xref: /freebsd/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Implements the AMDGPU specific subclass of TargetSubtarget.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPUSubtarget.h"
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPUInstructionSelector.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPURegisterBankInfo.h"
19 #include "AMDGPUTargetMachine.h"
20 #include "GCNSubtarget.h"
21 #include "R600Subtarget.h"
22 #include "SIMachineFunctionInfo.h"
23 #include "Utils/AMDGPUBaseInfo.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
26 #include "llvm/CodeGen/MachineScheduler.h"
27 #include "llvm/CodeGen/TargetFrameLowering.h"
28 #include "llvm/IR/IntrinsicsAMDGPU.h"
29 #include "llvm/IR/IntrinsicsR600.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include <algorithm>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "amdgpu-subtarget"
37 
38 #define GET_SUBTARGETINFO_TARGET_DESC
39 #define GET_SUBTARGETINFO_CTOR
40 #define AMDGPUSubtarget GCNSubtarget
41 #include "AMDGPUGenSubtargetInfo.inc"
42 #undef AMDGPUSubtarget
43 
44 static cl::opt<bool> EnablePowerSched(
45   "amdgpu-enable-power-sched",
46   cl::desc("Enable scheduling to minimize mAI power bursts"),
47   cl::init(false));
48 
49 static cl::opt<bool> EnableVGPRIndexMode(
50   "amdgpu-vgpr-index-mode",
51   cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
52   cl::init(false));
53 
54 static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen",
55                            cl::desc("Enable the use of AA during codegen."),
56                            cl::init(true));
57 
58 static cl::opt<unsigned> NSAThreshold("amdgpu-nsa-threshold",
59                                       cl::desc("Number of addresses from which to enable MIMG NSA."),
60                                       cl::init(3), cl::Hidden);
61 
62 GCNSubtarget::~GCNSubtarget() = default;
63 
64 GCNSubtarget &
65 GCNSubtarget::initializeSubtargetDependencies(const Triple &TT,
66                                               StringRef GPU, StringRef FS) {
67   // Determine default and user-specified characteristics
68   //
69   // We want to be able to turn these off, but making this a subtarget feature
70   // for SI has the unhelpful behavior that it unsets everything else if you
71   // disable it.
72   //
73   // Similarly we want enable-prt-strict-null to be on by default and not to
74   // unset everything else if it is disabled
75 
76   SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,");
77 
78   // Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default
79   if (isAmdHsaOS())
80     FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,";
81 
82   FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS
83 
84   // Disable mutually exclusive bits.
85   if (FS.contains_insensitive("+wavefrontsize")) {
86     if (!FS.contains_insensitive("wavefrontsize16"))
87       FullFS += "-wavefrontsize16,";
88     if (!FS.contains_insensitive("wavefrontsize32"))
89       FullFS += "-wavefrontsize32,";
90     if (!FS.contains_insensitive("wavefrontsize64"))
91       FullFS += "-wavefrontsize64,";
92   }
93 
94   FullFS += FS;
95 
96   ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);
97 
98   // Implement the "generic" processors, which acts as the default when no
99   // generation features are enabled (e.g for -mcpu=''). HSA OS defaults to
100   // the first amdgcn target that supports flat addressing. Other OSes defaults
101   // to the first amdgcn target.
102   if (Gen == AMDGPUSubtarget::INVALID) {
103      Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS
104                                         : AMDGPUSubtarget::SOUTHERN_ISLANDS;
105   }
106 
107   // We don't support FP64 for EG/NI atm.
108   assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS));
109 
110   // Targets must either support 64-bit offsets for MUBUF instructions, and/or
111   // support flat operations, otherwise they cannot access a 64-bit global
112   // address space
113   assert(hasAddr64() || hasFlat());
114   // Unless +-flat-for-global is specified, turn on FlatForGlobal for targets
115   // that do not support ADDR64 variants of MUBUF instructions. Such targets
116   // cannot use a 64 bit offset with a MUBUF instruction to access the global
117   // address space
118   if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) {
119     ToggleFeature(AMDGPU::FeatureFlatForGlobal);
120     FlatForGlobal = true;
121   }
122   // Unless +-flat-for-global is specified, use MUBUF instructions for global
123   // address space access if flat operations are not available.
124   if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) {
125     ToggleFeature(AMDGPU::FeatureFlatForGlobal);
126     FlatForGlobal = false;
127   }
128 
129   // Set defaults if needed.
130   if (MaxPrivateElementSize == 0)
131     MaxPrivateElementSize = 4;
132 
133   if (LDSBankCount == 0)
134     LDSBankCount = 32;
135 
136   if (TT.getArch() == Triple::amdgcn) {
137     if (LocalMemorySize == 0)
138       LocalMemorySize = 32768;
139 
140     // Do something sensible for unspecified target.
141     if (!HasMovrel && !HasVGPRIndexMode)
142       HasMovrel = true;
143   }
144 
145   AddressableLocalMemorySize = LocalMemorySize;
146 
147   if (AMDGPU::isGFX10Plus(*this) &&
148       !getFeatureBits().test(AMDGPU::FeatureCuMode))
149     LocalMemorySize *= 2;
150 
151   // Don't crash on invalid devices.
152   if (WavefrontSizeLog2 == 0)
153     WavefrontSizeLog2 = 5;
154 
155   HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS;
156   HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9;
157 
158   TargetID.setTargetIDFromFeaturesString(FS);
159 
160   LLVM_DEBUG(dbgs() << "xnack setting for subtarget: "
161                     << TargetID.getXnackSetting() << '\n');
162   LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: "
163                     << TargetID.getSramEccSetting() << '\n');
164 
165   return *this;
166 }
167 
168 AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) : TargetTriple(TT) {}
169 
170 bool AMDGPUSubtarget::useRealTrue16Insts() const {
171   return hasTrue16BitInsts() && EnableRealTrue16Insts;
172 }
173 
174 GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
175                            const GCNTargetMachine &TM)
176     : // clang-format off
177     AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS),
178     AMDGPUSubtarget(TT),
179     TargetTriple(TT),
180     TargetID(*this),
181     InstrItins(getInstrItineraryForCPU(GPU)),
182     InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)),
183     TLInfo(TM, *this),
184     FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) {
185   // clang-format on
186   MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this);
187   EUsPerCU = AMDGPU::IsaInfo::getEUsPerCU(this);
188   CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering()));
189   InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
190   Legalizer.reset(new AMDGPULegalizerInfo(*this, TM));
191   RegBankInfo.reset(new AMDGPURegisterBankInfo(*this));
192   InstSelector.reset(new AMDGPUInstructionSelector(
193   *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM));
194 }
195 
196 unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const {
197   if (getGeneration() < GFX10)
198     return 1;
199 
200   switch (Opcode) {
201   case AMDGPU::V_LSHLREV_B64_e64:
202   case AMDGPU::V_LSHLREV_B64_gfx10:
203   case AMDGPU::V_LSHLREV_B64_e64_gfx11:
204   case AMDGPU::V_LSHLREV_B64_e32_gfx12:
205   case AMDGPU::V_LSHLREV_B64_e64_gfx12:
206   case AMDGPU::V_LSHL_B64_e64:
207   case AMDGPU::V_LSHRREV_B64_e64:
208   case AMDGPU::V_LSHRREV_B64_gfx10:
209   case AMDGPU::V_LSHRREV_B64_e64_gfx11:
210   case AMDGPU::V_LSHRREV_B64_e64_gfx12:
211   case AMDGPU::V_LSHR_B64_e64:
212   case AMDGPU::V_ASHRREV_I64_e64:
213   case AMDGPU::V_ASHRREV_I64_gfx10:
214   case AMDGPU::V_ASHRREV_I64_e64_gfx11:
215   case AMDGPU::V_ASHRREV_I64_e64_gfx12:
216   case AMDGPU::V_ASHR_I64_e64:
217     return 1;
218   }
219 
220   return 2;
221 }
222 
223 /// This list was mostly derived from experimentation.
224 bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const {
225   switch (Opcode) {
226   case AMDGPU::V_CVT_F16_F32_e32:
227   case AMDGPU::V_CVT_F16_F32_e64:
228   case AMDGPU::V_CVT_F16_U16_e32:
229   case AMDGPU::V_CVT_F16_U16_e64:
230   case AMDGPU::V_CVT_F16_I16_e32:
231   case AMDGPU::V_CVT_F16_I16_e64:
232   case AMDGPU::V_RCP_F16_e64:
233   case AMDGPU::V_RCP_F16_e32:
234   case AMDGPU::V_RSQ_F16_e64:
235   case AMDGPU::V_RSQ_F16_e32:
236   case AMDGPU::V_SQRT_F16_e64:
237   case AMDGPU::V_SQRT_F16_e32:
238   case AMDGPU::V_LOG_F16_e64:
239   case AMDGPU::V_LOG_F16_e32:
240   case AMDGPU::V_EXP_F16_e64:
241   case AMDGPU::V_EXP_F16_e32:
242   case AMDGPU::V_SIN_F16_e64:
243   case AMDGPU::V_SIN_F16_e32:
244   case AMDGPU::V_COS_F16_e64:
245   case AMDGPU::V_COS_F16_e32:
246   case AMDGPU::V_FLOOR_F16_e64:
247   case AMDGPU::V_FLOOR_F16_e32:
248   case AMDGPU::V_CEIL_F16_e64:
249   case AMDGPU::V_CEIL_F16_e32:
250   case AMDGPU::V_TRUNC_F16_e64:
251   case AMDGPU::V_TRUNC_F16_e32:
252   case AMDGPU::V_RNDNE_F16_e64:
253   case AMDGPU::V_RNDNE_F16_e32:
254   case AMDGPU::V_FRACT_F16_e64:
255   case AMDGPU::V_FRACT_F16_e32:
256   case AMDGPU::V_FREXP_MANT_F16_e64:
257   case AMDGPU::V_FREXP_MANT_F16_e32:
258   case AMDGPU::V_FREXP_EXP_I16_F16_e64:
259   case AMDGPU::V_FREXP_EXP_I16_F16_e32:
260   case AMDGPU::V_LDEXP_F16_e64:
261   case AMDGPU::V_LDEXP_F16_e32:
262   case AMDGPU::V_LSHLREV_B16_e64:
263   case AMDGPU::V_LSHLREV_B16_e32:
264   case AMDGPU::V_LSHRREV_B16_e64:
265   case AMDGPU::V_LSHRREV_B16_e32:
266   case AMDGPU::V_ASHRREV_I16_e64:
267   case AMDGPU::V_ASHRREV_I16_e32:
268   case AMDGPU::V_ADD_U16_e64:
269   case AMDGPU::V_ADD_U16_e32:
270   case AMDGPU::V_SUB_U16_e64:
271   case AMDGPU::V_SUB_U16_e32:
272   case AMDGPU::V_SUBREV_U16_e64:
273   case AMDGPU::V_SUBREV_U16_e32:
274   case AMDGPU::V_MUL_LO_U16_e64:
275   case AMDGPU::V_MUL_LO_U16_e32:
276   case AMDGPU::V_ADD_F16_e64:
277   case AMDGPU::V_ADD_F16_e32:
278   case AMDGPU::V_SUB_F16_e64:
279   case AMDGPU::V_SUB_F16_e32:
280   case AMDGPU::V_SUBREV_F16_e64:
281   case AMDGPU::V_SUBREV_F16_e32:
282   case AMDGPU::V_MUL_F16_e64:
283   case AMDGPU::V_MUL_F16_e32:
284   case AMDGPU::V_MAX_F16_e64:
285   case AMDGPU::V_MAX_F16_e32:
286   case AMDGPU::V_MIN_F16_e64:
287   case AMDGPU::V_MIN_F16_e32:
288   case AMDGPU::V_MAX_U16_e64:
289   case AMDGPU::V_MAX_U16_e32:
290   case AMDGPU::V_MIN_U16_e64:
291   case AMDGPU::V_MIN_U16_e32:
292   case AMDGPU::V_MAX_I16_e64:
293   case AMDGPU::V_MAX_I16_e32:
294   case AMDGPU::V_MIN_I16_e64:
295   case AMDGPU::V_MIN_I16_e32:
296   case AMDGPU::V_MAD_F16_e64:
297   case AMDGPU::V_MAD_U16_e64:
298   case AMDGPU::V_MAD_I16_e64:
299   case AMDGPU::V_FMA_F16_e64:
300   case AMDGPU::V_DIV_FIXUP_F16_e64:
301     // On gfx10, all 16-bit instructions preserve the high bits.
302     return getGeneration() <= AMDGPUSubtarget::GFX9;
303   case AMDGPU::V_MADAK_F16:
304   case AMDGPU::V_MADMK_F16:
305   case AMDGPU::V_MAC_F16_e64:
306   case AMDGPU::V_MAC_F16_e32:
307   case AMDGPU::V_FMAMK_F16:
308   case AMDGPU::V_FMAAK_F16:
309   case AMDGPU::V_FMAC_F16_e64:
310   case AMDGPU::V_FMAC_F16_e32:
311     // In gfx9, the preferred handling of the unused high 16-bits changed. Most
312     // instructions maintain the legacy behavior of 0ing. Some instructions
313     // changed to preserving the high bits.
314     return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
315   case AMDGPU::V_MAD_MIXLO_F16:
316   case AMDGPU::V_MAD_MIXHI_F16:
317   default:
318     return false;
319   }
320 }
321 
322 // Returns the maximum per-workgroup LDS allocation size (in bytes) that still
323 // allows the given function to achieve an occupancy of NWaves waves per
324 // SIMD / EU, taking into account only the function's *maximum* workgroup size.
325 unsigned
326 AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
327                                                  const Function &F) const {
328   const unsigned WaveSize = getWavefrontSize();
329   const unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
330   const unsigned WavesPerWorkgroup =
331       std::max(1u, (WorkGroupSize + WaveSize - 1) / WaveSize);
332 
333   const unsigned WorkGroupsPerCU =
334       std::max(1u, (NWaves * getEUsPerCU()) / WavesPerWorkgroup);
335 
336   return getLocalMemorySize() / WorkGroupsPerCU;
337 }
338 
339 // FIXME: Should return min,max range.
340 //
341 // Returns the maximum occupancy, in number of waves per SIMD / EU, that can
342 // be achieved when only the given function is running on the machine; and
343 // taking into account the overall number of wave slots, the (maximum) workgroup
344 // size, and the per-workgroup LDS allocation size.
345 unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes,
346   const Function &F) const {
347   const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second;
348   const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize);
349   if (!MaxWorkGroupsPerCu)
350     return 0;
351 
352   const unsigned WaveSize = getWavefrontSize();
353 
354   // FIXME: Do we need to account for alignment requirement of LDS rounding the
355   // size up?
356   // Compute restriction based on LDS usage
357   unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u);
358 
359   // This can be queried with more LDS than is possible, so just assume the
360   // worst.
361   if (NumGroups == 0)
362     return 1;
363 
364   NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups);
365 
366   // Round to the number of waves per CU.
367   const unsigned MaxGroupNumWaves = divideCeil(MaxWorkGroupSize, WaveSize);
368   unsigned MaxWaves = NumGroups * MaxGroupNumWaves;
369 
370   // Number of waves per EU (SIMD).
371   MaxWaves = divideCeil(MaxWaves, getEUsPerCU());
372 
373   // Clamp to the maximum possible number of waves.
374   MaxWaves = std::min(MaxWaves, getMaxWavesPerEU());
375 
376   // FIXME: Needs to be a multiple of the group size?
377   //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves);
378 
379   assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() &&
380          "computed invalid occupancy");
381   return MaxWaves;
382 }
383 
384 unsigned
385 AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const {
386   const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
387   return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction());
388 }
389 
390 std::pair<unsigned, unsigned>
391 AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
392   switch (CC) {
393   case CallingConv::AMDGPU_VS:
394   case CallingConv::AMDGPU_LS:
395   case CallingConv::AMDGPU_HS:
396   case CallingConv::AMDGPU_ES:
397   case CallingConv::AMDGPU_GS:
398   case CallingConv::AMDGPU_PS:
399     return std::pair(1, getWavefrontSize());
400   default:
401     return std::pair(1u, getMaxFlatWorkGroupSize());
402   }
403 }
404 
405 std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
406   const Function &F) const {
407   // Default minimum/maximum flat work group sizes.
408   std::pair<unsigned, unsigned> Default =
409     getDefaultFlatWorkGroupSize(F.getCallingConv());
410 
411   // Requested minimum/maximum flat work group sizes.
412   std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
413     F, "amdgpu-flat-work-group-size", Default);
414 
415   // Make sure requested minimum is less than requested maximum.
416   if (Requested.first > Requested.second)
417     return Default;
418 
419   // Make sure requested values do not violate subtarget's specifications.
420   if (Requested.first < getMinFlatWorkGroupSize())
421     return Default;
422   if (Requested.second > getMaxFlatWorkGroupSize())
423     return Default;
424 
425   return Requested;
426 }
427 
428 std::pair<unsigned, unsigned> AMDGPUSubtarget::getEffectiveWavesPerEU(
429     std::pair<unsigned, unsigned> Requested,
430     std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
431   // Default minimum/maximum number of waves per execution unit.
432   std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
433 
434   // If minimum/maximum flat work group sizes were explicitly requested using
435   // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum
436   // number of waves per execution unit to values implied by requested
437   // minimum/maximum flat work group sizes.
438   unsigned MinImpliedByFlatWorkGroupSize =
439     getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second);
440   Default.first = MinImpliedByFlatWorkGroupSize;
441 
442   // Make sure requested minimum is less than requested maximum.
443   if (Requested.second && Requested.first > Requested.second)
444     return Default;
445 
446   // Make sure requested values do not violate subtarget's specifications.
447   if (Requested.first < getMinWavesPerEU() ||
448       Requested.second > getMaxWavesPerEU())
449     return Default;
450 
451   // Make sure requested values are compatible with values implied by requested
452   // minimum/maximum flat work group sizes.
453   if (Requested.first < MinImpliedByFlatWorkGroupSize)
454     return Default;
455 
456   return Requested;
457 }
458 
459 std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
460     const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
461   // Default minimum/maximum number of waves per execution unit.
462   std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
463 
464   // Requested minimum/maximum number of waves per execution unit.
465   std::pair<unsigned, unsigned> Requested =
466       AMDGPU::getIntegerPairAttribute(F, "amdgpu-waves-per-eu", Default, true);
467   return getEffectiveWavesPerEU(Requested, FlatWorkGroupSizes);
468 }
469 
470 static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) {
471   auto Node = Kernel.getMetadata("reqd_work_group_size");
472   if (Node && Node->getNumOperands() == 3)
473     return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue();
474   return std::numeric_limits<unsigned>::max();
475 }
476 
477 bool AMDGPUSubtarget::isMesaKernel(const Function &F) const {
478   return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv());
479 }
480 
481 unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel,
482                                            unsigned Dimension) const {
483   unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension);
484   if (ReqdSize != std::numeric_limits<unsigned>::max())
485     return ReqdSize - 1;
486   return getFlatWorkGroupSizes(Kernel).second - 1;
487 }
488 
489 bool AMDGPUSubtarget::isSingleLaneExecution(const Function &Func) const {
490   for (int I = 0; I < 3; ++I) {
491     if (getMaxWorkitemID(Func, I) > 0)
492       return false;
493   }
494 
495   return true;
496 }
497 
498 bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
499   Function *Kernel = I->getParent()->getParent();
500   unsigned MinSize = 0;
501   unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
502   bool IdQuery = false;
503 
504   // If reqd_work_group_size is present it narrows value down.
505   if (auto *CI = dyn_cast<CallInst>(I)) {
506     const Function *F = CI->getCalledFunction();
507     if (F) {
508       unsigned Dim = UINT_MAX;
509       switch (F->getIntrinsicID()) {
510       case Intrinsic::amdgcn_workitem_id_x:
511       case Intrinsic::r600_read_tidig_x:
512         IdQuery = true;
513         [[fallthrough]];
514       case Intrinsic::r600_read_local_size_x:
515         Dim = 0;
516         break;
517       case Intrinsic::amdgcn_workitem_id_y:
518       case Intrinsic::r600_read_tidig_y:
519         IdQuery = true;
520         [[fallthrough]];
521       case Intrinsic::r600_read_local_size_y:
522         Dim = 1;
523         break;
524       case Intrinsic::amdgcn_workitem_id_z:
525       case Intrinsic::r600_read_tidig_z:
526         IdQuery = true;
527         [[fallthrough]];
528       case Intrinsic::r600_read_local_size_z:
529         Dim = 2;
530         break;
531       default:
532         break;
533       }
534 
535       if (Dim <= 3) {
536         unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim);
537         if (ReqdSize != std::numeric_limits<unsigned>::max())
538           MinSize = MaxSize = ReqdSize;
539       }
540     }
541   }
542 
543   if (!MaxSize)
544     return false;
545 
546   // Range metadata is [Lo, Hi). For ID query we need to pass max size
547   // as Hi. For size query we need to pass Hi + 1.
548   if (IdQuery)
549     MinSize = 0;
550   else
551     ++MaxSize;
552 
553   MDBuilder MDB(I->getContext());
554   MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize),
555                                                   APInt(32, MaxSize));
556   I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
557   return true;
558 }
559 
560 unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const {
561   assert(AMDGPU::isKernel(F.getCallingConv()));
562 
563   // We don't allocate the segment if we know the implicit arguments weren't
564   // used, even if the ABI implies we need them.
565   if (F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
566     return 0;
567 
568   if (isMesaKernel(F))
569     return 16;
570 
571   // Assume all implicit inputs are used by default
572   const Module *M = F.getParent();
573   unsigned NBytes =
574       AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5 ? 256 : 56;
575   return F.getFnAttributeAsParsedInteger("amdgpu-implicitarg-num-bytes",
576                                          NBytes);
577 }
578 
579 uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F,
580                                                  Align &MaxAlign) const {
581   assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
582          F.getCallingConv() == CallingConv::SPIR_KERNEL);
583 
584   const DataLayout &DL = F.getParent()->getDataLayout();
585   uint64_t ExplicitArgBytes = 0;
586   MaxAlign = Align(1);
587 
588   for (const Argument &Arg : F.args()) {
589     const bool IsByRef = Arg.hasByRefAttr();
590     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
591     Align Alignment = DL.getValueOrABITypeAlignment(
592         IsByRef ? Arg.getParamAlign() : std::nullopt, ArgTy);
593     uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
594     ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize;
595     MaxAlign = std::max(MaxAlign, Alignment);
596   }
597 
598   return ExplicitArgBytes;
599 }
600 
601 unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F,
602                                                 Align &MaxAlign) const {
603   if (F.getCallingConv() != CallingConv::AMDGPU_KERNEL &&
604       F.getCallingConv() != CallingConv::SPIR_KERNEL)
605     return 0;
606 
607   uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);
608 
609   unsigned ExplicitOffset = getExplicitKernelArgOffset();
610 
611   uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
612   unsigned ImplicitBytes = getImplicitArgNumBytes(F);
613   if (ImplicitBytes != 0) {
614     const Align Alignment = getAlignmentForImplicitArgPtr();
615     TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
616     MaxAlign = std::max(MaxAlign, Alignment);
617   }
618 
619   // Being able to dereference past the end is useful for emitting scalar loads.
620   return alignTo(TotalSize, 4);
621 }
622 
623 AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const {
624   return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32
625                                   : AMDGPUDwarfFlavour::Wave64;
626 }
627 
628 void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
629                                       unsigned NumRegionInstrs) const {
630   // Track register pressure so the scheduler can try to decrease
631   // pressure once register usage is above the threshold defined by
632   // SIRegisterInfo::getRegPressureSetLimit()
633   Policy.ShouldTrackPressure = true;
634 
635   // Enabling both top down and bottom up scheduling seems to give us less
636   // register spills than just using one of these approaches on its own.
637   Policy.OnlyTopDown = false;
638   Policy.OnlyBottomUp = false;
639 
640   // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
641   if (!enableSIScheduler())
642     Policy.ShouldTrackLaneMasks = true;
643 }
644 
645 bool GCNSubtarget::hasMadF16() const {
646   return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1;
647 }
648 
649 bool GCNSubtarget::useVGPRIndexMode() const {
650   return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode());
651 }
652 
653 bool GCNSubtarget::useAA() const { return UseAA; }
654 
655 unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
656   if (getGeneration() >= AMDGPUSubtarget::GFX10)
657     return getMaxWavesPerEU();
658 
659   if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
660     if (SGPRs <= 80)
661       return 10;
662     if (SGPRs <= 88)
663       return 9;
664     if (SGPRs <= 100)
665       return 8;
666     return 7;
667   }
668   if (SGPRs <= 48)
669     return 10;
670   if (SGPRs <= 56)
671     return 9;
672   if (SGPRs <= 64)
673     return 8;
674   if (SGPRs <= 72)
675     return 7;
676   if (SGPRs <= 80)
677     return 6;
678   return 5;
679 }
680 
681 unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned NumVGPRs) const {
682   return AMDGPU::IsaInfo::getNumWavesPerEUWithNumVGPRs(this, NumVGPRs);
683 }
684 
685 unsigned
686 GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratch) const {
687   if (getGeneration() >= AMDGPUSubtarget::GFX10)
688     return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs.
689 
690   if (HasFlatScratch || HasArchitectedFlatScratch) {
691     if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
692       return 6; // FLAT_SCRATCH, XNACK, VCC (in that order).
693     if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS)
694       return 4; // FLAT_SCRATCH, VCC (in that order).
695   }
696 
697   if (isXNACKEnabled())
698     return 4; // XNACK, VCC (in that order).
699   return 2; // VCC.
700 }
701 
702 unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const {
703   const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
704   return getBaseReservedNumSGPRs(MFI.getUserSGPRInfo().hasFlatScratchInit());
705 }
706 
707 unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const {
708   // In principle we do not need to reserve SGPR pair used for flat_scratch if
709   // we know flat instructions do not access the stack anywhere in the
710   // program. For now assume it's needed if we have flat instructions.
711   const bool KernelUsesFlatScratch = hasFlatAddressSpace();
712   return getBaseReservedNumSGPRs(KernelUsesFlatScratch);
713 }
714 
715 unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize,
716                                         unsigned NumSGPRs,
717                                         unsigned NumVGPRs) const {
718   unsigned Occupancy =
719     std::min(getMaxWavesPerEU(),
720              getOccupancyWithLocalMemSize(LDSSize, F));
721   if (NumSGPRs)
722     Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs));
723   if (NumVGPRs)
724     Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs));
725   return Occupancy;
726 }
727 
728 unsigned GCNSubtarget::getBaseMaxNumSGPRs(
729     const Function &F, std::pair<unsigned, unsigned> WavesPerEU,
730     unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const {
731   // Compute maximum number of SGPRs function can use using default/requested
732   // minimum number of waves per execution unit.
733   unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false);
734   unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true);
735 
736   // Check if maximum number of SGPRs was explicitly requested using
737   // "amdgpu-num-sgpr" attribute.
738   if (F.hasFnAttribute("amdgpu-num-sgpr")) {
739     unsigned Requested =
740         F.getFnAttributeAsParsedInteger("amdgpu-num-sgpr", MaxNumSGPRs);
741 
742     // Make sure requested value does not violate subtarget's specifications.
743     if (Requested && (Requested <= ReservedNumSGPRs))
744       Requested = 0;
745 
746     // If more SGPRs are required to support the input user/system SGPRs,
747     // increase to accommodate them.
748     //
749     // FIXME: This really ends up using the requested number of SGPRs + number
750     // of reserved special registers in total. Theoretically you could re-use
751     // the last input registers for these special registers, but this would
752     // require a lot of complexity to deal with the weird aliasing.
753     unsigned InputNumSGPRs = PreloadedSGPRs;
754     if (Requested && Requested < InputNumSGPRs)
755       Requested = InputNumSGPRs;
756 
757     // Make sure requested value is compatible with values implied by
758     // default/requested minimum/maximum number of waves per execution unit.
759     if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false))
760       Requested = 0;
761     if (WavesPerEU.second &&
762         Requested && Requested < getMinNumSGPRs(WavesPerEU.second))
763       Requested = 0;
764 
765     if (Requested)
766       MaxNumSGPRs = Requested;
767   }
768 
769   if (hasSGPRInitBug())
770     MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
771 
772   return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs);
773 }
774 
775 unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const {
776   const Function &F = MF.getFunction();
777   const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
778   return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(),
779                             getReservedNumSGPRs(MF));
780 }
781 
782 static unsigned getMaxNumPreloadedSGPRs() {
783   using USI = GCNUserSGPRUsageInfo;
784   // Max number of user SGPRs
785   const unsigned MaxUserSGPRs =
786       USI::getNumUserSGPRForField(USI::PrivateSegmentBufferID) +
787       USI::getNumUserSGPRForField(USI::DispatchPtrID) +
788       USI::getNumUserSGPRForField(USI::QueuePtrID) +
789       USI::getNumUserSGPRForField(USI::KernargSegmentPtrID) +
790       USI::getNumUserSGPRForField(USI::DispatchIdID) +
791       USI::getNumUserSGPRForField(USI::FlatScratchInitID) +
792       USI::getNumUserSGPRForField(USI::ImplicitBufferPtrID);
793 
794   // Max number of system SGPRs
795   const unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX
796                                   1 + // WorkGroupIDY
797                                   1 + // WorkGroupIDZ
798                                   1 + // WorkGroupInfo
799                                   1;  // private segment wave byte offset
800 
801   // Max number of synthetic SGPRs
802   const unsigned SyntheticSGPRs = 1; // LDSKernelId
803 
804   return MaxUserSGPRs + MaxSystemSGPRs + SyntheticSGPRs;
805 }
806 
807 unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const {
808   return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(),
809                             getReservedNumSGPRs(F));
810 }
811 
812 unsigned GCNSubtarget::getBaseMaxNumVGPRs(
813     const Function &F, std::pair<unsigned, unsigned> WavesPerEU) const {
814   // Compute maximum number of VGPRs function can use using default/requested
815   // minimum number of waves per execution unit.
816   unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first);
817 
818   // Check if maximum number of VGPRs was explicitly requested using
819   // "amdgpu-num-vgpr" attribute.
820   if (F.hasFnAttribute("amdgpu-num-vgpr")) {
821     unsigned Requested =
822         F.getFnAttributeAsParsedInteger("amdgpu-num-vgpr", MaxNumVGPRs);
823 
824     if (hasGFX90AInsts())
825       Requested *= 2;
826 
827     // Make sure requested value is compatible with values implied by
828     // default/requested minimum/maximum number of waves per execution unit.
829     if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first))
830       Requested = 0;
831     if (WavesPerEU.second &&
832         Requested && Requested < getMinNumVGPRs(WavesPerEU.second))
833       Requested = 0;
834 
835     if (Requested)
836       MaxNumVGPRs = Requested;
837   }
838 
839   return MaxNumVGPRs;
840 }
841 
842 unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const {
843   return getBaseMaxNumVGPRs(F, getWavesPerEU(F));
844 }
845 
846 unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const {
847   const Function &F = MF.getFunction();
848   const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
849   return getBaseMaxNumVGPRs(F, MFI.getWavesPerEU());
850 }
851 
852 void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use,
853                                          int UseOpIdx, SDep &Dep) const {
854   if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() ||
855       !Def->isInstr() || !Use->isInstr())
856     return;
857 
858   MachineInstr *DefI = Def->getInstr();
859   MachineInstr *UseI = Use->getInstr();
860 
861   if (DefI->isBundle()) {
862     const SIRegisterInfo *TRI = getRegisterInfo();
863     auto Reg = Dep.getReg();
864     MachineBasicBlock::const_instr_iterator I(DefI->getIterator());
865     MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end());
866     unsigned Lat = 0;
867     for (++I; I != E && I->isBundledWithPred(); ++I) {
868       if (I->modifiesRegister(Reg, TRI))
869         Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I);
870       else if (Lat)
871         --Lat;
872     }
873     Dep.setLatency(Lat);
874   } else if (UseI->isBundle()) {
875     const SIRegisterInfo *TRI = getRegisterInfo();
876     auto Reg = Dep.getReg();
877     MachineBasicBlock::const_instr_iterator I(UseI->getIterator());
878     MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end());
879     unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI);
880     for (++I; I != E && I->isBundledWithPred() && Lat; ++I) {
881       if (I->readsRegister(Reg, TRI))
882         break;
883       --Lat;
884     }
885     Dep.setLatency(Lat);
886   } else if (Dep.getLatency() == 0 && Dep.getReg() == AMDGPU::VCC_LO) {
887     // Work around the fact that SIInstrInfo::fixImplicitOperands modifies
888     // implicit operands which come from the MCInstrDesc, which can fool
889     // ScheduleDAGInstrs::addPhysRegDataDeps into treating them as implicit
890     // pseudo operands.
891     Dep.setLatency(InstrInfo.getSchedModel().computeOperandLatency(
892         DefI, DefOpIdx, UseI, UseOpIdx));
893   }
894 }
895 
896 namespace {
897 struct FillMFMAShadowMutation : ScheduleDAGMutation {
898   const SIInstrInfo *TII;
899 
900   ScheduleDAGMI *DAG;
901 
902   FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {}
903 
904   bool isSALU(const SUnit *SU) const {
905     const MachineInstr *MI = SU->getInstr();
906     return MI && TII->isSALU(*MI) && !MI->isTerminator();
907   }
908 
909   bool isVALU(const SUnit *SU) const {
910     const MachineInstr *MI = SU->getInstr();
911     return MI && TII->isVALU(*MI);
912   }
913 
914   // Link as many SALU instructions in chain as possible. Return the size
915   // of the chain. Links up to MaxChain instructions.
916   unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain,
917                          SmallPtrSetImpl<SUnit *> &Visited) const {
918     SmallVector<SUnit *, 8> Worklist({To});
919     unsigned Linked = 0;
920 
921     while (!Worklist.empty() && MaxChain-- > 0) {
922       SUnit *SU = Worklist.pop_back_val();
923       if (!Visited.insert(SU).second)
924         continue;
925 
926       LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From);
927                  dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n');
928 
929       if (SU != From && From != &DAG->ExitSU && DAG->canAddEdge(SU, From))
930         if (DAG->addEdge(SU, SDep(From, SDep::Artificial)))
931           ++Linked;
932 
933       for (SDep &SI : From->Succs) {
934         SUnit *SUv = SI.getSUnit();
935         if (SUv != From && SU != &DAG->ExitSU && isVALU(SUv) &&
936             DAG->canAddEdge(SUv, SU))
937           DAG->addEdge(SUv, SDep(SU, SDep::Artificial));
938       }
939 
940       for (SDep &SI : SU->Succs) {
941         SUnit *Succ = SI.getSUnit();
942         if (Succ != SU && isSALU(Succ))
943           Worklist.push_back(Succ);
944       }
945     }
946 
947     return Linked;
948   }
949 
950   void apply(ScheduleDAGInstrs *DAGInstrs) override {
951     const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
952     if (!ST.hasMAIInsts())
953       return;
954     DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
955     const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
956     if (!TSchedModel || DAG->SUnits.empty())
957       return;
958 
959     // Scan for MFMA long latency instructions and try to add a dependency
960     // of available SALU instructions to give them a chance to fill MFMA
961     // shadow. That is desirable to fill MFMA shadow with SALU instructions
962     // rather than VALU to prevent power consumption bursts and throttle.
963     auto LastSALU = DAG->SUnits.begin();
964     auto E = DAG->SUnits.end();
965     SmallPtrSet<SUnit*, 32> Visited;
966     for (SUnit &SU : DAG->SUnits) {
967       MachineInstr &MAI = *SU.getInstr();
968       if (!TII->isMAI(MAI) ||
969            MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
970            MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64)
971         continue;
972 
973       unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1;
974 
975       LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU);
976                  dbgs() << "Need " << Lat
977                         << " instructions to cover latency.\n");
978 
979       // Find up to Lat independent scalar instructions as early as
980       // possible such that they can be scheduled after this MFMA.
981       for ( ; Lat && LastSALU != E; ++LastSALU) {
982         if (Visited.count(&*LastSALU))
983           continue;
984 
985         if (&SU == &DAG->ExitSU || &SU == &*LastSALU || !isSALU(&*LastSALU) ||
986             !DAG->canAddEdge(&*LastSALU, &SU))
987           continue;
988 
989         Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited);
990       }
991     }
992   }
993 };
994 } // namespace
995 
996 void GCNSubtarget::getPostRAMutations(
997     std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
998   Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo));
999 }
1000 
1001 std::unique_ptr<ScheduleDAGMutation>
1002 GCNSubtarget::createFillMFMAShadowMutation(const TargetInstrInfo *TII) const {
1003   return EnablePowerSched ? std::make_unique<FillMFMAShadowMutation>(&InstrInfo)
1004                           : nullptr;
1005 }
1006 
1007 unsigned GCNSubtarget::getNSAThreshold(const MachineFunction &MF) const {
1008   if (getGeneration() >= AMDGPUSubtarget::GFX12)
1009     return 0; // Not MIMG encoding.
1010 
1011   if (NSAThreshold.getNumOccurrences() > 0)
1012     return std::max(NSAThreshold.getValue(), 2u);
1013 
1014   int Value = MF.getFunction().getFnAttributeAsParsedInteger(
1015       "amdgpu-nsa-threshold", -1);
1016   if (Value > 0)
1017     return std::max(Value, 2);
1018 
1019   return 3;
1020 }
1021 
1022 const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) {
1023   if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn)
1024     return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>());
1025   else
1026     return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>());
1027 }
1028 
1029 const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) {
1030   if (TM.getTargetTriple().getArch() == Triple::amdgcn)
1031     return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F));
1032   else
1033     return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F));
1034 }
1035 
1036 GCNUserSGPRUsageInfo::GCNUserSGPRUsageInfo(const Function &F,
1037                                            const GCNSubtarget &ST)
1038     : ST(ST) {
1039   const CallingConv::ID CC = F.getCallingConv();
1040   const bool IsKernel =
1041       CC == CallingConv::AMDGPU_KERNEL || CC == CallingConv::SPIR_KERNEL;
1042   // FIXME: Should have analysis or something rather than attribute to detect
1043   // calls.
1044   const bool HasCalls = F.hasFnAttribute("amdgpu-calls");
1045   // FIXME: This attribute is a hack, we just need an analysis on the function
1046   // to look for allocas.
1047   const bool HasStackObjects = F.hasFnAttribute("amdgpu-stack-objects");
1048 
1049   if (IsKernel && (!F.arg_empty() || ST.getImplicitArgNumBytes(F) != 0))
1050     KernargSegmentPtr = true;
1051 
1052   bool IsAmdHsaOrMesa = ST.isAmdHsaOrMesa(F);
1053   if (IsAmdHsaOrMesa && !ST.enableFlatScratch())
1054     PrivateSegmentBuffer = true;
1055   else if (ST.isMesaGfxShader(F))
1056     ImplicitBufferPtr = true;
1057 
1058   if (!AMDGPU::isGraphics(CC)) {
1059     if (!F.hasFnAttribute("amdgpu-no-dispatch-ptr"))
1060       DispatchPtr = true;
1061 
1062     // FIXME: Can this always be disabled with < COv5?
1063     if (!F.hasFnAttribute("amdgpu-no-queue-ptr"))
1064       QueuePtr = true;
1065 
1066     if (!F.hasFnAttribute("amdgpu-no-dispatch-id"))
1067       DispatchID = true;
1068   }
1069 
1070   // TODO: This could be refined a lot. The attribute is a poor way of
1071   // detecting calls or stack objects that may require it before argument
1072   // lowering.
1073   if (ST.hasFlatAddressSpace() && AMDGPU::isEntryFunctionCC(CC) &&
1074       (IsAmdHsaOrMesa || ST.enableFlatScratch()) &&
1075       (HasCalls || HasStackObjects || ST.enableFlatScratch()) &&
1076       !ST.flatScratchIsArchitected()) {
1077     FlatScratchInit = true;
1078   }
1079 
1080   if (hasImplicitBufferPtr())
1081     NumUsedUserSGPRs += getNumUserSGPRForField(ImplicitBufferPtrID);
1082 
1083   if (hasPrivateSegmentBuffer())
1084     NumUsedUserSGPRs += getNumUserSGPRForField(PrivateSegmentBufferID);
1085 
1086   if (hasDispatchPtr())
1087     NumUsedUserSGPRs += getNumUserSGPRForField(DispatchPtrID);
1088 
1089   if (hasQueuePtr())
1090     NumUsedUserSGPRs += getNumUserSGPRForField(QueuePtrID);
1091 
1092   if (hasKernargSegmentPtr())
1093     NumUsedUserSGPRs += getNumUserSGPRForField(KernargSegmentPtrID);
1094 
1095   if (hasDispatchID())
1096     NumUsedUserSGPRs += getNumUserSGPRForField(DispatchIdID);
1097 
1098   if (hasFlatScratchInit())
1099     NumUsedUserSGPRs += getNumUserSGPRForField(FlatScratchInitID);
1100 }
1101 
1102 void GCNUserSGPRUsageInfo::allocKernargPreloadSGPRs(unsigned NumSGPRs) {
1103   assert(NumKernargPreloadSGPRs + NumSGPRs <= AMDGPU::getMaxNumUserSGPRs(ST));
1104   NumKernargPreloadSGPRs += NumSGPRs;
1105   NumUsedUserSGPRs += NumSGPRs;
1106 }
1107 
1108 unsigned GCNUserSGPRUsageInfo::getNumFreeUserSGPRs() {
1109   return AMDGPU::getMaxNumUserSGPRs(ST) - NumUsedUserSGPRs;
1110 }
1111