 204 initializeSIFixupVectorISelPass(*PR); 205 initializeSIFoldOperandsPass(*PR); 206 initializeSIPeepholeSDWAPass(*PR); 207 initializeSIShrinkInstructionsPass(*PR); 208 initializeSIOptimizeExecMaskingPreRAPass(*PR); 209 initializeSILoadStoreOptimizerPass(*PR); 210 initializeAMDGPUFixFunctionBitcastsPass(*PR); 211 initializeAMDGPUAlwaysInlinePass(*PR); 212 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 213 initializeAMDGPUAnnotateUniformValuesPass(*PR); 214 initializeAMDGPUArgumentUsageInfoPass(*PR); 215 initializeAMDGPUAtomicOptimizerPass(*PR); 216 initializeAMDGPULowerKernelArgumentsPass(*PR); 217 initializeAMDGPULowerKernelAttributesPass(*PR); 218 initializeAMDGPULowerIntrinsicsPass(*PR); 219 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 220 initializeAMDGPUPromoteAllocaPass(*PR); 221 initializeAMDGPUCodeGenPreparePass(*PR); 222 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 223 initializeAMDGPUPropagateAttributesLatePass(*PR); 224 initializeAMDGPURewriteOutArgumentsPass(*PR); 225 initializeAMDGPUUnifyMetadataPass(*PR); 226 initializeSIAnnotateControlFlowPass(*PR); 227 initializeSIInsertWaitcntsPass(*PR); 228 initializeSIModeRegisterPass(*PR); 229 initializeSIWholeQuadModePass(*PR); 230 initializeSILowerControlFlowPass(*PR); 231 initializeSIInsertSkipsPass(*PR); 232 initializeSIMemoryLegalizerPass(*PR); 233 initializeSIOptimizeExecMaskingPass(*PR); 234 initializeSIPreAllocateWWMRegsPass(*PR); 235 initializeSIFormMemoryClausesPass(*PR); 236 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 237 initializeAMDGPUAAWrapperPassPass(*PR); 238 initializeAMDGPUExternalAAWrapperPass(*PR); 239 initializeAMDGPUUseNativeCallsPass(*PR); 240 initializeAMDGPUSimplifyLibCallsPass(*PR); 241 initializeAMDGPUInlinerPass(*PR); 242 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 243 initializeGCNRegBankReassignPass(*PR); 244 initializeGCNNSAReassignPass(*PR); 245 } 246 247 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 248 return std::make_unique<AMDGPUTargetObjectFile>(); 249 } 250 251 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 252 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 253 } 254 255 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 256 return new SIScheduleDAGMI(C); 257 } 258 259 static ScheduleDAGInstrs * 260 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 261 ScheduleDAGMILive *DAG = 262 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 263 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 264 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 265 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 266 return DAG; 267 } 268 269 static ScheduleDAGInstrs * 270 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 271 auto DAG = new GCNIterativeScheduler(C, 272 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 273 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 274 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 275 return DAG; 276 } 277 278 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 279 return new GCNIterativeScheduler(C, 280 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 281 } 282 283 static ScheduleDAGInstrs * 284 createIterativeILPMachineScheduler(MachineSchedContext *C) { 285 auto DAG = new GCNIterativeScheduler(C, 286 GCNIterativeScheduler::SCHEDULE_ILP); 287 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 288 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 289 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 290 return DAG; 291 } 292 293 static MachineSchedRegistry 294 R600SchedRegistry("r600", "Run R600's custom scheduler", 295 createR600MachineScheduler); 296 297 static MachineSchedRegistry 298 SISchedRegistry("si", "Run SI's custom scheduler", 299 createSIMachineScheduler); 300 301 static MachineSchedRegistry 302 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 303 "Run GCN scheduler to maximize occupancy", 304 createGCNMaxOccupancyMachineScheduler); 305 306 static MachineSchedRegistry 307 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 308 "Run GCN scheduler to maximize occupancy (experimental)", 309 createIterativeGCNMaxOccupancyMachineScheduler); 310 311 static MachineSchedRegistry 312 GCNMinRegSchedRegistry("gcn-minreg", 313 "Run GCN iterative scheduler for minimal register usage (experimental)", 314 createMinRegScheduler); 315 316 static MachineSchedRegistry 317 GCNILPSchedRegistry("gcn-ilp", 318 "Run GCN iterative scheduler for ILP scheduling (experimental)", 319 createIterativeILPMachineScheduler); 320 321 static StringRef computeDataLayout(const Triple &TT) { 322 if (TT.getArch() == Triple::r600) { 323 // 32-bit pointers. 324 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 325 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 326 } 327 328 // 32-bit private, local, and region pointers. 64-bit global, constant and 329 // flat, non-integral buffer fat pointers. 330 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 331 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 332 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 333 "-ni:7"; 334 } 335 336 LLVM_READNONE 337 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 338 if (!GPU.empty()) 339 return GPU; 340 341 // Need to default to a target with flat support for HSA. 342 if (TT.getArch() == Triple::amdgcn) 343 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 344 345 return "r600"; 346 } 347 348 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 349 // The AMDGPU toolchain only supports generating shared objects, so we 350 // must always use PIC. 351 return Reloc::PIC_; 352 } 353 354 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 355 StringRef CPU, StringRef FS, 356 TargetOptions Options, 357 Optional<Reloc::Model> RM, 358 Optional<CodeModel::Model> CM, 359 CodeGenOpt::Level OptLevel) 360 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 361 FS, Options, getEffectiveRelocModel(RM), 362 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 363 TLOF(createTLOF(getTargetTriple())) { 364 initAsmInfo(); 365 } 366 367 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 368 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 369 370 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 371 372 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 373 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 374 return GPUAttr.hasAttribute(Attribute::None) ? 375 getTargetCPU() : GPUAttr.getValueAsString(); 376 } 377 378 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 379 Attribute FSAttr = F.getFnAttribute("target-features"); 380 381 return FSAttr.hasAttribute(Attribute::None) ? 382 getTargetFeatureString() : 383 FSAttr.getValueAsString(); 384 } 385 386 /// Predicate for Internalize pass. 387 static bool mustPreserveGV(const GlobalValue &GV) { 388 if (const Function *F = dyn_cast<Function>(&GV)) 389 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 390 391 return !GV.use_empty(); 392 } 393 394 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 395 Builder.DivergentTarget = true; 396 397 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 398 bool Internalize = InternalizeSymbols; 399 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 400 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 401 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 402 403 if (EnableFunctionCalls) { 404 delete Builder.Inliner; 405 Builder.Inliner = createAMDGPUFunctionInliningPass(); 406 } 407 408 Builder.addExtension( 409 PassManagerBuilder::EP_ModuleOptimizerEarly, 410 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 411 legacy::PassManagerBase &PM) { 412 if (AMDGPUAA) { 413 PM.add(createAMDGPUAAWrapperPass()); 414 PM.add(createAMDGPUExternalAAWrapperPass()); 415 } 416 PM.add(createAMDGPUUnifyMetadataPass()); 417 PM.add(createAMDGPUPrintfRuntimeBinding()); 418 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 419 if (Internalize) { 420 PM.add(createInternalizePass(mustPreserveGV)); 421 PM.add(createGlobalDCEPass()); 422 } 423 if (EarlyInline) 424 PM.add(createAMDGPUAlwaysInlinePass(false)); 425 }); 426 427 const auto &Opt = Options; 428 Builder.addExtension( 429 PassManagerBuilder::EP_EarlyAsPossible, 430 [AMDGPUAA, LibCallSimplify, &Opt, this](const PassManagerBuilder &, 431 legacy::PassManagerBase &PM) { 432 if (AMDGPUAA) { 433 PM.add(createAMDGPUAAWrapperPass()); 434 PM.add(createAMDGPUExternalAAWrapperPass()); 435 } 436 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 437 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 438 if (LibCallSimplify) 439 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt, this)); 440 }); 441 442 Builder.addExtension( 443 PassManagerBuilder::EP_CGSCCOptimizerLate, 444 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 445 // Add infer address spaces pass to the opt pipeline after inlining 446 // but before SROA to increase SROA opportunities. 447 PM.add(createInferAddressSpacesPass()); 448 449 // This should run after inlining to have any chance of doing anything, 450 // and before other cleanup optimizations. 451 PM.add(createAMDGPULowerKernelAttributesPass()); 452 }); 453 } 454 455 //===----------------------------------------------------------------------===// 456 // R600 Target Machine (R600 -> Cayman) 457 //===----------------------------------------------------------------------===// 458 459 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 460 StringRef CPU, StringRef FS, 461 TargetOptions Options, 462 Optional<Reloc::Model> RM, 463 Optional<CodeModel::Model> CM, 464 CodeGenOpt::Level OL, bool JIT) 465 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 466 setRequiresStructuredCFG(true); 467 468 // Override the default since calls aren't supported for r600. 469 if (EnableFunctionCalls && 470 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 471 EnableFunctionCalls = false; 472 } 473 474 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 475 const Function &F) const { 476 StringRef GPU = getGPUName(F); 477 StringRef FS = getFeatureString(F); 478 479 SmallString<128> SubtargetKey(GPU); 480 SubtargetKey.append(FS); 481 482 auto &I = SubtargetMap[SubtargetKey]; 483 if (!I) { 484 // This needs to be done before we create a new subtarget since any 485 // creation will depend on the TM and the code generation flags on the 486 // function that reside in TargetOptions. 487 resetTargetOptions(F); 488 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 489 } 490 491 return I.get(); 492 } 493 494 TargetTransformInfo 495 R600TargetMachine::getTargetTransformInfo(const Function &F) { 496 return TargetTransformInfo(R600TTIImpl(this, F)); 497 } 498 499 //===----------------------------------------------------------------------===// 500 // GCN Target Machine (SI+) 501 //===----------------------------------------------------------------------===// 502 503 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 504 StringRef CPU, StringRef FS, 505 TargetOptions Options, 506 Optional<Reloc::Model> RM, 507 Optional<CodeModel::Model> CM, 508 CodeGenOpt::Level OL, bool JIT) 509 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 510 511 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 512 StringRef GPU = getGPUName(F); 513 StringRef FS = getFeatureString(F); 514 515 SmallString<128> SubtargetKey(GPU); 516 SubtargetKey.append(FS); 517 518 auto &I = SubtargetMap[SubtargetKey]; 519 if (!I) { 520 // This needs to be done before we create a new subtarget since any 521 // creation will depend on the TM and the code generation flags on the 522 // function that reside in TargetOptions. 523 resetTargetOptions(F); 524 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 525 } 526 527 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 528 529 return I.get(); 530 } 531 532 TargetTransformInfo 533 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 534 return TargetTransformInfo(GCNTTIImpl(this, F)); 535 } 536 537 //===----------------------------------------------------------------------===// 538 // AMDGPU Pass Setup 539 //===----------------------------------------------------------------------===// 540 541 namespace { 542 543 class AMDGPUPassConfig : public TargetPassConfig { 544 public: 545 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 546 : TargetPassConfig(TM, PM) { 547 // Exceptions and StackMaps are not supported, so these passes will never do 548 // anything. 549 disablePass(&StackMapLivenessID); 550 disablePass(&FuncletLayoutID); 551 } 552 553 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 554 return getTM<AMDGPUTargetMachine>(); 555 } 556 557 ScheduleDAGInstrs * 558 createMachineScheduler(MachineSchedContext *C) const override { 559 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 560 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 561 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 562 return DAG; 563 } 564 565 void addEarlyCSEOrGVNPass(); 566 void addStraightLineScalarOptimizationPasses(); 567 void addIRPasses() override; 568 void addCodeGenPrepare() override; 569 bool addPreISel() override; 570 bool addInstSelector() override; 571 bool addGCPasses() override; 572 573 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 574 }; 575 576 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 577 return getStandardCSEConfigForOpt(TM->getOptLevel()); 578 } 579 580 class R600PassConfig final : public AMDGPUPassConfig { 581 public: 582 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 583 : AMDGPUPassConfig(TM, PM) {} 584 585 ScheduleDAGInstrs *createMachineScheduler( 586 MachineSchedContext *C) const override { 587 return createR600MachineScheduler(C); 588 } 589 590 bool addPreISel() override; 591 bool addInstSelector() override; 592 void addPreRegAlloc() override; 593 void addPreSched2() override; 594 void addPreEmitPass() override; 595 }; 596 597 class GCNPassConfig final : public AMDGPUPassConfig { 598 public: 599 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 600 : AMDGPUPassConfig(TM, PM) { 601 // It is necessary to know the register usage of the entire call graph. We 602 // allow calls without EnableAMDGPUFunctionCalls if they are marked 603 // noinline, so this is always required. 604 setRequiresCodeGenSCCOrder(true); 605 } 606 607 GCNTargetMachine &getGCNTargetMachine() const { 608 return getTM<GCNTargetMachine>(); 609 } 610 611 ScheduleDAGInstrs * 612 createMachineScheduler(MachineSchedContext *C) const override; 613 614 bool addPreISel() override; 615 void addMachineSSAOptimization() override; 616 bool addILPOpts() override; 617 bool addInstSelector() override; 618 bool addIRTranslator() override; 619 bool addLegalizeMachineIR() override; 620 bool addRegBankSelect() override; 621 bool addGlobalInstructionSelect() override; 622 void addFastRegAlloc() override; 623 void addOptimizedRegAlloc() override; 624 void addPreRegAlloc() override; 625 bool addPreRewrite() override; 626 void addPostRegAlloc() override; 627 void addPreSched2() override; 628 void addPreEmitPass() override; 629 }; 630 631 } // end anonymous namespace 632 633 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 634 if (getOptLevel() == CodeGenOpt::Aggressive) 635 addPass(createGVNPass()); 636 else 637 addPass(createEarlyCSEPass()); 638 } 639 640 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 641 addPass(createLICMPass()); 642 addPass(createSeparateConstOffsetFromGEPPass()); 643 addPass(createSpeculativeExecutionPass()); 644 // ReassociateGEPs exposes more opportunites for SLSR. See 645 // the example in reassociate-geps-and-slsr.ll. 646 addPass(createStraightLineStrengthReducePass()); 647 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 648 // EarlyCSE can reuse. 649 addEarlyCSEOrGVNPass(); 650 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 651 addPass(createNaryReassociatePass()); 652 // NaryReassociate on GEPs creates redundant common expressions, so run 653 // EarlyCSE after it. 654 addPass(createEarlyCSEPass()); 655 } 656 657 void AMDGPUPassConfig::addIRPasses() { 658 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 659 660 // There is no reason to run these. 661 disablePass(&StackMapLivenessID); 662 disablePass(&FuncletLayoutID); 663 disablePass(&PatchableFunctionID); 664 665 addPass(createAMDGPUPrintfRuntimeBinding()); 666 667 // This must occur before inlining, as the inliner will not look through 668 // bitcast calls. 669 addPass(createAMDGPUFixFunctionBitcastsPass()); 670 671 // A call to propagate attributes pass in the backend in case opt was not run. 672 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 673 674 addPass(createAtomicExpandPass()); 675 676 677 addPass(createAMDGPULowerIntrinsicsPass()); 678 679 // Function calls are not supported, so make sure we inline everything. 680 addPass(createAMDGPUAlwaysInlinePass()); 681 addPass(createAlwaysInlinerLegacyPass()); 682 // We need to add the barrier noop pass, otherwise adding the function 683 // inlining pass will cause all of the PassConfigs passes to be run 684 // one function at a time, which means if we have a nodule with two 685 // functions, then we will generate code for the first function 686 // without ever running any passes on the second. 687 addPass(createBarrierNoopPass()); 688 689 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 690 if (TM.getTargetTriple().getArch() == Triple::r600) 691 addPass(createR600OpenCLImageTypeLoweringPass()); 692 693 // Replace OpenCL enqueued block function pointers with global variables. 694 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 695 696 if (TM.getOptLevel() > CodeGenOpt::None) { 697 addPass(createInferAddressSpacesPass()); 698 addPass(createAMDGPUPromoteAlloca()); 699 700 if (EnableSROA) 701 addPass(createSROAPass()); 702 703 if (EnableScalarIRPasses) 704 addStraightLineScalarOptimizationPasses(); 705 706 if (EnableAMDGPUAliasAnalysis) { 707 addPass(createAMDGPUAAWrapperPass()); 708 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 709 AAResults &AAR) { 710 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 711 AAR.addAAResult(WrapperPass->getResult()); 712 })); 713 } 714 } 715 716 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 717 // TODO: May want to move later or split into an early and late one. 718 addPass(createAMDGPUCodeGenPreparePass()); 719 } 720 721 TargetPassConfig::addIRPasses(); 722 723 // EarlyCSE is not always strong enough to clean up what LSR produces. For 724 // example, GVN can combine 725 // 726 // %0 = add %a, %b 727 // %1 = add %b, %a 728 // 729 // and 730 // 731 // %0 = shl nsw %a, 2 732 // %1 = shl %a, 2 733 // 734 // but EarlyCSE can do neither of them. 735 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 736 addEarlyCSEOrGVNPass(); 737 } 738 739 void AMDGPUPassConfig::addCodeGenPrepare() { 740 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 741 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 742 743 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 744 EnableLowerKernelArguments) 745 addPass(createAMDGPULowerKernelArgumentsPass()); 746 747 addPass(&AMDGPUPerfHintAnalysisID); 748 749 TargetPassConfig::addCodeGenPrepare(); 750 751 if (EnableLoadStoreVectorizer) 752 addPass(createLoadStoreVectorizerPass()); 753 } 754 755 bool AMDGPUPassConfig::addPreISel() { 756 addPass(createLowerSwitchPass()); 757 addPass(createFlattenCFGPass()); 758 return false; 759 } 760 761 bool AMDGPUPassConfig::addInstSelector() { 762 // Defer the verifier until FinalizeISel. 763 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 764 return false; 765 } 766 767 bool AMDGPUPassConfig::addGCPasses() { 768 // Do nothing. GC is not supported. 769 return false; 770 } 771 772 //===----------------------------------------------------------------------===// 773 // R600 Pass Setup 774 //===----------------------------------------------------------------------===// 775 776 bool R600PassConfig::addPreISel() { 777 AMDGPUPassConfig::addPreISel(); 778 779 if (EnableR600StructurizeCFG) 780 addPass(createStructurizeCFGPass()); 781 return false; 782 } 783 784 bool R600PassConfig::addInstSelector() { 785 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 786 return false; 787 } 788 789 void R600PassConfig::addPreRegAlloc() { 790 addPass(createR600VectorRegMerger()); 791 } 792 793 void R600PassConfig::addPreSched2() { 794 addPass(createR600EmitClauseMarkers(), false); 795 if (EnableR600IfConvert) 796 addPass(&IfConverterID, false); 797 addPass(createR600ClauseMergePass(), false); 798 } 799 800 void R600PassConfig::addPreEmitPass() { 801 addPass(createAMDGPUCFGStructurizerPass(), false); 802 addPass(createR600ExpandSpecialInstrsPass(), false); 803 addPass(&FinalizeMachineBundlesID, false); 804 addPass(createR600Packetizer(), false); 805 addPass(createR600ControlFlowFinalizer(), false); 806 } 807 808 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 809 return new R600PassConfig(*this, PM); 810 } 811 812 //===----------------------------------------------------------------------===// 813 // GCN Pass Setup 814 //===----------------------------------------------------------------------===// 815 816 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 817 MachineSchedContext *C) const { 818 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 819 if (ST.enableSIScheduler()) 820 return createSIMachineScheduler(C); 821 return createGCNMaxOccupancyMachineScheduler(C); 822 } 823 824 bool GCNPassConfig::addPreISel() { 825 AMDGPUPassConfig::addPreISel(); 826 827 if (EnableAtomicOptimizations) { 828 addPass(createAMDGPUAtomicOptimizerPass()); 829 } 830 831 // FIXME: We need to run a pass to propagate the attributes when calls are 832 // supported. 833 834 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 835 // regions formed by them. 836 addPass(&AMDGPUUnifyDivergentExitNodesID); 837 if (!LateCFGStructurize) { 838 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 839 } 840 addPass(createSinkingPass()); 841 addPass(createAMDGPUAnnotateUniformValues()); 842 if (!LateCFGStructurize) { 843 addPass(createSIAnnotateControlFlowPass()); 844 } 845 addPass(createLCSSAPass()); 846 847 return false; 848 } 849 850 void GCNPassConfig::addMachineSSAOptimization() { 851 TargetPassConfig::addMachineSSAOptimization(); 852 853 // We want to fold operands after PeepholeOptimizer has run (or as part of 854 // it), because it will eliminate extra copies making it easier to fold the 855 // real source operand. We want to eliminate dead instructions after, so that 856 // we see fewer uses of the copies. We then need to clean up the dead 857 // instructions leftover after the operands are folded as well. 858 // 859 // XXX - Can we get away without running DeadMachineInstructionElim again? 860 addPass(&SIFoldOperandsID); 861 if (EnableDPPCombine) 862 addPass(&GCNDPPCombineID); 863 addPass(&DeadMachineInstructionElimID); 864 addPass(&SILoadStoreOptimizerID); 865 if (EnableSDWAPeephole) { 866 addPass(&SIPeepholeSDWAID); 867 addPass(&EarlyMachineLICMID); 868 addPass(&MachineCSEID); 869 addPass(&SIFoldOperandsID); 870 addPass(&DeadMachineInstructionElimID); 871 } 872 addPass(createSIShrinkInstructionsPass()); 873 } 874 875 bool GCNPassConfig::addILPOpts() { 876 if (EnableEarlyIfConversion) 877 addPass(&EarlyIfConverterID); 878 879 TargetPassConfig::addILPOpts(); 880 return false; 881 } 882 883 bool GCNPassConfig::addInstSelector() { 884 AMDGPUPassConfig::addInstSelector(); 885 addPass(&SIFixSGPRCopiesID); 886 addPass(createSILowerI1CopiesPass()); 887 addPass(createSIFixupVectorISelPass()); 888 addPass(createSIAddIMGInitPass()); 889 return false; 890 } 891 892 bool GCNPassConfig::addIRTranslator() { 893 addPass(new IRTranslator()); 894 return false; 895 } 896 897 bool GCNPassConfig::addLegalizeMachineIR() { 898 addPass(new Legalizer()); 899 return false; 900 } 901 902 bool GCNPassConfig::addRegBankSelect() { 903 addPass(new RegBankSelect()); 904 return false; 905 } 906 907 bool GCNPassConfig::addGlobalInstructionSelect() { 908 addPass(new InstructionSelect()); 909 return false; 910 } 911 912 void GCNPassConfig::addPreRegAlloc() { 913 if (LateCFGStructurize) { 914 addPass(createAMDGPUMachineCFGStructurizerPass()); 915 } 916 addPass(createSIWholeQuadModePass()); 917 } 918 919 void GCNPassConfig::addFastRegAlloc() { 920 // FIXME: We have to disable the verifier here because of PHIElimination + 921 // TwoAddressInstructions disabling it. 922 923 // This must be run immediately after phi elimination and before 924 // TwoAddressInstructions, otherwise the processing of the tied operand of 925 // SI_ELSE will introduce a copy of the tied operand source after the else. 926 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 927 928 // This must be run just after RegisterCoalescing. 929 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 930 931 TargetPassConfig::addFastRegAlloc(); 932 } 933 934 void GCNPassConfig::addOptimizedRegAlloc() { 935 if (OptExecMaskPreRA) { 936 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 937 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 938 } else { 939 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 940 } 941 942 // This must be run immediately after phi elimination and before 943 // TwoAddressInstructions, otherwise the processing of the tied operand of 944 // SI_ELSE will introduce a copy of the tied operand source after the else. 945 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 946 947 // This must be run just after RegisterCoalescing. 948 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 949 950 if (EnableDCEInRA) 951 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 952 953 TargetPassConfig::addOptimizedRegAlloc(); 954 } 955 956 bool GCNPassConfig::addPreRewrite() { 957 if (EnableRegReassign) { 958 addPass(&GCNNSAReassignID); 959 addPass(&GCNRegBankReassignID); 960 } 961 return true; 962 } 963 964 void GCNPassConfig::addPostRegAlloc() { 965 addPass(&SIFixVGPRCopiesID); 966 if (getOptLevel() > CodeGenOpt::None) 967 addPass(&SIOptimizeExecMaskingID); 968 TargetPassConfig::addPostRegAlloc(); 969 970 // Equivalent of PEI for SGPRs. 971 addPass(&SILowerSGPRSpillsID); 972 } 973 974 void GCNPassConfig::addPreSched2() { 975 } 976 977 void GCNPassConfig::addPreEmitPass() { 978 addPass(createSIMemoryLegalizerPass()); 979 addPass(createSIInsertWaitcntsPass()); 980 addPass(createSIShrinkInstructionsPass()); 981 addPass(createSIModeRegisterPass()); 982 983 // The hazard recognizer that runs as part of the post-ra scheduler does not 984 // guarantee to be able handle all hazards correctly. This is because if there 985 // are multiple scheduling regions in a basic block, the regions are scheduled 986 // bottom up, so when we begin to schedule a region we don't know what 987 // instructions were emitted directly before it. 988 // 989 // Here we add a stand-alone hazard recognizer pass which can handle all 990 // cases. 991 // 992 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 993 // be better for it to emit S_NOP <N> when possible. 994 addPass(&PostRAHazardRecognizerID); 995 996 addPass(&SIInsertSkipsPassID); 997 addPass(&BranchRelaxationPassID); 998 } 999 1000 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1001 return new GCNPassConfig(*this, PM); 1002 } 1003 1004 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1005 return new yaml::SIMachineFunctionInfo(); 1006 } 1007 1008 yaml::MachineFunctionInfo * 1009 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1010 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1011 return new yaml::SIMachineFunctionInfo(*MFI, 1012 *MF.getSubtarget().getRegisterInfo()); 1013 } 1014 1015 bool GCNTargetMachine::parseMachineFunctionInfo( 1016 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1017 SMDiagnostic &Error, SMRange &SourceRange) const { 1018 const yaml::SIMachineFunctionInfo &YamlMFI = 1019 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1020 MachineFunction &MF = PFS.MF; 1021 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1022 1023 MFI->initializeBaseYamlFields(YamlMFI); 1024 1025 auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) { 1026 if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) { 1027 SourceRange = RegName.SourceRange; 1028 return true; 1029 } 1030 1031 return false; 1032 }; 1033 1034 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1035 // Create a diagnostic for a the register string literal. 1036 const MemoryBuffer &Buffer = 1037 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1038 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1039 RegName.Value.size(), SourceMgr::DK_Error, 1040 "incorrect register class for field", RegName.Value, 1041 None, None); 1042 SourceRange = RegName.SourceRange; 1043 return true; 1044 }; 1045 1046 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1047 parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) || 1048 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1049 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1050 return true; 1051 1052 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1053 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1054 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1055 } 1056 1057 if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG && 1058 !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) { 1059 return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg); 1060 } 1061 1062 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1063 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1064 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1065 } 1066 1067 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1068 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1069 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1070 } 1071 1072 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1073 const TargetRegisterClass &RC, 1074 ArgDescriptor &Arg, unsigned UserSGPRs, 1075 unsigned SystemSGPRs) { 1076 // Skip parsing if it's not present. 1077 if (!A) 1078 return false; 1079 1080 if (A->IsRegister) { 1081 unsigned Reg; 1082 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1083 SourceRange = A->RegisterName.SourceRange; 1084 return true; 1085 } 1086 if (!RC.contains(Reg)) 1087 return diagnoseRegisterClass(A->RegisterName); 1088 Arg = ArgDescriptor::createRegister(Reg); 1089 } else 1090 Arg = ArgDescriptor::createStack(A->StackOffset); 1091 // Check and apply the optional mask. 1092 if (A->Mask) 1093 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1094 1095 MFI->NumUserSGPRs += UserSGPRs; 1096 MFI->NumSystemSGPRs += SystemSGPRs; 1097 return false; 1098 }; 1099 1100 if (YamlMFI.ArgInfo && 1101 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1102 AMDGPU::SGPR_128RegClass, 1103 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1104 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1105 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1106 2, 0) || 1107 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1108 MFI->ArgInfo.QueuePtr, 2, 0) || 1109 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1110 AMDGPU::SReg_64RegClass, 1111 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1112 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1113 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1114 2, 0) || 1115 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1116 AMDGPU::SReg_64RegClass, 1117 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1118 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1119 AMDGPU::SGPR_32RegClass, 1120 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1121 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1122 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1123 0, 1) || 1124 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1125 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1126 0, 1) || 1127 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1128 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1129 0, 1) || 1130 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1131 AMDGPU::SGPR_32RegClass, 1132 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1133 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1134 AMDGPU::SGPR_32RegClass, 1135 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1136 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1137 AMDGPU::SReg_64RegClass, 1138 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1139 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1140 AMDGPU::SReg_64RegClass, 1141 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1142 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1143 AMDGPU::VGPR_32RegClass, 1144 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1145 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1146 AMDGPU::VGPR_32RegClass, 1147 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1148 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1149 AMDGPU::VGPR_32RegClass, 1150 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1151 return true; 1152 1153 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1154 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1155 MFI->Mode.FP32Denormals = YamlMFI.Mode.FP32Denormals; 1156 MFI->Mode.FP64FP16Denormals = YamlMFI.Mode.FP64FP16Denormals; 1157 1158 return false; 1159 } 1160