xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp (revision fe75646a0234a261c0013bf1840fdac4acaf0cec)
1 //===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Implements the AMDGPU specific subclass of TargetSubtarget.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPUSubtarget.h"
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPUInstructionSelector.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPURegisterBankInfo.h"
19 #include "AMDGPUTargetMachine.h"
20 #include "R600Subtarget.h"
21 #include "SIMachineFunctionInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
25 #include "llvm/CodeGen/MachineScheduler.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/IR/IntrinsicsAMDGPU.h"
28 #include "llvm/IR/IntrinsicsR600.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include <algorithm>
32 
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "amdgpu-subtarget"
36 
37 #define GET_SUBTARGETINFO_TARGET_DESC
38 #define GET_SUBTARGETINFO_CTOR
39 #define AMDGPUSubtarget GCNSubtarget
40 #include "AMDGPUGenSubtargetInfo.inc"
41 #undef AMDGPUSubtarget
42 
43 static cl::opt<bool> EnablePowerSched(
44   "amdgpu-enable-power-sched",
45   cl::desc("Enable scheduling to minimize mAI power bursts"),
46   cl::init(false));
47 
48 static cl::opt<bool> EnableVGPRIndexMode(
49   "amdgpu-vgpr-index-mode",
50   cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
51   cl::init(false));
52 
53 static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen",
54                            cl::desc("Enable the use of AA during codegen."),
55                            cl::init(true));
56 
57 static cl::opt<unsigned> NSAThreshold("amdgpu-nsa-threshold",
58                                       cl::desc("Number of addresses from which to enable MIMG NSA."),
59                                       cl::init(3), cl::Hidden);
60 
61 GCNSubtarget::~GCNSubtarget() = default;
62 
63 GCNSubtarget &
64 GCNSubtarget::initializeSubtargetDependencies(const Triple &TT,
65                                               StringRef GPU, StringRef FS) {
66   // Determine default and user-specified characteristics
67   //
68   // We want to be able to turn these off, but making this a subtarget feature
69   // for SI has the unhelpful behavior that it unsets everything else if you
70   // disable it.
71   //
72   // Similarly we want enable-prt-strict-null to be on by default and not to
73   // unset everything else if it is disabled
74 
75   SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,");
76 
77   // Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default
78   if (isAmdHsaOS())
79     FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,";
80 
81   FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS
82 
83   // Disable mutually exclusive bits.
84   if (FS.contains_insensitive("+wavefrontsize")) {
85     if (!FS.contains_insensitive("wavefrontsize16"))
86       FullFS += "-wavefrontsize16,";
87     if (!FS.contains_insensitive("wavefrontsize32"))
88       FullFS += "-wavefrontsize32,";
89     if (!FS.contains_insensitive("wavefrontsize64"))
90       FullFS += "-wavefrontsize64,";
91   }
92 
93   FullFS += FS;
94 
95   ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);
96 
97   // Implement the "generic" processors, which acts as the default when no
98   // generation features are enabled (e.g for -mcpu=''). HSA OS defaults to
99   // the first amdgcn target that supports flat addressing. Other OSes defaults
100   // to the first amdgcn target.
101   if (Gen == AMDGPUSubtarget::INVALID) {
102      Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS
103                                         : AMDGPUSubtarget::SOUTHERN_ISLANDS;
104   }
105 
106   // We don't support FP64 for EG/NI atm.
107   assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS));
108 
109   // Targets must either support 64-bit offsets for MUBUF instructions, and/or
110   // support flat operations, otherwise they cannot access a 64-bit global
111   // address space
112   assert(hasAddr64() || hasFlat());
113   // Unless +-flat-for-global is specified, turn on FlatForGlobal for targets
114   // that do not support ADDR64 variants of MUBUF instructions. Such targets
115   // cannot use a 64 bit offset with a MUBUF instruction to access the global
116   // address space
117   if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) {
118     ToggleFeature(AMDGPU::FeatureFlatForGlobal);
119     FlatForGlobal = true;
120   }
121   // Unless +-flat-for-global is specified, use MUBUF instructions for global
122   // address space access if flat operations are not available.
123   if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) {
124     ToggleFeature(AMDGPU::FeatureFlatForGlobal);
125     FlatForGlobal = false;
126   }
127 
128   // Set defaults if needed.
129   if (MaxPrivateElementSize == 0)
130     MaxPrivateElementSize = 4;
131 
132   if (LDSBankCount == 0)
133     LDSBankCount = 32;
134 
135   if (TT.getArch() == Triple::amdgcn) {
136     if (LocalMemorySize == 0)
137       LocalMemorySize = 32768;
138 
139     // Do something sensible for unspecified target.
140     if (!HasMovrel && !HasVGPRIndexMode)
141       HasMovrel = true;
142   }
143 
144   AddressableLocalMemorySize = LocalMemorySize;
145 
146   if (AMDGPU::isGFX10Plus(*this) &&
147       !getFeatureBits().test(AMDGPU::FeatureCuMode))
148     LocalMemorySize *= 2;
149 
150   // Don't crash on invalid devices.
151   if (WavefrontSizeLog2 == 0)
152     WavefrontSizeLog2 = 5;
153 
154   HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS;
155   HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9;
156 
157   TargetID.setTargetIDFromFeaturesString(FS);
158 
159   LLVM_DEBUG(dbgs() << "xnack setting for subtarget: "
160                     << TargetID.getXnackSetting() << '\n');
161   LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: "
162                     << TargetID.getSramEccSetting() << '\n');
163 
164   return *this;
165 }
166 
167 AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) : TargetTriple(TT) {}
168 
169 GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
170                            const GCNTargetMachine &TM)
171     : // clang-format off
172     AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS),
173     AMDGPUSubtarget(TT),
174     TargetTriple(TT),
175     TargetID(*this),
176     InstrItins(getInstrItineraryForCPU(GPU)),
177     InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)),
178     TLInfo(TM, *this),
179     FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) {
180   // clang-format on
181   MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this);
182   EUsPerCU = AMDGPU::IsaInfo::getEUsPerCU(this);
183   CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering()));
184   InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
185   Legalizer.reset(new AMDGPULegalizerInfo(*this, TM));
186   RegBankInfo.reset(new AMDGPURegisterBankInfo(*this));
187   InstSelector.reset(new AMDGPUInstructionSelector(
188   *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM));
189 }
190 
191 unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const {
192   if (getGeneration() < GFX10)
193     return 1;
194 
195   switch (Opcode) {
196   case AMDGPU::V_LSHLREV_B64_e64:
197   case AMDGPU::V_LSHLREV_B64_gfx10:
198   case AMDGPU::V_LSHLREV_B64_e64_gfx11:
199   case AMDGPU::V_LSHL_B64_e64:
200   case AMDGPU::V_LSHRREV_B64_e64:
201   case AMDGPU::V_LSHRREV_B64_gfx10:
202   case AMDGPU::V_LSHRREV_B64_e64_gfx11:
203   case AMDGPU::V_LSHR_B64_e64:
204   case AMDGPU::V_ASHRREV_I64_e64:
205   case AMDGPU::V_ASHRREV_I64_gfx10:
206   case AMDGPU::V_ASHRREV_I64_e64_gfx11:
207   case AMDGPU::V_ASHR_I64_e64:
208     return 1;
209   }
210 
211   return 2;
212 }
213 
214 /// This list was mostly derived from experimentation.
215 bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const {
216   switch (Opcode) {
217   case AMDGPU::V_CVT_F16_F32_e32:
218   case AMDGPU::V_CVT_F16_F32_e64:
219   case AMDGPU::V_CVT_F16_U16_e32:
220   case AMDGPU::V_CVT_F16_U16_e64:
221   case AMDGPU::V_CVT_F16_I16_e32:
222   case AMDGPU::V_CVT_F16_I16_e64:
223   case AMDGPU::V_RCP_F16_e64:
224   case AMDGPU::V_RCP_F16_e32:
225   case AMDGPU::V_RSQ_F16_e64:
226   case AMDGPU::V_RSQ_F16_e32:
227   case AMDGPU::V_SQRT_F16_e64:
228   case AMDGPU::V_SQRT_F16_e32:
229   case AMDGPU::V_LOG_F16_e64:
230   case AMDGPU::V_LOG_F16_e32:
231   case AMDGPU::V_EXP_F16_e64:
232   case AMDGPU::V_EXP_F16_e32:
233   case AMDGPU::V_SIN_F16_e64:
234   case AMDGPU::V_SIN_F16_e32:
235   case AMDGPU::V_COS_F16_e64:
236   case AMDGPU::V_COS_F16_e32:
237   case AMDGPU::V_FLOOR_F16_e64:
238   case AMDGPU::V_FLOOR_F16_e32:
239   case AMDGPU::V_CEIL_F16_e64:
240   case AMDGPU::V_CEIL_F16_e32:
241   case AMDGPU::V_TRUNC_F16_e64:
242   case AMDGPU::V_TRUNC_F16_e32:
243   case AMDGPU::V_RNDNE_F16_e64:
244   case AMDGPU::V_RNDNE_F16_e32:
245   case AMDGPU::V_FRACT_F16_e64:
246   case AMDGPU::V_FRACT_F16_e32:
247   case AMDGPU::V_FREXP_MANT_F16_e64:
248   case AMDGPU::V_FREXP_MANT_F16_e32:
249   case AMDGPU::V_FREXP_EXP_I16_F16_e64:
250   case AMDGPU::V_FREXP_EXP_I16_F16_e32:
251   case AMDGPU::V_LDEXP_F16_e64:
252   case AMDGPU::V_LDEXP_F16_e32:
253   case AMDGPU::V_LSHLREV_B16_e64:
254   case AMDGPU::V_LSHLREV_B16_e32:
255   case AMDGPU::V_LSHRREV_B16_e64:
256   case AMDGPU::V_LSHRREV_B16_e32:
257   case AMDGPU::V_ASHRREV_I16_e64:
258   case AMDGPU::V_ASHRREV_I16_e32:
259   case AMDGPU::V_ADD_U16_e64:
260   case AMDGPU::V_ADD_U16_e32:
261   case AMDGPU::V_SUB_U16_e64:
262   case AMDGPU::V_SUB_U16_e32:
263   case AMDGPU::V_SUBREV_U16_e64:
264   case AMDGPU::V_SUBREV_U16_e32:
265   case AMDGPU::V_MUL_LO_U16_e64:
266   case AMDGPU::V_MUL_LO_U16_e32:
267   case AMDGPU::V_ADD_F16_e64:
268   case AMDGPU::V_ADD_F16_e32:
269   case AMDGPU::V_SUB_F16_e64:
270   case AMDGPU::V_SUB_F16_e32:
271   case AMDGPU::V_SUBREV_F16_e64:
272   case AMDGPU::V_SUBREV_F16_e32:
273   case AMDGPU::V_MUL_F16_e64:
274   case AMDGPU::V_MUL_F16_e32:
275   case AMDGPU::V_MAX_F16_e64:
276   case AMDGPU::V_MAX_F16_e32:
277   case AMDGPU::V_MIN_F16_e64:
278   case AMDGPU::V_MIN_F16_e32:
279   case AMDGPU::V_MAX_U16_e64:
280   case AMDGPU::V_MAX_U16_e32:
281   case AMDGPU::V_MIN_U16_e64:
282   case AMDGPU::V_MIN_U16_e32:
283   case AMDGPU::V_MAX_I16_e64:
284   case AMDGPU::V_MAX_I16_e32:
285   case AMDGPU::V_MIN_I16_e64:
286   case AMDGPU::V_MIN_I16_e32:
287   case AMDGPU::V_MAD_F16_e64:
288   case AMDGPU::V_MAD_U16_e64:
289   case AMDGPU::V_MAD_I16_e64:
290   case AMDGPU::V_FMA_F16_e64:
291   case AMDGPU::V_DIV_FIXUP_F16_e64:
292     // On gfx10, all 16-bit instructions preserve the high bits.
293     return getGeneration() <= AMDGPUSubtarget::GFX9;
294   case AMDGPU::V_MADAK_F16:
295   case AMDGPU::V_MADMK_F16:
296   case AMDGPU::V_MAC_F16_e64:
297   case AMDGPU::V_MAC_F16_e32:
298   case AMDGPU::V_FMAMK_F16:
299   case AMDGPU::V_FMAAK_F16:
300   case AMDGPU::V_FMAC_F16_e64:
301   case AMDGPU::V_FMAC_F16_e32:
302     // In gfx9, the preferred handling of the unused high 16-bits changed. Most
303     // instructions maintain the legacy behavior of 0ing. Some instructions
304     // changed to preserving the high bits.
305     return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
306   case AMDGPU::V_MAD_MIXLO_F16:
307   case AMDGPU::V_MAD_MIXHI_F16:
308   default:
309     return false;
310   }
311 }
312 
313 // Returns the maximum per-workgroup LDS allocation size (in bytes) that still
314 // allows the given function to achieve an occupancy of NWaves waves per
315 // SIMD / EU, taking into account only the function's *maximum* workgroup size.
316 unsigned
317 AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
318                                                  const Function &F) const {
319   const unsigned WaveSize = getWavefrontSize();
320   const unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
321   const unsigned WavesPerWorkgroup =
322       std::max(1u, (WorkGroupSize + WaveSize - 1) / WaveSize);
323 
324   const unsigned WorkGroupsPerCU =
325       std::max(1u, (NWaves * getEUsPerCU()) / WavesPerWorkgroup);
326 
327   return getLocalMemorySize() / WorkGroupsPerCU;
328 }
329 
330 // FIXME: Should return min,max range.
331 //
332 // Returns the maximum occupancy, in number of waves per SIMD / EU, that can
333 // be achieved when only the given function is running on the machine; and
334 // taking into account the overall number of wave slots, the (maximum) workgroup
335 // size, and the per-workgroup LDS allocation size.
336 unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes,
337   const Function &F) const {
338   const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second;
339   const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize);
340   if (!MaxWorkGroupsPerCu)
341     return 0;
342 
343   const unsigned WaveSize = getWavefrontSize();
344 
345   // FIXME: Do we need to account for alignment requirement of LDS rounding the
346   // size up?
347   // Compute restriction based on LDS usage
348   unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u);
349 
350   // This can be queried with more LDS than is possible, so just assume the
351   // worst.
352   if (NumGroups == 0)
353     return 1;
354 
355   NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups);
356 
357   // Round to the number of waves per CU.
358   const unsigned MaxGroupNumWaves = divideCeil(MaxWorkGroupSize, WaveSize);
359   unsigned MaxWaves = NumGroups * MaxGroupNumWaves;
360 
361   // Number of waves per EU (SIMD).
362   MaxWaves = divideCeil(MaxWaves, getEUsPerCU());
363 
364   // Clamp to the maximum possible number of waves.
365   MaxWaves = std::min(MaxWaves, getMaxWavesPerEU());
366 
367   // FIXME: Needs to be a multiple of the group size?
368   //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves);
369 
370   assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() &&
371          "computed invalid occupancy");
372   return MaxWaves;
373 }
374 
375 unsigned
376 AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const {
377   const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
378   return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction());
379 }
380 
381 std::pair<unsigned, unsigned>
382 AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
383   switch (CC) {
384   case CallingConv::AMDGPU_VS:
385   case CallingConv::AMDGPU_LS:
386   case CallingConv::AMDGPU_HS:
387   case CallingConv::AMDGPU_ES:
388   case CallingConv::AMDGPU_GS:
389   case CallingConv::AMDGPU_PS:
390     return std::pair(1, getWavefrontSize());
391   default:
392     return std::pair(1u, getMaxFlatWorkGroupSize());
393   }
394 }
395 
396 std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
397   const Function &F) const {
398   // Default minimum/maximum flat work group sizes.
399   std::pair<unsigned, unsigned> Default =
400     getDefaultFlatWorkGroupSize(F.getCallingConv());
401 
402   // Requested minimum/maximum flat work group sizes.
403   std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
404     F, "amdgpu-flat-work-group-size", Default);
405 
406   // Make sure requested minimum is less than requested maximum.
407   if (Requested.first > Requested.second)
408     return Default;
409 
410   // Make sure requested values do not violate subtarget's specifications.
411   if (Requested.first < getMinFlatWorkGroupSize())
412     return Default;
413   if (Requested.second > getMaxFlatWorkGroupSize())
414     return Default;
415 
416   return Requested;
417 }
418 
419 std::pair<unsigned, unsigned> AMDGPUSubtarget::getEffectiveWavesPerEU(
420     std::pair<unsigned, unsigned> Requested,
421     std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
422   // Default minimum/maximum number of waves per execution unit.
423   std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
424 
425   // If minimum/maximum flat work group sizes were explicitly requested using
426   // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum
427   // number of waves per execution unit to values implied by requested
428   // minimum/maximum flat work group sizes.
429   unsigned MinImpliedByFlatWorkGroupSize =
430     getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second);
431   Default.first = MinImpliedByFlatWorkGroupSize;
432 
433   // Make sure requested minimum is less than requested maximum.
434   if (Requested.second && Requested.first > Requested.second)
435     return Default;
436 
437   // Make sure requested values do not violate subtarget's specifications.
438   if (Requested.first < getMinWavesPerEU() ||
439       Requested.second > getMaxWavesPerEU())
440     return Default;
441 
442   // Make sure requested values are compatible with values implied by requested
443   // minimum/maximum flat work group sizes.
444   if (Requested.first < MinImpliedByFlatWorkGroupSize)
445     return Default;
446 
447   return Requested;
448 }
449 
450 std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
451     const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
452   // Default minimum/maximum number of waves per execution unit.
453   std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
454 
455   // Requested minimum/maximum number of waves per execution unit.
456   std::pair<unsigned, unsigned> Requested =
457       AMDGPU::getIntegerPairAttribute(F, "amdgpu-waves-per-eu", Default, true);
458   return getEffectiveWavesPerEU(Requested, FlatWorkGroupSizes);
459 }
460 
461 static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) {
462   auto Node = Kernel.getMetadata("reqd_work_group_size");
463   if (Node && Node->getNumOperands() == 3)
464     return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue();
465   return std::numeric_limits<unsigned>::max();
466 }
467 
468 bool AMDGPUSubtarget::isMesaKernel(const Function &F) const {
469   return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv());
470 }
471 
472 unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel,
473                                            unsigned Dimension) const {
474   unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension);
475   if (ReqdSize != std::numeric_limits<unsigned>::max())
476     return ReqdSize - 1;
477   return getFlatWorkGroupSizes(Kernel).second - 1;
478 }
479 
480 bool AMDGPUSubtarget::isSingleLaneExecution(const Function &Func) const {
481   for (int I = 0; I < 3; ++I) {
482     if (getMaxWorkitemID(Func, I) > 0)
483       return false;
484   }
485 
486   return true;
487 }
488 
489 bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
490   Function *Kernel = I->getParent()->getParent();
491   unsigned MinSize = 0;
492   unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
493   bool IdQuery = false;
494 
495   // If reqd_work_group_size is present it narrows value down.
496   if (auto *CI = dyn_cast<CallInst>(I)) {
497     const Function *F = CI->getCalledFunction();
498     if (F) {
499       unsigned Dim = UINT_MAX;
500       switch (F->getIntrinsicID()) {
501       case Intrinsic::amdgcn_workitem_id_x:
502       case Intrinsic::r600_read_tidig_x:
503         IdQuery = true;
504         [[fallthrough]];
505       case Intrinsic::r600_read_local_size_x:
506         Dim = 0;
507         break;
508       case Intrinsic::amdgcn_workitem_id_y:
509       case Intrinsic::r600_read_tidig_y:
510         IdQuery = true;
511         [[fallthrough]];
512       case Intrinsic::r600_read_local_size_y:
513         Dim = 1;
514         break;
515       case Intrinsic::amdgcn_workitem_id_z:
516       case Intrinsic::r600_read_tidig_z:
517         IdQuery = true;
518         [[fallthrough]];
519       case Intrinsic::r600_read_local_size_z:
520         Dim = 2;
521         break;
522       default:
523         break;
524       }
525 
526       if (Dim <= 3) {
527         unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim);
528         if (ReqdSize != std::numeric_limits<unsigned>::max())
529           MinSize = MaxSize = ReqdSize;
530       }
531     }
532   }
533 
534   if (!MaxSize)
535     return false;
536 
537   // Range metadata is [Lo, Hi). For ID query we need to pass max size
538   // as Hi. For size query we need to pass Hi + 1.
539   if (IdQuery)
540     MinSize = 0;
541   else
542     ++MaxSize;
543 
544   MDBuilder MDB(I->getContext());
545   MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize),
546                                                   APInt(32, MaxSize));
547   I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
548   return true;
549 }
550 
551 unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const {
552   assert(AMDGPU::isKernel(F.getCallingConv()));
553 
554   // We don't allocate the segment if we know the implicit arguments weren't
555   // used, even if the ABI implies we need them.
556   if (F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
557     return 0;
558 
559   if (isMesaKernel(F))
560     return 16;
561 
562   // Assume all implicit inputs are used by default
563   const Module *M = F.getParent();
564   unsigned NBytes =
565       AMDGPU::getCodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5 ? 256 : 56;
566   return F.getFnAttributeAsParsedInteger("amdgpu-implicitarg-num-bytes",
567                                          NBytes);
568 }
569 
570 uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F,
571                                                  Align &MaxAlign) const {
572   assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
573          F.getCallingConv() == CallingConv::SPIR_KERNEL);
574 
575   const DataLayout &DL = F.getParent()->getDataLayout();
576   uint64_t ExplicitArgBytes = 0;
577   MaxAlign = Align(1);
578 
579   for (const Argument &Arg : F.args()) {
580     const bool IsByRef = Arg.hasByRefAttr();
581     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
582     Align Alignment = DL.getValueOrABITypeAlignment(
583         IsByRef ? Arg.getParamAlign() : std::nullopt, ArgTy);
584     uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
585     ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize;
586     MaxAlign = std::max(MaxAlign, Alignment);
587   }
588 
589   return ExplicitArgBytes;
590 }
591 
592 unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F,
593                                                 Align &MaxAlign) const {
594   if (F.getCallingConv() != CallingConv::AMDGPU_KERNEL &&
595       F.getCallingConv() != CallingConv::SPIR_KERNEL)
596     return 0;
597 
598   uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);
599 
600   unsigned ExplicitOffset = getExplicitKernelArgOffset();
601 
602   uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
603   unsigned ImplicitBytes = getImplicitArgNumBytes(F);
604   if (ImplicitBytes != 0) {
605     const Align Alignment = getAlignmentForImplicitArgPtr();
606     TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
607     MaxAlign = std::max(MaxAlign, Alignment);
608   }
609 
610   // Being able to dereference past the end is useful for emitting scalar loads.
611   return alignTo(TotalSize, 4);
612 }
613 
614 AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const {
615   return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32
616                                   : AMDGPUDwarfFlavour::Wave64;
617 }
618 
619 void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
620                                       unsigned NumRegionInstrs) const {
621   // Track register pressure so the scheduler can try to decrease
622   // pressure once register usage is above the threshold defined by
623   // SIRegisterInfo::getRegPressureSetLimit()
624   Policy.ShouldTrackPressure = true;
625 
626   // Enabling both top down and bottom up scheduling seems to give us less
627   // register spills than just using one of these approaches on its own.
628   Policy.OnlyTopDown = false;
629   Policy.OnlyBottomUp = false;
630 
631   // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
632   if (!enableSIScheduler())
633     Policy.ShouldTrackLaneMasks = true;
634 }
635 
636 bool GCNSubtarget::hasMadF16() const {
637   return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1;
638 }
639 
640 bool GCNSubtarget::useVGPRIndexMode() const {
641   return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode());
642 }
643 
644 bool GCNSubtarget::useAA() const { return UseAA; }
645 
646 unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
647   if (getGeneration() >= AMDGPUSubtarget::GFX10)
648     return getMaxWavesPerEU();
649 
650   if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
651     if (SGPRs <= 80)
652       return 10;
653     if (SGPRs <= 88)
654       return 9;
655     if (SGPRs <= 100)
656       return 8;
657     return 7;
658   }
659   if (SGPRs <= 48)
660     return 10;
661   if (SGPRs <= 56)
662     return 9;
663   if (SGPRs <= 64)
664     return 8;
665   if (SGPRs <= 72)
666     return 7;
667   if (SGPRs <= 80)
668     return 6;
669   return 5;
670 }
671 
672 unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned NumVGPRs) const {
673   return AMDGPU::IsaInfo::getNumWavesPerEUWithNumVGPRs(this, NumVGPRs);
674 }
675 
676 unsigned
677 GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratch) const {
678   if (getGeneration() >= AMDGPUSubtarget::GFX10)
679     return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs.
680 
681   if (HasFlatScratch || HasArchitectedFlatScratch) {
682     if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
683       return 6; // FLAT_SCRATCH, XNACK, VCC (in that order).
684     if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS)
685       return 4; // FLAT_SCRATCH, VCC (in that order).
686   }
687 
688   if (isXNACKEnabled())
689     return 4; // XNACK, VCC (in that order).
690   return 2; // VCC.
691 }
692 
693 unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const {
694   const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
695   return getBaseReservedNumSGPRs(MFI.hasFlatScratchInit());
696 }
697 
698 unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const {
699   // In principle we do not need to reserve SGPR pair used for flat_scratch if
700   // we know flat instructions do not access the stack anywhere in the
701   // program. For now assume it's needed if we have flat instructions.
702   const bool KernelUsesFlatScratch = hasFlatAddressSpace();
703   return getBaseReservedNumSGPRs(KernelUsesFlatScratch);
704 }
705 
706 unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize,
707                                         unsigned NumSGPRs,
708                                         unsigned NumVGPRs) const {
709   unsigned Occupancy =
710     std::min(getMaxWavesPerEU(),
711              getOccupancyWithLocalMemSize(LDSSize, F));
712   if (NumSGPRs)
713     Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs));
714   if (NumVGPRs)
715     Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs));
716   return Occupancy;
717 }
718 
719 unsigned GCNSubtarget::getBaseMaxNumSGPRs(
720     const Function &F, std::pair<unsigned, unsigned> WavesPerEU,
721     unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const {
722   // Compute maximum number of SGPRs function can use using default/requested
723   // minimum number of waves per execution unit.
724   unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false);
725   unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true);
726 
727   // Check if maximum number of SGPRs was explicitly requested using
728   // "amdgpu-num-sgpr" attribute.
729   if (F.hasFnAttribute("amdgpu-num-sgpr")) {
730     unsigned Requested =
731         F.getFnAttributeAsParsedInteger("amdgpu-num-sgpr", MaxNumSGPRs);
732 
733     // Make sure requested value does not violate subtarget's specifications.
734     if (Requested && (Requested <= ReservedNumSGPRs))
735       Requested = 0;
736 
737     // If more SGPRs are required to support the input user/system SGPRs,
738     // increase to accommodate them.
739     //
740     // FIXME: This really ends up using the requested number of SGPRs + number
741     // of reserved special registers in total. Theoretically you could re-use
742     // the last input registers for these special registers, but this would
743     // require a lot of complexity to deal with the weird aliasing.
744     unsigned InputNumSGPRs = PreloadedSGPRs;
745     if (Requested && Requested < InputNumSGPRs)
746       Requested = InputNumSGPRs;
747 
748     // Make sure requested value is compatible with values implied by
749     // default/requested minimum/maximum number of waves per execution unit.
750     if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false))
751       Requested = 0;
752     if (WavesPerEU.second &&
753         Requested && Requested < getMinNumSGPRs(WavesPerEU.second))
754       Requested = 0;
755 
756     if (Requested)
757       MaxNumSGPRs = Requested;
758   }
759 
760   if (hasSGPRInitBug())
761     MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
762 
763   return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs);
764 }
765 
766 unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const {
767   const Function &F = MF.getFunction();
768   const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
769   return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(),
770                             getReservedNumSGPRs(MF));
771 }
772 
773 static unsigned getMaxNumPreloadedSGPRs() {
774   // Max number of user SGPRs
775   unsigned MaxUserSGPRs = 4 + // private segment buffer
776                           2 + // Dispatch ptr
777                           2 + // queue ptr
778                           2 + // kernel segment ptr
779                           2 + // dispatch ID
780                           2 + // flat scratch init
781                           2;  // Implicit buffer ptr
782 
783   // Max number of system SGPRs
784   unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX
785                             1 + // WorkGroupIDY
786                             1 + // WorkGroupIDZ
787                             1 + // WorkGroupInfo
788                             1;  // private segment wave byte offset
789 
790   // Max number of synthetic SGPRs
791   unsigned SyntheticSGPRs = 1; // LDSKernelId
792 
793   return MaxUserSGPRs + MaxSystemSGPRs + SyntheticSGPRs;
794 }
795 
796 unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const {
797   return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(),
798                             getReservedNumSGPRs(F));
799 }
800 
801 unsigned GCNSubtarget::getBaseMaxNumVGPRs(
802     const Function &F, std::pair<unsigned, unsigned> WavesPerEU) const {
803   // Compute maximum number of VGPRs function can use using default/requested
804   // minimum number of waves per execution unit.
805   unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first);
806 
807   // Check if maximum number of VGPRs was explicitly requested using
808   // "amdgpu-num-vgpr" attribute.
809   if (F.hasFnAttribute("amdgpu-num-vgpr")) {
810     unsigned Requested =
811         F.getFnAttributeAsParsedInteger("amdgpu-num-vgpr", MaxNumVGPRs);
812 
813     if (hasGFX90AInsts())
814       Requested *= 2;
815 
816     // Make sure requested value is compatible with values implied by
817     // default/requested minimum/maximum number of waves per execution unit.
818     if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first))
819       Requested = 0;
820     if (WavesPerEU.second &&
821         Requested && Requested < getMinNumVGPRs(WavesPerEU.second))
822       Requested = 0;
823 
824     if (Requested)
825       MaxNumVGPRs = Requested;
826   }
827 
828   return MaxNumVGPRs;
829 }
830 
831 unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const {
832   return getBaseMaxNumVGPRs(F, getWavesPerEU(F));
833 }
834 
835 unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const {
836   const Function &F = MF.getFunction();
837   const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
838   return getBaseMaxNumVGPRs(F, MFI.getWavesPerEU());
839 }
840 
841 void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use,
842                                          int UseOpIdx, SDep &Dep) const {
843   if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() ||
844       !Def->isInstr() || !Use->isInstr())
845     return;
846 
847   MachineInstr *DefI = Def->getInstr();
848   MachineInstr *UseI = Use->getInstr();
849 
850   if (DefI->isBundle()) {
851     const SIRegisterInfo *TRI = getRegisterInfo();
852     auto Reg = Dep.getReg();
853     MachineBasicBlock::const_instr_iterator I(DefI->getIterator());
854     MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end());
855     unsigned Lat = 0;
856     for (++I; I != E && I->isBundledWithPred(); ++I) {
857       if (I->modifiesRegister(Reg, TRI))
858         Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I);
859       else if (Lat)
860         --Lat;
861     }
862     Dep.setLatency(Lat);
863   } else if (UseI->isBundle()) {
864     const SIRegisterInfo *TRI = getRegisterInfo();
865     auto Reg = Dep.getReg();
866     MachineBasicBlock::const_instr_iterator I(UseI->getIterator());
867     MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end());
868     unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI);
869     for (++I; I != E && I->isBundledWithPred() && Lat; ++I) {
870       if (I->readsRegister(Reg, TRI))
871         break;
872       --Lat;
873     }
874     Dep.setLatency(Lat);
875   } else if (Dep.getLatency() == 0 && Dep.getReg() == AMDGPU::VCC_LO) {
876     // Work around the fact that SIInstrInfo::fixImplicitOperands modifies
877     // implicit operands which come from the MCInstrDesc, which can fool
878     // ScheduleDAGInstrs::addPhysRegDataDeps into treating them as implicit
879     // pseudo operands.
880     Dep.setLatency(InstrInfo.getSchedModel().computeOperandLatency(
881         DefI, DefOpIdx, UseI, UseOpIdx));
882   }
883 }
884 
885 namespace {
886 struct FillMFMAShadowMutation : ScheduleDAGMutation {
887   const SIInstrInfo *TII;
888 
889   ScheduleDAGMI *DAG;
890 
891   FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {}
892 
893   bool isSALU(const SUnit *SU) const {
894     const MachineInstr *MI = SU->getInstr();
895     return MI && TII->isSALU(*MI) && !MI->isTerminator();
896   }
897 
898   bool isVALU(const SUnit *SU) const {
899     const MachineInstr *MI = SU->getInstr();
900     return MI && TII->isVALU(*MI);
901   }
902 
903   // Link as many SALU instructions in chain as possible. Return the size
904   // of the chain. Links up to MaxChain instructions.
905   unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain,
906                          SmallPtrSetImpl<SUnit *> &Visited) const {
907     SmallVector<SUnit *, 8> Worklist({To});
908     unsigned Linked = 0;
909 
910     while (!Worklist.empty() && MaxChain-- > 0) {
911       SUnit *SU = Worklist.pop_back_val();
912       if (!Visited.insert(SU).second)
913         continue;
914 
915       LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From);
916                  dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n');
917 
918       if (SU != From && From != &DAG->ExitSU && DAG->canAddEdge(SU, From))
919         if (DAG->addEdge(SU, SDep(From, SDep::Artificial)))
920           ++Linked;
921 
922       for (SDep &SI : From->Succs) {
923         SUnit *SUv = SI.getSUnit();
924         if (SUv != From && SU != &DAG->ExitSU && isVALU(SUv) &&
925             DAG->canAddEdge(SUv, SU))
926           DAG->addEdge(SUv, SDep(SU, SDep::Artificial));
927       }
928 
929       for (SDep &SI : SU->Succs) {
930         SUnit *Succ = SI.getSUnit();
931         if (Succ != SU && isSALU(Succ))
932           Worklist.push_back(Succ);
933       }
934     }
935 
936     return Linked;
937   }
938 
939   void apply(ScheduleDAGInstrs *DAGInstrs) override {
940     const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
941     if (!ST.hasMAIInsts())
942       return;
943     DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
944     const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
945     if (!TSchedModel || DAG->SUnits.empty())
946       return;
947 
948     // Scan for MFMA long latency instructions and try to add a dependency
949     // of available SALU instructions to give them a chance to fill MFMA
950     // shadow. That is desirable to fill MFMA shadow with SALU instructions
951     // rather than VALU to prevent power consumption bursts and throttle.
952     auto LastSALU = DAG->SUnits.begin();
953     auto E = DAG->SUnits.end();
954     SmallPtrSet<SUnit*, 32> Visited;
955     for (SUnit &SU : DAG->SUnits) {
956       MachineInstr &MAI = *SU.getInstr();
957       if (!TII->isMAI(MAI) ||
958            MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
959            MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64)
960         continue;
961 
962       unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1;
963 
964       LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU);
965                  dbgs() << "Need " << Lat
966                         << " instructions to cover latency.\n");
967 
968       // Find up to Lat independent scalar instructions as early as
969       // possible such that they can be scheduled after this MFMA.
970       for ( ; Lat && LastSALU != E; ++LastSALU) {
971         if (Visited.count(&*LastSALU))
972           continue;
973 
974         if (&SU == &DAG->ExitSU || &SU == &*LastSALU || !isSALU(&*LastSALU) ||
975             !DAG->canAddEdge(&*LastSALU, &SU))
976           continue;
977 
978         Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited);
979       }
980     }
981   }
982 };
983 } // namespace
984 
985 void GCNSubtarget::getPostRAMutations(
986     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
987   Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo));
988 }
989 
990 std::unique_ptr<ScheduleDAGMutation>
991 GCNSubtarget::createFillMFMAShadowMutation(const TargetInstrInfo *TII) const {
992   return EnablePowerSched ? std::make_unique<FillMFMAShadowMutation>(&InstrInfo)
993                           : nullptr;
994 }
995 
996 unsigned GCNSubtarget::getNSAThreshold(const MachineFunction &MF) const {
997   if (NSAThreshold.getNumOccurrences() > 0)
998     return std::max(NSAThreshold.getValue(), 2u);
999 
1000   int Value = MF.getFunction().getFnAttributeAsParsedInteger(
1001       "amdgpu-nsa-threshold", -1);
1002   if (Value > 0)
1003     return std::max(Value, 2);
1004 
1005   return 3;
1006 }
1007 
1008 const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) {
1009   if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn)
1010     return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>());
1011   else
1012     return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>());
1013 }
1014 
1015 const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) {
1016   if (TM.getTargetTriple().getArch() == Triple::amdgcn)
1017     return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F));
1018   else
1019     return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F));
1020 }
1021